

#### *EMC Test Report Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15, Subpart E Model: LocoM5*

- IC CERTIFICATION #: 6545A-M5LB FCC ID: SWX-M5LD
  - APPLICANT: Ubiquiti Networks 91 E. Tasman Drive San Jose, CA 95134
  - TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

#### IC SITE REGISTRATION #:

REPORT DATE: August 5, 2011

FINAL TEST DATES:

TOTAL NUMBER OF PAGES:

204

PROGRAM MGR / TECHNICAL REVIEWER:

Mark Briggs

Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

2845B-3; 2845B-4, 2845B-5, 2845B-7

June 1 and June 14, 2011

April 12, 14, 18, 22, May 3, 4, 5, 9, 19, 25, 26,

David Guidotti Senior Technical Writer



Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Testing Cert #2016.01

### **REVISION HISTORY**

| Rev# | Date       | Comments      | Modified<br>By |
|------|------------|---------------|----------------|
| -    | 08-05-2011 | First release |                |

#### TABLE OF CONTENTS

| REVISION HISTORY                                            | 2  |
|-------------------------------------------------------------|----|
| TABLE OF CONTENTS                                           | 3  |
| SCOPE                                                       | 5  |
| OBJECTIVE                                                   |    |
| STATEMENT OF COMPLIANCE                                     | 6  |
| DEVIATIONS FROM THE STANDARDS                               | 6  |
| TEST RESULTS SUMMARY                                        |    |
| GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS                |    |
| MEASUREMENT UNCERTAINTIES                                   |    |
| EQUIPMENT UNDER TEST (EUT) DETAILS                          |    |
| GENERAL.                                                    |    |
| ANTENNA SYSTEM                                              |    |
| ENCLOSURE                                                   |    |
| MODIFICATIONS                                               | 11 |
| SUPPORT EQUIPMENT                                           |    |
| EUT INTERFACE PORTS                                         |    |
| EUT OPERATION                                               | 12 |
| TEST SITE                                                   | 13 |
| GENERAL INFORMATION                                         | 13 |
| CONDUCTED EMISSIONS CONSIDERATIONS                          | 13 |
| RADIATED EMISSIONS CONSIDERATIONS                           |    |
| MEASUREMENT INSTRUMENTATION                                 | 14 |
| RECEIVER SYSTEM                                             |    |
| INSTRUMENT CONTROL COMPUTER                                 |    |
| LINE IMPEDANCE STABILIZATION NETWORK (LISN)                 |    |
| FILTERS/ATTENUATORS                                         |    |
| ANTENNAS                                                    | 15 |
| ANTENNA MAST AND EQUIPMENT TURNTABLE                        | 15 |
| INSTRUMENT CALIBRATION                                      | 15 |
| TEST PROCEDURES                                             | 16 |
| EUT AND CABLE PLACEMENT                                     |    |
| CONDUCTED EMISSIONS                                         |    |
| RADIATED EMISSIONS                                          | 16 |
| RADIATED EMISSIONS                                          |    |
| CONDUCTED EMISSIONS FROM ANTENNA PORT                       | 19 |
| BANDWIDTH MEASUREMENTS                                      |    |
| SPECIFICATION LIMITS AND SAMPLE CALCULATIONS                |    |
| GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS |    |
| RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS   |    |
| FCC 15.407 (A) OUTPUT POWER LIMITS                          |    |
| OUTPUT POWER LIMITS –LELAN DEVICES                          |    |
| SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES           |    |
| SAMPLE CALCULATIONS - CONDUCTED EMISSIONS                   |    |
| SAMPLE CALCULATIONS - RADIATED EMISSIONS                    |    |
| SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION     | 24 |

| APPENDIX A TEST EQUIPMENT CALIBRATION DATA                 | 25 |
|------------------------------------------------------------|----|
| APPENDIX B TEST DATA                                       |    |
| APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS              |    |
| APPENDIX D INDUSTRY CANADA / FCC ID LABEL & LABEL LOCATION |    |
| APPENDIX E OPERATOR'S MANUAL                               |    |
| APPENDIX F BLOCK DIAGRAM                                   |    |
| APPENDIX G THEORY OF OPERATION                             |    |
| APPENDIX H RF EXPOSURE INFORMATION                         |    |
| END OF REPORT                                              |    |

#### SCOPE

An electromagnetic emissions test has been performed on the Ubiquiti Networks model LocoM5, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

#### **OBJECTIVE**

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

#### STATEMENT OF COMPLIANCE

The tested sample of Ubiquiti Networks model LocoM5 complied with the requirements of the following regulations:

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Ubiquiti Networks model LocoM5 and therefore apply only to the tested sample. The sample was selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

#### DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

#### TEST RESULTS SUMMARY

**Operation in the 5.25 – 5.35 GHz Band** Note: The device may be used outdoors, therefore the spectral density of spurious emissions in the 5.15 – 5.25 GHz band were limited to the -27dBm/MHz limit.

| FCC<br>Rule Part | RSS<br>Rule Part      | Description               | Measured Value /<br>Comments                                                                                          | Limit / Requirement                                         | Result<br>(margin) |
|------------------|-----------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------|
| 15.407(a)<br>(2) |                       | 26dB Bandwidth            | 802.11a: >20MHz<br>HT5: 8.3 MHz<br>HT8: 10.8 MHz<br>HT10: 13.4 MHz<br>HT20: > 20MHz<br>HT30: > 20MHz<br>HT40: > 20MHz | N/A – limits output<br>power if < 20MHz                     | N/A                |
| 15.407(a)<br>(2) | A9.2(2)               | Output Power              | 802.11a: 7.6 mW<br>HT5: 5.8 mW<br>HT8: 7.4 mW<br>HT10: 11.5 mW<br>HT20: 13.7 mW<br>HT30: 23.5 mW<br>HT40: 5.5 mW      | SISO:<br>17dBm (50mW)<br>MIMO:<br>14dBm (25mW) <sup>1</sup> | Complies           |
| 15.407(a)<br>(2) | -                     | Power Spectral<br>Density | 802.11a: -3.9dBm/MHz<br>HT5: 0.91 dBm/MHz<br>HT8: 0.3 dBm/MHz<br>                                                     | SISO: 4 dBm/MHz<br>MIMO: 1dBm/MHz                           | Complies           |
| -                | A9.2(2) /<br>A9.5 (2) | Power Spectral<br>Density | HT10: 0.9 dBm/MHz<br>HT20: 0.7 dBm/MHz<br>HT30: -0.9 dBm/MHz<br>HT40: -7.5 dBm/MHz                                    | 11 dBm / MHz                                                | Complies           |

<sup>&</sup>lt;sup>1</sup> As the antenna gain is 13dBi (with effective gain of 16dBi for MIMO modes due to correlation between transmit chains) the maximum allowed output power for this device is 17dBm for SISO modes and 14dBm for MIMO modes to maintain the eirp below 30dBm.

| FCC               | RSS                   | Description                                     | Measured Value /                                                                                                      | Limit / Requirement                                         | Result   |
|-------------------|-----------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------|
| Rule Part         | Rule Part             | 1                                               | Comments                                                                                                              | 1                                                           | (margin) |
| 15.407(a)<br>(2)  |                       | 26dB Bandwidth                                  | 802.11a: >20MHz<br>HT5: 8.3 MHz<br>HT8: 11.5 MHz<br>HT10: 15.0 MHz<br>HT20: > 20MHz<br>HT30: > 20MHz<br>HT40: > 20MHz | N/A – limits output<br>power if < 20MHz                     | N/A      |
| 15.407(a)<br>(2)  | A9.2(2)               | Output Power                                    | 802.11a: 17.8 mW<br>HT5: 6.0 mW<br>HT8: 9.6 mW<br>HT10: 11.9 mW<br>HT20: 23.3 mW<br>HT30: 24.1 mW<br>HT40: 21.6 mW    | SISO:<br>17dBm (50mW)<br>MIMO:<br>14dBm (25mW) <sup>2</sup> | Complies |
| 15.407(a)<br>(2)) |                       | Power Spectral<br>Density                       | 802.11a: -0.3dBm/MHz<br>HT5: 1.0 dBm/MHz<br>HT8: 0.9 dBm/MHz<br>-HT10: 0.9 dBm/MHz                                    | SISO: 4 dBm/MHz<br>MIMO: 1dBm/MHz                           | Complies |
|                   | A9.2(2) /<br>A9.5 (2) | Power Spectral<br>Density                       | HT10: 0.9 dBm/MHz<br>HT20: 1.5 dBm/MHz<br>HT30: -0.7 dBm/MHz<br>HT40: -2.8 dBm/MHz                                    | 11 dBm / MHz                                                | Complies |
| KDB<br>443999     | A9                    | Non-operation in<br>5600 – 5650 MHz<br>sub band | Device cannot operate in the 5600 – 5650 MHz<br>band –refer to Operational Description                                |                                                             | Complies |

**Operation in the 5.47 – 5.725 GHz Band** 

<sup>&</sup>lt;sup>2</sup> As the antenna gain is 13dBi (with effective gain of 16dBi for MIMO modes due to correlation between transmit chains) the maximum allowed output power for this device is 17dBm for SISO modes and 14dBm for MIMO modes to maintain the eirp below 30dBm.

| <b>Requirements</b>       | for all U-NII/I  | FI AN bonds                                                     |                                                                                                                                                                    | Report Dute. Mug                                                                                                                                                              |                           |
|---------------------------|------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| FCC<br>Rule Part          | RSS<br>Rule Part | Description                                                     | Measured Value /<br>Comments                                                                                                                                       | Limit / Requirement                                                                                                                                                           | Result                    |
| 15.407                    | A9.5a            | Modulation                                                      | Digital Modulation is<br>used (OFDM with<br>BPSK-64 QAM))                                                                                                          | Digital modulation<br>is required                                                                                                                                             | Complies                  |
| 15.407(b)<br>(5) / 15.209 | A9.3             | Spurious Emissions<br>below 1GHz                                | Note 1                                                                                                                                                             |                                                                                                                                                                               | -                         |
| 15.407(b)<br>(5) / 15.209 | A9.3             | Spurious Emissions<br>above 1GHz                                | 54.0dBµV/m @<br>5357.6MHz<br>(802.11a Mode)                                                                                                                        | Refer to page 22                                                                                                                                                              | Complies<br>(- 0.0<br>dB) |
| 15.407(a)(6)              | -                | Peak Excursion Ratio                                            | 12.9dB (HT10 mode)                                                                                                                                                 | < 13dB                                                                                                                                                                        | Complies                  |
| 15                        | A9.5 (3)         | - Channel Selection                                             | Spurious emissions<br>tested at outermost<br>channels in each band<br>Measurements on<br>three channels in each                                                    | Device was tested<br>on the top, bottom<br>and center channels<br>in each band for<br>each operating                                                                          | N/A                       |
| 15                        |                  |                                                                 | band                                                                                                                                                               | mode.                                                                                                                                                                         |                           |
| 15.407 (c)                | A9.5(4)          | Operation in the<br>absence of<br>information to<br>transmit    | Operation is<br>discontinued in the<br>absence of<br>information (refer to<br>Operational<br>Description )                                                         | Device shall<br>automatically<br>discontinue<br>operation in the<br>absence of<br>information to<br>transmit                                                                  | Complies                  |
| 15.407 (g)                | A9.5 (5)         | Frequency Stability                                             | Frequency stability is<br>better than 10ppm<br>(Operational<br>Description)                                                                                        | Signal shall remain<br>within the allocated<br>band                                                                                                                           | Complies                  |
| 15.407 (h1)               | A9.4             | Transmit Power<br>Control                                       | TPC mechanism is<br>discussed in the<br>Operational<br>Description. Power<br>measurements were<br>made to show the<br>device has the<br>required dynamic<br>range. | The U-NII device<br>shall have the<br>capability to operate<br>with a mean EIRP<br>value lower than<br>24dBm (250mW)                                                          | Complies                  |
| 15.407 (h2)               | A9.4             | Dynamic frequency<br>Selection (device with<br>radar detection) | Refer to separate test<br>report, reference<br>R83910                                                                                                              | Threshold64dBm<br>Channel Availability<br>Check > 60s<br>Channel closing<br>transmission time <<br>260ms<br>Channel move time<br>< 10s<br>Non occupancy<br>period > 30minutes | Complies                  |
|                           | A9.9g            | User Manual information                                         | Refer to Exhibit 6 for<br>details                                                                                                                                  | Warning regarding<br>interference from<br>Satellite Systems                                                                                                                   | Complies                  |

| FCC Rule<br>Part                | RSS<br>Rule part            | Description                 | Measured Value /<br>Comments                                                                                         | Limit / Requirement                                                         | Result<br>(margin)    |
|---------------------------------|-----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------|
| 15.203                          | -                           | RF Connector                | Integral antenna                                                                                                     | Unique or integral antenna required                                         | Complies              |
| 15.207                          | RSS GEN<br>Table 2          | AC Conducted<br>Emissions   | does not affect the pre-                                                                                             | PC to add the NII freque<br>viously reported measur<br>conducted emissions. |                       |
| 15.109                          | RSS GEN<br>7.2.3<br>Table 1 | Receiver spurious emissions | 43.0dBµV/m @<br>1440.0MHz                                                                                            | Refer to page 21                                                            | Complies<br>(- 11 dB) |
| 15.247 (b)<br>(5)<br>15.407 (f) | RSS 102                     | RF Exposure<br>Requirements | Refer to MPE<br>calculations in<br>Exhibit 11, RSS 102<br>declaration and User<br>Manual statements.                 | Refer to OET 65,<br>FCC Part 1 and RSS<br>102                               | Complies              |
| -                               | RSP 100<br>RSS GEN<br>7.1.5 | User Manual                 | Refer to Manual                                                                                                      | Statement required<br>regarding non-<br>interference                        | Complies              |
| -                               | RSP 100<br>RSS GEN<br>4.4.1 | 99% Bandwidth               | 802.11a: 17.1MHz<br>HT5: 8.3 MHz<br>HT8: 7.5 MHz<br>HT10: 9.4 MHz<br>HT20: 18.2MHz<br>HT30: 27.0MHz<br>HT40: 36.9MHz | Information only                                                            | N/A                   |

#### GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

#### MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

| Measurement Type                           | Measurement<br>Unit | Frequency Range                     | Expanded<br>Uncertainty                         |
|--------------------------------------------|---------------------|-------------------------------------|-------------------------------------------------|
| RF power, conducted (power meter)          | dBm                 | 25 to 7000 MHz                      | $\pm 0.52 \text{ dB}$                           |
| RF power, conducted (Spectrum analyzer)    | dBm                 | 25 to 7000 MHz                      | $\pm 0.7 \text{ dB}$                            |
| Conducted emission of transmitter          | dBm                 | 25 to 26500 MHz                     | $\pm 0.7 \text{ dB}$                            |
| Conducted emission of receiver             | dBm                 | 25 to 26500 MHz                     | $\pm 0.7 \text{ dB}$                            |
| Radiated emission<br>(substitution method) | dBm                 | 25 to 26500 MHz                     | ± 2.5 dB                                        |
| Radiated emission (field strength)         | dBµV/m              | 25 to 1000 MHz<br>1000 to 40000 MHz | $\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$ |
| Conducted Emissions (AC<br>Power)          | dBµV                | 0.15 to 30 MHz                      | ± 2.4 dB                                        |

#### EQUIPMENT UNDER TEST (EUT) DETAILS

#### GENERAL

The Ubiquiti Networks model LocoM5 is a proprietary Access Point which is designed to provide wireless communications links using MIMO technology with bandwidths of between 5 and 40 MHz. The system also supports one MISO operating bandwidth of 20MHz. The operating frequency ranges for each mode are:

| Mode    | Frequency Range                             | Bandwidth |
|---------|---------------------------------------------|-----------|
| HT5     | 5255-5340 MHz, 5475-5595 MHz, 5655-5715 MHz | 5 MHz     |
| HT8     | 5260-5330MHz, 5480-5595MHz, 5655-5715 MHz   | 8 MHz     |
| HT10    | 5260-5330MHz, 5480-5590MHz, 5660-5710 MHz   | 10 MHz    |
| HT20    | 5265-5320MHz, 5500-5580MHz, 5660-5700MHz    | 20 MHz    |
| HT30    | 5275-5315MHz, 5500-5580MHz, 5665-5680 MHz   | 30 MHz    |
| HT40    | 5275-5310 MHz, 5510 MHz-5550 MHz, 5670 MHz  | 40 MHz    |
| 802.11a | 5270-5320MHz, 5500-5580MHz, 5660-5700MHz    | 20 MHz    |

Since the EUT would normally be pole or wall mounted during operation, the EUT was located on a pole at a height of approximately 0.8m to 1.0m above the ground plane. The device is designed to be powered via Power-over-Ethernet and the PoE adapter used during testing was rated at 100-240 Volts, 50-60 Hz, .3 Amps.

The sample was received on April 12, 2011 and tested on April 12, 14, 18, 22, May 3, 4, 5, 9, 19, 25, 26, June 1 and June 14, 2011. The EUT consisted of the following component(s):

| Company              | Model                                                                 | Description                                                                       | Serial Number | FCC ID   |
|----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------|----------|
| Ubiquiti<br>Networks | NanoStation<br>Loco M5<br>wideband<br>Wireless Access<br>Point/bridge | Sample for<br>conducted<br>measurements<br>Sample for<br>radiated<br>measurements | -             | SWX-M5LD |

#### ANTENNA SYSTEM

The antenna is integral to the device and has 13 dBi gain per element.

#### ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 8 cm wide by 28 cm deep by 6 cm high.

#### **MODIFICATIONS**

No modifications were made to the EUT during the time the product was at Elliott.

#### SUPPORT EQUIPMENT

The following equipment was used as remote support equipment for emissions testing:

| Company  | Model        | Description | Serial Number |
|----------|--------------|-------------|---------------|
| DELL     | Vostro 1000  | Laptop      | 28832224069   |
| Ubiquiti | UBI-POE-24-1 | PoE         | 0912-0000635  |

#### EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

| Port         | Connected        |             | Cable(s)               |           |
|--------------|------------------|-------------|------------------------|-----------|
| Folt         | То               | Description | Shielded or Unshielded | Length(m) |
| Ethernet     | POE Injector     | Cat 5 UTP   | Unshielded             | 10        |
| PoE Injector | Laptop           | Cat 5 UTP   | Unshielded             | 3         |
| PoE Injector | AC-DC<br>adapter | 2-wire      | Unshielded             | 1         |

#### EUT OPERATION

During testing, the EUT was configured via the ART test utility to either transmit continuously or be in a continuous receive mode. The transmit mode measurements were made win each of the modes supported at the lowest data rate in that mode (the highest power in each mode is achieved at the lowest data rate). There was one MISO mode (802.11a) and 6 different MIMO modes supporting bandwidths of 5 MHz, 8 MHz, 10MHz, 20MHz, 30 MHz and 40MHz.

#### TEST SITE

#### GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

| Site      | Registratio   | Location |                  |
|-----------|---------------|----------|------------------|
| Site      | FCC           | Canada   | Location         |
| Chamber 3 | 769238        | 2845B-3  |                  |
| Chamber 4 | 211948        | 2845B-4  | 41039 Boyce Road |
| Chamber 5 | 211948        | 2845B-5  | Fremont,         |
| Chamber 7 | A2LA          | 2845B-7  | CA 94538-2435    |
| Chamber / | accreditation | 2043D-/  |                  |

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

#### CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

#### RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

#### MEASUREMENT INSTRUMENTATION

#### RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

#### INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

#### LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

#### FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

#### ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

#### ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

#### INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

#### TEST PROCEDURES

#### EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

#### CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

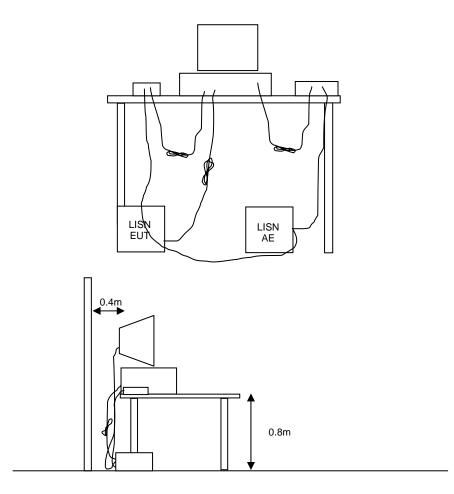
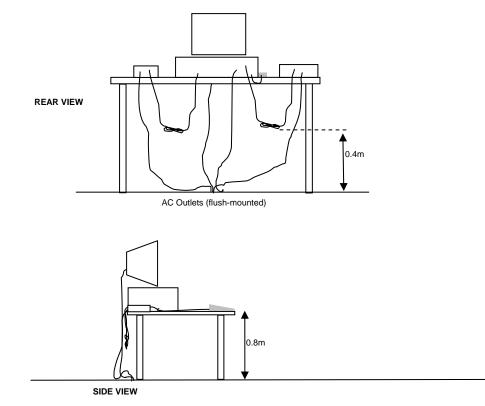
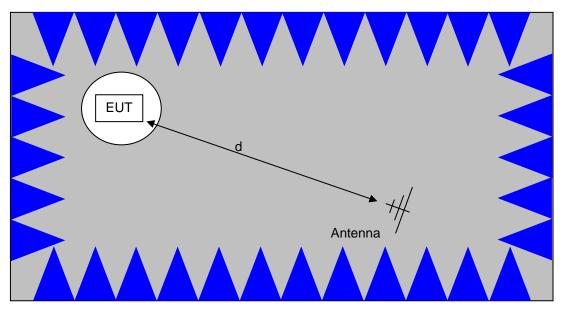



Figure 1 Typical Conducted Emissions Test Configuration

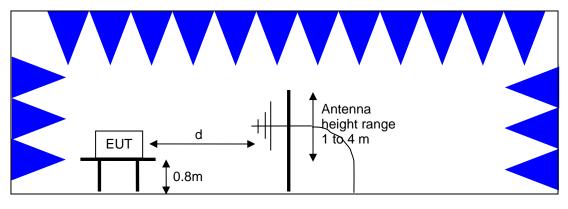

#### RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

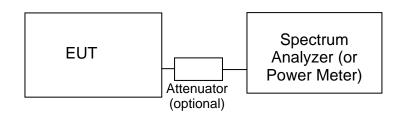
When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.




Typical Test Configuration for Radiated Field Strength Measurements



The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

#### CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.



#### Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

#### **BANDWIDTH MEASUREMENTS**

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

#### SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

#### GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands<sup>3</sup> (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV/m)              | Limit<br>(dBuV/m @ 3m)                               |
|-----------------------------|------------------------------|------------------------------------------------------|
| 0.009-0.490                 | 2400/F <sub>KHz</sub> @ 300m | 67.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 300m |
| 0.490-1.705                 | 24000/F <sub>KHz</sub> @ 30m | 87.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 30m  |
| 1.705 to 30                 | 30 @ 30m                     | 29.5 @ 30m                                           |
| 30 to 88                    | 100 @ 3m                     | 40 @ 3m                                              |
| 88 to 216                   | 150 @ 3m                     | 43.5 @ 3m                                            |
| 216 to 960                  | 200 @ 3m                     | 46.0 @ 3m                                            |
| Above 960                   | 500 @ 3m                     | 54.0 @ 3m                                            |

<sup>&</sup>lt;sup>3</sup> The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

#### RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV/m @ 3m) | Limit<br>(dBuV/m @ 3m) |
|-----------------------------|----------------------|------------------------|
| 30 to 88                    | 100                  | 40                     |
| 88 to 216                   | 150                  | 43.5                   |
| 216 to 960                  | 200                  | 46.0                   |
| Above 960                   | 500                  | 54.0                   |

#### FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating Frequency<br>(MHz) | Output Power     | Power Spectral<br>Density |
|------------------------------|------------------|---------------------------|
| 5150 - 5250                  | 50mW (17 dBm)    | 4 dBm/MHz                 |
| 5250 - 5350                  | 250 mW (24 dBm)  | 11 dBm/MHz                |
| 5725 - 5825                  | 1 Watts (30 dBm) | 17 dBm/MHz                |

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

#### **OUTPUT POWER LIMITS –LELAN DEVICES**

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating Frequency<br>(MHz) | Output Power                                           | Power Spectral<br>Density |
|------------------------------|--------------------------------------------------------|---------------------------|
| 5150 - 5250                  | 200mW (23 dBm) eirp                                    | 10 dBm/MHz eirp           |
| 5250 - 5350                  | $250 \text{ mW} (24 \text{ dBm})^4$<br>1W (30dBm) eirp | 11 dBm/MHz                |
| 5470 - 5725                  | $250 \text{ mW} (24 \text{ dBm})^5$<br>1W (30dBm) eirp | 11 dBm/MHz                |
| 5725 - 5825                  | 1 Watt (30 dBm)<br>4W eirp                             | 17 dBm/MHz                |

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density ) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

#### SPURIOUS EMISSIONS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is equivalent to a field strength of 68.3dBuV/m/MHz at a distance of 3m. Measurements against this limit use the same measurement method as those used to determine the inband power spectral density. For devices operating in the 5725-5850MHz bands under the LELAN/UNII rules, the limit within 10MHz of the allocated band is increased to -17dBm/MHz.

<sup>&</sup>lt;sup>4</sup> If EIRP exceeds 500mW the device must employ TPC

<sup>&</sup>lt;sup>5</sup> If EIRP exceeds 500mW the device must employ TPC

#### SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$ 

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

#### SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $F_d$  = Distance Factor in dB  $D_m$  = Measurement Distance in meters  $D_s$  = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_{d} = 40*LOG_{10} (D_{m}/D_{s})$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$ 

where:

 $R_r$  = Receiver Reading in dBuV/m

- $F_d$  = Distance Factor in dB
- $R_c$  = Corrected Reading in dBuV/m
- $L_s$  = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

#### SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =  $\underline{1000000 \sqrt{30 P}}$  microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

### Appendix A Test Equipment Calibration Data

| <b>Radio Antenna Port (f<br/><u>Manufacturer</u><br/>Hewlett Packard</b> | Power and Spurious Emissions),<br>Description<br>SpecAn 9 KHz-26.5 GHz, Non-<br>Program                                                 | 14-Apr-11<br><u>Model</u><br>8563E          | <u>Asset #</u><br>284  | <u>Cal Due</u><br>1/13/2012 |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|-----------------------------|
| Radio Antenna Port (F<br><u>Manufacturer</u><br>Hewlett Packard          | Power and Spurious Emissions),<br><u>Description</u><br>SpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue                                        | 15-Apr-11<br><u>Model</u><br>8564E (84125C) | <u>Asset #</u><br>1393 | <u>Cal Due</u><br>5/14/2011 |
| Radio Antenna Port (F<br><u>Manufacturer</u><br>Hewlett Packard          | Power and Spurious Emissions),<br>Description<br>SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red                                                 | 18-Apr-11<br><u>Model</u><br>8564E (84125C) | <u>Asset #</u><br>1148 | <u>Cal Due</u><br>7/12/2011 |
| Radiated Emissions,<br><u>Manufacturer</u><br>Hewlett Packard            | 1000 - 18,000 MHz, 19-Apr-11<br><u>Description</u><br>Microwave Preamplifier, 1-<br>26.5GHz                                             | <u>Model</u><br>8449B                       | <u>Asset #</u><br>263  | <u>Cal Due</u><br>12/8/2011 |
| Hewlett Packard                                                          | SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red                                                                                                  | 8564E (84125C)                              | 1148                   | 7/12/2011                   |
| EMCO                                                                     | Antenna, Horn, 1-18 GHz<br>(SA40-Blu)                                                                                                   | 3115                                        | 1386                   | 9/21/2012                   |
| Micro-Tronics                                                            | Band Reject Filter, 5150-5350<br>MHz                                                                                                    | BRC50703-02                                 | 2251                   | 10/21/2011                  |
| <b>UNII Bandedge, 22-Ap<br/><u>Manufacturer</u><br/>Hewlett Packard</b>  | o <b>r-11</b><br><u>Description</u><br>Microwave Preamplifier, 1-<br>26.5GHz                                                            | <u>Model</u><br>8449B                       | <u>Asset #</u><br>263  | <u>Cal Due</u><br>12/8/2011 |
| Hewlett Packard                                                          | SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red                                                                                                  | 8564E (84125C)                              | 1148                   | 7/12/2011                   |
| EMCO                                                                     | Àntenna, Horn, 1-18 GHz<br>(SA40-Blu)                                                                                                   | 3115                                        | 1386                   | 9/21/2012                   |
| <b>Radio Antenna Port (I<br/><u>Manufacturer</u><br/>Hewlett Packard</b> | Power and Spurious Emissions),<br>Description<br>SpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue                                               | 28-Apr-11<br><u>Model</u><br>8564E (84125C) | <u>Asset #</u><br>1393 | <u>Cal Due</u><br>5/14/2011 |
| <b>Radio Antenna Port (F<br/><u>Manufacturer</u><br/>Agilent</b>         | Power and Spurious Emissions),<br><u>Description</u><br>PSA, Spectrum Analyzer,<br>(installed options, 111, 115, 123,<br>1DS, B7J, HYX, | <b>04-May-11</b><br><u>Model</u><br>E4446A  | <u>Asset #</u><br>2139 | <u>Cal Due</u><br>1/26/2012 |
| <b>Radio Antenna Port (F<br/><u>Manufacturer</u><br/>Agilent</b>         | Power and Spurious Emissions),<br><u>Description</u><br>PSA, Spectrum Analyzer,<br>(installed options, 111, 115, 123,<br>1DS, B7J, HYX, | 11-May-11<br><u>Model</u><br>E4446A         | <u>Asset #</u><br>2139 | <u>Cal Due</u><br>1/26/2012 |

| Radiated Emissions,                        | 1000 - 40000MHz, 27-May-11                                                                   |                                 |                       |                             |
|--------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|-----------------------|-----------------------------|
| Manufacturer                               | Description                                                                                  | Model                           | Asset #               | Cal Due                     |
| Hewlett Packard                            | Microwave Preamplifier, 1-<br>26.5GHz                                                        | 8449B                           | 263                   | 12/8/2011                   |
| Hewlett Packard                            | SpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue                                                     | 8564E (84125C)                  | 1393                  | 6/14/2011                   |
| EMCO                                       | Antenna, Horn, 1-18 GHz                                                                      | 3115                            | 1561                  | 6/22/2012                   |
| Radiated Spurious E                        | nissions, 1 - 18 GHz, 27-May-11                                                              |                                 |                       |                             |
|                                            |                                                                                              |                                 | -                     |                             |
| <u>Manufacturer</u>                        | <u>Description</u>                                                                           | <u>Model</u>                    | <u>Asset #</u>        | <u>Cal Due</u>              |
| <u>Manufacturer</u><br>Hewlett Packard     | <u>Description</u><br>Microwave Preamplifier, 1-<br>26.5GHz                                  | <u>Model</u><br>8449B           | <u>Asset #</u><br>263 | <u>Cal Due</u><br>12/8/2011 |
|                                            | Microwave Preamplifier, 1-                                                                   |                                 |                       |                             |
| Hewlett Packard                            | Microwave Preamplifier, 1-<br>26.5GHz                                                        | 8449B                           | 263                   | 12/8/2011                   |
| Hewlett Packard<br>EMCO<br>Hewlett Packard | Microwave Preamplifier, 1-<br>26.5GHz<br>Antenna, Horn, 1-18 GHz<br>SpecAn 30 Hz -40 GHz, SV | 8449B<br>3115<br>8564E (84125C) | 263<br>487            | 12/8/2011<br>7/6/2012       |

| Manufacturer    | Description                            | WICHEI         | <u>A3361 m</u> |           |
|-----------------|----------------------------------------|----------------|----------------|-----------|
| Hewlett Packard | SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red | 8564E (84125C) | 1148           | 7/12/2011 |
|                 |                                        |                |                |           |

### Appendix B Test Data

T82792 Pages 28 - 197

# ©Elliott

## EMC Test Data

| AD DALC-               | 5 company           |                  |             |
|------------------------|---------------------|------------------|-------------|
| Client:                | Ubiquiti Networks   | Job Number:      | J82749      |
| Model:                 | NanoStation Loco M5 | T-Log Number:    | T82792      |
|                        |                     | Account Manager: | Susan Pelzl |
| Contact:               | Jennifer Sanchez    |                  | -           |
| Emissions Standard(s): | FCC 15E, RSS-210    | Class:           | -           |
| Immunity Standard(s):  | -                   | Environment:     | -           |
|                        |                     |                  |             |

### **EMC** Test Data

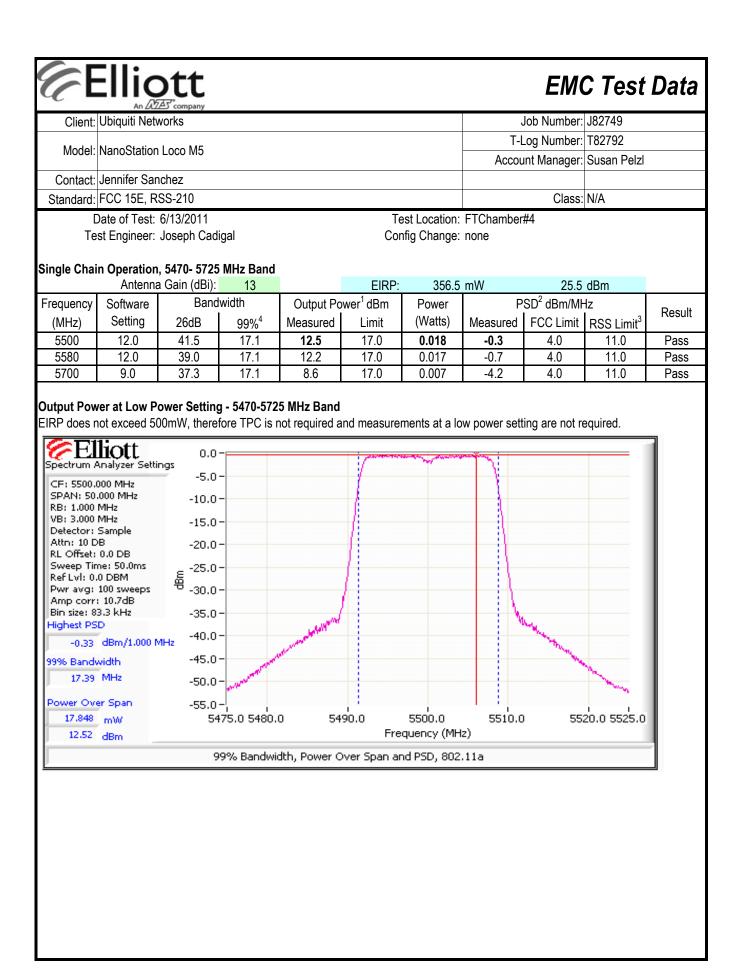
For The

### **Ubiquiti Networks**

Model

#### NanoStation Loco M5

Date of Last Test: 6/15/2011


| Ellic                                            | ott                                                                                                        |                                                           |                 | EMO                   | C Test Data        |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|-----------------------|--------------------|
| Client: Ubiquiti Net                             | _                                                                                                          |                                                           |                 | Job Number:           | J82749             |
| Model: NanoStatio                                | n Loop ME                                                                                                  |                                                           | T-I             | Log Number:           | T82792             |
|                                                  |                                                                                                            |                                                           | Αссοι           | unt Manager:          | Susan Pelzl        |
| Contact: Jennifer Sa                             |                                                                                                            |                                                           |                 |                       |                    |
| Standard: FCC 15E, F                             | RSS-210                                                                                                    |                                                           |                 | Class:                | N/A                |
|                                                  | •                                                                                                          | N) and FCC 15.40<br>Port Measuremen<br>n, Bandwidth and S | Its             | missions              |                    |
| Test Specific Detai                              | ls                                                                                                         |                                                           |                 |                       |                    |
| Objective                                        | The objective of this test session is to                                                                   | perform final qualification                               | n testing of th | ne EUT with r         | espect to the      |
| Date of Test                                     | 4/12/2011 18:25                                                                                            | Config. Used:                                             | 1               |                       |                    |
|                                                  | Rafael Varelas, Joseph Cadigal                                                                             | Config Change:                                            |                 |                       |                    |
| Test Location:                                   | Fremont Chamber #7                                                                                         | EUT Voltage:                                              | POE             |                       |                    |
| Summary of Resul                                 | ts                                                                                                         |                                                           |                 |                       |                    |
| Run #                                            | Test Performed                                                                                             | Limit                                                     | Pass / Fail     | Result / Mar          | gin                |
| 1                                                | Power, 5250 - 5350MHz                                                                                      | 15.407(a) (1), (2)                                        | Pass            | 802.11a: 7.6          |                    |
| 1                                                | PSD, 5250 - 5350MHz                                                                                        | 15.407(a) (1), (2)                                        | Pass            | 802.11a: -3.          |                    |
| 1                                                | Power, 5470 - 5725MHz                                                                                      | 15.407(a) (1), (2)                                        | Pass            | 802.11a: 17           |                    |
| 1                                                | PSD, 5470 - 5725MHz                                                                                        | 15.407(a) (1), (2)                                        | Pass            | 802.11a: -0.          | 3 dBm/MHz          |
| 1                                                | 26dB Bandwidth                                                                                             | 15.407<br>(Information only)                              | -               | > 20MHz               |                    |
| 1                                                | 99% Bandwidth                                                                                              | RSS 210<br>(Information only)                             | N/A             | 802.11a (20           | MHz): 17.1 MHz     |
| 2                                                | Peak Excursion Envelope                                                                                    | 15.407(a) (6)                                             | Pass            | 802.11a (20           | MHz): 11.5dB       |
| 3                                                | Antenna Conducted - Out of Band<br>Spurious (802.11a 20MHz)                                                | 15.407(b)<br>-27dBm/MHz                                   | Pass            | All emission<br>limit | s below -27dBm/MHz |
| General Test Confi                               |                                                                                                            |                                                           |                 | in in c               |                    |
| When measuring the co<br>analyzer or power meter | nducted emissions from the EUT's anter via a suitable attenuator to prevent over enuators and cables used. |                                                           |                 |                       |                    |
|                                                  | Temperature:20.7Rel. Humidity:36                                                                           |                                                           |                 |                       |                    |
| Modifications Mad                                | e During Testing                                                                                           |                                                           |                 |                       |                    |

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

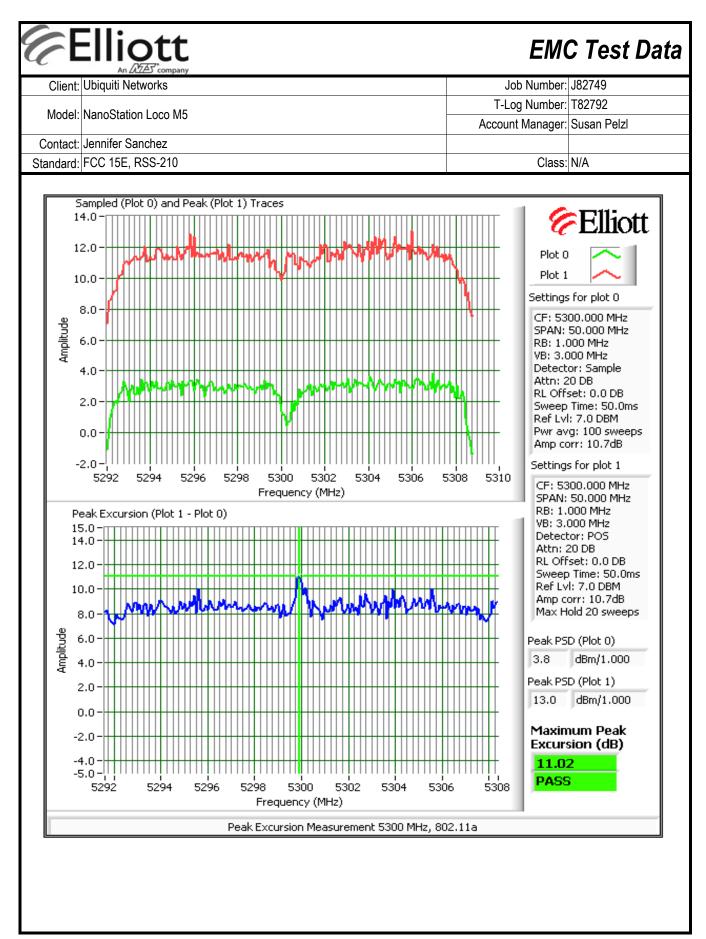
| An /AZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ott                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ubiquiti Netv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A company                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lob Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J82749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .og Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T82792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I: NanoStation Loco M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FCC 15E, R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS-210                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Class:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Measured us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sing the same                                                                                                                                                                                                                                                                         | e analyzer se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ettings used f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or output pov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (calculated fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rom the mea                                                                                                                                                                                                                                                                           | sured power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | divided by th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/ of an ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | חח                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1% of spar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XKD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E Bana 000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ate of Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/13/2011                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Те                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FTChamber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| t Engineer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Joseph Cadi                                                                                                                                                                                                                                                                           | gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fig Change:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       | Mille David                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIRP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOUD                                                                                                                                                                                                                                                                                  | 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | modourou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | modourou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.5                                                                                                                                                                                                                                                                                  | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.3                                                                                                                                                                                                                                                                                  | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.0                                                                                                                                                                                                                                                                                  | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d 500mW TF                                                                                                                                                                                                                                                                            | C is not req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| es not excee<br>Light<br>nalyzer Settin<br>00 MHz<br>MHz<br>MHz<br>Sample<br>3<br>0.0 DB<br>ie: 50.0ms<br>0 DBM<br>10.7 dB<br>:.3 kHz<br>0<br>dBm/1.000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d 500mW TP<br>0.0・<br>-10.0・<br>-10.0・<br>-15.0・<br>-25.0・<br>-25.0・<br>-25.0・<br>-35.0・<br>-40.0・<br>-45.0・                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mar Marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| es not excee<br>Liott<br>nalyzer Settin<br>00 MHz<br>000 MHz<br>MHz<br>MHz<br>MHz<br>5ample<br>8<br>0.0 DB<br>10.7 dB<br>10.7 dB<br>10.7 dB<br>10.7 dB<br>10.7 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d 500mW TF<br>0.0・<br>-10.0・<br>-10.0・<br>-15.0・<br>-20.0・<br>-25.0・<br>-25.0・<br>-35.0・<br>-40.0・<br>-40.0・<br>-50.0・                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Martin Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| es not excee<br>Liott<br>nalyzer Settin<br>00 MHz<br>MHz<br>MHz<br>MHz<br>5ample<br>8<br>0.0 DB<br>10.7 | d 500mW TP<br>0.0・<br>-10.0・<br>-10.0・<br>-15.0・<br>-25.0・<br>-25.0・<br>-35.0・<br>-40.0・<br>-55.0・                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Martin Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| es not excee<br>Liott<br>nalyzer Settin<br>00 MHz<br>000 MHz<br>MHz<br>5ample<br>3<br>0 DB<br>0 DB<br>10.7 dB<br>3.3 kHz<br>dBm/1.000 M<br>width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d 500mW TP<br>0.0・<br>-5.0・<br>-10.0・<br>-15.0・<br>-20.0・<br>-25.0・<br>-25.0・<br>-35.0・<br>-40.0・<br>-55.0・<br>-55.0・<br>-60.0・                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uired.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5300.0<br>quency (MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5310.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.0 5325.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FCC 15E, R<br>dwidth, Out<br>Dutput powe<br>averaging or<br>Measured us<br>For RSS-210<br>(calculated fine<br>measured va<br>29% Bandwi<br>Software set<br>ate of Test:<br>ate of Test:<br>ate of Test:<br>ate of Test:<br>ate of Test:<br>ate of Setting<br>MHz<br>8.0<br>8.0<br>5.0 | Output power measured is averaging on (transmitted Measured using the same For RSS-210 the limits and calculated from the measured value exceeds 29% Bandwidth measure Software settings in blue         ate of Test:       6/13/2011         ate of Test:       6/13/2011         ate of Test:       6/13/2011         ate of Test:       6/13/2011         Software       Bandwidth measure         Software       Same Software         Software       Bandwidth         Software       Date Software         Software | FCC 15E, RSS-210 <b>dwidth, Output Power and Power S</b> Output power measured using a spect averaging on (transmitted signal was Measured using the same analyzer set For RSS-210 the limits are corrected to (calculated from the measured power measured value exceeds the average 29% Bandwidth measured in accorda Software settings in blue are the power ate of Test: 6/13/2011         Operation, 5250-5350 MHz Band Antenna Gain (dBi): 13         Software Bandwidth Setting 26dB 99% <sup>4</sup> MHz         8.0 28.5 17.3         8.0 28.5 17.3         8.0 28.5 17.3 | FCC 15E, RSS-210         dwidth, Output Power and Power Spectral Den         Output power measured using a spectrum analyze         averaging on (transmitted signal was continuous) a         Measured using the same analyzer settings used f         For RSS-210 the limits are corrected for instances         (calculated from the measured power divided by th         measured value exceeds the average by more tha         29% Bandwidth measured in accordance with RSS         Software settings in blue are the power levels in Ai         ate of Test: 6/13/2011         tengineer: Joseph Cadigal         Measured         Antenna Gain (dBi):       13         Software       Bandwidth       Output Po         Setting       26dB       99% <sup>4</sup> Measured         8.0       28.5       17.3       8.5         8.0       32.3       17.1       8.8         5.0       29.0       17.0       5.7 | FCC 15E, RSS-210dwidth, Output Power and Power Spectral Density - SingleOutput power measured using a spectrum analyzer (see plots be<br>averaging on (transmitted signal was continuous) and power into<br>Measured using the same analyzer settings used for output powerMeasured using the same analyzer settings used for output powerFor RSS-210 the limits are corrected for instances where the hi<br>(calculated from the measured power divided by the measured<br>measured value exceeds the average by more than 3dB.29% Bandwidth measured in accordance with RSS GEN - RB ><br>Software settings in blue are the power levels in Art Build 930.Attention of Test: 6/13/2011TestAntenna Gain (dBi):13EIRP:<br>SoftwareSoftwareBandwidthOutput Power <sup>1</sup> dBmSoftwareBandwidthOutput Power <sup>1</sup> dBm | FCC 15E, RSS-210         dwidth, Output Power and Power Spectral Density - Single Chain Syst         Output power measured using a spectrum analyzer (see plots below). RBW         averaging on (transmitted signal was continuous) and power integration over         Weasured using the same analyzer settings used for output power.         For RSS-210 the limits are corrected for instances where the highest measure         (calculated from the measured power divided by the measured 99% bandw         measured value exceeds the average by more than 3dB.         29% Bandwidth measured in accordance with RSS GEN - RB > 1% of spar         Software settings in blue are the power levels in Art Build 930.         ate of Test: 6/13/2011       Test Location:         th Engineer: Joseph Cadigal       Config Change: <b>n Operation, 5250-5350 MHz Band</b> Antenna Gain (dBi):       13       EIRP:       151.0         Software       Bandwidth       Output Power <sup>1</sup> dBm       Power         Setting       26dB       99% <sup>4</sup> Measured       Limit       (Watts)         MHz       8.0       28.5       17.3       8.5       17.0       0.0071         8.0       28.5       17.3       8.5       17.0       0.0037 | Jennifer Sanchez         FCC 15E, RSS-210         dwidth, Output Power and Power Spectral Density - Single Chain Systems         Dutput power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=         averaging on (transmitted signal was continuous) and power integration over 50 MHz (m         Measured using the same analyzer settings used for output power.         For RSS-210 the limits are corrected for instances where the highest measured value of (calculated from the measured power divided by the measured 99% bandwidth) by more measured value exceeds the average by more than 3dB.         99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3         Software settings in blue are the power levels in Art Build 930.         ate of Test: 6/13/2011       Test Location: FTChambers         ate of Test: 6/13/2011       Test Location: FTChambers         software       Bandwidth       Output Power <sup>1</sup> dBm       Power       Pr         Measured       13       EIRP:       151.0 mW       Measured         Software       Bandwidth       Output Power <sup>1</sup> dBm       Power       Pr         8.0       28.5       17.3       8.5       17.0       0.0071       -4.0         8.0       32.3       17.1       8.8       17.0       0.0037       -6.8 | Jennifer Sanchez       Class:         FCC 15E, RSS-210       Class:         dwidth, Output Power and Power Spectral Density - Single Chain Systems       Dutput power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sam averaging on (transmitted signal was continuous) and power integration over 50 MHz (method 1 of D Measured using the same analyzer settings used for output power.         For RSS-210 the limits are corrected for instances where the highest measured value of the PSD exc (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by measured value exceeds the average by more than 3dB.         99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         Software settings in blue are the power levels in Art Build 930.         ate of Test: 6/13/2011       Test Location: FTChamber#4         tt Engineer: Joseph Cadigal       Config Change: none         Operation, 5250-5350 MHz Band       Antenna Gain (dBi):         Antenna Gain (dBi):       13       EIRP:       151.0 mW       21.8         Software       Bandwidth       Output Power <sup>1</sup> dBm       Power       PSD <sup>2</sup> dBm/MH         Setting       26dB       99% <sup>4</sup> Measured       Limit       (Watts)       Measured       FCC Limit         MHz       8.0       28.5       17.3       8.5       17.0       0.0071       -4.0       4.0 | FCC 15E, RSS-210       Class: N/A         dwidth, Output Power and Power Spectral Density - Single Chain Systems         Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, averaging on (transmitted signal was continuous) and power integration over 50 MHz (method 1 of DA-02-2138A1         Weasured using the same analyzer settings used for output power.       50 MHz (method 1 of DA-02-2138A1         For RSS-210 the limits are corrected for instances where the highest measured value of the PSD exceeds the average by more than 3dB.       50 more than 3dB.         99% Bandwidth measured power divided by the measured 99% bandwidth) by more than 3dB by the amount is measured value exceeds the average by more than 3dB.       99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         Software settings in blue are the power levels in Art Build 930.       Test Location: FTChamber#4         At tengineer: Joseph Cadigal       Config Change: none         NOperation, 5250-5350 MHz Band       Antenna Gain (dBi):       13       EIRP:       151.0 mW       21.8 dBm         Software       Bandwidth       Output Power <sup>1</sup> dBm       Power       PSD <sup>2</sup> dBm/MHz       RSS Limit <sup>3</sup> MHz       8.0       28.5       17.3       8.5       17.0       0.0071       -4.0       4.0       11.0         8.0       28.5       17.3       8.5       17.0 |

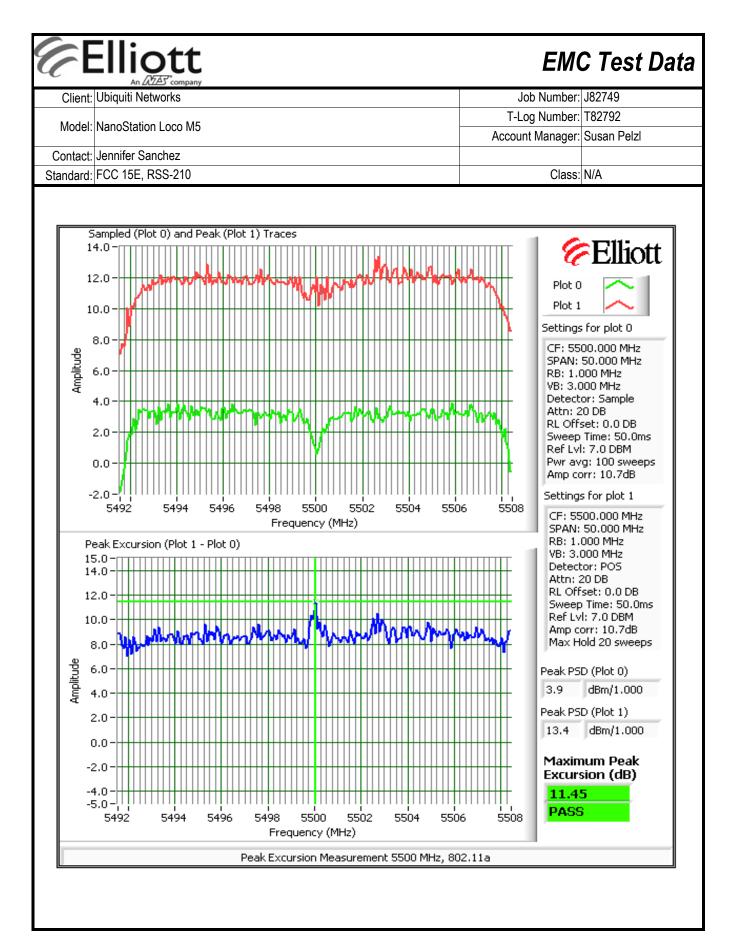


### EMC Test Data

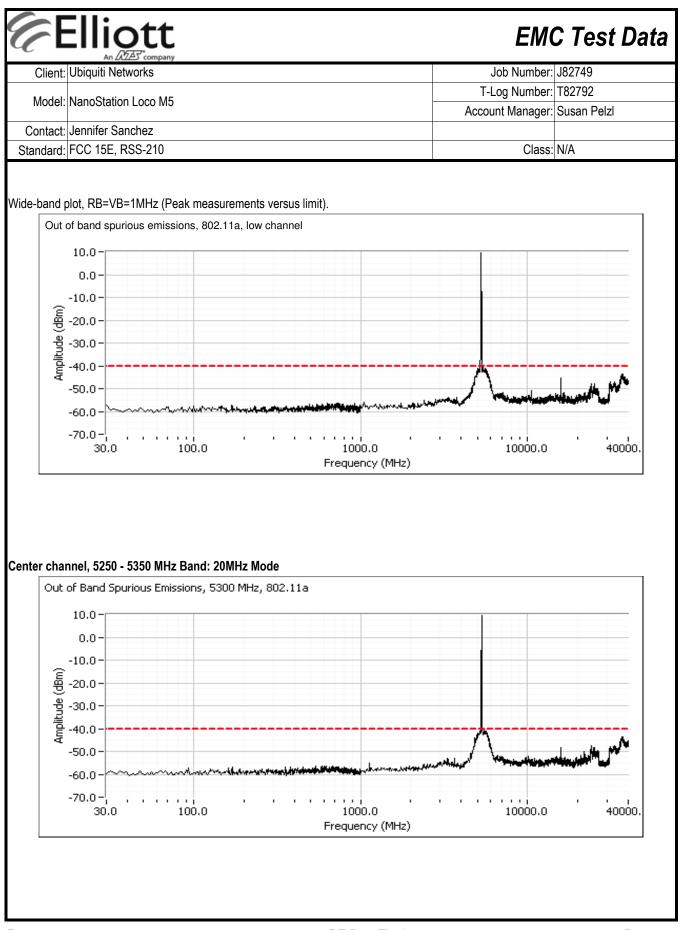
| (7 E      | Elliott<br>An DES' company | EM               | C Test Da   |
|-----------|----------------------------|------------------|-------------|
|           | Ubiquiti Networks          | Job Number:      | J82749      |
| Model     | NanoStation Loco M5        | T-Log Number:    | T82792      |
| woder.    |                            | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez           |                  |             |
| Standard: | FCC 15E, RSS-210           | Class:           | N/A         |

#### Run #2: Peak Excursion Measurement


#### 20MHz: Device meets the requirement for the peak excursion


| Freq  | Peak Exc | ursion(dB) | Freq  | Peak Exc | ursion(dB) |
|-------|----------|------------|-------|----------|------------|
| (MHz) | Value    | Limit      | (MHz) | Value    | Limit      |
| 5270  | 11.2     | 13.0       | 5500  | 11.5     | 13.0       |
| 5300  | 11.0     | 13.0       | 5580  | 10.7     | 13.0       |
| 5320  | 11.0     | 13.0       | 5700  | 11.4     | 13.0       |

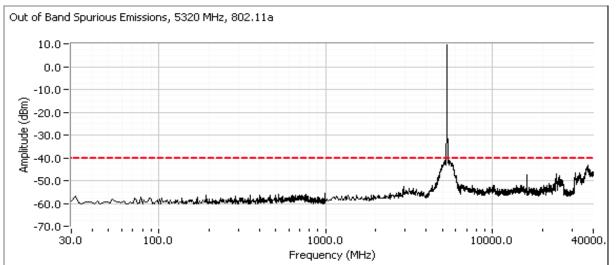
#### Plots Showing Peak Excursion Measurement

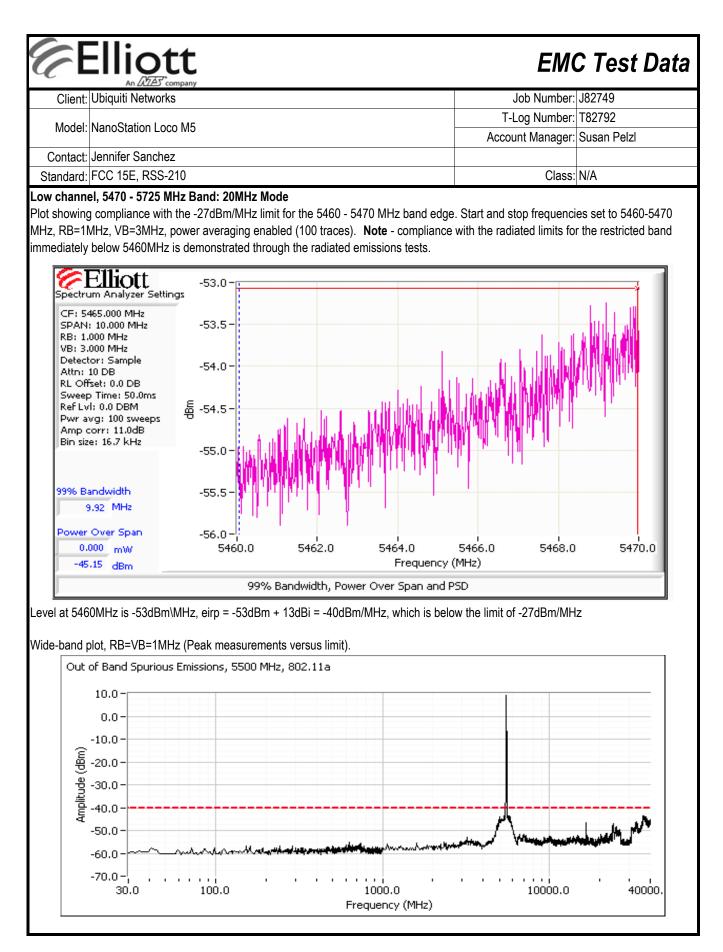

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

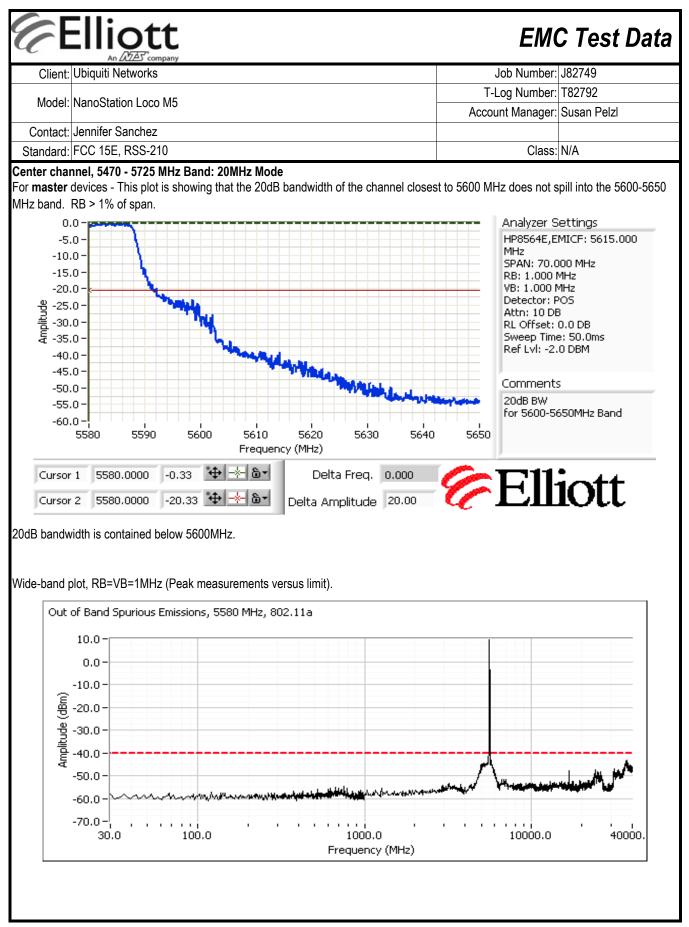
Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

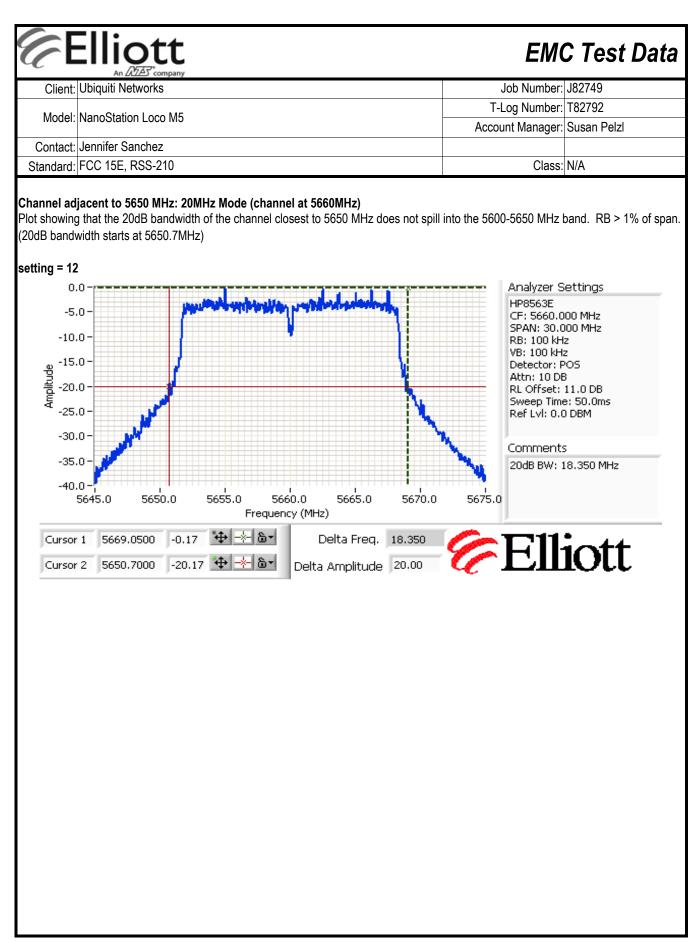


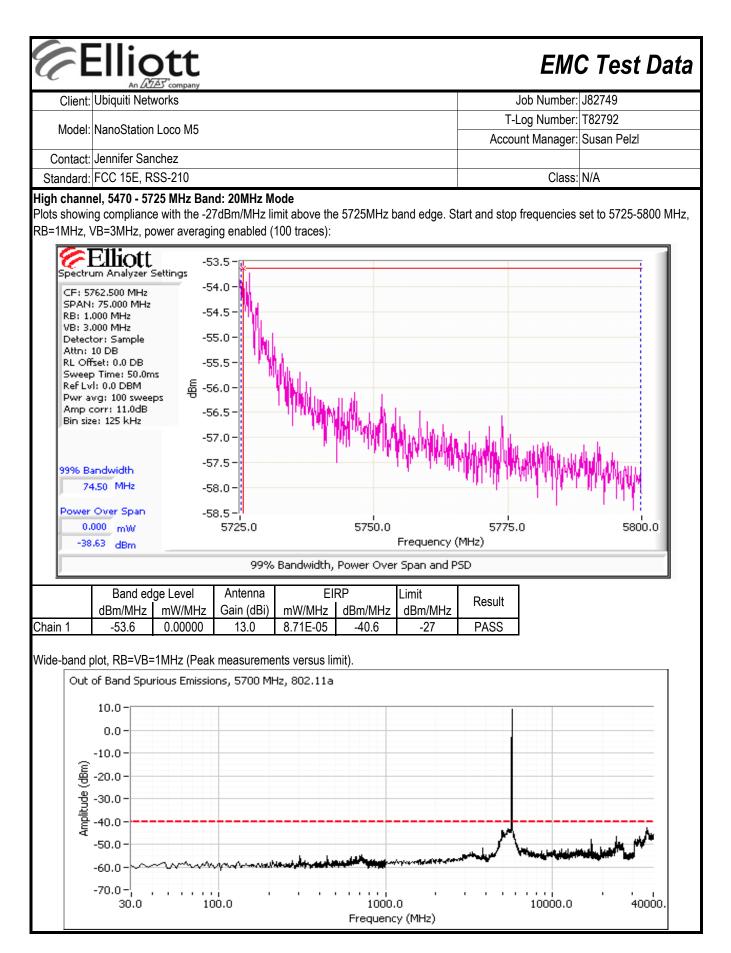



| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        |                                 |                                |                 |                                      |               | EM              | C Test l                                              | Data |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|-----------------|--------------------------------------|---------------|-----------------|-------------------------------------------------------|------|
| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : Ubiquiti Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | works                                                                                                                                                                                                                                  |                                 |                                |                 |                                      |               | Job Number:     | J82749                                                |      |
| Madal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : NanoStatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a I ago M5                                                                                                                                                                                                                             |                                 |                                |                 |                                      | T-I           | Log Number:     | T82792                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        |                                 |                                |                 |                                      | Αссοι         | unt Manager:    | Susan Pelzl                                           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : Jennifer Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                 |                                |                 |                                      |               |                 |                                                       |      |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : FCC 15E, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RSS-210                                                                                                                                                                                                                                |                                 |                                |                 |                                      |               | Class:          | N/A                                                   |      |
| un #3: O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ut Of Band S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spurious Emi                                                                                                                                                                                                                           | ssions - An                     | itenna Cond                    | lucted          |                                      |               |                 |                                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum An<br>Spi<br>Used On Plots                                                                                                                                                                                                     | urious Limit:                   | -27.0                          | dBm/MHz e       | •                                    | ent method is | method used     | d for PSD                                             |      |
| lote 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | consideration more than 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        | im antenna<br>le bands and      | gain (limit = -                | -27dBm - ant    | enna gain).                          | Radiated fiel | d strength me   | ed to take into<br>easurements fo<br>is the antenna g | •    |
| lote 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | signals below                                                                                                                                                                                                                          |                                 | measured du                    | iring digital d | evice radiate                        | d emissions   | test.           |                                                       |      |
| lote 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nin 10MHz of t                                                                                                                                                                                                                         |                                 |                                |                 |                                      |               |                 |                                                       |      |
| ote 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e is for outdoo                                                                                                                                                                                                                        |                                 |                                |                 |                                      |               | ) MHz band.     |                                                       |      |
| ote 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signals that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t fall in the res                                                                                                                                                                                                                      | tricted band                    | s of 15.205 a                  | are subject to  | the limit of 1                       | 15.209.       |                 |                                                       |      |
| lot showin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 MHz Band<br>with the -27c<br>ower averagir                                                                                                                                                                                          | IBm/MHz lin                     | nit in the 515                 |                 | z band. Start                        | and stop free | quencies set    | to 5150-5250 N                                        | MHz, |
| lot showin<br>B=1MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng compliance<br>VB=3MHz, p<br><b>Thiott</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e with the -27c<br>ower averagir<br>-41.0                                                                                                                                                                                              | IBm/MHz lin<br>ng enabled (     | nit in the 515                 |                 | z band. Starl                        | and stop free | quencies set    | to 5150-5250 M                                        | MHz, |
| lot showin<br>B=1MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e with the -27c<br>ower averagir<br>-41.0<br>tings -42.0                                                                                                                                                                               | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Starl                        | and stop free | quencies set    | to 5150-5250 N                                        | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng compliance<br>VB=3MHz, p<br>Miliott<br>Analyzer Set<br>0.000 MHz<br>100.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e with the -270<br>ower averagir<br>-41.0<br>tings -42.0<br>-43.0                                                                                                                                                                      | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Start                        | and stop free | quencies set    | to 5150-5250 N                                        | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng compliance<br>VB=3MHz, p<br>Miliott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHz<br>0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e with the -27c<br>ower averagin<br>-41.0<br>tings -42.0<br>-43.0<br>-44.0                                                                                                                                                             | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Starl                        | and stop free | quencies set    | to 5150-5250 N                                        | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng compliance<br>VB=3MHz, p<br>Thiott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHz<br>0 MHz<br>0 MHz<br>3 Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e with the -270<br>ower averagir<br>-41.0<br>-41.0<br>-42.0<br>-43.0<br>-44.0<br>-45.0                                                                                                                                                 | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Starl                        | and stop free | quencies set    | to 5150-5250 M                                        | MHz, |
| Int showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng compliance<br>VB=3MHz, p<br>Miction<br>Analyzer Set<br>0.000 MHz<br>0.000 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e with the -270<br>ower averagin<br>-41.0<br>tings -42.0<br>-43.0<br>-44.0<br>-45.0<br>-46.0                                                                                                                                           | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Start                        | and stop free | quencies set    | to 5150-5250 N                                        | MHz, |
| ot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel<br>Sweep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng compliance<br>VB=3MHz, p<br>Manalyzer Set<br>0.000 MHz<br>0.000 MHz<br>0 MHz<br>0 MHz<br>c; Sample<br>DB<br>t: 0.0 DB<br>Fime: 50.0ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e with the -270<br>ower averagin<br>-41.0<br>-41.0<br>-42.0<br>-43.0<br>-44.0<br>-45.0<br>-45.0<br>-47.0                                                                                                                               | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Starl                        | and stop free | quencies set    | to 5150-5250 N                                        | MHz, |
| CF: 5200<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel<br>Sweep T<br>Ref Lvl:<br>Pwr avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ig compliance<br>VB=3MHz, p<br>Iliott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHz<br>0 MHz<br>0 MHz<br>0 MHz<br>10 0 MHz<br>10 0 DB<br>11 0 0 DB<br>11 0 0 Sweeps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e with the -27c<br>ower averagir<br>-41.0<br>-42.0<br>-43.0<br>-43.0<br>-44.0<br>-45.0<br>-45.0<br>-46.0<br>-47.0<br>慶 -48.0                                                                                                           | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Start                        | and stop free | quencies set    | to 5150-5250 M                                        | MHz, |
| International States St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ig compliance<br>VB=3MHz, p<br>Analyzer Set<br>0.000 MHz<br>0.0000 MHz<br>0.000 M                                                                                                                                                                                                                                                                | e with the -270<br>ower averagin<br>-41.0<br>-42.0<br>-43.0<br>-44.0<br>-45.0<br>-45.0<br>-45.0<br>-45.0<br>-45.0<br>-47.0<br>慶 -48.0<br>-49.0                                                                                         | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Start                        | and stop free | quencies set    | to 5150-5250 M                                        | MHz, |
| CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 D<br>RL Offsel<br>Sweep T<br>Ref Lvl:<br>Pwr avg<br>Amp cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ig compliance<br>VB=3MHz, p<br>Analyzer Set<br>0.000 MHz<br>0.0000 MHz<br>0.000 M                                                                                                                                                                                                                                                                | e with the -270<br>ower averagin<br>-41.0<br>-43.0<br>-43.0<br>-44.0<br>-45.0<br>-46.0<br>-47.0<br>-47.0<br>-49.0<br>-50.0                                                                                                             | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 |                 | z band. Starl                        | and stop free | quencies set    | to 5150-5250 M                                        | MHz, |
| CF: 5200<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel<br>Sweep T<br>Ref Lv1:<br>Pwr avg<br>Amp cor<br>Bin size:<br>Highest P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ig compliance<br>VB=3MHz, p<br>Analyzer Set<br>0.000 MHz<br>0.0000 MHz<br>0.000 M                                                                                                                                                                                                                                                                | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-43.0<br>-43.0<br>-44.0<br>-45.0<br>-46.0<br>-47.0<br>& -47.0<br>& -49.0<br>-49.0<br>-50.0<br>MHz                                                                                | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 | 0 - 5250 MH     |                                      |               |                 | to 5150-5250 M                                        | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel<br>Sweep T<br>Ref Lv1:<br>Pwr avg<br>Amp cor<br>Bin size:<br>Highest P<br>-41.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ig compliance<br>VB=3MHz, p<br>Infott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHz<br>0.0000 MHz<br>0.000 MHz<br>0.000 MHz<br>0.000 MHz                                                                                                                                                                                                                                                                 | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-44.0<br>-44.0<br>-45.0<br>-45.0<br>-47.0<br>-47.0<br>-49.0<br>-49.0<br>-50.0<br>MHz -51.0                                                                                       | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 | 0 - 5250 MH     |                                      |               |                 | to 5150-5250 M                                        | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel<br>Sweep T<br>Ref Lv1:<br>Pwr avg<br>Amp cor<br>Bin size:<br>Highest P<br>-41.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r: 100 sweeps<br>r:                                                                                                                                                                                                                                                                                                                                                                                                                                           | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-43.0<br>-44.0<br>-45.0<br>-46.0<br>-46.0<br>-47.0<br>& -48.0<br>-49.0<br>-50.0<br>MHz<br>-51.0<br>-52.0<br>-53.0                                                                | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 | 0 - 5250 MH     |                                      |               |                 | to 5150-5250 M                                        | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel<br>Sweep T<br>Ref LvI:<br>Pwr avg<br>Amp cor<br>Bin size:<br>Highest P<br>-41.33<br>99% Band<br>99.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ig compliance<br>VB=3MHz, p<br>Infott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHz<br>0.0000 MHz<br>0.000 MHz<br>0.000 MHz<br>0.000 MHz                                                                                                                                                                                                                                                                 | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-44.0<br>-44.0<br>-45.0<br>-45.0<br>-47.0<br>-47.0<br>-49.0<br>-49.0<br>-50.0<br>MHz -51.0                                                                                       | IBm/MHz lin<br>ng enabled (<br> | nit in the 515                 | 0 - 5250 MH     |                                      | and stop free |                 | to 5150-5250 M                                        | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 E<br>RL Offsel<br>Sweep T<br>Ref Lv1:<br>Pwr avg<br>Amp cor<br>Bin size:<br>Highest P<br>-41.30<br>99% Band<br>99% Band<br>99%3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ig compliance<br>VB=3MHz, p<br>Infott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHZ<br>0.0000 MHZ<br>0.000 MHZ<br>0.000 MHZ<br>0.000 MHZ                                                                                                                                                                                                                                                                 | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-49.0<br>-49.0<br>-49.0<br>-50.0<br>-51.0<br>-53.0<br>-53.0<br>-53.0 | IBm/MHz lin<br>ng enabled (<br> | hit in the 515<br>100 traces): | 0 - 5250 MH     |                                      |               | dhapelbyn ghill | to 5150-5250 M                                        | MHz, |
| International States St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ig compliance<br>VB=3MHz, p<br>Infott<br>Analyzer Set<br>0,000 MHz<br>00,000 MHz<br>00 MHz | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-49.0<br>-49.0<br>-49.0<br>-50.0<br>-51.0<br>-53.0<br>-53.0<br>-53.0 | IBm/MHz lin<br>ng enabled (<br> | hit in the 515<br>100 traces): | 0 - 5250 MH     | Madamara                             | 5220.         | dhapelbyn ghill |                                                       | MHz, |
| International States St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ig compliance<br>VB=3MHz, p<br>Infott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHZ<br>0.0000 MHZ<br>0.000 MHZ<br>0.000 MHZ<br>0.000 MHZ                                                                                                                                                                                                                                                                 | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-49.0<br>-49.0<br>-49.0<br>-50.0<br>-51.0<br>-53.0<br>-53.0<br>-53.0 | IBm/MHz lin<br>ng enabled (<br> | hit in the 515<br>100 traces): | 0 - 5250 MH     | 5200.0<br>equency (MI                | 5220.<br>Hz)  | dhapelbyn ghill |                                                       | MHz, |
| lot showin<br>B=1MHz,<br>Spectrum<br>CF: 5200<br>SPAN: 1<br>RB: 1.000<br>VB: 3.000<br>Detector<br>Attn: 0 D<br>RL Offsel<br>Sweep T<br>Ref Lv1:<br>Pwr avg<br>Amp cor<br>Bin size:<br>Highest P<br>-41.30<br>99% Band<br>99% Band<br>99% Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ig compliance<br>VB=3MHz, p<br>Interference<br>Analyzer Set<br>0,000 MHz<br>00 MHz<br>0 DB<br>0 MHz<br>0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e with the -27c<br>ower averagin<br>-41.0<br>tings -42.0<br>-43.0<br>-43.0<br>-44.0<br>-45.0<br>-46.0<br>-47.0<br>慶 -48.0<br>-49.0<br>-50.0<br>-51.0<br>-51.0<br>-51.0<br>-51.0<br>-51.0<br>-51.0<br>-51.0<br>-51.0                    | IBm/MHz lin<br>ng enabled (<br> | NYN YYN Y                      | 0 - 5250 MH     | 5200.0<br>equency (MI<br>pan and PSE | 5220.<br>Hz)  | dhapelbyn ghill |                                                       | MHz, |
| CF: S200<br>SPAN: 1<br>RE: 1.000<br>VB: 3.000<br>VB: 3.000 | Ig compliance<br>VB=3MHz, p<br>Infott<br>Analyzer Set<br>0.000 MHz<br>0.000 MHZ<br>0.0000 MHZ<br>0.000 MHZ<br>0.000 MHZ<br>0.000 MHZ                                                                                                                                                                                                                                                                 | e with the -27c<br>ower averagin<br>-41.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-43.0<br>-49.0<br>-49.0<br>-49.0<br>-50.0<br>-51.0<br>-53.0<br>-53.0<br>-53.0 | IBm/MHz lin<br>ng enabled (<br> | hit in the 515<br>100 traces): | 0 - 5250 MH     | 5200.0<br>equency (MI                | 5220.<br>Hz)  | dhapelbyn ghill |                                                       | MHz, |





|           | EIIIOTT<br>An 心云 company | EMO              | C Test Data |
|-----------|--------------------------|------------------|-------------|
| Client:   | Ubiquiti Networks        | Job Number:      | J82749      |
| Madal     | NanoStation Loco M5      | T-Log Number:    | T82792      |
| Model.    |                          | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez         |                  |             |
| Standard: | FCC 15E, RSS-210         | Class:           | N/A         |


**Cllinet** 


High channel, 5250 - 5350 MHz Band: 20MHz Mode Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.



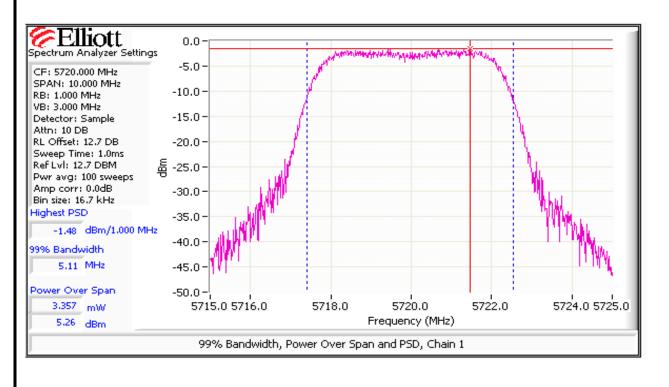


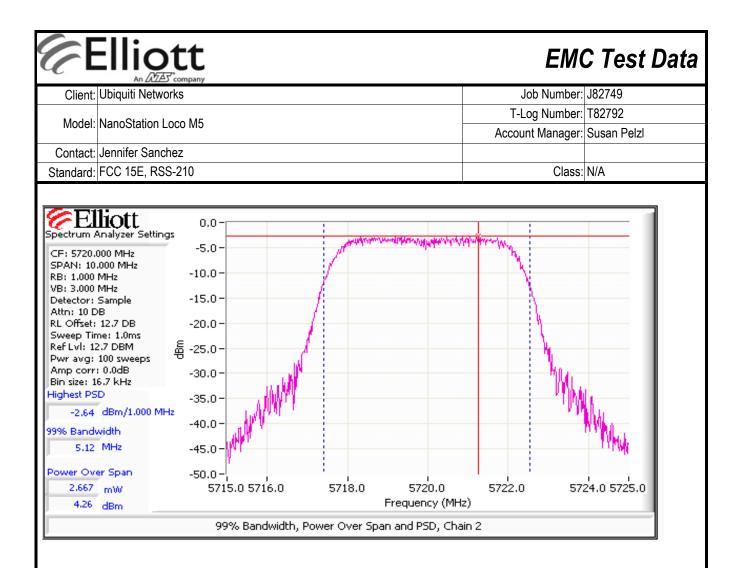






| Ellig                          | JTC                                                                                             |                                                                                                                                                                                |                            | EMO          | C Test Data             |
|--------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|-------------------------|
| Client: Ubiquiti Ne            | etworks                                                                                         |                                                                                                                                                                                | J                          | lob Number:  | J82749                  |
|                                |                                                                                                 |                                                                                                                                                                                | T-L                        | .og Number:  | T82792                  |
| Model: NanoStatio              | on Loco M5                                                                                      |                                                                                                                                                                                |                            | 2            | Susan Pelzl             |
| Contact: Jennifer Sa           |                                                                                                 |                                                                                                                                                                                |                            |              |                         |
| Standard: FCC 15E,             | RSS-210                                                                                         |                                                                                                                                                                                |                            | Class:       | N/A                     |
|                                | RSS-210 (LELA<br>Antenna Port Meas<br>Power, PSD, Peak Excursion                                | •                                                                                                                                                                              | Bandwic                    |              |                         |
| est Specific Deta<br>Objective | The objective of this test essentian is to                                                      | perform final qualification                                                                                                                                                    | testing of th              | e EUT with r | espect to the           |
|                                | t: 5/3 and 4/2011<br>r: M. Birgani/ R. Varelas<br>n: FT5                                        | Config. Used:<br>Config Change:<br>EUT Voltage:                                                                                                                                | none                       |              |                         |
| ummary of Resu<br>Run #        | Its<br>Test Performed                                                                           | Limit                                                                                                                                                                          | Pass / Fail                | Result / Mar | gin                     |
| 1                              | Power, 5250 - 5350MHz                                                                           | 15.407(a) (1), (2)                                                                                                                                                             | Pass                       |              | 5.8 mW                  |
| 1                              | PSD, 5250 - 5350MHz                                                                             | 15.407(a) (1), (2)                                                                                                                                                             | Pass                       | C            | ).91 dBm/MHz            |
|                                | Max EIRP                                                                                        | TPC_not required<br>EIRP ≥ 200mW                                                                                                                                               | NA                         |              |                         |
| 1                              | 5250 - 5350MHz                                                                                  | (23dBm) DFS threshold<br>= -64dBm.                                                                                                                                             |                            |              |                         |
| 1                              |                                                                                                 | (23dBm) DFS threshold<br>= -64dBm.<br>15.407(a) (1), (2)                                                                                                                       | Pass                       |              | 6.0 mW                  |
|                                | 5250 - 5350MHz                                                                                  | = -64dBm.<br>15.407(a) (1), (2)<br>15.407(a) (1), (2)                                                                                                                          |                            | 0            | 6.0 mW<br>0.97 dBm/MHz  |
| 1                              | 5250 - 5350MHz<br>Power, 5470 - 5725MHz                                                         | = -64dBm.<br>15.407(a) (1), (2)                                                                                                                                                | Pass                       | C            |                         |
| 1<br>1                         | 5250 - 5350MHz<br>Power, 5470 - 5725MHz<br>PSD, 5470 - 5725MHz<br>Max EIRP                      | = -64dBm.<br>15.407(a) (1), (2)<br>15.407(a) (1), (2)<br>TPC not required<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold                                                             | Pass<br>Pass               | C            |                         |
| 1<br>1<br>1                    | 5250 - 5350MHz<br>Power, 5470 - 5725MHz<br>PSD, 5470 - 5725MHz<br>Max EIRP<br>5470 - 5725MHz    | = -64dBm.<br>15.407(a) (1), (2)<br>15.407(a) (1), (2)<br>TPC not required<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407 (Determines<br>max power)<br>RSS 210 | Pass<br>Pass<br>NA         | C            | ).97 dBm/MHz            |
| 1<br>1<br>1<br>1               | 5250 - 5350MHz Power, 5470 - 5725MHz PSD, 5470 - 5725MHz Max EIRP 5470 - 5725MHz 26dB Bandwidth | = -64dBm.<br>15.407(a) (1), (2)<br>15.407(a) (1), (2)<br>TPC not required<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407 (Determines<br>max power)            | Pass<br>Pass<br>NA<br>Pass |              | 0.97 dBm/MHz<br>8.3 MHz |

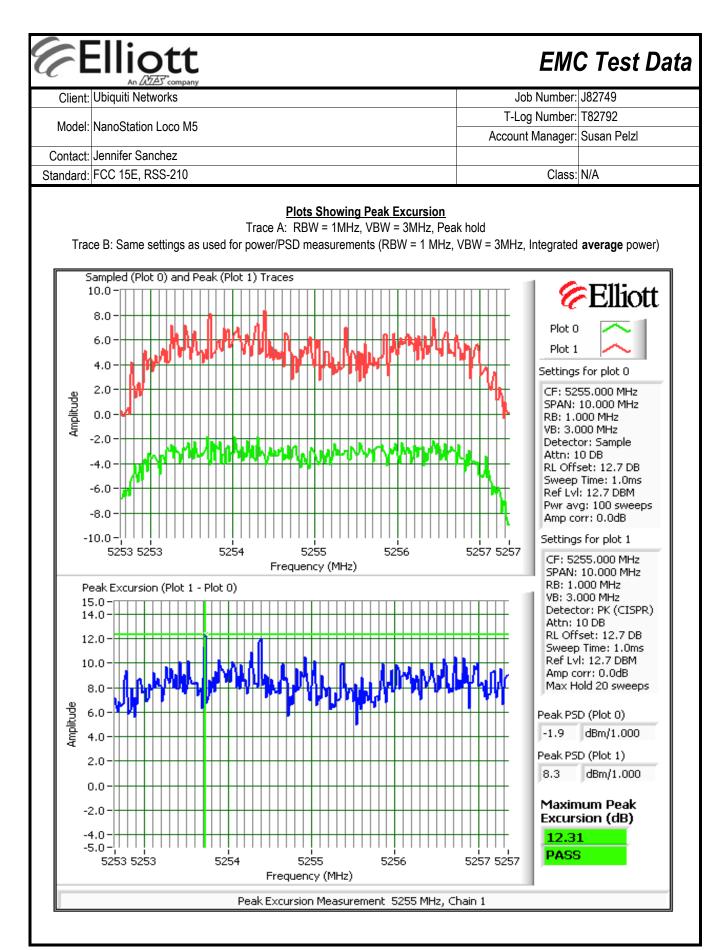

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

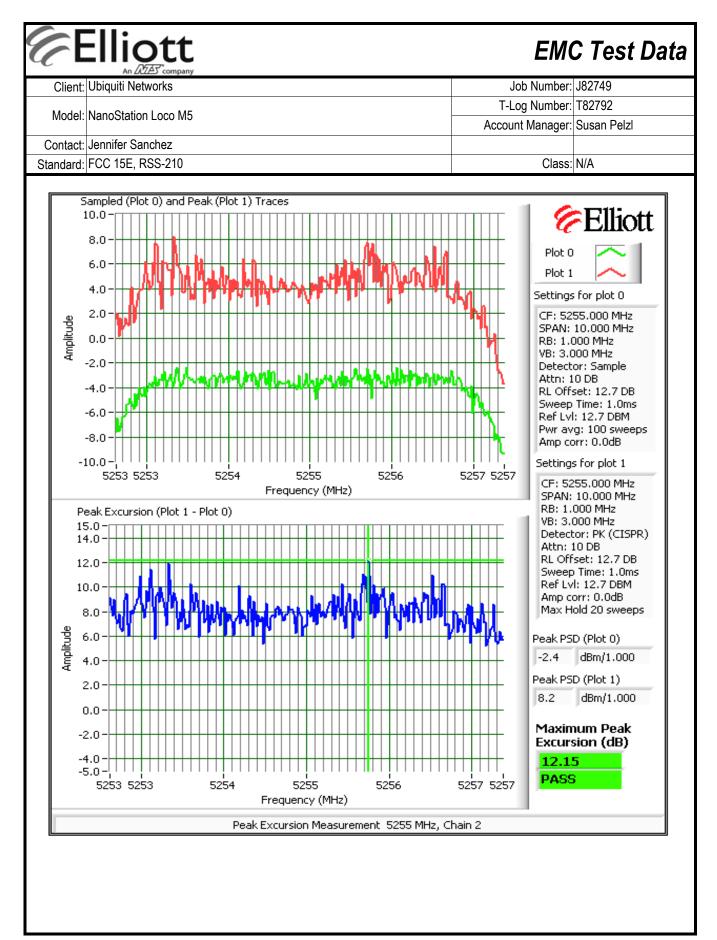

|                                                                                                                     | Ellig                                                                                                                                                                                                                           | ott                                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        | EMO                                                                                                                                                                                                          | C Test                                                                                                                                                             | Dat                                                                               |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Client                                                                                                              | An 242<br>Ubiquiti Net                                                                                                                                                                                                          | vorks                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        | Job Number:                                                                                                                                                                                                  | J82749                                                                                                                                                             |                                                                                   |
|                                                                                                                     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        | Log Number:                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                   |
| Model                                                                                                               | NanoStatior                                                                                                                                                                                                                     | n Loco M5                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        | Int Manager:                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                   |
| Contact                                                                                                             | : Jennifer Sar                                                                                                                                                                                                                  | nchez                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        | ŭ                                                                                                                                                                                                            |                                                                                                                                                                    |                                                                                   |
| Standard                                                                                                            | FCC 15E, R                                                                                                                                                                                                                      | RSS-210                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        | Class:                                                                                                                                                                                                       | N/A                                                                                                                                                                |                                                                                   |
| Ambient                                                                                                             | Condition                                                                                                                                                                                                                       | s:                                                                                                                                                                                                                      |                                                                                                                                                                                                         | emperature:<br>el. Humidity:                                                                                                                                                                                           |                                                                                                                                                            | °C<br>%                                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
| Modificat                                                                                                           | tions Made                                                                                                                                                                                                                      | e During To                                                                                                                                                                                                             | estina                                                                                                                                                                                                  |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
|                                                                                                                     |                                                                                                                                                                                                                                 | ade to the El                                                                                                                                                                                                           | •                                                                                                                                                                                                       | sting                                                                                                                                                                                                                  |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
| <b>-</b> • <i>0</i>                                                                                                 |                                                                                                                                                                                                                                 | o/ 1                                                                                                                                                                                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
|                                                                                                                     |                                                                                                                                                                                                                                 | he Standar                                                                                                                                                                                                              |                                                                                                                                                                                                         | f the steveley                                                                                                                                                                                                         | . al                                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
| NO DEVIATIO                                                                                                         | ns were made                                                                                                                                                                                                                    | e from the red                                                                                                                                                                                                          | quirements o                                                                                                                                                                                            | t the standar                                                                                                                                                                                                          | d.                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
|                                                                                                                     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
| Run #1: Ba                                                                                                          |                                                                                                                                                                                                                                 | itput Power a                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |
| Note 1:                                                                                                             |                                                                                                                                                                                                                                 | er measured                                                                                                                                                                                                             | • •                                                                                                                                                                                                     | •                                                                                                                                                                                                                      | • •                                                                                                                                                        | ,                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                              | •                                                                                                                                                                  | •                                                                                 |
|                                                                                                                     |                                                                                                                                                                                                                                 | n (transmitteo                                                                                                                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                                                                                                        | and power in                                                                                                                                               | tearation over                                                                                                                                                                               | er 50 MHz (m                                                                                                                                                                                           | nethod 1 of D                                                                                                                                                                                                | A-02-2138A                                                                                                                                                         | 1).                                                                               |
|                                                                                                                     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                        | -                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                    | 1                                                                                 |
| Note 2:                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                            | wer. PSD is                                                                                                                                                                                  | highest valu                                                                                                                                                                                           | e on the plot.                                                                                                                                                                                               |                                                                                                                                                                    | <u>,                                     </u>                                     |
| Note 2:<br>Note 4:                                                                                                  | 99% Bandw                                                                                                                                                                                                                       | vidth measure                                                                                                                                                                                                           | d in accorda                                                                                                                                                                                            | nce with RS                                                                                                                                                                                                            | S GEN - RB                                                                                                                                                 | wer. PSD is<br>> 1% of spar                                                                                                                                                                  | highest value<br>and VB >=3                                                                                                                                                                            | e on the plot.<br>xRB                                                                                                                                                                                        |                                                                                                                                                                    |                                                                                   |
|                                                                                                                     | 99% Bandw<br>For MIMO s                                                                                                                                                                                                         | vidth measure<br>systems the to                                                                                                                                                                                         | d in accorda<br>tal output po                                                                                                                                                                           | nce with RS                                                                                                                                                                                                            | S GEN - RB<br>I PSD are ca                                                                                                                                 | wer. PSD is > 1% of span                                                                                                                                                                     | highest value<br>and VB >=3<br>the sum of                                                                                                                                                              | e on the plot.<br>xRB<br>the powers o                                                                                                                                                                        | f the individu                                                                                                                                                     |                                                                                   |
|                                                                                                                     | 99% Bandw<br>For MIMO s                                                                                                                                                                                                         | vidth measure                                                                                                                                                                                                           | d in accorda<br>tal output po                                                                                                                                                                           | nce with RS                                                                                                                                                                                                            | S GEN - RB<br>I PSD are ca                                                                                                                                 | wer. PSD is > 1% of span                                                                                                                                                                     | highest value<br>and VB >=3<br>the sum of                                                                                                                                                              | e on the plot.<br>xRB<br>the powers o                                                                                                                                                                        | f the individu                                                                                                                                                     |                                                                                   |
| Note 4:                                                                                                             | 99% Bandw<br>For MIMO s<br>linear terms                                                                                                                                                                                         | vidth measure<br>systems the to                                                                                                                                                                                         | d in accorda<br>Ital output po<br>na gain used                                                                                                                                                          | nce with RS<br>wer and tota<br>to determine                                                                                                                                                                            | S GEN - RB<br>I PSD are ca<br>e the EIRP a                                                                                                                 | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F                                                                                                                             | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p                                                                                                                                              | e on the plot.<br>xRB<br>the powers o<br>power depend                                                                                                                                                        | f the individu<br>ds on the ope                                                                                                                                    | erating                                                                           |
|                                                                                                                     | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the                                                                                                                                                                          | vidth measure<br>systems the to<br>). The anteni                                                                                                                                                                        | d in accorda<br>atal output po<br>na gain used<br>e. If the sign                                                                                                                                        | nce with RSS<br>wer and tota<br>to determine<br>als on the no                                                                                                                                                          | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l                                                                                               | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>petween the t                                                                                                            | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai                                                                                                                             | e on the plot.<br>xRB<br>the powers o<br>power dependents<br>ns then the g                                                                                                                                   | f the individu<br>ds on the ope<br>gain used to                                                                                                                    | erating<br>determir                                                               |
| Note 4:                                                                                                             | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is                                                                                                                                                         | vidth measure<br>systems the to<br>). The anteni<br>MIMO device<br>the highest g                                                                                                                                        | d in accorda<br>ital output po<br>na gain used<br>e. If the sign<br>ain of the ind                                                                                                                      | nce with RSS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain                                                                                                                                        | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the El                                                                              | wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>petween the t<br>RP is the sur                                                                                           | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod                                                                                                            | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the g<br>ucts of gain a                                                                                                                  | f the individu<br>ds on the ope<br>gain used to<br>and power or                                                                                                    | erating<br>determir<br>n each                                                     |
| Note 4:                                                                                                             | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the                                                                                                                                        | vidth measure<br>systems the to<br>). The anteni<br>MIMO device                                                                                                                                                         | d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the                                                                                                       | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>ividual chain<br>n the effectiv                                                                                                                        | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the El<br>e antenna ga                                                              | wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>petween the t<br>RP is the sur                                                                                           | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod                                                                                                            | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the g<br>ucts of gain a                                                                                                                  | f the individu<br>ds on the ope<br>gain used to<br>and power or                                                                                                    | erating<br>determir<br>n each                                                     |
| Note 4:<br>Note 5:                                                                                                  | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is                                                                                                                         | vidth measure<br>systems the to<br>). The antenion<br>MIMO device<br>the highest ga<br>e signals are of<br>the product of                                                                                               | d in accorda<br>otal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effective                                                                                 | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>ividual chain<br>n the effectiv                                                                                                                        | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the El<br>e antenna ga                                                              | wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>petween the t<br>RP is the sur                                                                                           | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod                                                                                                            | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the g<br>ucts of gain a                                                                                                                  | f the individu<br>ds on the ope<br>gain used to<br>and power or                                                                                                    | erating<br>determir<br>n each                                                     |
| Note 4:<br>Note 5:                                                                                                  | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is                                                                                                                         | vidth measure<br>systems the to<br>). The anteni<br>MIMO device<br>the highest gr<br>signals are o                                                                                                                      | d in accorda<br>tal output pc<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effective                                                                                    | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to                                                                                                      | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the EI<br>e antenna ga<br>otal power.                                               | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the the<br>RP is the sum<br>ain is the sum                                                                       | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear te                                                                                         | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the g<br>ucts of gain a<br>rms) of the ga                                                                                                | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each                                                                                   | erating<br>determir<br>each<br>chain ai                                           |
| Note 4:<br>Note 5:                                                                                                  | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53                                                                                                         | vidth measure<br>systems the to<br>. The antenion<br>MIMO device<br>the highest ga<br>e signals are of<br>the product of<br>50 MHz Band                                                                                 | d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effective<br>d<br>Chain 1                                                                    | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2                                                                                           | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the El<br>e antenna ga                                                              | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sum<br>ain is the sum<br>Coherent                                                             | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear ter<br>Effective <sup>5</sup>                                                              | e on the plot.<br>xRB<br>the powers o<br>bower depend<br>ns then the g<br>ucts of gain a<br>rms) of the gain<br>EIRP (mW)                                                                                    | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)                                                                     | erating<br>determir<br>each<br>chain ai                                           |
| Note 4:<br>Note 5:<br>MIMO Devi                                                                                     | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53                                                                                                         | vidth measure<br>systems the to<br>). The antenion<br>MIMO device<br>the highest ga<br>e signals are of<br>the product of                                                                                               | d in accorda<br>tal output pc<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effective                                                                                    | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to                                                                                                      | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the EI<br>e antenna ga<br>otal power.                                               | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the the<br>RP is the sum<br>ain is the sum                                                                       | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear te                                                                                         | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the g<br>ucts of gain a<br>rms) of the ga                                                                                                | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each                                                                                   | erating<br>determir<br>each<br>chain ai                                           |
| Note 4:<br>Note 5:<br>MIMO Devi                                                                                     | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>Antenna                                                                                              | vidth measure<br>systems the to<br>. The anteni<br>MIMO device<br>the highest ga<br>e signals are o<br>the product o<br>50 MHz Band<br>a Gain (dBi):                                                                    | d in accorda<br>otal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effectiv<br>d<br>Chain 1<br>13                                                            | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13                                                                                     | S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>tal power.<br>Chain 3                                      | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sum<br>ain is the sum<br>Coherent<br>Yes                                                      | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear te<br>Effective <sup>5</sup><br>16.0                                                       | e on the plot.<br>xRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the gain<br>EIRP (mW)                                                                                    | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6                                                             | erating<br>determir<br>n each<br>chain ar                                         |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency                                                               | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>Antenna<br>Software                                                                                  | vidth measure<br>systems the to<br>MIMO device<br>the highest gr<br>signals are o<br>the product o<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW                                                                           | d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effective<br>Chain 1<br>13<br>Measure                                                      | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Pov                                                                     | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>pn-coherent h<br>is and the El<br>e antenna ga<br>otal power.<br>Chain 3<br>wer <sup>1</sup> dBm            | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sum<br>ain is the sum<br>Coherent<br>Yes<br>To                                                | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear te<br>Effective <sup>5</sup><br>16.0                                                       | e on the plot.<br>xRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the gain<br>EIRP (mW)                                                                                    | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power                                                | erating<br>determir<br>n each<br>chain ar                                         |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency<br>(MHz)                                                      | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>Antenna<br>Software<br>Setting                                                                       | idth measure<br>ystems the to<br>). The antenion<br>MIMO device<br>the highest ga<br>e signals are of<br>the product of<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW<br>(MHz)                                             | d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effective<br>d<br>Chain 1<br>13<br>Measure<br>Chain 1                                      | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Por<br>Chain 2                                                          | S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>tal power.<br>Chain 3                                      | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sum<br>ain is the sum<br>Coherent<br>Yes                                                      | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear tel<br>Effective <sup>5</sup><br>16.0<br>tal<br>dBm                                        | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the g<br>ucts of gain a<br>rms) of the gain<br>EIRP (mW)<br>230.4                                                                        | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6                                                             | erating<br>determir<br>each<br>chain ar                                           |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency                                                               | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>Antenna<br>Software                                                                                  | vidth measure<br>systems the to<br>MIMO device<br>the highest gr<br>signals are o<br>the product o<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW                                                                           | d in accorda<br>tal output por<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effectiv<br>Chain 1<br>13<br>Measure<br>Chain 1<br>3.8                                    | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Pov                                                                     | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>pn-coherent h<br>is and the El<br>e antenna ga<br>otal power.<br>Chain 3<br>wer <sup>1</sup> dBm            | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sum<br>in is the sum<br>Coherent<br>Yes<br>To<br>mW<br>5.2                                    | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0<br>tal<br>dBm<br>7.2                                 | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the gradient<br>ucts of gain a<br>rms) of the gradient<br>EIRP (mW)<br>230.4<br>Limit (dBm)                                              | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power                                                | erating<br>determin<br>n each<br>n chain ar                                       |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency<br>(MHz)<br>5255                                              | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>Antenna<br>Software<br>Setting<br>4.5                                                                | idth measure<br>ystems the to<br>). The anteni<br>MIMO device<br>the highest ga<br>signals are o<br>the product o<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>8.3                                            | d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effective<br>d<br>Chain 1<br>13<br>Measure<br>Chain 1                                      | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Poo<br>Chain 2<br>4.5                                                   | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>pn-coherent h<br>is and the El<br>e antenna ga<br>otal power.<br>Chain 3<br>wer <sup>1</sup> dBm            | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the tar<br>RP is the sum<br>in is the sum<br>Coherent<br>Yes<br>To<br>mW                                         | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear tel<br>Effective <sup>5</sup><br>16.0<br>tal<br>dBm                                        | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the gradient<br>ucts of gain a<br>rms) of the gradient<br>EIRP (mW)<br>230.4<br>Limit (dBm)<br>10.2                                      | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power<br>(W)                                         | erating<br>determin<br>each<br>chain ar<br>Pass or<br>PAS:                        |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency<br>(MHz)<br>5255<br>5300<br>5340                              | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>Antenna<br>Software<br>Setting<br>4.5<br>4.5                                                         | idth measure<br>ystems the to<br>). The anteni<br>MIMO device<br>the highest ga<br>signals are of<br>the product o<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>8.3<br>8.4                                    | d in accorda<br>tal output pc<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effectiv<br>Chain 1<br>13<br>Measure<br>Chain 1<br>3.8<br>4.8                              | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>ividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Pov<br>Chain 2<br>4.5<br>4.4                                             | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>pn-coherent h<br>is and the El<br>e antenna ga<br>otal power.<br>Chain 3<br>wer <sup>1</sup> dBm            | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes<br>Tc<br>mW<br>5.2<br>5.8                            | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear ter<br>ffective <sup>5</sup><br>16.0<br>tal<br>dBm<br>7.2<br>7.6                           | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the gradient<br>ucts of gain a<br>rms) of the gradient<br>EIRP (mW)<br>230.4<br>Limit (dBm)<br>10.2<br>10.2                              | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power<br>(W)                                         | erating<br>determin<br>each<br>chain ar<br>Pass or<br>PAS<br>PAS                  |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency<br>(MHz)<br>5255<br>5300<br>5340<br>PSD                       | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>ce - 5250-53<br>Ce - 5250-53<br>Antenna<br>Software<br>Setting<br>4.5<br>4.5<br>4.5<br>4.0           | idth measure<br>ystems the to<br>). The antenion<br>MIMO device<br>the highest gate<br>signals are of<br>the product of<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>8.3<br>8.4<br>9.4                        | d in accorda<br>tal output pc<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent thei<br>f the effective<br>d<br>Chain 1<br>13<br>Measure<br>Chain 1<br>3.8<br>4.8<br>4.5                  | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>ividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Poo<br>Chain 2<br>4.5<br>4.4<br>3.6                                      | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>pn-coherent h<br>is and the El<br>e antenna ga<br>otal power.<br>Chain 3<br>Wer <sup>1</sup> dBm<br>Chain 3 | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the t<br>RP is the sur<br>in is the sur<br>Coherent<br>Yes<br>To<br>mW<br>5.2<br>5.8<br>5.1                      | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear ter<br>ffective <sup>5</sup><br>16.0<br>tal<br>dBm<br>7.2<br>7.6                           | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the gradient<br>ucts of gain a<br>rms) of the gradient<br>EIRP (mW)<br>230.4<br>Limit (dBm)<br>10.2<br>10.2<br>10.7                      | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power<br>(W)                                         | erating<br>determir<br>n each<br>chain a<br>Pass or<br>PAS<br>PAS<br>PAS          |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency<br>(MHz)<br>5255<br>5300<br>5340<br>PSD<br>Frequency          | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>ce - 5250-53<br>Antenna<br>Software<br>Setting<br>4.5<br>4.5<br>4.5<br>4.0                           | idth measure<br>systems the to<br>). The anteni<br>MIMO device<br>the highest ga<br>e signals are of<br>the product o<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>8.3<br>8.4<br>9.4<br>Total                 | d in accorda<br>tal output pc<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effectiv<br>d<br>Chain 1<br>13<br>Measure<br>Chain 1<br>3.8<br>4.8<br>4.5                  | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>ividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Poo<br>Chain 2<br>4.5<br>4.4<br>3.6<br>SD <sup>2</sup> dBm/MH            | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the EI<br>e antenna ga<br>otal power.<br>Chain 3<br>wer <sup>1</sup> dBm<br>Chain 3 | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes<br>To<br>mW<br>5.2<br>5.8<br>5.1<br>Total            | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0<br>tal<br>dBm<br>7.2<br>7.6<br>7.1                   | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the gradient<br>ucts of gain a<br>rms) of the gradient<br>EIRP (mW)<br>230.4<br>Limit (dBm)<br>10.2<br>10.2<br>10.7                      | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power<br>(W)<br>0.006                                | erating<br>determir<br>n each<br>chain an<br>Pass or<br>PAS<br>PAS<br>PAS         |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency<br>(MHz)<br>5255<br>5300<br>5340<br>PSD<br>Frequency<br>(MHz) | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>ce - 5250-53<br>Antenna<br>Software<br>Setting<br>4.5<br>4.5<br>4.5<br>4.0<br>99% <sup>4</sup><br>BW | idth measure<br>systems the to<br>). The antenne<br>MIMO device<br>the highest ga<br>signals are of<br>the product of<br><b>50 MHz Band</b><br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>8.3<br>8.4<br>9.4<br>Total<br>Power | d in accorda<br>tal output pc<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effective<br>d<br>Chain 1<br>13<br>Measure<br>Chain 1<br>3.8<br>4.8<br>4.5<br>P<br>Chain 1 | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>ividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Poo<br>Chain 2<br>4.5<br>4.4<br>3.6<br>SD <sup>2</sup> dBm/MH<br>Chain 2 | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>pn-coherent h<br>is and the El<br>e antenna ga<br>otal power.<br>Chain 3<br>Wer <sup>1</sup> dBm<br>Chain 3 | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sur<br>ain is the surr<br>Coherent<br>Yes<br>To<br>mW<br>5.2<br>5.8<br>5.1<br>Total<br>mW/MHz | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0<br>tal<br>dBm<br>7.2<br>7.6<br>7.1<br>PSD<br>dBm/MHz | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the gradient<br>the powers of gain a<br>crms) of the gradient<br>EIRP (mW)<br>230.4<br>Limit (dBm)<br>10.2<br>10.2<br>10.7<br>Lin<br>FCC | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power<br>(W)<br>0.006<br>mit<br>RSS 210 <sup>3</sup> | erating<br>determir<br>each<br>chain a<br>chain a<br>Pass or<br>PAS<br>PAS<br>PAS |
| Note 4:<br>Note 5:<br>MIMO Devi<br>Power<br>Frequency<br>(MHz)<br>5255<br>5300<br>5340<br>PSD<br>Frequency          | 99% Bandw<br>For MIMO s<br>linear terms<br>mode of the<br>the limits is<br>chain. If the<br>the EIRP is<br>ce - 5250-53<br>ce - 5250-53<br>Antenna<br>Software<br>Setting<br>4.5<br>4.5<br>4.5<br>4.0                           | idth measure<br>systems the to<br>). The anteni<br>MIMO device<br>the highest ga<br>e signals are of<br>the product o<br>50 MHz Band<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>8.3<br>8.4<br>9.4<br>Total                 | d in accorda<br>tal output pc<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effectiv<br>d<br>Chain 1<br>13<br>Measure<br>Chain 1<br>3.8<br>4.8<br>4.5                  | nce with RS<br>wer and tota<br>to determine<br>als on the no<br>ividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Poo<br>Chain 2<br>4.5<br>4.4<br>3.6<br>SD <sup>2</sup> dBm/MH            | S GEN - RB<br>al PSD are ca<br>e the EIRP a<br>on-coherent l<br>is and the EI<br>e antenna ga<br>otal power.<br>Chain 3<br>wer <sup>1</sup> dBm<br>Chain 3 | wer. PSD is<br>> 1% of span<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes<br>To<br>mW<br>5.2<br>5.8<br>5.1<br>Total            | highest value<br>and VB >=3<br>the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0<br>tal<br>dBm<br>7.2<br>7.6<br>7.1                   | e on the plot.<br>xRB<br>the powers o<br>power dependent<br>ns then the gradient<br>ucts of gain a<br>rms) of the gradient<br>EIRP (mW)<br>230.4<br>Limit (dBm)<br>10.2<br>10.2<br>10.7                      | f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>23.6<br>Max Power<br>(W)<br>0.006                                | erating<br>determin<br>each<br>chain ar<br>Pass or<br>PAS<br>PAS                  |

| (C) E                               |               | Dtt<br>Art company |         |             |         |          |                        | EMO          | C Test      | Data       |
|-------------------------------------|---------------|--------------------|---------|-------------|---------|----------|------------------------|--------------|-------------|------------|
| Client:                             | Ubiquiti Net  | works              |         |             |         |          |                        | Job Number:  | J82749      |            |
| Model:                              | NanoStatior   | Loco M5            |         |             |         |          | T-I                    | Log Number:  | T82792      |            |
| wouer.                              | Nanostation   |                    |         |             |         |          | Αссοι                  | unt Manager: | Susan Pelzl |            |
| Contact:                            | Jennifer Sar  | nchez              |         |             |         |          |                        |              |             |            |
| Standard:                           | FCC 15E, R    | SS-210             |         |             |         |          |                        | Class:       | N/A         |            |
| MIMO Devid                          | ce - 5470-572 | 25 MHz Band        | b       |             |         |          | -                      |              |             |            |
|                                     |               |                    | Chain 1 | Chain 2     | Chain 3 | Coherent | Effective <sup>5</sup> | EIRP (mW)    | EIRP (dBm)  |            |
|                                     | Antenna       | a Gain (dBi):      | 13      | 13          |         | Yes      | 16.0                   | 242.6        | 23.8        |            |
| Power                               |               |                    |         |             |         |          |                        |              |             |            |
| Frequency                           | Software      | 26dB BW            |         | d Output Po |         |          | otal                   | Limit (dBm)  | Max Power   | Pass or Fa |
| <i>(</i> <b>- - - - - - - - - -</b> | 0.111.1       |                    |         |             |         |          |                        |              | () & ()     |            |

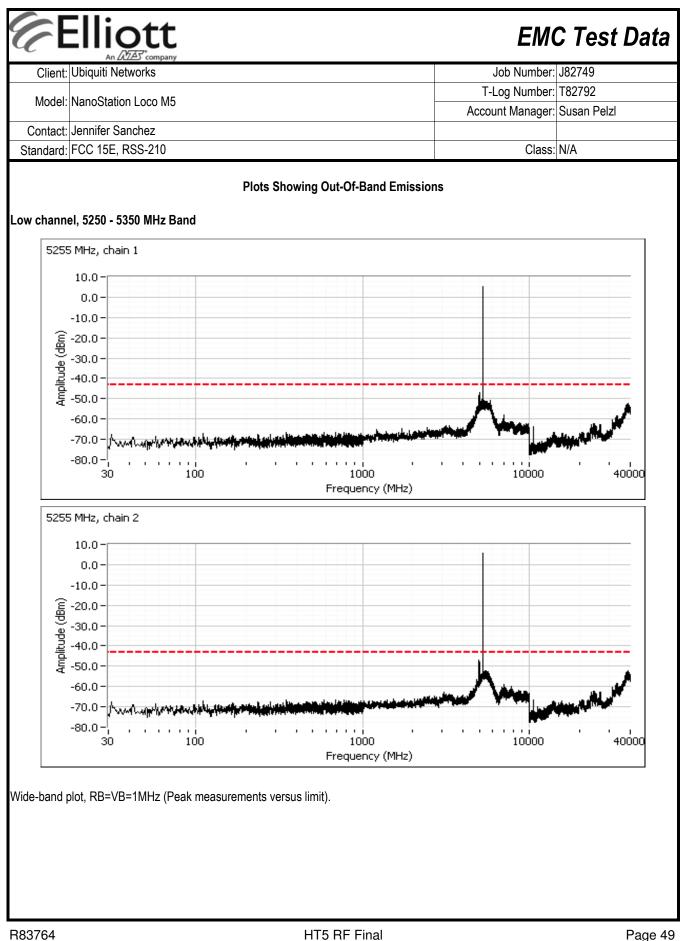
|                    |                        |                |              |                                   |               |                 |                | Limit (dDm) |                             | Dace or Lail         |
|--------------------|------------------------|----------------|--------------|-----------------------------------|---------------|-----------------|----------------|-------------|-----------------------------|----------------------|
| (MHz)              | Setting                | (MHz)          | Chain 1      | Chain 2                           | Chain 3       | mW              | dBm            | Limit (dBm) | (W)                         | Pass or Fail         |
| 5475               | 5.0                    | 8.5            | 5.0          | 3.5                               |               | 5.4             | 7.3            | 10.3        |                             | PASS                 |
| 5595               | 4.5                    | 8.7            | 3.9          | 5.3                               |               | 5.8             | 7.7            | 10.4        | 0.006                       | PASS                 |
| 5720               | 4.5                    | 8.4            | 5.3          | 4.3                               |               | 6.1             | 7.8            | 10.2        |                             | PASS                 |
| PSD                |                        |                |              |                                   |               |                 |                |             |                             |                      |
|                    |                        |                |              |                                   |               |                 |                |             |                             |                      |
| Frequency          | 99% <sup>4</sup>       | Total          | Р            | SD <sup>2</sup> dBm/MH            | łz            | Tota            | PSD            | Lir         | mit                         | Pass or Fail         |
|                    | 99% <sup>4</sup><br>BW | Total<br>Power | P<br>Chain 1 | SD <sup>2</sup> dBm/Mł<br>Chain 2 | lz<br>Chain 3 | Total<br>mW/MHz | PSD<br>dBm/MHz | Lir<br>FCC  | nit<br>RSS 210 <sup>3</sup> | Pass or Fail         |
| Frequency          |                        |                |              |                                   |               |                 | I              |             |                             | Pass or Fail<br>PASS |
| Frequency<br>(MHz) | BW                     | Power          | Chain 1      | Chain 2                           |               | mW/MHz          | dBm/MHz        | FCC         | RSS 210 <sup>3</sup>        |                      |

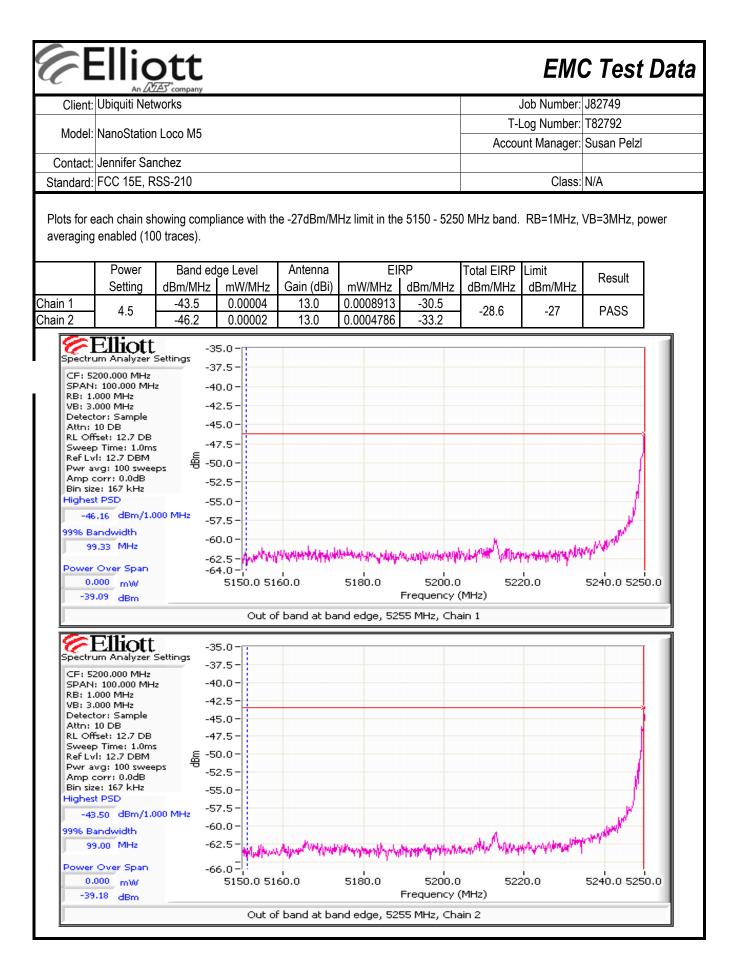
## Output Power at Low Power Setting - 5470-5725 MHz Band

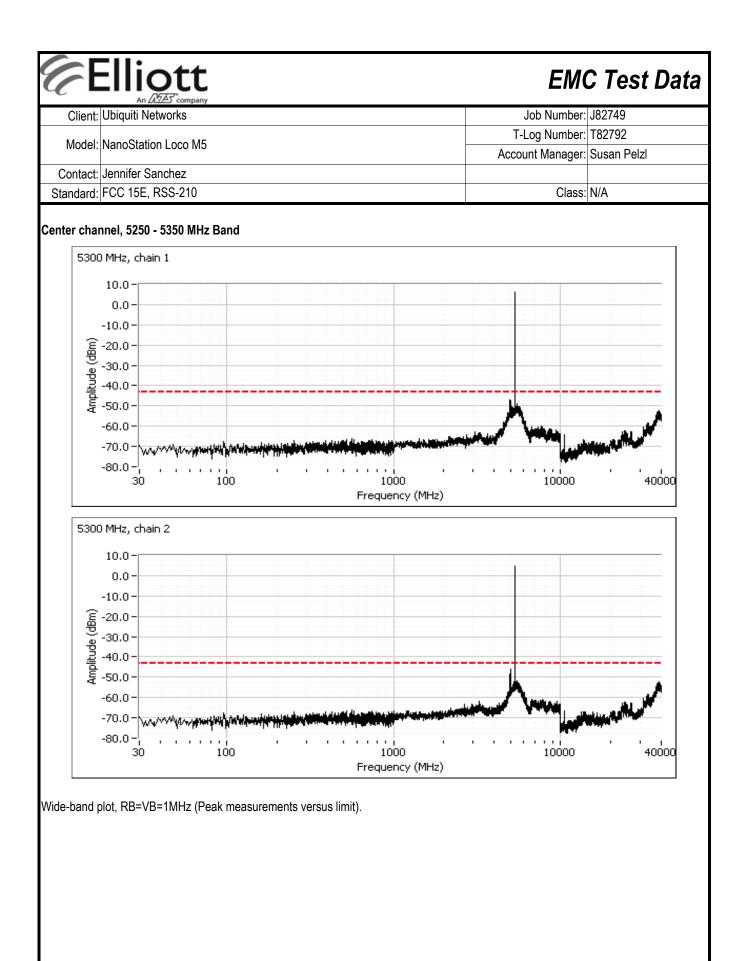



## Run #2: Peak Excursion Measurement


## HT5 Device meets the requirement for the peak excursion

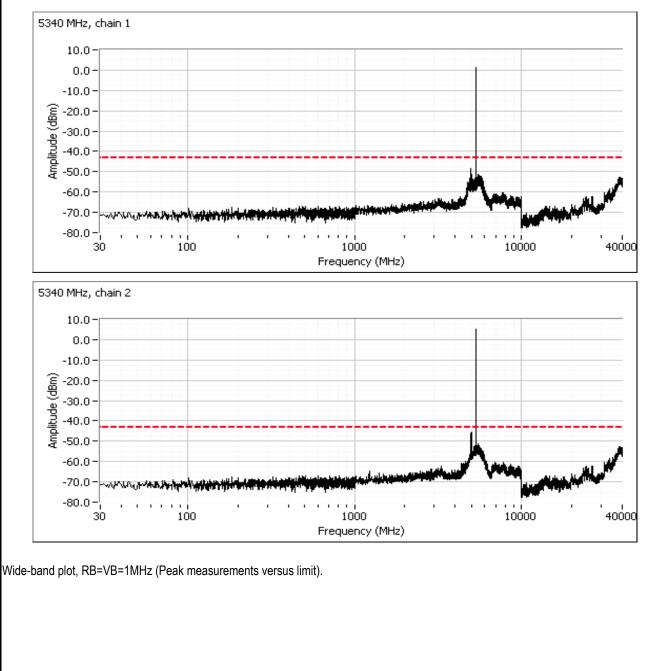

| Freq  | Peak Exc  | ursion(dB) | Freq  | Peak Exc  | ursion(dB) |
|-------|-----------|------------|-------|-----------|------------|
| (MHz) | Value     | Limit      | (MHz) | Value     | Limit      |
| 5255  | 12.3/12.2 | 13.0       | 5475  | 12.1/10.8 | 13.0       |
| 5300  | 11.4/11.5 | 13.0       | 5595  | 10.1/10.6 | 13.0       |
| 5340  | 11.6/11.9 | 13.0       | 5720  | 11.4/10.8 | 13.0       |

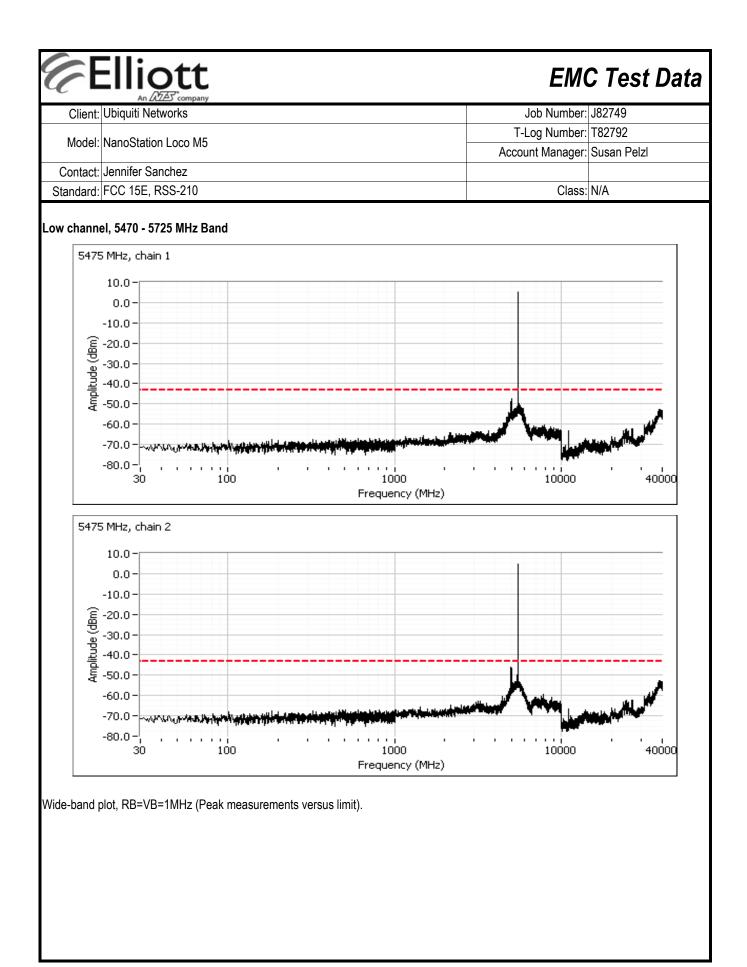


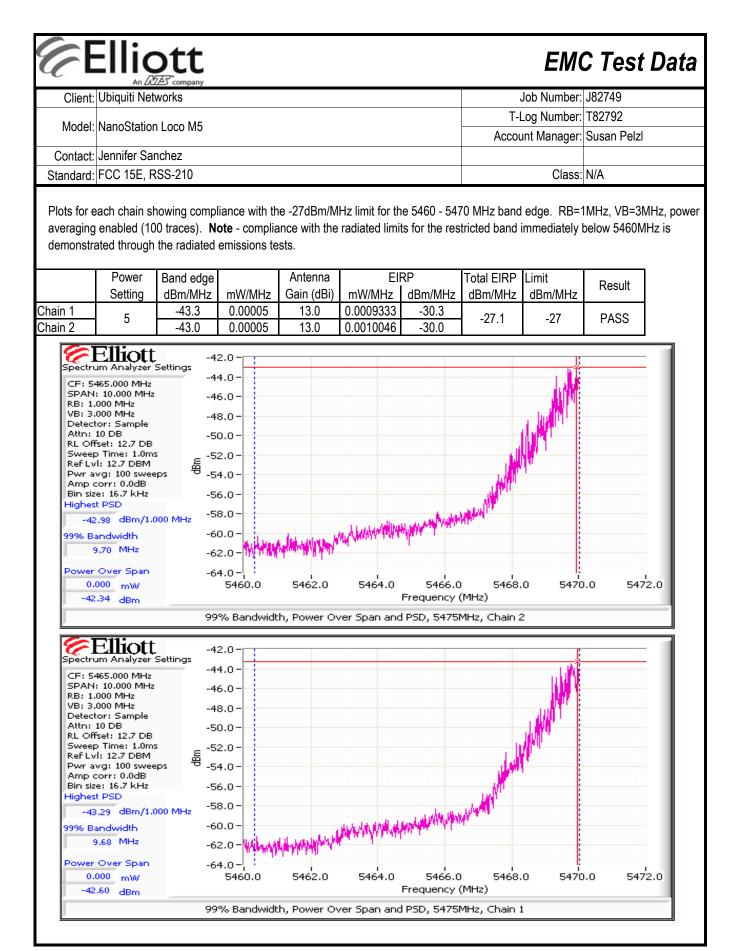


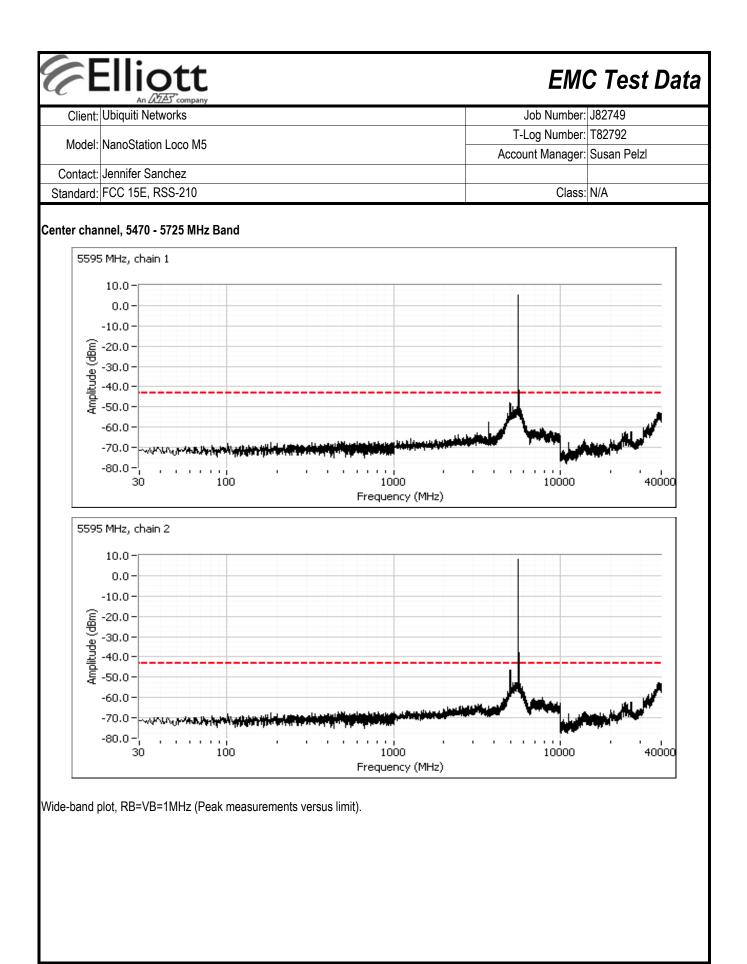

|                            | Elliott<br>An AZAS <sup>*</sup> company                                                                                                                                                                                                                                                                                                    |                                                         | C Test Data                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|
| Client:                    | Ubiquiti Networks                                                                                                                                                                                                                                                                                                                          | Job Number:                                             | J82749                     |
| Model                      | NanoStation Loco M5                                                                                                                                                                                                                                                                                                                        | T-Log Number:                                           | T82792                     |
| wouer.                     |                                                                                                                                                                                                                                                                                                                                            | Account Manager:                                        | Susan Pelzl                |
| Contact:                   | Jennifer Sanchez                                                                                                                                                                                                                                                                                                                           |                                                         |                            |
| Standard:                  | FCC 15E, RSS-210                                                                                                                                                                                                                                                                                                                           | Class:                                                  | N/A                        |
| MIMO Devid<br>to be cohere | <ul> <li>at Of Band Spurious Emissions - Antenna Conducted</li> <li>ces: Antenna gain used is the individual antenna antenna gain (the spuriou ent between chains and spurious removed from the band edges are evaluat btained for each chain individually and the limit was adjusted to account for Number of transmit chains:</li> </ul> | ed as radiated emissions i                              | f close to the limit). The |
|                            | Maximum Antenna Gain: 13.0 dBi<br>Spurious Limit: -27.0 dBm/MHz eirp<br>Adjustment for 2 chains: -3.0 dB adjustment for multip<br>Limit Used On Plots <sup>Note 1</sup> : -43.0 dBm/MHz Average Lin                                                                                                                                        | mit (RB=1MHz, VB=10Hz)                                  |                            |
| Note 1:                    | The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted<br>consideration the maximum antenna gain and number of transmitters (limit<br>field strength measurements for signals more than 50MHz from the bands<br>determine compliance as the antenna gain is not known at these frequenci                              | = -27dBm - antenna gain<br>and that are close to the li | - 10Log[N]). Radiated      |
| Note 2:                    | All spurious signals below 1GHz are measured during digital device radiate                                                                                                                                                                                                                                                                 |                                                         |                            |
| Note 3:                    | Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a lim                                                                                                                                                                                                                                                                  |                                                         |                            |
| Note 4:                    | If the device is for outdoor use then the -27dBm eirp limit also applies in the                                                                                                                                                                                                                                                            |                                                         |                            |
| Note 5:                    | Signals that fall in the restricted bands of 15.205 are subject to the limit of                                                                                                                                                                                                                                                            | 15.209.                                                 |                            |
|                            |                                                                                                                                                                                                                                                                                                                                            |                                                         |                            |

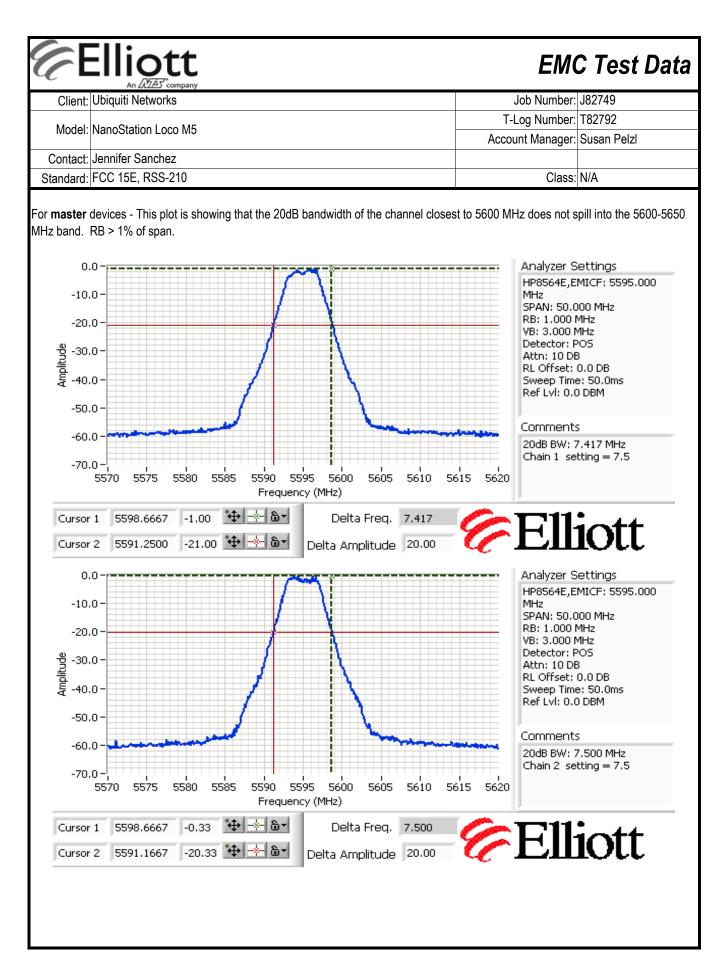




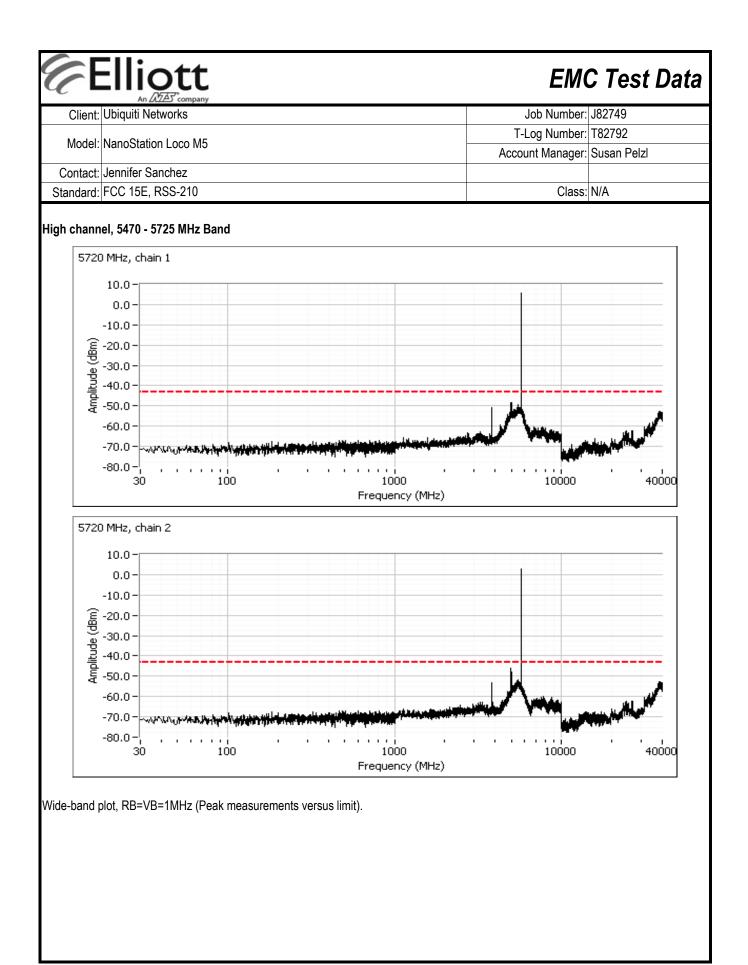



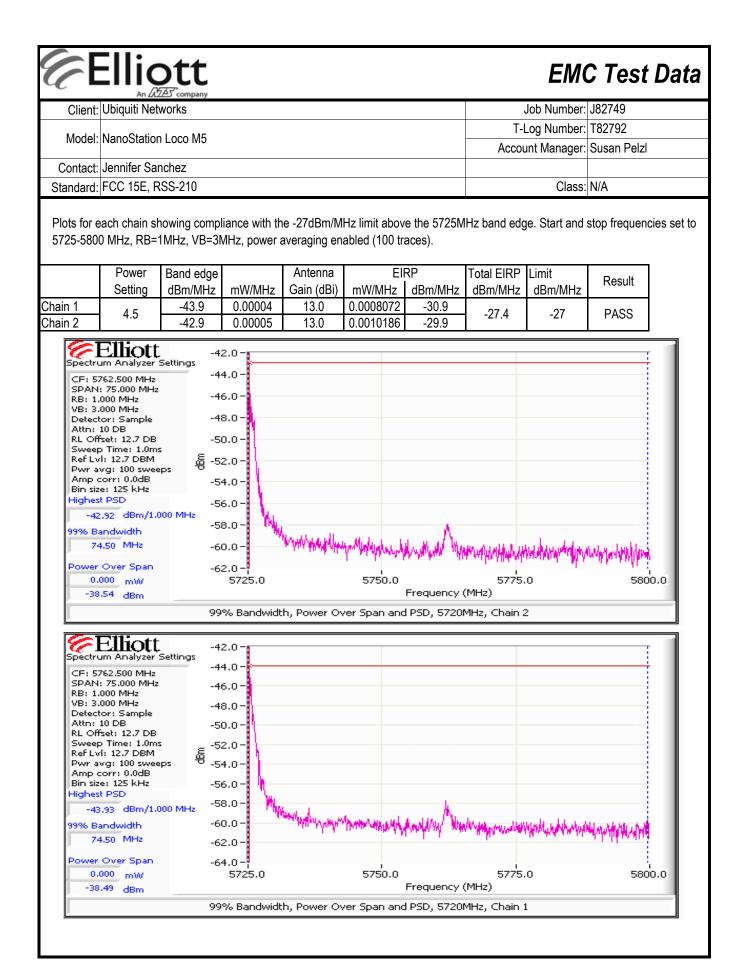


# Client: Ubiquiti Networks Job Number: J82749 Model: NanoStation Loco M5 T-Log Number: T82792 Contact: Jennifer Sanchez Susan Pelzl Standard: FCC 15E, RSS-210 Class: N/A


## High channel, 5250 - 5350 MHz Band


**Note** - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.











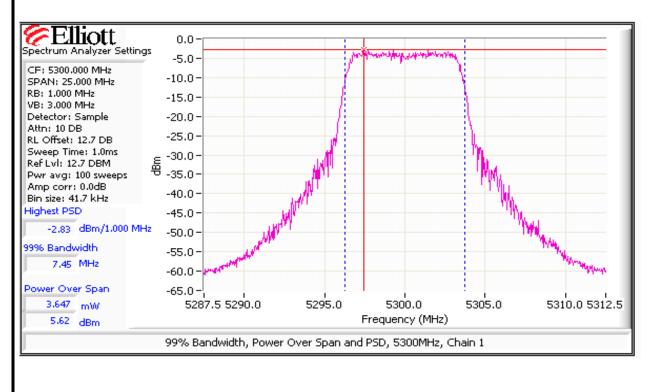


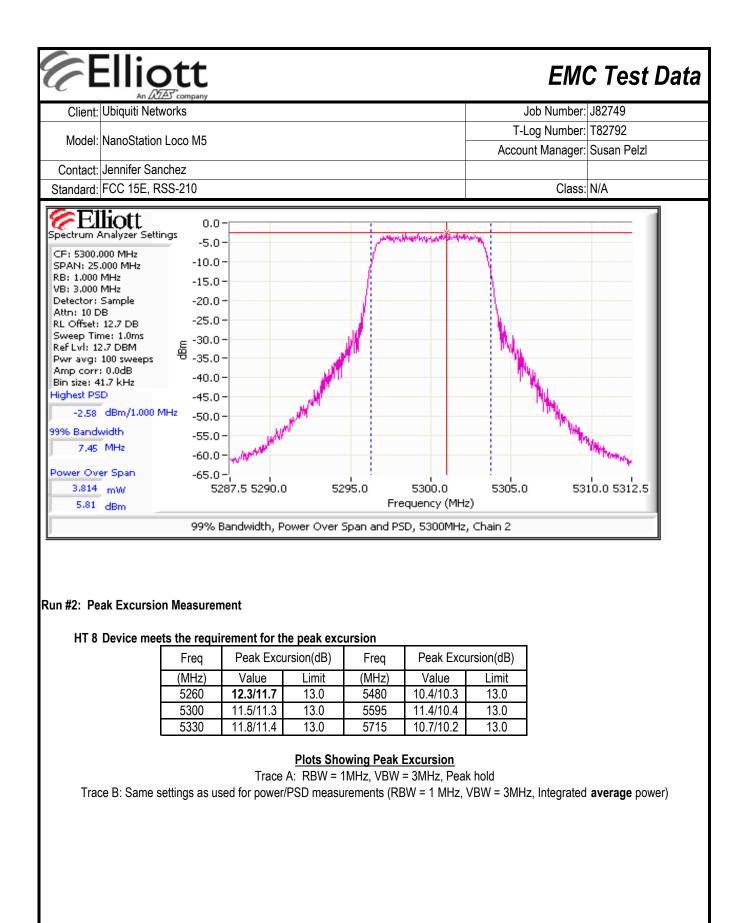


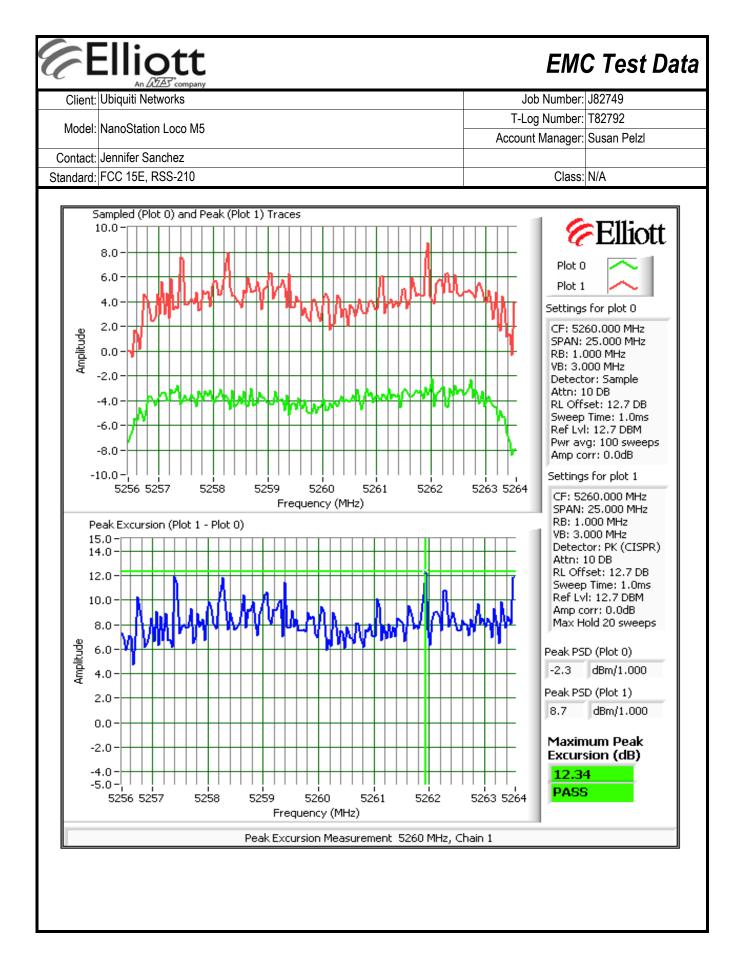

| <b>Ellic</b>          |                                                                      |                                                                                  |               | EM                        | C Test Data    |
|-----------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------|---------------------------|----------------|
| Client: Ubiquiti Net  |                                                                      |                                                                                  | ,             | Job Number:               | J82749         |
|                       |                                                                      |                                                                                  | T-l           | _og Number:               | T82792         |
| Model: NanoStatior    | n Loco M5                                                            |                                                                                  |               | -                         | Susan Pelzl    |
| Contact: Jennifer Sar | nchez                                                                |                                                                                  |               |                           |                |
| Standard: FCC 15E, R  | SS-210                                                               |                                                                                  |               | Class:                    | N/A            |
|                       | RSS-210 (LELA<br>Antenna Port Me<br>Power, PSD, Peak Excursior       | •                                                                                | Hz Mode       |                           |                |
| Test Specific Detai   | ls                                                                   |                                                                                  |               |                           |                |
| Objective:            | The objective of this test session is to specification listed above. | perform final qualification                                                      | testing of th | e EUT with r              | espect to the  |
| Date of Test:         | 5/3 and 4/2011                                                       | Config. Used:                                                                    | 1             |                           |                |
| Test Engineer:        | R. Varelas, M. Birgani                                               | Config Change:                                                                   | none          |                           |                |
| Test Location:        | FT Lab #4                                                            | EUT Voltage:                                                                     | POE           |                           |                |
| Summary of Result     |                                                                      |                                                                                  |               |                           |                |
| Run #                 | Test Performed                                                       | Limit                                                                            |               | Result / Mar              | gin            |
| 1                     | Power, 5250 - 5350MHz                                                | 15.407(a) (1), (2)                                                               | Pass          | 7.9 mW                    | 1              |
| 1                     | PSD, 5250 - 5350MHz                                                  | 15.407(a) (1), (2)<br>TPC required if EIRP≥                                      | Pass          | 0.5 dBm/MH                | IZ             |
| 1                     | Max EIRP<br>5250 - 5350MHz                                           | 500 mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.            | N/A           |                           | dBm (317.7 mW) |
| 1                     | Power, 5470 - 5725MHz                                                | 15.407(a) (1), (2)                                                               |               | 9.6 mW                    |                |
| 1                     | PSD, 5470 - 5725MHz                                                  | 15.407(a) (1), (2)                                                               | Pass          | 0.9 dBm/MF                | lz             |
| 1                     | Max EIRP<br>5470 - 5725MHz                                           | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold | N/A           | EIRP = 25.8               | dBm (382.4 mW) |
| 1                     | 26dB Bandwidth                                                       | 15.407 (Determines max power)                                                    | -             | 11.8 MHz                  |                |
| 1                     | 99% Bandwidth                                                        | RSS 210                                                                          | N/A           | 7.5 MHz                   |                |
| 2                     | Peak Excursion Envelope                                              | 15.407(a) (6)<br>13dB                                                            | PASS          | 12.3 dB                   |                |
| 3                     | Antenna Conducted - Out of Band<br>Spurious                          | 15.407(b)<br>-27dBm/MHz                                                          | PASS          | All emission<br>-27dBm/MH |                |
|                       |                                                                      |                                                                                  |               |                           |                |

# General Test Configuration

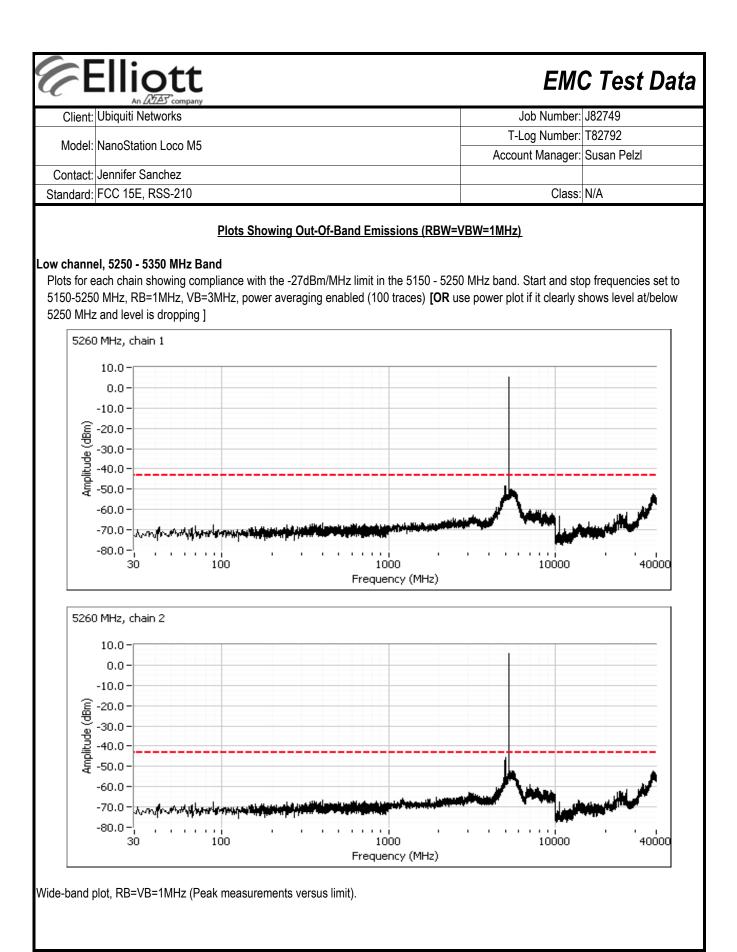
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

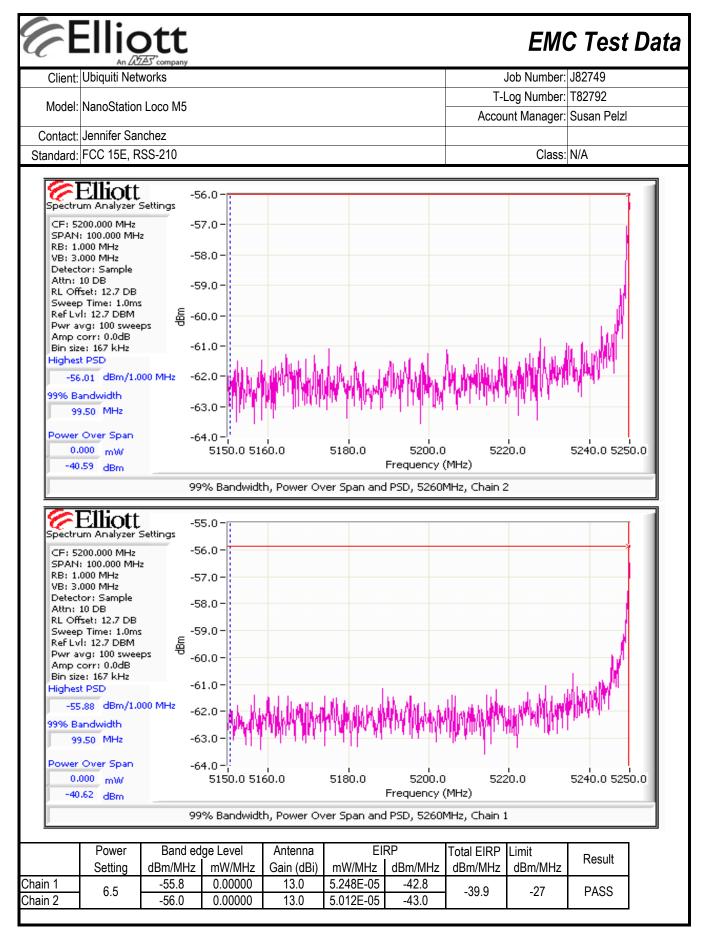

| 6                                                 | Ellic                        | ott                                      |                |                              |                      |                |                            | EM                | C Test               | Data                 |
|---------------------------------------------------|------------------------------|------------------------------------------|----------------|------------------------------|----------------------|----------------|----------------------------|-------------------|----------------------|----------------------|
| Client                                            | <u>An 22</u><br>Ubiquiti Net | works                                    |                |                              |                      |                |                            | Job Number:       | J82749               |                      |
| Oliciti.                                          | obiquiti i tot               |                                          |                |                              |                      |                |                            | Log Number:       |                      |                      |
| Model:                                            | NanoStatior                  | I Loco M5                                |                |                              |                      |                |                            | unt Manager:      |                      |                      |
| Contact:                                          | Jennifer Sar                 | nchez                                    |                |                              |                      |                |                            |                   |                      |                      |
| Standard:                                         | FCC 15E, R                   | SS-210                                   |                |                              |                      |                |                            | Class:            | N/A                  |                      |
| Ambient                                           | Condition                    | S:                                       |                | emperature:<br>el. Humidity: |                      | °C<br>%        |                            |                   |                      |                      |
| No modifi                                         | cations were                 | e During To<br>made to the<br>ne Standar | EUT during     | testing                      |                      |                |                            |                   |                      |                      |
| No deviat                                         | ions were ma                 | ade from the I                           | requirements   | s of the stand               | lard.                |                |                            |                   |                      |                      |
| Run #1: Ba                                        | -                            | tput Power a                             |                |                              |                      |                |                            |                   |                      |                      |
| Note 1:                                           |                              | er measured                              | • •            | •                            | • •                  | ,              |                            |                   |                      | •                    |
|                                                   |                              | n (transmitted                           | -              | ,                            |                      | -              |                            |                   |                      | 1).                  |
| Note 2:                                           |                              | sing the same                            |                |                              |                      |                |                            |                   |                      |                      |
| Note 4:                                           |                              | idth measure<br>ystems the to            |                |                              |                      |                |                            |                   | f the individu       |                      |
|                                                   |                              |                                          |                |                              |                      |                |                            |                   |                      |                      |
|                                                   |                              | ). The anteni                            | -              |                              |                      |                |                            | •                 | •                    | -                    |
| Note 5:                                           |                              | MIMO device                              | -              |                              |                      |                |                            |                   | -                    |                      |
|                                                   |                              | the highest g                            |                |                              |                      |                | •                          | -                 | •                    |                      |
|                                                   |                              | signals are o                            |                |                              | •                    | ain is the sun | n (in linear te            | rms) of the g     | ains for each        | chain an             |
|                                                   | the EIRP is                  | the product o                            | T the effectiv | e gain and to                | otal power.          |                |                            |                   |                      |                      |
| MIMO Devi                                         | ce - 5250-53                 | 50 MHz Band                              | d              |                              |                      |                |                            |                   |                      |                      |
|                                                   |                              |                                          | Chain 1        | Chain 2                      | Chain 3              | Coherent       | Effective <sup>5</sup>     | EIRP (mW)         | EIRP (dBm)           |                      |
|                                                   | Antenna                      | a Gain (dBi):                            | 13             | 13                           |                      | Yes            | 16.0                       | 296.6             | 24.7                 |                      |
| ower                                              |                              |                                          |                |                              |                      |                |                            | •                 |                      |                      |
| Frequency                                         | Software                     | 26dB BW                                  | Measure        | d Output Pov                 | wer <sup>1</sup> dBm | To             | otal                       | Limit (dBm)       | Max Power            | Pass or F            |
| (MHz)                                             | Setting                      | (MHz)                                    | Chain 1        | Chain 2                      | Chain 3              | mW             | dBm                        | Linii (ubiii)     | (W)                  | F 855 UI I           |
| 5260                                              | 5.0                          | 12.3                                     | 4.1            | 3.0                          |                      | 4.5            | 6.6                        | 11.9              |                      | PASS                 |
|                                                   | 5.5                          | 11.8                                     | 5.6            | 5.8                          |                      | 7.4            | 8.7                        | 11.7              | 0.007                | PASS                 |
| 5300                                              | 5.0                          | 10.8                                     | 2.7            | 2.6                          |                      | 3.7            | 5.7                        | 11.3              |                      | PASS                 |
| 5300<br>5330                                      |                              | <b></b>                                  |                | 0                            |                      |                |                            | 1                 |                      | 1                    |
| 5300<br>5330<br><b>PSD</b>                        |                              |                                          | I P            | SD <sup>2</sup> dBm/Ml       |                      |                | I PSD                      |                   | mit                  | Pass or F            |
| 5300<br>5330<br><b>PSD</b><br>Frequency           | 99% <sup>4</sup>             | Total                                    | 1              |                              | Chain 3              | mW/MHz         | dBm/MHz                    | FCC               | RSS 210 <sup>3</sup> |                      |
| 5300<br>5330<br><b>PSD</b><br>Frequency<br>(MHz)  | BW                           | Power                                    | Chain 1        | Chain 2                      | onun o               |                |                            |                   |                      |                      |
| 5300<br>5330<br>PSD<br>Frequency<br>(MHz)<br>5260 | BW<br>7.8                    | Power<br>6.6                             | -3.4           | -4.9                         |                      | 0.8            | -1.1                       | 1.0               | 11.0                 | PASS                 |
| 5300<br>5330<br>PSD<br>Frequency<br>(MHz)         | BW                           | Power                                    |                |                              |                      |                | -1.1<br><b>0.3</b><br>-2.0 | 1.0<br>1.0<br>1.0 |                      | PASS<br>PASS<br>PASS |


## Output Power at Low Power Setting - 5250-5350 MHz Band


| <b>E</b>   | Elliott<br>An AZAS <sup>*</sup> company |         |         |         |          |                        | EMO          | C Test      | Data |
|------------|-----------------------------------------|---------|---------|---------|----------|------------------------|--------------|-------------|------|
| Client:    | Ubiquiti Networks                       |         |         |         |          |                        | Job Number:  | J82749      |      |
| Madal      | NanoStation Loco M5                     |         |         |         |          | T-l                    | Log Number:  | T82792      |      |
| Model.     |                                         |         |         |         |          | Αссоι                  | unt Manager: | Susan Pelzl |      |
| Contact:   | Jennifer Sanchez                        |         |         |         |          |                        |              |             |      |
| Standard:  | FCC 15E, RSS-210                        |         |         |         |          |                        | Class:       | N/A         |      |
| MIMO Devid | ce - 5470-5725 MHz Bang                 | ł       |         |         |          |                        | _            |             |      |
|            |                                         | Chain 1 | Chain 2 | Chain 3 | Coherent | Effective <sup>5</sup> | EIRP (mW)    | EIRP (dBm)  |      |
|            | Antenna Gain (dBi):                     | 13      | 13      |         | Yes      | 16.0                   | 382.4        | 25.8        |      |

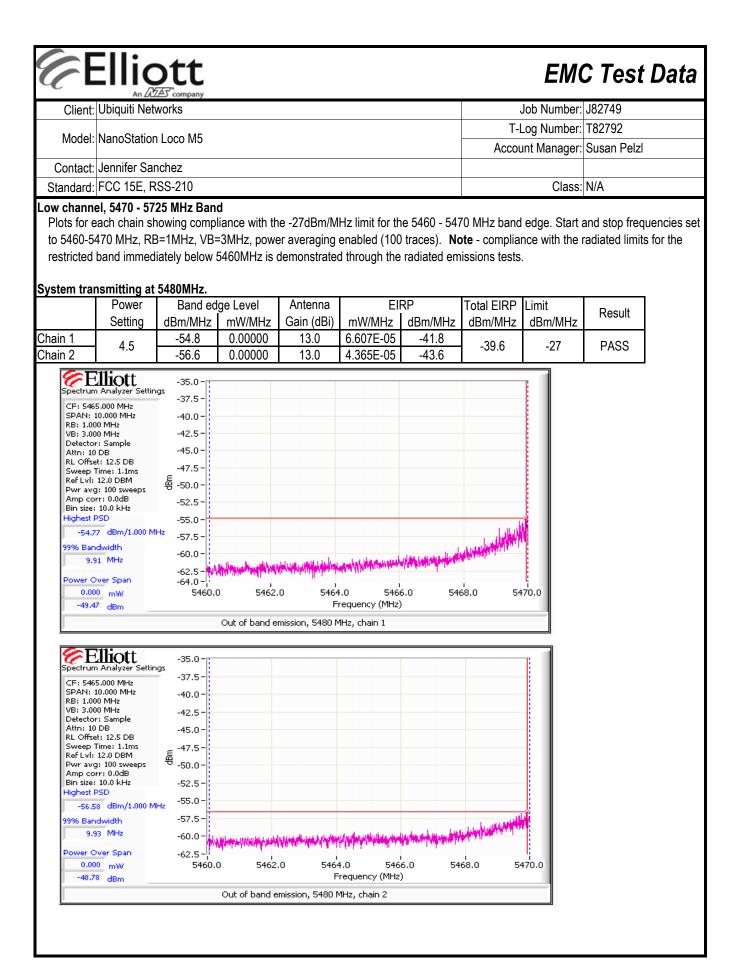
|           | Antenne          | a Gain (ubi). | 15      | 10                     |                      | 163    | 10.0    | 302.4       | 20.0                 |              |
|-----------|------------------|---------------|---------|------------------------|----------------------|--------|---------|-------------|----------------------|--------------|
| Power     |                  |               |         |                        |                      |        |         |             |                      |              |
| Frequency | Software         | 26dB BW       | Measure | d Output Pov           | wer <sup>1</sup> dBm | To     | otal    | Limit (dBm) | Max Power            | Pass or Fail |
| (MHz)     | Setting          | (MHz)         | Chain 1 | Chain 2                | Chain 3              | mW     | dBm     | сти (авти)  | (W)                  | Pass of Fall |
| 5480      | 4.5              | 11.5          | 6.7     | 5.2                    |                      | 8.0    | 9.0     | 11.6        |                      | PASS         |
| 5595      | 4.5              | 11.5          | 6.1     | 6.8                    |                      | 8.9    | 9.5     | 11.6        | 0.010                | PASS         |
| 5715      | 5.5              | 11.5          | 7.0     | 6.6                    |                      | 9.6    | 9.8     | 11.6        |                      | PASS         |
| PSD       |                  |               |         |                        |                      |        |         |             |                      |              |
| Frequency | 99% <sup>4</sup> | Total         | Р       | SD <sup>2</sup> dBm/MH | lz                   | Total  | PSD     | Li          | mit                  | Deee or Foil |
| (MHz)     | BW               | Power         | Chain 1 | Chain 2                | Chain 3              | mW/MHz | dBm/MHz | FCC         | RSS 210 <sup>3</sup> | Pass or Fail |
| 5480      | 7.5              | 9.0           | -2.0    | -3.7                   |                      | 1.1    | 0.2     | 1.0         | 11.0                 | PASS         |
| 5595      | 7.5              | 9.5           | -2.5    | -2.1                   |                      | 1.2    | 0.7     | 1.0         | 11.0                 | PASS         |
| 5715      | 7.5              | 9.8           | -1.9    | -2.3                   |                      | 1.2    | 0.9     | 1.0         | 11.0                 | PASS         |

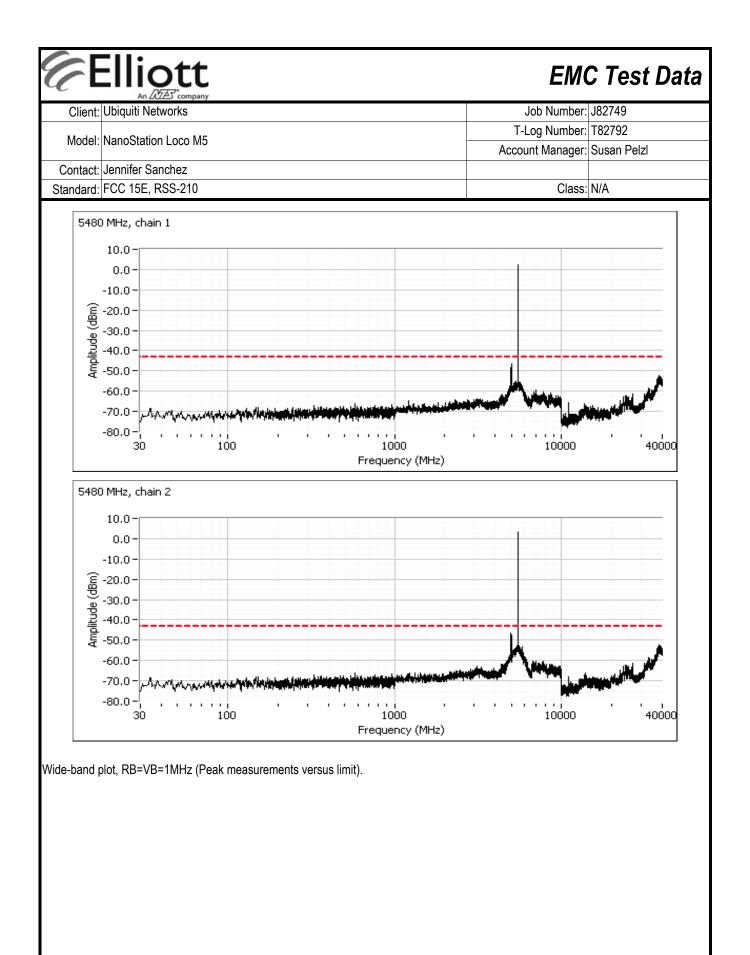

# Output Power at Low Power Setting - 5470-5725 MHz Band

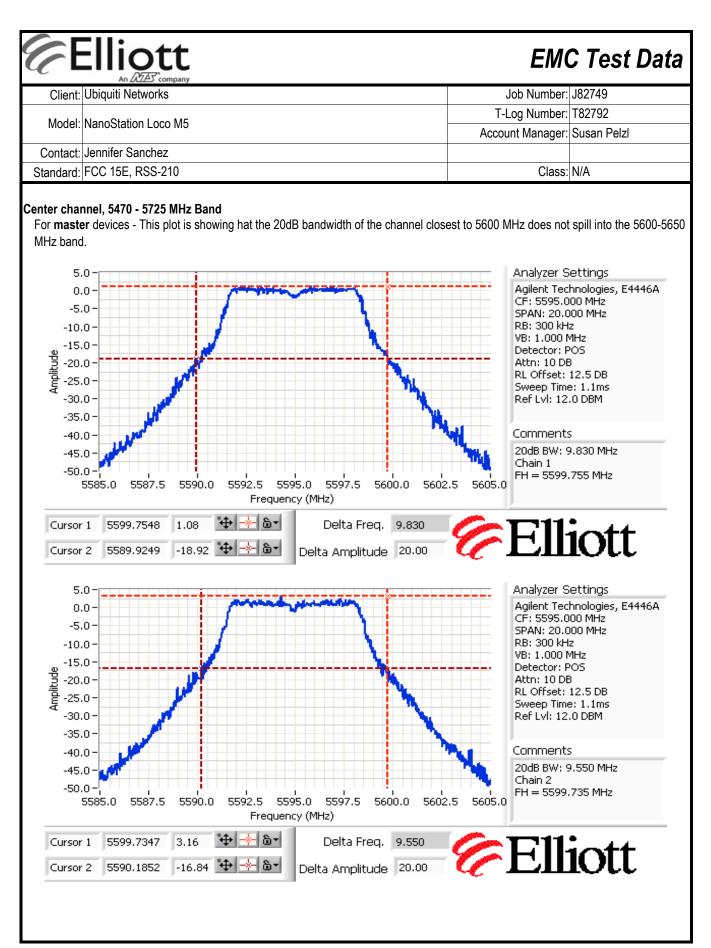


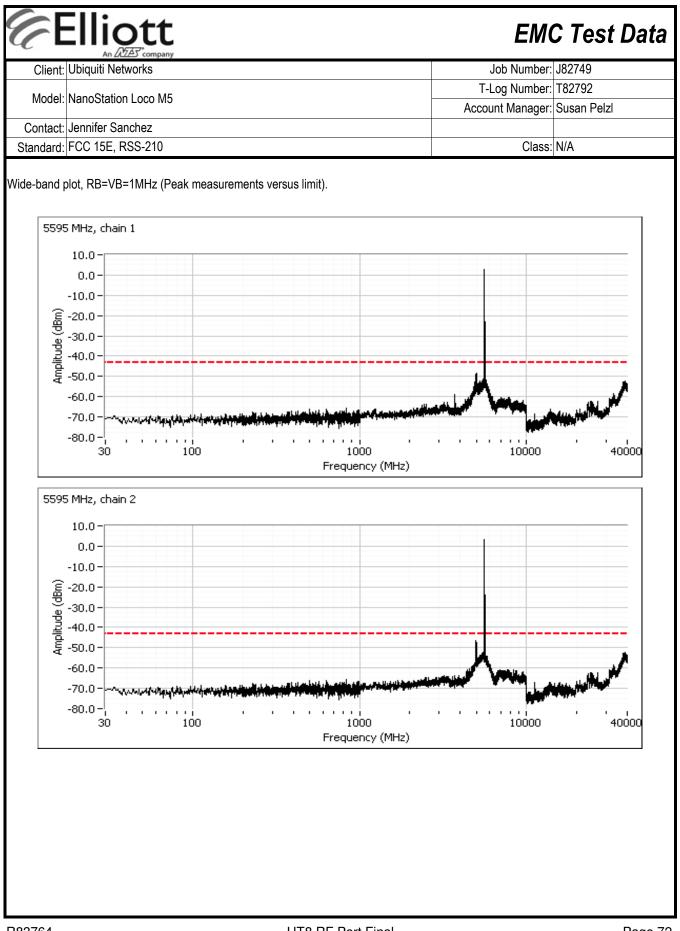


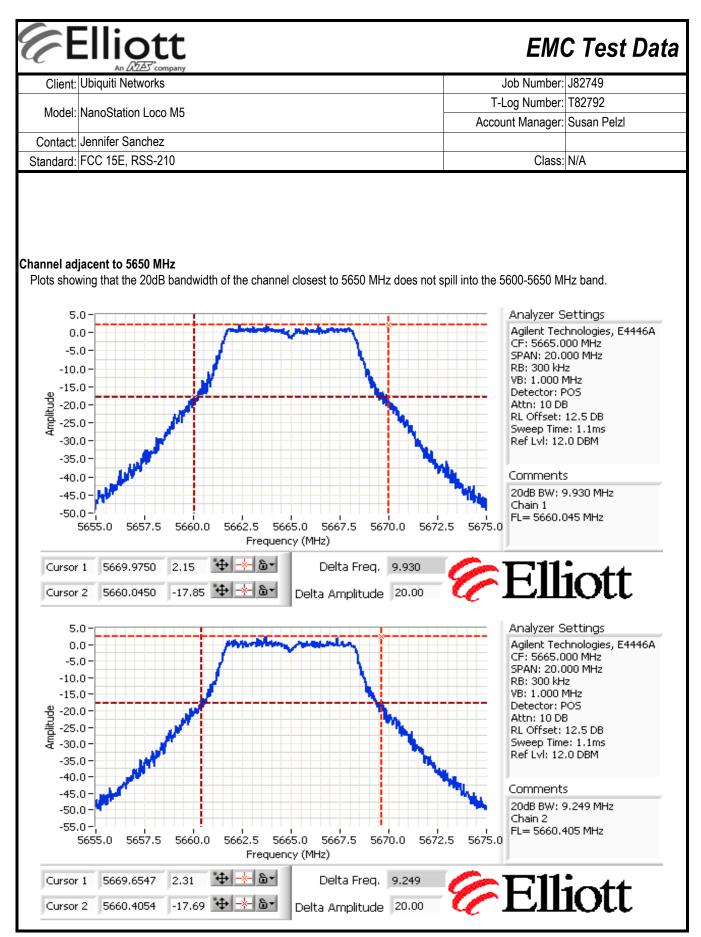


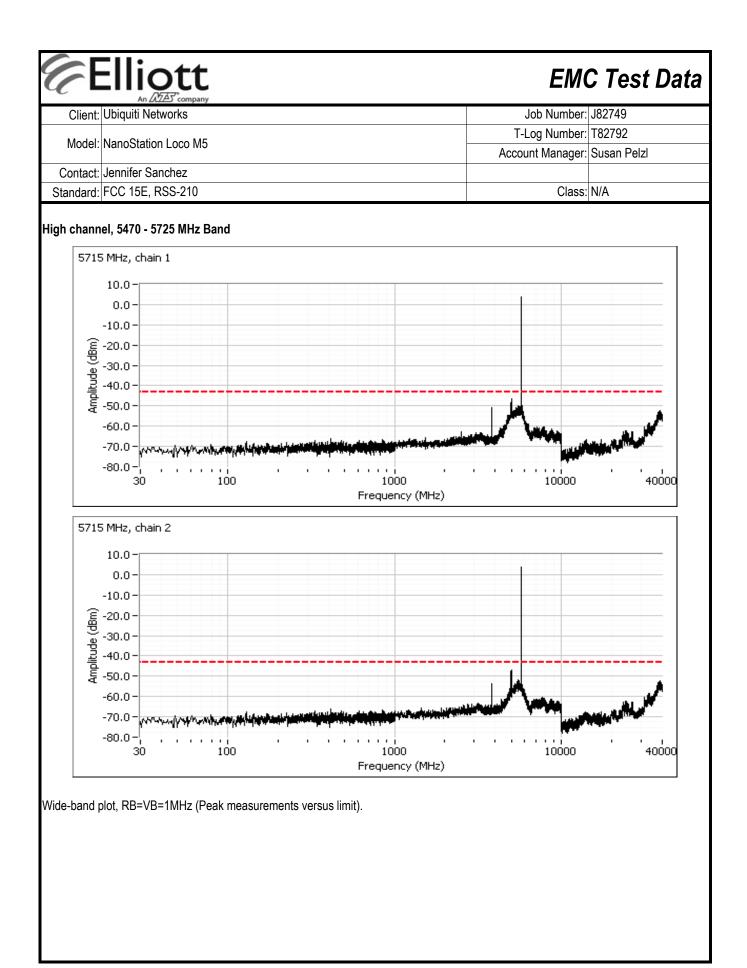




| Model:         NanoStation Loco M5         T-Log Number         T82792           Contact:         Jennifer Sanchez         Susan Pelzl         Contact:         Jennifer Sanchez         Susan Pelzl         Contact:         Class:         N/A           Run #3:         Out Of Band Spurious Emissions - Antenna Conducted         MMO Devices:         Account Manager:         Susan Pelzl           MMO Devices:         Anten again used is the individual antenna antenna gain (the spurious emissions at the band edges are not considered to be coherent between chains and spurious removed from the band edges are evaluated as radiated emissions if clo the limit). The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously         Number of transmit chains:         2           Maximum Antenna Gain:         13.0 dBi         Spurious Limit:         -27.0 dBm/MHz erip         Adjustment for 2 chains:         -3.0 dB adjustment for multiple chains.           Limit Used On Plots <sup>New 1</sup> :         -43.0 dBm/MHz wareage Limit (RB=1MHz, VB=10Hz)         The -27dBm/Mz limit is an erip limit. The limit for antenna port conducted measurements is on signals more than 50MHz from the bands and that acclose to the limit are made to determine compliance as the antenna gain and number of transmitters (limit = -27dBm elose) of the inter are measured during digital device radiated emissions test.         Note 4:         If the device is for outdoor use finent the -27dBm elos deplate are subject to a limit of 17dBm EIRP         Note 4:         If the device is for outd | Client:     | Ubiquiti Networks                                                                                                                                                             |                                                                                            | Job Number:                                | J82749         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|----------------|
| Contact:       Jennifer Sanchez       Account Manager:       Susan Pelzl         Standard:       FCC 15E, RSS-210       Class:       N/A         Run #3:       Out Of Band Spurious Emissions - Antenna Conducted       MIMO Devices:       Antenna gain used is the individual antenna antenna gain (the spurious emissions at the band edges are not considered to be coherent between chains and spurious removed from the band edges are evaluated as radiated emissions if clo the limit). The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously         Number of transmit chains:       2         Maximum Antenna Gain:       13.0 dBi         Spurious Limit:       -27.0 dBm/MHz eirp         Adjustment for 2 chains:       -3.0 dB adjustment for multiple chains.         Limit Used On Plots       -43.0 dBm/MHz       Average Limit (RB=1MHz, VB=10Hz)         Autor 1:       The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain and number of transmitters (limit = -27dBm - antenna gain - 10Log[N]). Radi field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.         Vote 2:       All spurious signals below 1GHz are measured during digital device radiated emissions test.         Vote 3:       Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP                                                          | Madalı      |                                                                                                                                                                               |                                                                                            | T-Log Number:                              | T82792         |
| Standard:       FCC 15E, RSS-210       Class:       N/A         Run #3:       Out Of Band Spurious Emissions - Antenna Conducted         MIMO Devices:       Antenna gain used is the individual antenna antenna gain (the spurious emissions at the band edges are not considered to be coherent between chains and spurious removed from the band edges are evaluated as radiated emissions if clo the limit). The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously         Number of transmit chains:       2         Maximum Antenna Gain:       13.0 dBi         Spurious Limit:       -27.0 dBm/MHz eirp         Adjustment for 2 chains:       -30. dB adjustment for multiple chains.         Limit Used On Plots       Note 1:       -43.0 dBm/MHz         Average Limit (RB=1MHz, VB=10Hz)       VB=10Hz)         Note 1:       The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain and number of transmitters (limit = -27dBm - antenna gain - 10Log[N]). Radi field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.         Note 2:       All spurious signals below 1GHz are measured during digital device radiated emissions test.         Note 3:       Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP         Note 4:                                                                                           | Model:      | NanoStation Loco M5                                                                                                                                                           |                                                                                            | Account Manager:                           | Susan Pelzl    |
| Run #3: Out Of Band Spurious Emissions - Antenna Conducted         MIMO Devices: Antenna gain used is the individual antenna antenna gain (the spurious emissions at the band edges are not considered to be coherent between chains and spurious removed from the band edges are evaluated as radiated emissions if clo the limit). The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously         Number of transmit chains:       2         Maximum Antenna Gain:       13.0         Adjustment for 2 chains:       -27.0         Adjustment for 2 chains:       -3.0         Limit Used On Plots       -43.0         Note 1:       The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain and number of transmitters (limit = -27dBm - antenna gain - 10Log[N]). Radi field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.         Note 2:       All spurious signals below 1GHz are measured during digital device radiated emissions test.         Note 3:       Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP         Note 4:       If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.                                                                                                                                                                                    | Contact:    | Jennifer Sanchez                                                                                                                                                              |                                                                                            |                                            |                |
| MIMO Devices: Antenna gain used is the individual antenna antenna gain (the spurious emissions at the band edges are not considered to be coherent between chains and spurious removed from the band edges are evaluated as radiated emissions if clo the limit). The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously         Number of transmit chains:       2         Maximum Antenna Gain:       13.0         Adjustment for 2 chains:       -27.0         Limit Used On Plots       -27.0         Mote 1:       The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain and number of transmitters (limit = -27dBm - antenna gain - 10Log[N]). Radi field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.         Note 2:       All spurious signals below 1GHz are measured during digital device radiated emissions test.         Note 3:       Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP         Note 4:       If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.                                                                                                                                                                                                                                                                                                   | Standard:   | FCC 15E, RSS-210                                                                                                                                                              |                                                                                            | Class:                                     | N/A            |
| Inter-27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain and number of transmitters (limit = -27dBm - antenna gain - 10Log[N]). Radi field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.         Note 2:       All spurious signals below 1GHz are measured during digital device radiated emissions test.         Note 3:       Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP         Note 4:       If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the limit). | The plots were obtained for each chain individual<br>ously<br>Number of transmit chains:<br>Maximum Antenna Gain: 13.<br>Spurious Limit: -27.<br>Adjustment for 2 chains: -3. | ly and the limit was adjuste<br>2<br>0 dBi<br>0 dBm/MHz eirp<br>0 dB adjustment for multip | ed to account for all chains<br>le chains. | s transmitting |
| Interpretation       consideration the maximum antenna gain and number of transmitters (limit = -27dBm - antenna gain - 10Log[N]). Radi field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.         Interpretation       All spurious signals below 1GHz are measured during digital device radiated emissions test.         Interpretation       Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP         Interpretation       If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Limit Used On Plots -43.                                                                                                                                                      | 0 dBm/MHZ Average Lin                                                                      | nit (RB=1MHZ, VB=10HZ)                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note 3:     | Signals within 10MHz of the 5.725 or 5.825 Banc                                                                                                                               |                                                                                            |                                            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                               | eirp limit also applies in the                                                             | e 5150 - 5250 MHz band.                    |                |














#### Elliott EMC Test Data Client: Ubiquiti Networks Job Number: J82749 T-Log Number: T82792 Model: NanoStation Loco M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15E, RSS-210 Class: N/A Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces): Power Band edge Level Antenna EIRP Total EIRP Limit Result Setting dBm/MHz mW/MHz Gain (dBi) dBm/MHz dBm/MHz mW/MHz dBm/MHz -54.7 0.00000 13.0 6.761E-05 -41.7 Chain 1 -39.0 -27 PASS 5.5 Chain 2 -55.3 0.00000 13.0 5.888E-05 -42.3Elliott -35.0 Spectrum Analyzer Settings -37.5 CF: 5762.500 MHz SPAN: 75.000 MHz -40.0 RB: 1.000 MHz VB: 3.000 MHz -42.5-Detector: Sample Attn: 10 DB -45.0 RL Offset: 12.5 DB Sweep Time: 1.1ms -47.5 튭 Ref Lvl: 12.0 DBM Pwr avg: 100 sweeps -50.0 Amp corr: 0.0dB Bin size: 75.1 kHz -52.5 Highest PSD -55.0 -54.71 dBm/1.000 MHz 99% Bandwidth -57.5 74.55 MHz -60.0 Power Over Span -62.0-0.000 mW 5775.0 5725.0 5750.0 5800.0 Frequency (MHz) -39.28 dBm Out of band emission, 5715 MHz, chain 1 ℰ Elliott -35.0 Spectrum Analyzer Settings -37.5 CE: 5762,500 MHz SPAN: 75,000 MHz -40.0 RB: 1.000 MHz -42.5-VB: 3.000 MHz Detector: Sample -45.0-Attn: 10 DB RL Offset: 12.5 DB -47.5-Sweep Time: 1.1ms <u>ភ</u>្ត -50.0 -Ref Lvl: 12.0 DBM Pwr avg: 100 sweeps Amp corr: 0.0dB -52.5

Bin size: 75.1 kHz

-55.25 dBm/1.000 MHz

Highest PSD

99% Bandwidth

74.47 MHz

0.000 mW

-42.06 dBm

Power Over Span

-55.0

-57.5

-60.0

-62.5

-65.0-

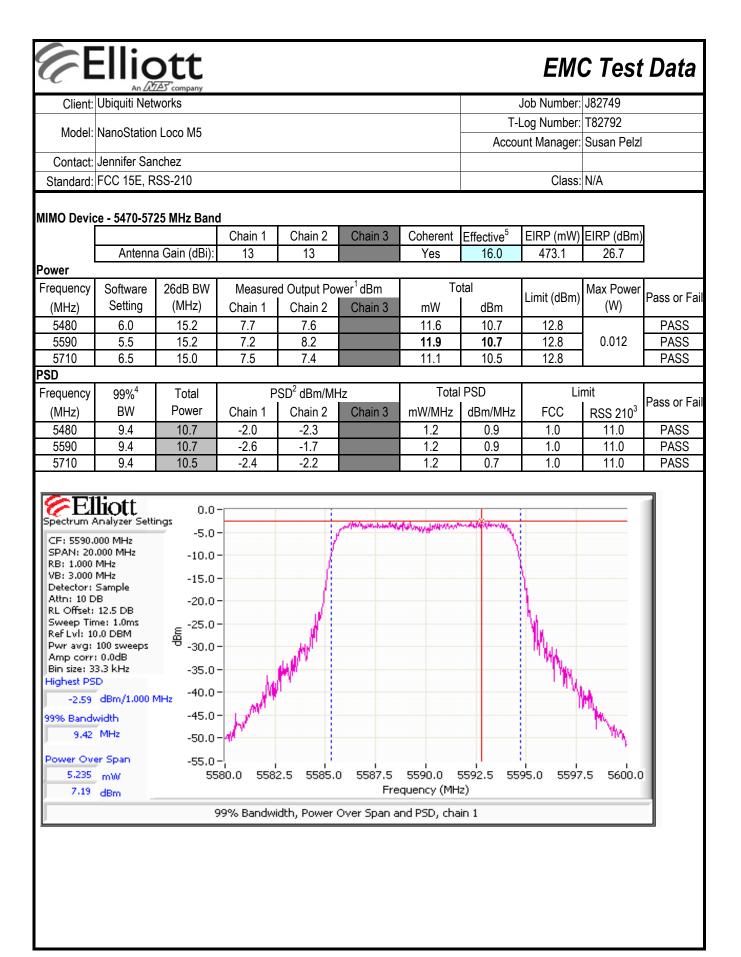
5725.0

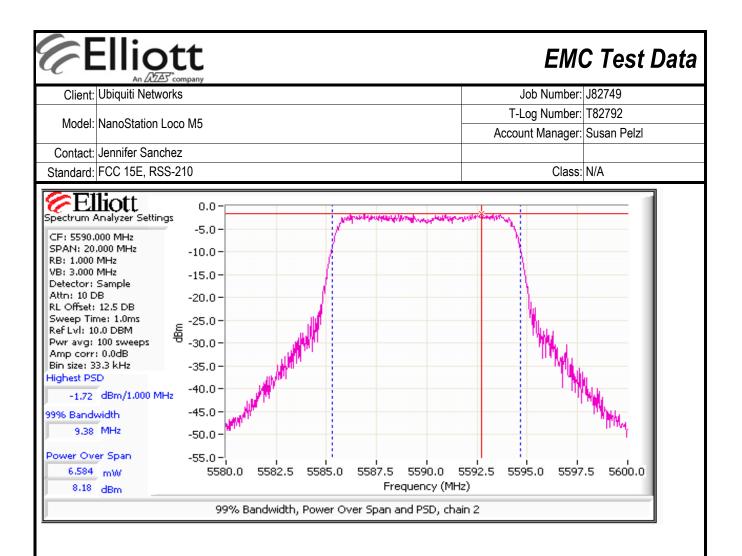
Out of band emission, 5715 MHz, chain 2

5750.0

5775.0

Frequency (MHz)

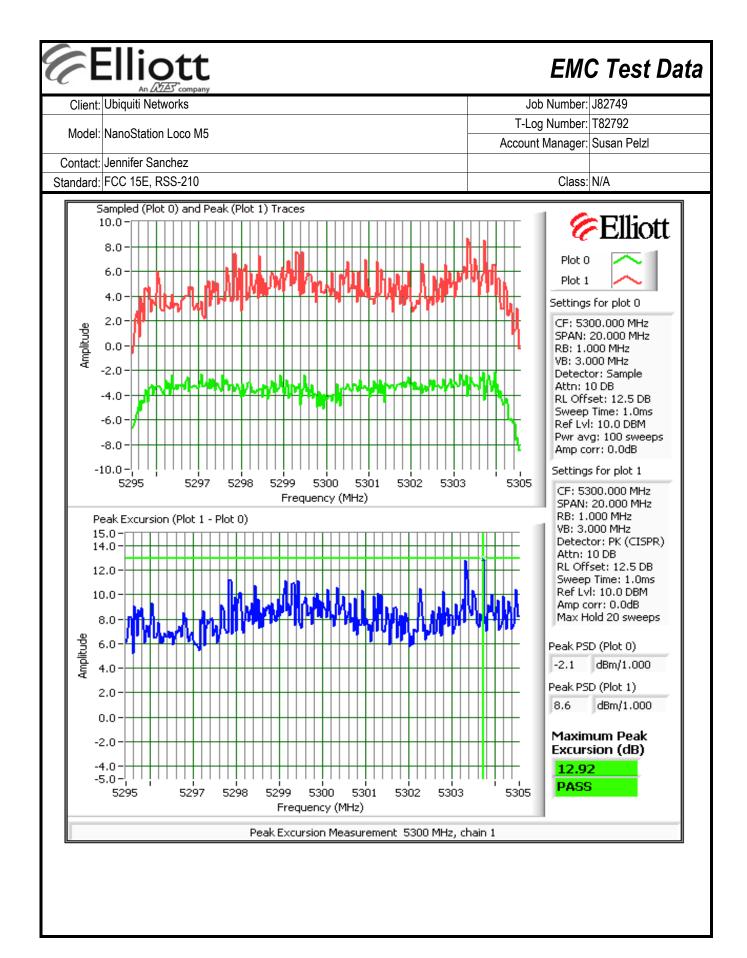

5800.0


| 7         |               | <b>btt</b>                                                           |                                                                                               |                 | EMO          | C Test Dat     |
|-----------|---------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|--------------|----------------|
| Client:   | Ubiquiti Netv | works                                                                |                                                                                               |                 | Job Number:  | J82749         |
|           |               |                                                                      |                                                                                               |                 | Log Number:  |                |
| Model:    | NanoStation   | Loco M5                                                              |                                                                                               |                 | unt Manager: |                |
| Contact:  | Jennifer Sar  | Johan                                                                |                                                                                               | ,               | int manage   | 0000111 012    |
|           | FCC 15E, R    |                                                                      |                                                                                               |                 | Class:       | NI/A           |
| Stanuaru. |               | 00-210                                                               |                                                                                               | <u> </u>        | 01000.       | N//A           |
| Tost Snov | cific Detail  | Antenna P<br>Power, PSD, Peak Excursior                              | N) and FCC 15.40<br>Port Measuremen<br>n, Bandwidth and Sp                                    | ts              | nissions     |                |
| est spec  | cific Detail  |                                                                      | norform final qualification                                                                   | tooting of th   | ∽ ⊑UT with r | concet to the  |
|           |               | The objective of this test session is to specification listed above. |                                                                                               | r testing or th |              | espect to the  |
| Γ         | Date of Test: | 5/5/2011                                                             | Config. Used:                                                                                 | -               |              |                |
|           | est Engineer: |                                                                      | Config Change:                                                                                |                 |              |                |
|           | est Location: |                                                                      | EUT Voltage:                                                                                  |                 |              |                |
|           | of Result     |                                                                      |                                                                                               |                 |              |                |
| Ru        | ın #          | Test Performed                                                       | Limit                                                                                         |                 | Result / Mar | gin            |
|           | 1             | Power, 5250 - 5350MHz                                                | 15.407(a) (1), (2)                                                                            |                 | 11.5 mW      |                |
|           | 1             | PSD, 5250 - 5350MHz                                                  | 15.407(a) (1), (2)                                                                            | PASS            | 0.9 dBm/MH   | z              |
|           | 1             | Max EIRP<br>5250 - 5350MHz                                           | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm. | N/A             | EIRP = 26.6  | dBm (459.4 mW) |
|           | 1             | Power, 5470 - 5725MHz                                                | 15.407(a) (1), (2)                                                                            | PASS            | 11.5 mW      |                |
|           | 1             | PSD, 5470 - 5725MHz                                                  | 15.407(a) (1), (2)                                                                            |                 | 0.9 dBm/MH   | Iz             |
|           | 1             | Max EIRP<br>5470 - 5725MHz                                           | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold              | N/A             | EIRP = 26.6  | dBm (459.4 mW) |
|           | 1             | 26dB Bandwidth                                                       | 15.407 (Determines<br>max power)                                                              |                 | 15.2 MHz     |                |
|           | 1             | 99% Bandwidth                                                        | RSS 210                                                                                       | N/A             | 9.4 MHz      |                |
|           |               |                                                                      | 15.407(a) (6)                                                                                 | PASS            | 12.9 dB      |                |
|           | 2             | Peak Excursion Envelope                                              | 13dB                                                                                          |                 |              |                |

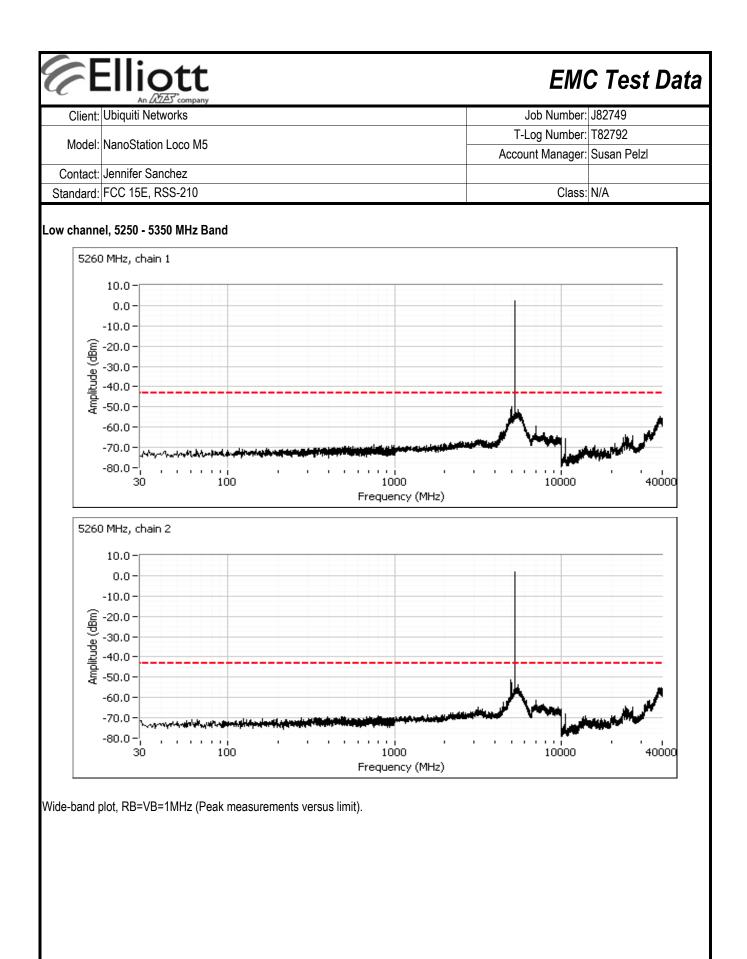
#### General Test Configuration

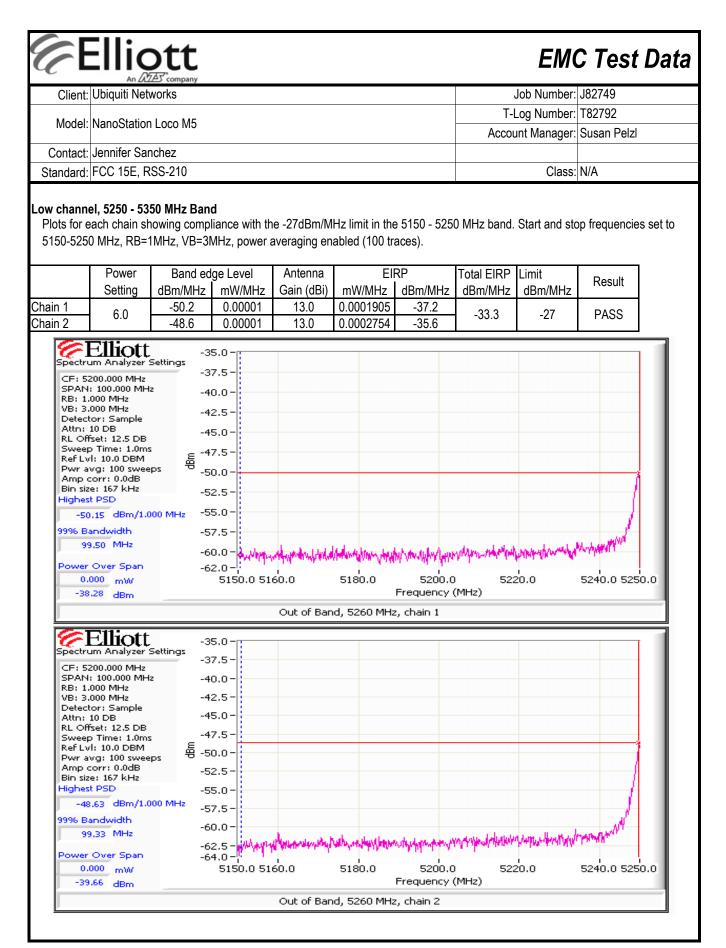
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

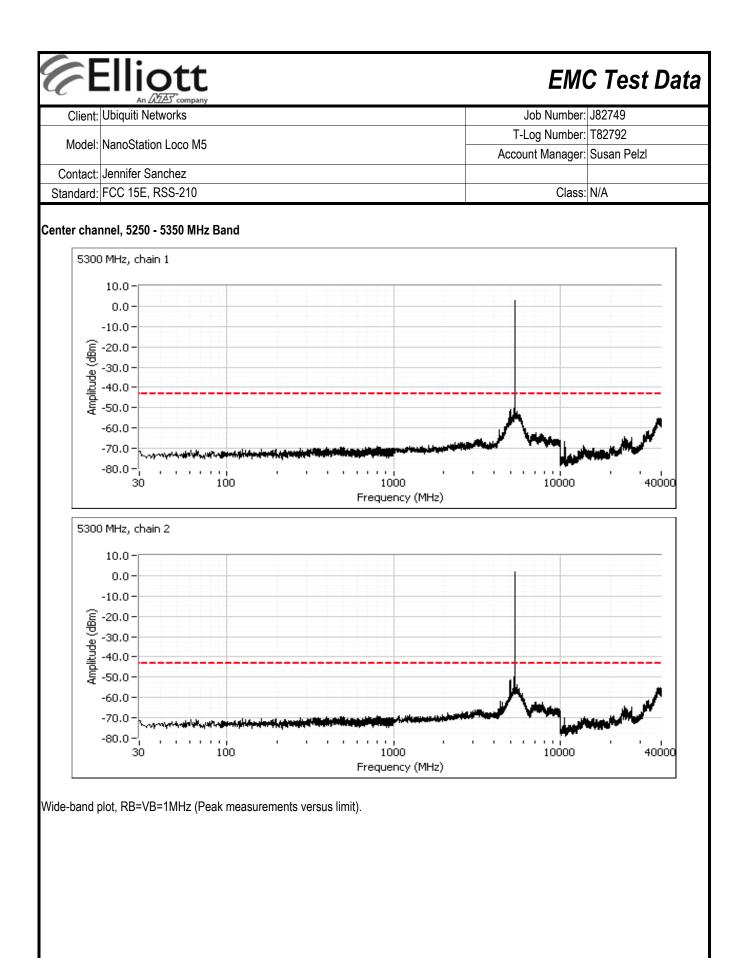
| (MHz)         Setting         (MHz)         Chain 1         Chain 2         Chain 3         mW         dBm         Model         (W)           5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         P           PSD         Frequency         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pass           (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> 5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>       |                                                 | Company                                        |                                                  |                                                   |                                                  |                                |                                |                             | 100740                       |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|-----------------------------|------------------------------|---------------------|
| Model:         NanoStation Loco MS         Account Manager:         Suan Pelz           Contact:         Jennifer Sanchez         Class:         NA           Standard:         FCC 15E, RSS-210         Class:         NA           Ambient Conditions:         Temperature:         18-23 °C         Rel. Humidity:         30-35 %           Wodifications Made During Testing         No modifications were made to the EUT during testing         Deviations From The Standard         No deviations were made from the requirements of the standard.           Not deviations were made from the requirements of the standard.         Not deviations were measured using a peak power meter         Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on [transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).           Note 1:         Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on [transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).           Note 2:         Measured using the same analyzer settings used for output power. PSD is highest value on the plot.           Note 4:         99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB           For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signa                                                                                                                | Client        | Ubiquiti Net                                    | works                                          |                                                  |                                                   |                                                  |                                |                                |                             |                              |                     |
| Contact       Jennifer Senchez       Class:       N/A         Standard:       FCC 15E, RSS-210       Class:       N/A         Ambient Conditions:       Temperature:       18-23 °C         Rel. Humidity:       30-35 %         Modifications Made During Testing         No modifications were made to the EUT during testing         Deviations From The Standard         No deviations were made from the requirements of the standard.         Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems         Note 1:       Output power measured using a pack power meter         Output power measured using a pack power meter         Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power arging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 1:       Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power and from Owers to the to avour power. PSD is highest value on the plot.         Note 2:       Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 5:       for MIMO systems the total output power and teal PSD are calculated form the sum of the powers of the individual chains and the EIRP is the sum of the powers of the individual chains and the EIRP is the sum of the powers of the individual chains and the EIRP is the sum of the powere each chain the EIRP is the gind the individ                                                                                                                                                                                  | Model         | NanoStation                                     | Loco M5                                        |                                                  |                                                   |                                                  |                                |                                | •                           |                              |                     |
| Standard       FCC 15E, RSS-210       Class:       N/A         Ambient Conditions:       Temperature:       18-23 °C       Rel. Humidity:       30-35 %         Modifications Made During Testing       No modifications were made to the EUT during testing       Deviations From The Standard         No deviations were made to the EUT during testing       Deviations were made from the requirements of the standard.         Note 1:       Output power measured using a peak power meter         Note 1:       Output power measured using a peak power meter         Note 1:       Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 2:       Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 4:       040444 measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP is the sum of the products of gain and power on ead chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the sum (in linear terms) of the gains for each chain the EIRP is the sum (in linear terms) of the gains for each chain the EIRP is the sum (in linear terms) of the gains for each chain the EIRP is the sum of the products of gain and power on ead chain. If the signals are coherent then the effective ant                                                                   | Contact       | lonnifor Sar                                    | nchez                                          |                                                  |                                                   |                                                  |                                | ACCOL                          | int Manager.                | Susan Peizi                  |                     |
| Ambient Conditions:       Temperature:       18-23 °C<br>Rel. Humidity:       30-35 %         Modifications Made During Testing       No modifications were made to the EUT during testing         Deviations From The Standard       No deviations were made from the requirements of the standard.         No deviations were made from the requirements of the standard.       Rel. Humidity:       MIMO Systems         Note 1:       Output power measured using a peak power meter       Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power areging on (transmitted signal was continuous) and power integration over: 20 MHz (method 1 of DA-02-2138A1).         Note 2:       Measured using the same analyzer settings used for output power: PSD is highest value on the plot.         Note 4:       99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >>3XBB         For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the affective gain and total power.         MIMO Device - 5250-5350 MHz |               |                                                 |                                                |                                                  |                                                   |                                                  |                                |                                | Class:                      | N/A                          |                     |
| Rel. Humidity: 30-35 %         Modifications Made During Testing         Deviations From The Standard         No deviations were made to the EUT during testing         Deviations From The Standard         Note 1: Output Power and Power Spectral Density - MIMO Systems         Note 1: Output power measured using a peak power meter       Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 1: Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 2: Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 2: Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 2: Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 3: MiMO Systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-ocherent between the transmit chains then the gain s for each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP                                                                                                                             | Otaridara     | 100102,10                                       | 00 210                                         |                                                  |                                                   |                                                  |                                |                                | 01000.                      |                              |                     |
| No modifications were made to the EUT during testing         Deviations From The Standard         Note visitions were made from the requirements of the standard.         Rum #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems         Note 1:       Output power measured using a peak power meter         Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 2:       Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 2:       Measured using the same analyzer settings used for output power and total PSD are calculated form the sum of the powers of the individual ch linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to deter the limits is the bighest gain of the individual chains and the EIRP is the sum of the products of gain and power on ead chain. If the signals are coherent then the effective and to power.         WIMO Device - 5250-5350 MHz Band         Chain 1       Chain 2       Chain 3       Coherent Effective <sup>6</sup> EIRP (mW) EIRP (dBm)         5260 5.0       13.4       3.5       3.8         Mutor Signal math                                                                                                                                                                                                                                                         | Ambient       | Condition                                       | S:                                             |                                                  |                                                   |                                                  |                                |                                |                             |                              |                     |
| No deviations were made from the requirements of the standard.         Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems         Note 1:       Output power measured using a peak power meter         Note 1:       Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 2:       Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 4:       99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to deter the limits is the highest gain of the individual chains and the EIRP is the sum of the product of gain and power on eacl chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the effective gain and total power.         WIMO Device - 5250-5350 MHz Band         Total         (MHz)         Chain 1         Chain 1         Chain 1         Chain 1         Chain 1       Chain 3                                                                                                                                                                                                                                                      |               |                                                 | -                                              | -                                                | testing                                           |                                                  |                                |                                |                             |                              |                     |
| Note 1:       Output power measured using a peak power meter         Note 1:       Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 2:       Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 4:       99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to deter the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the effective gain and total power.         VIIMO Device - 5250-5350 MHz Band         Mexer       Chain 1       Chain 2       Chain 3       Coherent       Effective <sup>5</sup> EIRP (mW)       EIRP (dBm)         Antenna Gain (dBi):       13       13       13       Yes       16.0       459.4       26.6         Power       Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Pass         <                                                                                                                                          | No deviat     | ions were ma                                    | ade from the r                                 | requirements                                     |                                                   |                                                  | Sustans                        |                                |                             |                              |                     |
| Note 1:       Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 2:       Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 4:       99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the effective gain and total power.         MIMO Device - 5250-5350 MHz Band       Chain 1       Chain 2       Chain 3       Coherent       Effective <sup>5</sup> EIRP (mW)       EIRP (dBm)         Antenna Gain (dBi):       13       13       Yes       16.0       459.4       26.6         Power       Frequency       Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Pass         5300       6.0       15.1       7.5       7.7       11.5       10.6       12.8       0.012       P </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>Systems</td> <td></td> <td></td> <td></td> <td></td>                                                   |               | -                                               |                                                |                                                  |                                                   |                                                  | Systems                        |                                |                             |                              |                     |
| Averaging on (transmitted signal was continuous) and power integration over 20 MHz (method 1 of DA-02-2138A1).         Note 2: Measured using the same analyzer settings used for output power. PSD is highest value on the plot.         Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual ch linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the EIRP is the sum of the products of gain and power on eacl chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the effective gain and total power.         WIMO Device - 5250-5350 MHz Band         VilMO Device - 5250-5350 MHz Band         Measured Output Power <sup>1</sup> dBm       Total         Note 5:         Frequency       Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power         Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power         Software       26dB                                                                                                                                                                                                                                                                                                                                              |               |                                                 |                                                |                                                  | •                                                 |                                                  | below). RBW                    | /=1MHz, VB=                    | -3 MHz, sam                 | ple detector,                | power               |
| Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB         For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains and the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to deter the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the effective gain and total power.         MIMO Device - 5250-5350 MHz Band         Terequency       Chain 1       Chain 2       Chain 3       Coherent Effective <sup>5</sup> EIRP (mW)       EIRP (dBm)         Antenna Gain (dBi):       13       13       Yes       16.0       459.4       26.6         Power         (MHZ)       Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power (W)       Pass         5260       5.0       13.4       3.5       3.8       4.6       6.7       12.3       0.0                                                                                                                                                                                                                                                                                                            |               |                                                 |                                                | -                                                | ,                                                 |                                                  |                                |                                |                             |                              | 1).                 |
| For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chainear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to deter the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on eacl chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the effective gain and total power.         AllMO Device - 5250-5350 MHz Band         Total Chain 1       Chain 2       Coherent Effective <sup>5</sup> EIRP (mW)       EIRP (dBm)         Antenna Gain (dBi): 13       13       Total       Limit (dBm)       Max Power         Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Pase         Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Queue         Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Queue </td <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                     |               |                                                 | -                                              |                                                  | -                                                 |                                                  |                                | -                              |                             |                              |                     |
| Inear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operatin mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to deter the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain the EIRP is the product of the effective gain and total power.         MIMO Device - 5250-5350 MHz Band         Chain 1       Chain 2       Chain 3       Coherent       Effective <sup>5</sup> EIRP (mW)       EIRP (dBm)         Antenna Gain (dBi): 13       13       Yes       16.0       459.4       26.6         Power         Frequency       Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Pase         Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Pase         Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Pase         Software       26dB BW       Measured Output Power <sup>1</sup> dBm       Total       Limit (dBm)       Max Power       Pase         Software       26dB BW<                                                                                                                                                                                                                                                                                                                                                    | Note 4:       |                                                 |                                                |                                                  |                                                   |                                                  |                                |                                |                             | f the standball date         | -1 -1 -1            |
| MIMO Device - 5250-5350 MHz Band           Image: Chain 1         Chain 1         Chain 2         Chain 3         Coherent         Effective <sup>5</sup> EIRP (mW)         EIRP (dBm)           Antenna Gain (dBi):         13         13         Yes         16.0         459.4         26.6           Power         Frequency         Software         26dB BW         Measured Output Power <sup>1</sup> dBm         Total         Limit (dBm)         Max Power         Pass           5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         0.012         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         P         P           Station         Station         Station         Station         Station         Station         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         P           PSD         Effective         Station         Station         Station         Station         Station <t< th=""><th>Note 5:</th><th>mode of the<br/>the limits is t<br/>chain. If the</th><th>MIMO device<br/>the highest ga<br/>signals are o</th><th>e. If the sigr<br/>ain of the inc<br/>coherent the</th><th>als on the no<br/>lividual chair<br/>n the effectiv</th><th>on-coherent b<br/>is and the Ell<br/>re antenna ga</th><th>between the t<br/>RP is the sur</th><th>transmit chai<br/>n of the prod</th><th>ns then the gucts of gain a</th><th>gain used to<br/>and power or</th><th>determine<br/>i each</th></t<>                               | Note 5:       | mode of the<br>the limits is t<br>chain. If the | MIMO device<br>the highest ga<br>signals are o | e. If the sigr<br>ain of the inc<br>coherent the | als on the no<br>lividual chair<br>n the effectiv | on-coherent b<br>is and the Ell<br>re antenna ga | between the t<br>RP is the sur | transmit chai<br>n of the prod | ns then the gucts of gain a | gain used to<br>and power or | determine<br>i each |
| Chain 1         Chain 2         Chain 3         Coherent         Effective <sup>5</sup> EIRP (mW)         EIRP (dBm)           Antenna Gain (dBi):         13         13         Yes         16.0         459.4         26.6           Power         Frequency         Software         26dB BW         Measured Output Power <sup>1</sup> dBm         Total         Limit (dBm)         Max Power (W)         Pass           5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         0.012         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           Sottom         Sottom         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Elimit         Pass           6330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         0.012         P           Sottom         5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                 |                                                |                                                  |                                                   |                                                  |                                |                                |                             |                              |                     |
| Antenna Gain (dBi):         13         13         Yes         16.0         459.4         26.6           Power         Frequency<br>(MHz)         Software         26dB BW         Measured Output Power <sup>1</sup> dBm         Total<br>mW         Limit (dBm)         Max Power<br>(W)         Pass           5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         0.012         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5300         5.0         15.1         7.1         7.2         10.4         10.2         12.8         0.012         P           S5D         Frequency         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pass           (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> 5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MIMO Devi     | ce - 5250-53                                    | 50 MHz Band                                    |                                                  | Oh eire O                                         |                                                  | Ochemat                        | <b>F</b> (( ); 5               |                             |                              | 1                   |
| Power         Frequency         Software         26dB BW         Measured Output Power <sup>1</sup> dBm         Total         Limit (dBm)         Max Power<br>(W)         Pass           5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         0.012         P           SSD         Frequency         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pass           (MHz)         BW         Power         Chain 1         Chain 2         0.012         P           5260         5.0         15.1         7.1         7.2         10.4         10.2         12.8         P           SD         Frequency         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pass           (MHz)         BW         Power         Chain 1         Chain 2         MW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Antonn                                          | a Cain (dBi):                                  |                                                  |                                                   | Chain 3                                          |                                |                                | , ,                         | , ,                          |                     |
| Frequency<br>(MHz)         Software<br>Setting         26dB BW<br>(MHz)         Measured Output Power <sup>1</sup> dBm         Total<br>mW         Limit (dBm)         Max Power<br>(W)         Pass<br>Pass           5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         P<br>0.012         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         0.012         P           Software         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pass           (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> 5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power         | Antenne                                         | a Oairi (ubi).                                 | 15                                               | 15                                                |                                                  | 163                            | 10.0                           | 433.4                       | 20.0                         |                     |
| (MHz)         Setting         (MHz)         Chain 1         Chain 2         Chain 3         mW         dBm         Limit (dBm)         (W)         Pass           5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         0.012         P           SSD         P         P         SSD         SSS 210 <sup>3</sup> Pass           S260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Software                                        | 26dB BW                                        | Measure                                          | d Output Po                                       | wer <sup>1</sup> dBm                             | To                             | otal                           |                             | Max Power                    | _                   |
| 5260         5.0         13.4         3.5         3.8         4.6         6.7         12.3         P           5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         0.012         P           SD         Frequency         99% <sup>4</sup> Total         PSD           Frequency         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pass           (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> 5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                 |                                                |                                                  |                                                   |                                                  |                                | 1                              | Limit (dBm)                 |                              | Pass or F           |
| 5300         6.0         15.1         7.5         7.7         11.5         10.6         12.8         0.012         P           5330         5.0         15.1         7.1         7.2         10.4         10.2         12.8         P           SSD         Psp         Frequency         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pass           (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> 5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( )           | _                                               | . ,                                            |                                                  |                                                   |                                                  |                                |                                | 12.3                        |                              | PASS                |
| PSD         Frequency         99% <sup>4</sup> Total         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pase           (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> Pase           5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5300          | 6.0                                             | 15.1                                           | 7.5                                              | 7.7                                               |                                                  | 11.5                           | 10.6                           | 12.8                        | 0.012                        | PASS                |
| Frequency<br>(MHz)         99% <sup>4</sup> Total<br>Power         PSD <sup>2</sup> dBm/MHz         Total PSD         Limit         Pase           5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 5.0                                             | 15.1                                           | 7.1                                              | 7.2                                               |                                                  | 10.4                           | 10.2                           | 12.8                        |                              | PASS                |
| (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> Pass           5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PSD           |                                                 |                                                |                                                  | 2                                                 |                                                  |                                |                                |                             |                              |                     |
| (MHz)         BW         Power         Chain 1         Chain 2         Chain 3         mW/MHz         dBm/MHz         FCC         RSS 210 <sup>3</sup> 5260         9.7         6.7         -5.3         -5.3         0.6         -2.3         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                 |                                                |                                                  |                                                   |                                                  |                                |                                |                             | _                            | Pass or F           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                 |                                                |                                                  |                                                   | Chain 3                                          |                                |                                |                             |                              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (MHz)         | 97                                              |                                                |                                                  |                                                   |                                                  |                                |                                |                             |                              | PASS                |
| 5330         9.4         10.0         -2.1         -2.2         1.2         0.9         1.0         11.0         P           5330         9.4         10.2         -2.2         -2.5         1.2         0.7         1.0         11.0         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (MHz)<br>5260 |                                                 | 100                                            | -71                                              | -2.2                                              |                                                  | 1.2                            | 0.9                            | 1.0                         | 11.0                         | PASS                |







#### Run #2: Peak Excursion Measurement

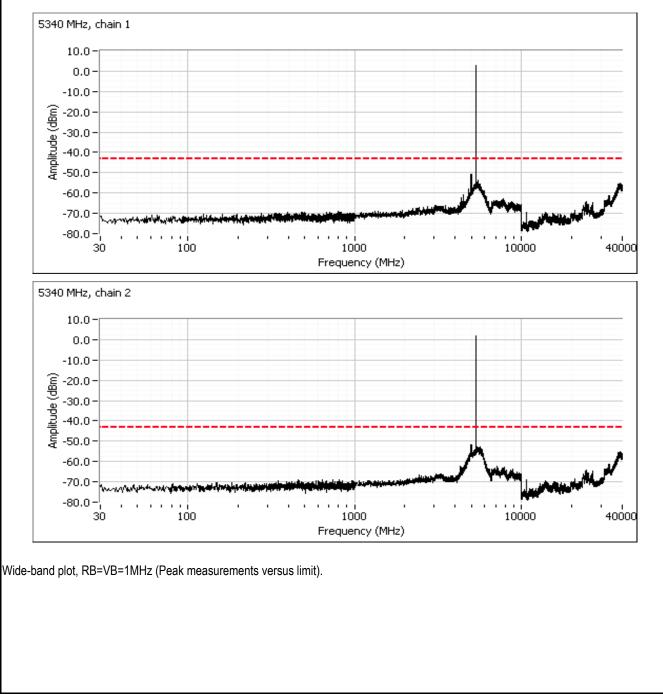

HT 10 Device meets the requirement for the peak excursion

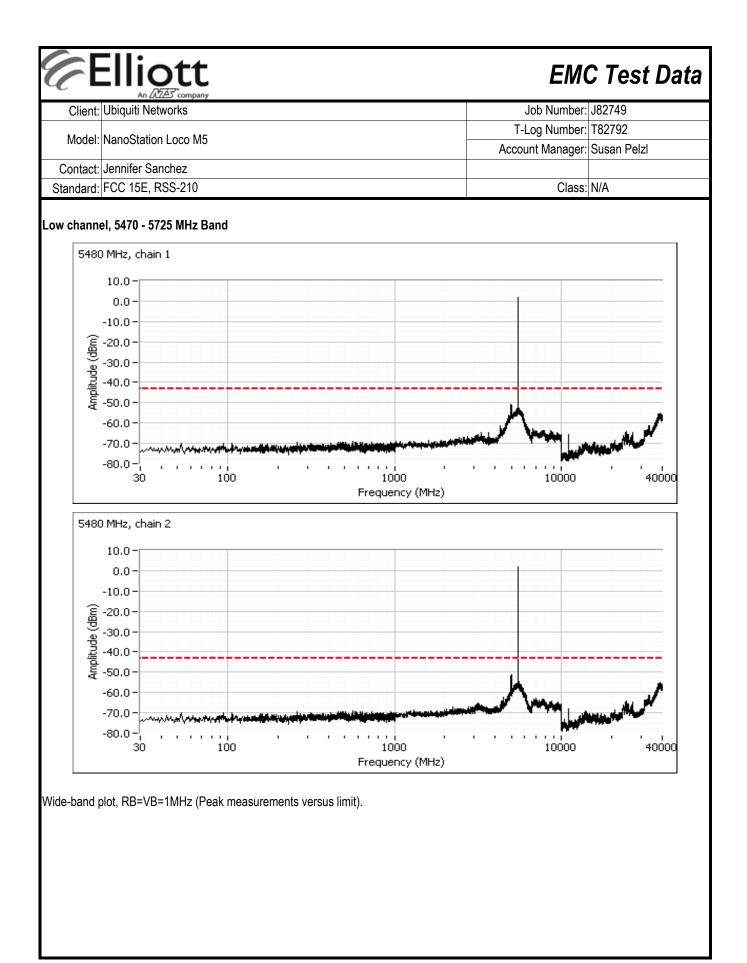

| Freq  | Peak Excursion(dB) |       | Freq  | Peak Exc  | ursion(dB) |
|-------|--------------------|-------|-------|-----------|------------|
| (MHz) | Value              | Limit | (MHz) | Value     | Limit      |
| 5260  | 11.3/11.4          | 13.0  | 5480  | 11.1/10.4 | 13.0       |
| 5300  | 12.9/11.4          | 13.0  | 5590  | 9.9/9.8   | 13.0       |
| 5330  | 12.2/11.6          | 13.0  | 5710  | 10.2/10.1 | 13.0       |

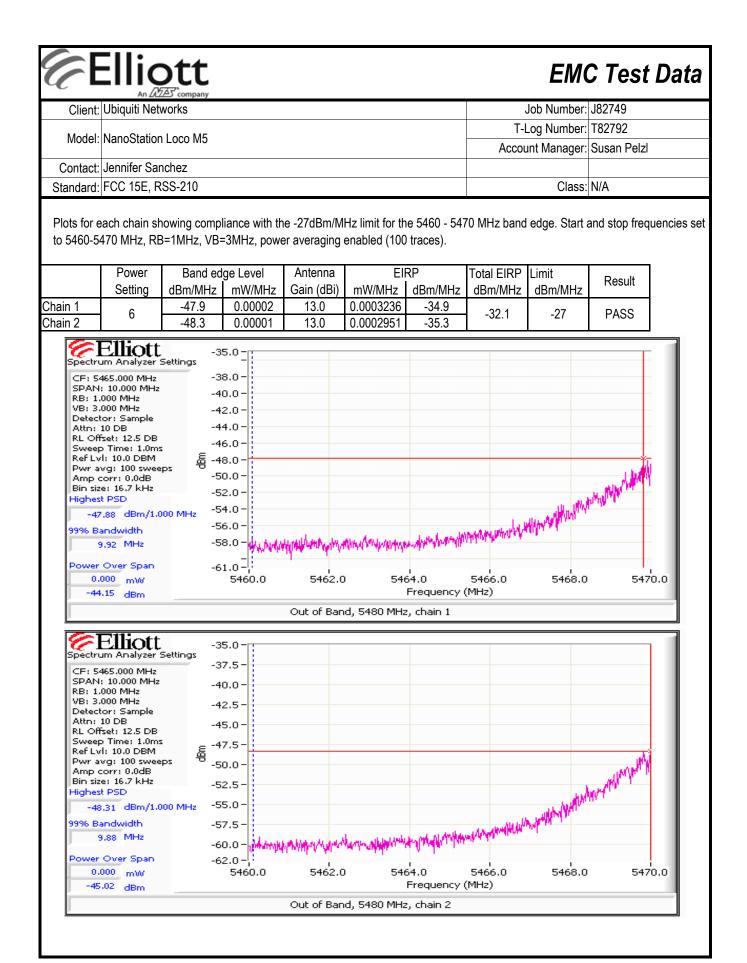


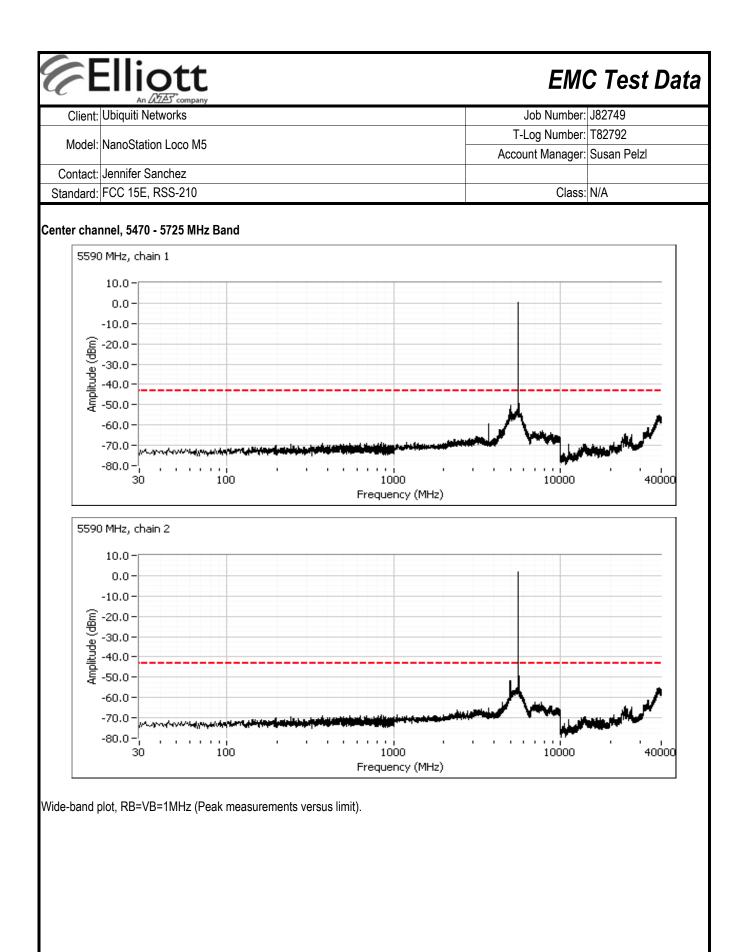
|                                      | Ubiquiti Networks                                                                                                                                                                                                                                                                                  |                                                                                                                                        | Job Number:                                                                | J82749 |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | T-Log Number:                                                              |        |
| Model                                | NanoStation Loco M5                                                                                                                                                                                                                                                                                |                                                                                                                                        | Account Manager:                                                           |        |
| Contact                              | Jennifer Sanchez                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                            |        |
| Standard                             | FCC 15E, RSS-210                                                                                                                                                                                                                                                                                   |                                                                                                                                        | Class:                                                                     | N/A    |
|                                      | Number of transmit chains:<br>Maximum Antenna Gain:<br>Spurious Limit:<br>Adjustment for 2 chains:                                                                                                                                                                                                 | -                                                                                                                                      | ed to account for all chains ple chains.                                   |        |
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                            |        |
| ote 2:<br>ote 3:<br>ote 4:<br>ote 5: | field strength measurements for signals more<br>determine compliance as the antenna gain is<br>All spurious signals below 1GHz are measure<br>Signals within 10MHz of the 5.725 or 5.825 E<br>If the device is for outdoor use then the -27dE<br>Signals that fall in the restricted bands of 15.2 | not known at these frequenci<br>ed during digital device radiate<br>and edge are subject to a lim<br>8m eirp limit also applies in the | ies.<br>ed emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. |        |
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                            |        |
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                            |        |
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                            |        |
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                            |        |
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                            |        |
|                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                            |        |

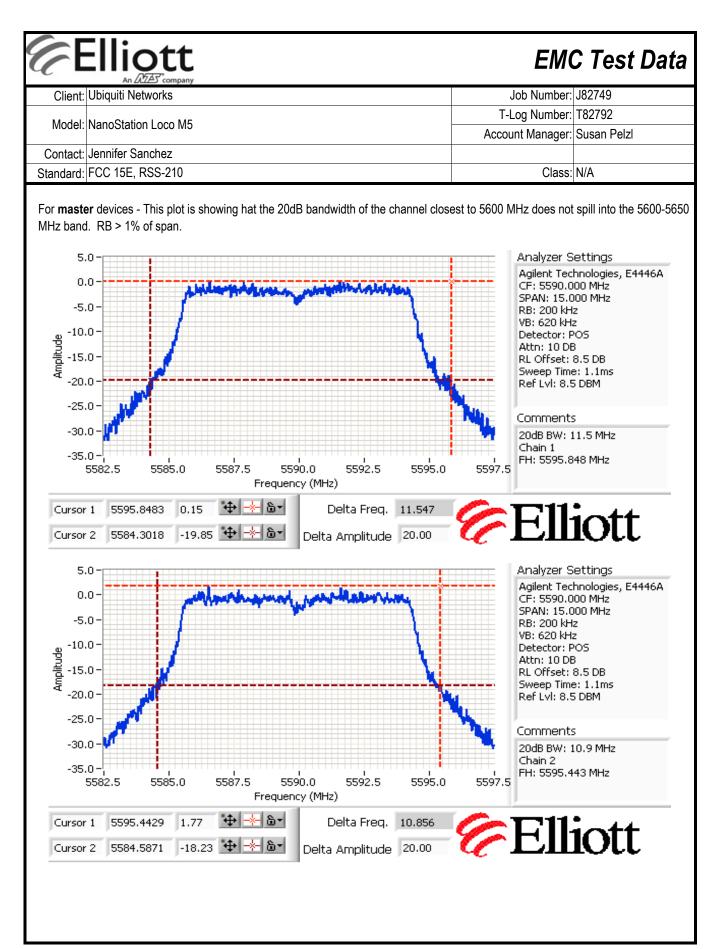


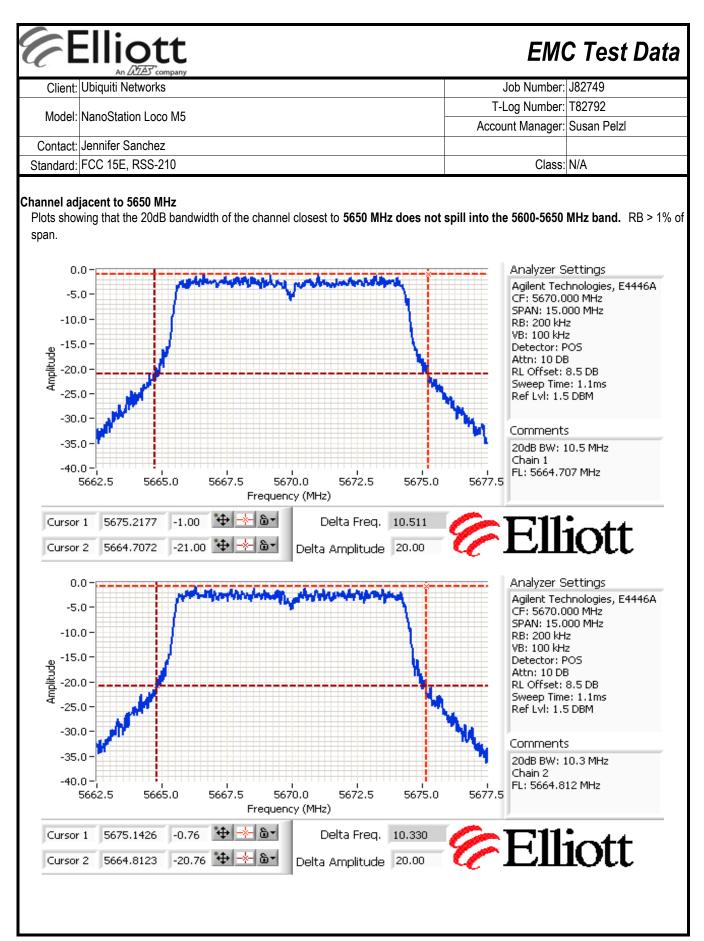


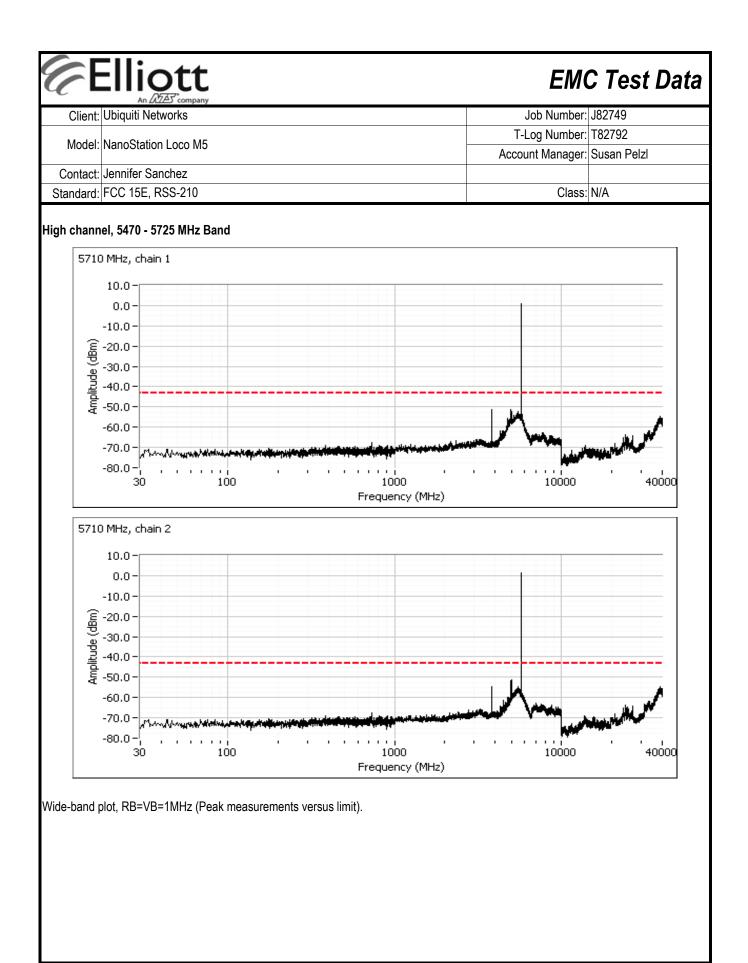





# Client:Ubiquiti NetworksJob Number:J82749Model:NanoStation Loco M5T-Log Number:T82792Contact:Jennifer SanchezSusan PelzlStandard:FCC 15E, RSS-210Class:N/A

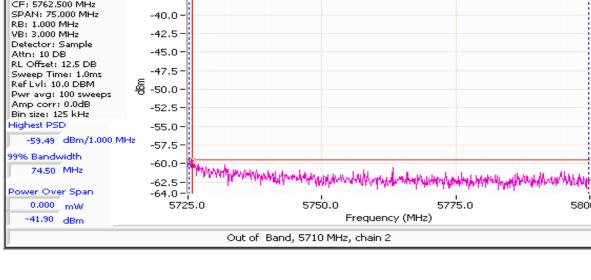

#### High channel, 5250 - 5350 MHz Band


**Note** - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.





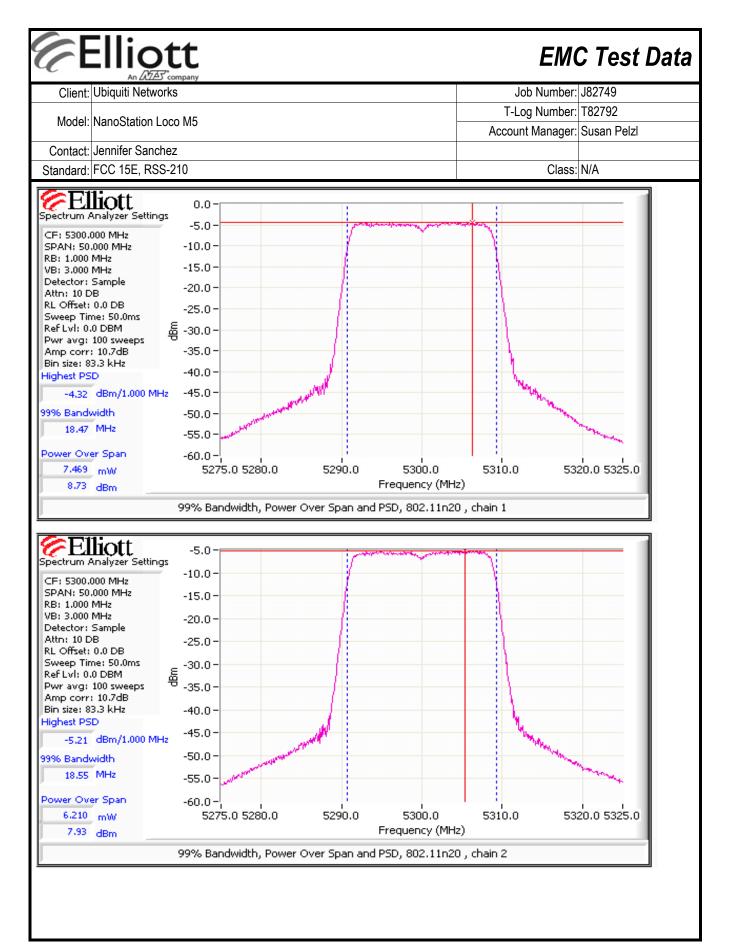







#### Elliott EMC Test Data Client: Ubiquiti Networks Job Number: J82749 T-Log Number: T82792 Model: NanoStation Loco M5 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15E, RSS-210 Class: N/A Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces): Power Band edge Level Antenna EIRP Total EIRP Limit Result Setting dBm/MHz mW/MHz Gain (dBi) dBm/MHz dBm/MHz mW/MHz dBm/MHz 0.00000 13.0 2.239E-05 -46.5 Chain 1 -59.5 PASS 6.5 -42.7 -27 Chain 2 -58.0 0.00000 13.0 3.162E-05 -45.0 **Elliott** -35.0 Spectrum Analyzer Settings -37.5 CF: 5762,500 MHz SPAN: 75,000 MHz -40.0 RB: 1.000 MHz VB: 3.000 MHz -42.5-Detector: Sample Attn: 10 DB -45.0-RL Offset: 12.5 DB Sweep Time: 1.0ms -47.5-Ref Lvl: 10.0 DBM 쎾 Pwr avg: 100 sweeps -50.0 Amp corr: 0.0dB Bin size: 125 kHz -52.5 Highest PSD -55.0-57,99 dBm/1.000 MHz 99% Bandwidth -57.5 74.38 MHz White Million and Ministry Public de Al WHAT IM I HAVE A ANAL -60.0 Power Over Span -62.0 5775.0 0.000 mW 5725.0 5750.0 5800.0 Frequency (MHz) -39.62 dBm Out of Band, 5710 MHz, chain 1 **Elliott** -35.0 Spectrum Analyzer Settings -37.5 CF: 5762.500 MHz SPAN: 75.000 MHz -40.0 RB: 1.000 MHz




5800.0

| 6         | Ellic          | <u>p</u> tt                                                             |                                                                                    |                 | EMC Test Dat                  |
|-----------|----------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|-------------------------------|
| Client:   | Ubiquiti Netv  | vorks                                                                   |                                                                                    |                 | Job Number: J82749            |
| Madal     | New - Otellier | 1                                                                       |                                                                                    | T-l             | _og Number: T82792            |
| Model:    | NanoStation    | LOCO M5                                                                 |                                                                                    | Accou           | ınt Manager: Susan Pelzl      |
|           | Jennifer San   |                                                                         |                                                                                    |                 |                               |
| Standard: | FCC 15E, R     | SS-210                                                                  |                                                                                    |                 | Class: N/A                    |
| est Spec  | cific Detail   | Antenna F<br>Power, PSD, Peak Excursion                                 | N) and FCC 15.40<br>Port Measuremen<br>n, Bandwidth and Sp                         | ts              | nissions                      |
| ·         | Objective:     | The objective of this test session is to<br>specification listed above. | perform final qualificatior                                                        | n testing of th | e EUT with respect to the     |
| [         | Date of Test:  | 4/14/2011                                                               | Config. Used:                                                                      | 1               |                               |
| Te        | est Engineer:  | Joseph Cadigal/R. Varelas                                               | Config Change:                                                                     | none            |                               |
| Τe        | est Location:  | FT Chamber#5                                                            | EUT Voltage:                                                                       | POE             |                               |
|           | / of Result    | <b>S</b><br>Test Performed                                              | Limit                                                                              | Pass / Fail     | Result / Margin               |
|           | 1              | Power, 5250 - 5350MHz                                                   | 15.407(a) (1), (2)                                                                 | Pass            | 13.7 mW                       |
|           | 1              | PSD, 5250 - 5350MHz                                                     | 15.407(a) (1), (2)                                                                 | Pass            | 0.7 dBm/MHz                   |
|           | 1              | Max EIRP<br>5250 - 5350MHz                                              | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW DFS<br>threshold = -64dBm. | Pass            | EIRP = 27.4 dBm (546 mW)      |
|           | 1              | Power, 5470 - 5725MHz                                                   | 15.407(a) (1), (2)                                                                 | Pass            | 23.3 mW                       |
|           | 1              | PSD, 5470 - 5725MHz                                                     | 15.407(a) (1), (2)                                                                 | Pass            | 1.5 dBm/MHz                   |
|           | 1              | Max EIRP<br>5470 - 5725MHz                                              | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW DFS<br>threshold = -64dBm. | Pass            | EIRP = 29.7 dBm (929 mW)      |
|           | 1              | 26dB Bandwidth                                                          | 15.407 (Determines max power)                                                      | Pass            | > 20MHz for all modes         |
|           | 1              | 99% Bandwidth                                                           | RSS 210<br>(Information only)                                                      | Pass            | 18.2 MHz                      |
|           | 2              | Peak Excursion Envelope                                                 | 15.407(a) (6)<br>13dB                                                              | Pass            | 11.81dB                       |
|           |                | Antenna Conducted - Out of Band                                         | 15.407(b)                                                                          | Pass            | All emissions below -27dBm/MH |

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

|           | Elliott                                                                                            |                                                                                               |                                                             |                                                        |                                                  | EM                                                                                                 | C Test Dat                                                         |
|-----------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Client:   | Ubiquiti Networks                                                                                  | ý                                                                                             |                                                             |                                                        |                                                  | Job Numbe                                                                                          | r: J82749                                                          |
| Madalı    | NanoStation Loco M5                                                                                |                                                                                               |                                                             |                                                        |                                                  | T-Log Numbe                                                                                        | r: T82792                                                          |
|           | NanoStation Loco Ma                                                                                | )                                                                                             |                                                             |                                                        |                                                  | Account Manage                                                                                     | r: Susan Pelzl                                                     |
|           | Jennifer Sanchez                                                                                   |                                                                                               |                                                             |                                                        |                                                  |                                                                                                    |                                                                    |
| Standard: | FCC 15E, RSS-210                                                                                   |                                                                                               |                                                             |                                                        |                                                  | Class                                                                                              | s: N/A                                                             |
|           | <b>O</b> a m d <b>iti</b> a m a c                                                                  |                                                                                               |                                                             |                                                        |                                                  |                                                                                                    |                                                                    |
| mbient    | Conditions:                                                                                        | Temperature:                                                                                  | 25 °(                                                       | <u>_</u>                                               |                                                  |                                                                                                    |                                                                    |
|           |                                                                                                    | Rel. Humidity:                                                                                | 25 (<br>37 %                                                |                                                        |                                                  |                                                                                                    |                                                                    |
|           |                                                                                                    | rton rionnaity.                                                                               | 01 /                                                        | 0                                                      |                                                  |                                                                                                    |                                                                    |
| odificat  | ions Made During                                                                                   | g Testing                                                                                     |                                                             |                                                        |                                                  |                                                                                                    |                                                                    |
|           | tions were made to the                                                                             | •                                                                                             | g                                                           |                                                        |                                                  |                                                                                                    |                                                                    |
|           |                                                                                                    |                                                                                               |                                                             |                                                        |                                                  |                                                                                                    |                                                                    |
|           | s From The Stan                                                                                    |                                                                                               |                                                             |                                                        |                                                  |                                                                                                    |                                                                    |
| deviation | ns were made from the                                                                              | e requirements of th                                                                          | e standard.                                                 |                                                        |                                                  |                                                                                                    |                                                                    |
| ın #1· Ba | ndwidth, Output Pow                                                                                | ver and Power Sne                                                                             | ctral Densi                                                 | ity - MIMO                                             | Svetome                                          |                                                                                                    |                                                                    |
|           |                                                                                                    |                                                                                               |                                                             | -                                                      |                                                  | =1MHz, VB=3 MHz, sar                                                                               | nple detector, power                                               |
| Note 1:   |                                                                                                    | • •                                                                                           | •                                                           | • •                                                    | ,                                                | 50 MHz (method 1 of                                                                                |                                                                    |
|           |                                                                                                    | -                                                                                             | 1                                                           |                                                        | -                                                | nighest value on the plo                                                                           | 1                                                                  |
| Note 4:   | 99% Bandwidth meas                                                                                 | sured in accordance                                                                           | e with RSS (                                                |                                                        | 1% of span                                       | and VB >=3xRB                                                                                      |                                                                    |
|           |                                                                                                    |                                                                                               |                                                             |                                                        |                                                  |                                                                                                    |                                                                    |
|           |                                                                                                    |                                                                                               |                                                             |                                                        |                                                  | the sum of the powers                                                                              |                                                                    |
|           | linear terms). The an                                                                              | tenna gain used to                                                                            | determine t                                                 | he EIRP ar                                             | d limits for P                                   | the sum of the powers<br>SD/Output power depe                                                      | nds on the operating                                               |
| NIOto bil | linear terms). The an mode of the MIMO de                                                          | tenna gain used to evice. If the signals                                                      | determine t<br>on the non-                                  | he EIRP ar<br>-coherent b                              | d limits for Petween the tr                      | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the                            | nds on the operating<br>gain used to determin                      |
| NIOto bil | linear terms). The an mode of the MIMO de the limits is the highe                                  | tenna gain used to<br>evice. If the signals<br>st gain of the individ                         | determine t<br>on the non-<br>dual chains                   | he EIRP ar<br>-coherent b<br>and the EIF               | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the                            | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bi  | linear terms). The an mode of the MIMO de the limits is the highe                                  | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bi  | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bi  | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bi  | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIAto bi  | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |
| NIOto bil | linear terms). The an<br>mode of the MIMO de<br>the limits is the highe<br>chain. If the signals a | tenna gain used to<br>evice. If the signals<br>st gain of the individ<br>are coherent then th | determine t<br>on the non-<br>dual chains<br>ne effective a | he EIRP ar<br>-coherent b<br>and the EIF<br>antenna ga | d limits for P<br>etween the tr<br>RP is the sum | the sum of the powers<br>SD/Output power depe<br>ansmit chains then the<br>of the products of gain | nds on the operating<br>gain used to determin<br>and power on each |

| Client                                     |                            | works          |               |                        |                      |                   |                                | Job Number:        | J82749                       |                      |
|--------------------------------------------|----------------------------|----------------|---------------|------------------------|----------------------|-------------------|--------------------------------|--------------------|------------------------------|----------------------|
| Model                                      | NanoStatior                |                |               |                        |                      |                   |                                | _og Number:        |                              |                      |
|                                            |                            |                |               |                        |                      |                   | Accou                          | int Manager:       | Susan Pelzl                  |                      |
|                                            | Jennifer Sa                |                |               |                        |                      |                   |                                |                    |                              |                      |
|                                            | FCC 15E, R                 |                |               |                        |                      |                   |                                | Class:             | N/A                          |                      |
| MIMO Devi                                  | ce - 5250-53               | 50 MHz Band    | d             |                        |                      |                   |                                |                    |                              |                      |
|                                            | Date of Test:              | 6/13/2011      |               |                        | Te                   | est Location:     | FTChamber                      | #4                 |                              |                      |
| Te                                         | est Engineer:              | Joseph Cad     | igal          |                        | Co                   | nfig Change:      | none                           |                    |                              |                      |
|                                            |                            |                |               |                        |                      |                   |                                |                    |                              |                      |
| MIMO Devi                                  | ce - 5250-53               | 50 MHz Ban     |               | Chain 2                | Chain 3              | Cabarant          | <b>-m</b> , <b>1</b> , 5       |                    |                              | 1                    |
|                                            | Antenn                     | a Gain (dBi):  | Chain 1<br>13 | Chain 2<br>13          | Chain 3              | Coherent<br>Yes   | Effective <sup>5</sup><br>16.0 | 545.6              | EIRP (dBm)<br>27.4           |                      |
| Power                                      |                            |                | IJ            | 10                     |                      | 163               | 10.0                           | J <del>4</del> J.U | 21.4                         | 1                    |
| Frequency                                  | Software                   | 26dB BW        | Measure       | d Output Pov           | wer <sup>1</sup> dBm | Тс                | otal                           |                    | Max Power                    | D                    |
| (MHz)                                      | Setting                    | (MHz)          | Chain 1       | Chain 2                | Chain 3              | mW                | dBm                            | Limit (dBm)        | (W)                          | Pass or Fa           |
| 5265                                       | 5.0                        | 27.3           | 5.5           | 5.2                    |                      | 6.9               | 8.4                            | 14.0               |                              | PASS                 |
| 5300                                       | 7.5                        | 28.4           | 8.7           | 7.9                    |                      | 13.7              | 11.4                           | 14.0               | 0.014                        | PASS                 |
| 5320                                       | 5.0                        | 28.3           | 5.8           | 4.8                    |                      | 6.8               | 8.3                            | 14.0               |                              | PASS                 |
| PSD                                        | 000/4                      | Tatal          |               | SD <sup>2</sup> dBm/MH | 1_                   | Toto              | IPSD                           |                    | mit                          | 1                    |
| Frequency                                  | 99% <sup>4</sup><br>BW     | Total<br>Power | P<br>Chain 1  | Chain 2                |                      | mW/MHz            |                                | FCC                |                              | Pass or Fa           |
| (MHz)<br>5265                              | Буу<br>17.3                | 8.4            | -7.6          | -7.9                   | Chain 3              | 0.3               | dBm/MHz<br>-4.7                | 1.0                | RSS 210 <sup>3</sup><br>11.0 | PASS                 |
| 5300                                       | 18.4                       | 11.4           | -4.3          | -7.9                   |                      | 0.3               | -4.7<br>-1.7                   | 1.0                | 11.0                         | PASS                 |
| 5320                                       | 18.4                       | 8.3            | -7.3          | -7.9                   |                      | 0.3               | -4.6                           | 1.0                | 11.0                         | PASS                 |
|                                            | vor at Low P               | ower Setting   | 5250 525      | 0 MUz Band             |                      | -                 |                                | -                  |                              | -                    |
| Output FO                                  |                            |                |               |                        |                      | 250mW.            |                                |                    |                              |                      |
| As EIRP ex                                 |                            | 50mW) minus    |               |                        |                      |                   |                                |                    |                              |                      |
| As EIRP ex<br>Limit is set :               | 0 Z70DIII (20              | 26dB BW        |               | d Output Pov           | wer <sup>1</sup> dBm | To                | otal                           | Limit (dBm)        | Max Power                    | Pass or Fa           |
| limit is set                               |                            | 2000 011       |               | Chain 2                | Chain 3              | mW                | dBm                            | сти (авти)         | (W)                          | Pass of Fa           |
| Limit is set                               |                            | (MHz)          | Chain 1       |                        |                      |                   |                                |                    |                              |                      |
| Limit is set<br>Frequency<br>(MHz)<br>5265 | Software<br>Setting<br>4.0 |                | 4.8           | 3.9                    |                      | 5.5               | 7.4                            | 8.0                |                              | PASS                 |
| Limit is set<br>Frequency<br>(MHz)         | Software<br>Setting        |                |               |                        |                      | 5.5<br>5.6<br>5.0 | 7.4<br>7.5<br>7.0              | 8.0<br>8.0<br>8.0  | 0.006                        | PASS<br>PASS<br>PASS |

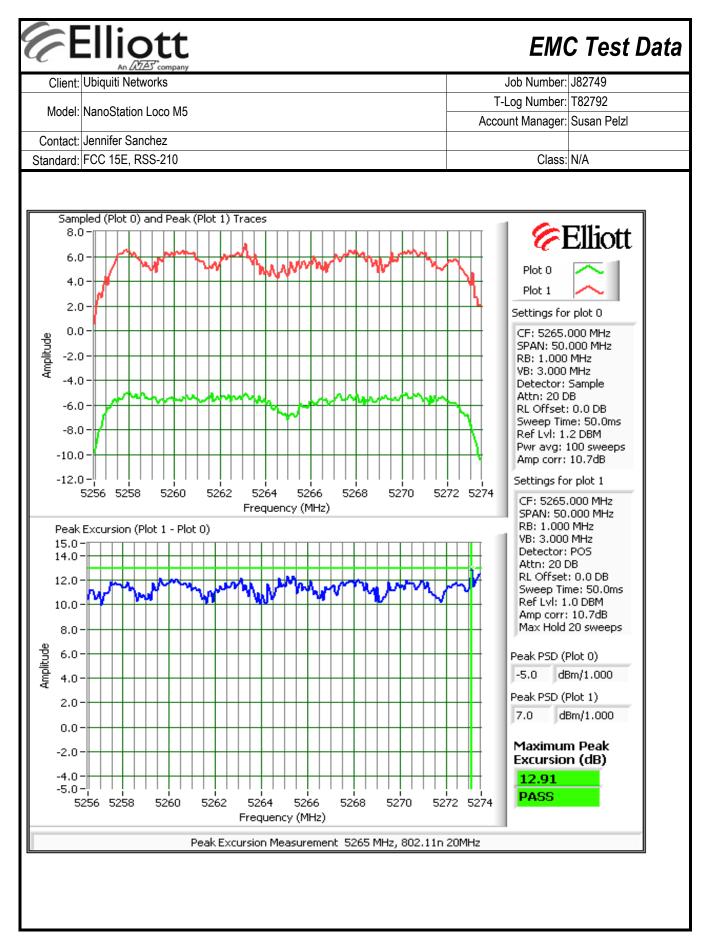


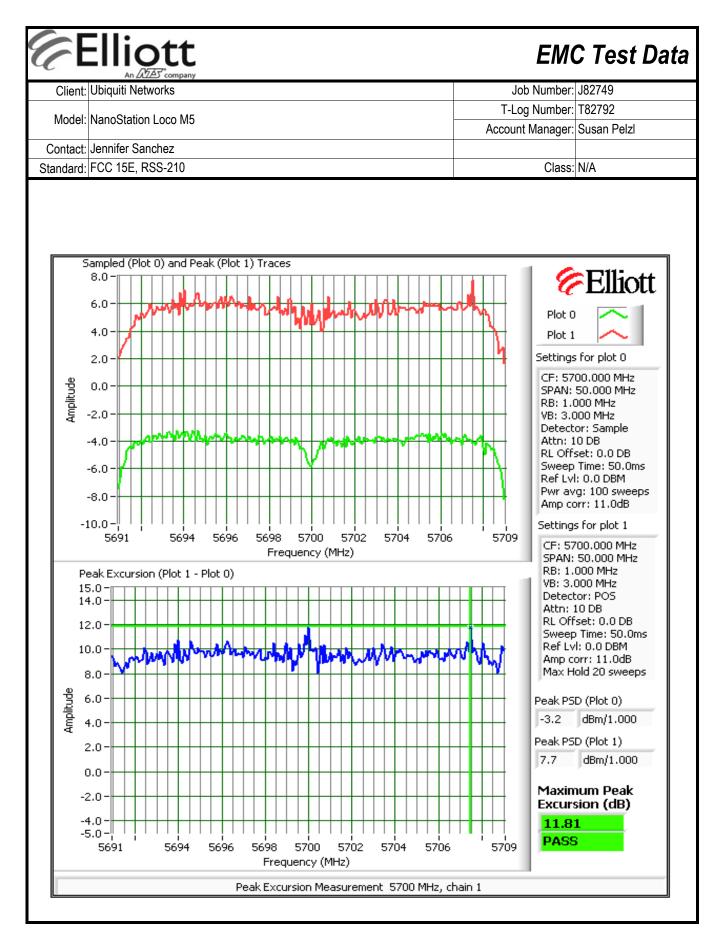
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D <b>tt</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                                                          |                                     |                                                |                                   | EMO                              | C Test                   | Data                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|-----------------------------------|----------------------------------|--------------------------|------------------------------------|
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ubiquiti Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                                                                                                          |                                     |                                                |                                   | Job Number:                      | J82749                   |                                    |
| Madalı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L M/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |                                                                                                          |                                     |                                                | T-I                               | Log Number:                      | T82792                   |                                    |
| wodel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NanoStation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCO IVIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |                                                                                                          |                                     |                                                | Account Manager: Susan Pelzl      |                                  |                          |                                    |
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jennifer Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nchez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                                                                                                          |                                     |                                                |                                   |                                  |                          |                                    |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FCC 15E, R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS-210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                          |                                     |                                                |                                   | Class:                           | N/A                      |                                    |
| MIMO Devid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e - 5470-572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 MHz Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                                                                                               |                                                                                                          |                                     |                                                |                                   |                                  |                          |                                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date of Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/13/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |                                                                                                          |                                     | est Location:                                  |                                   | #4                               |                          |                                    |
| Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | st Engineer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Joseph Cad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                               |                                                                                                          |                                     | nfig Change:                                   |                                   |                                  |                          | 1                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chain 1                                                                                         | Chain 2                                                                                                  | Chain 3                             | Coherent                                       |                                   | ( )                              | EIRP (dBm)               |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Gain (dBi):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                              | 13                                                                                                       |                                     | Yes                                            | 16.0                              | 929.1                            | 29.7                     |                                    |
| ower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                          | 1                                   | Т                                              | tal                               |                                  |                          |                                    |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26dB BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 | d Output Po                                                                                              | •                                   |                                                | otal                              | Limit (dBm)                      | Max Power                | Pass or Fa                         |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chain 1                                                                                         | Chain 2                                                                                                  | Chain 3                             | mW                                             | dBm                               | 44.0                             | (W)                      | DAGG                               |
| 5500<br><b>5580</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0<br><b>11.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.8<br><b>27.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                             | 9.1                                                                                                      |                                     | 17.4                                           | 12.4                              | 14.0<br>14.0                     | 0.023                    | PASS                               |
| <b>5580</b><br>5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.5<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>10.6</b><br>7.8                                                                              | <b>10.7</b><br>7.6                                                                                       |                                     | <b>23.3</b><br>11.7                            | <b>13.7</b><br>10.7               | 14.0                             | 0.023                    | PASS<br>PASS                       |
| 9700<br>PSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                             | 7.0                                                                                                      |                                     | 11.7                                           | 10.7                              | 14.0                             |                          | FA00                               |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99% <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р                                                                                               | SD <sup>2</sup> dBm/Mł                                                                                   |                                     | Total                                          | PSD                               | Li                               | mit                      |                                    |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chain 1                                                                                         | Chain 2                                                                                                  | Chain 3                             | mW/MHz                                         | dBm/MHz                           | FCC                              | RSS 210 <sup>3</sup>     | Pass or Fa                         |
| 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.3                                                                                            | -4.0                                                                                                     | ondin o                             | 0.9                                            | -0.6                              | 1.0                              | 11.0                     | PASS                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.4                                                                                            | -1.5                                                                                                     |                                     | 1.4                                            | 1.5                               | 1.0                              | 11.0                     | FAIL                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.4                                                                                            | -1.0                                                                                                     |                                     | 1.7                                            |                                   |                                  |                          |                                    |
| 5580<br>5700<br>Dutput Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.7<br>ower Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.3<br>g - 5470-572                                                                            | -5.6<br>5 MHz Band                                                                                       |                                     | 0.6                                            | -2.4                              | 1.0                              | 11.0                     | PASS                               |
| 5580<br>5700<br><b>Dutput Pow</b><br>As EIRP ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.2<br>ver at Low P<br>ceeds 500m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.3<br><b>g - 5470-572</b><br>guired - meas<br>the antenna                                     | -5.6<br>5 MHz Band                                                                                       | show eirp <                         | 0.6<br>250mW.                                  |                                   | 1.0                              |                          | PASS                               |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex<br>imit is set to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.2<br>Ver at Low P<br>ceeds 500m<br>to 24dBm (25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.7<br>ower Setting<br>W TPC is req<br>0mW) minus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.3<br><b>g - 5470-572</b><br>guired - meas<br>the antenna                                     | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).                                                        | show eirp <                         | 0.6<br>250mW.                                  | -2.4                              |                                  | 11.0                     | PASS                               |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex-<br>imit is set to<br>Frequency<br>(MHz)<br>5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.2<br>rer at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.7<br>ower Setting<br>W TPC is req<br>0mW) minus<br>26dB BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3<br>g <b>- 5470-572</b><br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Po<br>Chain 2<br>4.7                       | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7               | -2.4<br>tal<br>dBm<br>7.5         | 1.0<br>Limit (dBm)<br>8.0        | 11.0<br>Max Power<br>(W) | PASS<br>Pass or Fa<br>PASS         |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex<br>Limit is set to<br>Frequency<br>(MHz)<br>5500<br>5580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.7<br>ower Setting<br>W TPC is req<br>0mW) minus<br>26dB BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power        | PASS<br>Pass or Fa<br>PASS<br>PASS |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex-<br>imit is set to<br>Frequency<br>(MHz)<br>5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.2<br>rer at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.7<br>ower Setting<br>W TPC is req<br>0mW) minus<br>26dB BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3<br>g <b>- 5470-572</b><br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Po<br>Chain 2<br>4.7                       | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7               | -2.4<br>tal<br>dBm<br>7.5         | 1.0<br>Limit (dBm)<br>8.0        | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS          |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex.<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.7<br>ower Setting<br>W TPC is req<br>0mW) minus<br>26dB BW<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex.<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5580<br>5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.7<br>ower Setting<br>W TPC is req<br>0mW) minus<br>26dB BW<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br><b>Dutput Pow</b><br>As EIRP ex<br><i>imit is set to</i><br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br><b>Spectrum Ana</b><br>CF: 5580.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>Ott<br>alyzer Settings<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.7<br>ower Setting<br>W TPC is req<br>0mW) minus<br>26dB BW<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br>Dutput Pow<br>As EIRP exi<br>imit is set to<br>requency<br>(MHz)<br>5500<br>5580<br>5580<br>5580<br>5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OUTE<br>o MHz<br>tz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.7<br>ower Setting<br><i>W TPC is reg</i><br><i>0mW) minus</i><br>26dB BW<br>(MHz)<br>0.0 -<br>-5.0 -<br>-10.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br>Dutput Pow<br>As EIRP exi<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5580<br>5700<br>CF: 5580.000<br>SPAN: 50.00<br>RB: 1.000 MH<br>VB: 3.000 MH<br>VB: 3.000 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.2<br>ver at Low P<br>ceeds 500m<br>24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>Ott<br>ott<br>alyzer Settings<br>0 MHz<br>12<br>0 MHz<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.7<br>ower Setting<br>W TPC is req<br>(0mW) minus<br>26dB BW<br>(MHz)<br>0.0 -<br>-5.0 -<br>-10.0 -<br>-15.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex.<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br>Span: 50.00<br>Span: 50.00<br>RB: 1.000 MH<br>VB: 3.000 MH<br>Detector: Sa<br>Attn: 10 DB<br>RL offset: 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.2<br>ver at Low P<br>ceeds 500m<br>5 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMHz<br>1z<br>1z<br>1z<br>1z<br>1z<br>0 MHz<br>1z<br>1z<br>1z<br>1z<br>0 DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>i0mW) minus</i><br>26dB BW<br>(MHz)<br>0.0-<br>-5.0-<br>-5.0-<br>-10.0-<br>-15.0-<br>-20.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br>Dutput Pow<br>As EIRP exi<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5580<br>5700<br>CF: 5580.000<br>SPAN: 50.00<br>RB: 1.000 MH<br>VB: 3.000 MH<br>VB: 4.000 MH<br>VB: 5.000 MH<br>VB: 5.000 MH<br>VB: 5.000 MH<br>VB: 4.000 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMHz<br>hz<br>hz<br>soloms<br>DB<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Soloms<br>Solom                                                                         | 10.7<br>ower Setting<br><i>W TPC is reg</i><br><i>0mW) minus</i><br>26dB BW<br>(MHz)<br>0.0 -<br>-5.0 -<br>-10.0 -<br>-15.0 -<br>-20.0 -<br>-25.0 -<br>-25.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br><b>Dutput Pow</b><br>As EIRP ex<br><i>imit is set to</i><br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br><b>Span:</b> 50.00<br><b>Span:</b>                                                        | 18.2<br>ver at Low P<br>ceeds 500m<br>2 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMH2<br>0 MH2<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>(0mW) minus</i><br>26dB BW<br>(MHz)<br>0.0 -<br>-5.0 -<br>-5.0 -<br>-15.0 -<br>-15.0 -<br>-20.0 -<br>-25.0 -<br>-30.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br>Dutput Pow<br>As EIRP exi<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br>5580<br>5700<br>CF: 5580.000<br>5700<br>Span: 50.000<br>MB: 1.000 MH<br>VB: 3.000 MH<br>Detector: 53<br>Attn: 10 DB<br>RL Offset: 0.1<br>Sweep Time:<br>Ref Lvi: 0.0 E<br>Pwr avg: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.2<br>ver at Low P<br>ceeds 500m<br>2 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMH2<br>0 MH2<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>OmW) minus</i><br>26dB BW<br>(MHz)<br>0.0-<br>-5.0-<br>-5.0-<br>-5.0-<br>-5.0-<br>-5.0-<br>-35.0-<br>-35.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br><b>Dutput Pow</b><br>As EIRP exi<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br><b>Span:</b> 5000<br><b>Span:</b> 5 | 18.2<br>ver at Low P<br>ceeds 500m<br>2 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMH2<br>0 MH2<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>(0mW) minus</i><br>26dB BW<br>(MHz)<br>0.0 -<br>-5.0 -<br>-5.0 -<br>-15.0 -<br>-15.0 -<br>-20.0 -<br>-25.0 -<br>-30.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or F<br>PASS<br>PASS  |
| 5580<br>5700<br><b>Dutput Pow</b><br>As EIRP exi<br>imit is set to<br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br><b>Solution</b><br>Spectrum Ana<br>CF: 5580.000<br>SPAN: 50.00<br>SPAN: 50.00<br>SPAN: 50.00<br>RB: 1.000 MH<br>Detector: Sa<br>Attr: 10 DB<br>RL Offset: 0.1<br>Sweep Time:<br>Ref Lvl: 0.0<br>Pwr avg: 10<br>Amp corr: 1<br>Bin size: 83.3<br>Highest PSD<br>-2.37 dl<br>99% Bandwid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.2<br>ver at Low P<br>ceeds 500m<br>5 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMH2<br>0 MH2<br>12<br>12<br>142<br>12<br>142<br>142<br>142<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>OmW) minus</i><br>26dB BW<br>(MHz)<br>0.0 -<br>-5.0 -<br>-5.0 -<br>-10.0 -<br>-15.0 -<br>-20.0 -<br>-25.0 -<br>-30.0 -<br>-35.0 -<br>-40.0 -<br>-45.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or Fa<br>PASS<br>PASS |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex.<br><i>imit is set tr</i><br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br>Spant 50.00<br>Spant 50.00<br>Spant 50.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>MB 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMHz<br>0 MHz<br>12<br>14z<br>12<br>12<br>0 MHz<br>0 Software<br>0 MHz<br>15.0<br>0 Software<br>1.00<br>0 Sweeps<br>1.00<br>0 Sweeps<br>1.00                                                                          | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>i0mW) minus</i><br>26dB BW<br>(MHz)<br>0.0 -<br>-5.0 -<br>-10.0 -<br>-10.0 -<br>-15.0 -<br>-20.0 -<br>-25.0 -<br>-30.0 -<br>-35.0 -<br>-40.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1        | -5.6<br>5 MHz Band<br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4               | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or Fa<br>PASS<br>PASS |
| 5580<br>5700<br><b>Dutput Pow</b><br>As EIRP exc.<br><i>imit is set to</i><br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br><b>Spectrum Ana</b><br>CF: 5580.000<br><b>SpAN:</b> 50.00<br><b>SpAN:</b> 50.00<br><b>S</b>                                                               | 18.2<br>ver at Low P<br>ceeds 500m<br>o 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMHz<br>0 MHz<br>12<br>0 MHz<br>12<br>0 MHz<br>12<br>14z<br>12<br>10 DB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1 | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>OmW) minus</i><br>26dB BW<br>(MHz)<br>0.0-<br>-5.0-<br>-5.0-<br>-10.0-<br>-15.0-<br>-20.0-<br>-25.0-<br>-35.0-<br>-40.0-<br>-45.0-<br>-55.0-<br>-55.0-<br>-55.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1<br>3.9 | -5.6<br><b>5 MHz Band</b><br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4<br>4.1 | show eirp <                         | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3<br>5.0 | -2.4                              | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or Fa<br>PASS<br>PASS |
| 5580<br>5700<br>Dutput Pow<br>As EIRP ex.<br><i>imit is set tr</i><br>Frequency<br>(MHz)<br>5500<br>5580<br>5700<br>Spant 50.00<br>Spant 50.00<br>Spant 50.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>Spant 50.00<br>MB 2.00<br>MB 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2<br>ver at Low P<br>ceeds 500m<br>5 24dBm (25<br>Software<br>Setting<br>5.0<br>5.5<br>5.5<br>OMHz<br>0 MHz<br>12<br>0 MHz<br>12<br>0 MHz<br>12<br>0 Soms<br>20<br>20<br>0 Sweeps<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB<br>1.0dB   | 10.7<br>ower Setting<br><i>W TPC is req</i><br><i>OmW) minus</i><br>26dB BW<br>(MHz)<br>0.0-<br>-5.0-<br>-5.0-<br>-10.0-<br>-15.0-<br>-20.0-<br>-25.0-<br>-35.0-<br>-35.0-<br>-35.0-<br>-35.0-<br>-40.0-<br>-45.0-<br>-50.0-<br>-45.0-<br>-50.0-<br>-45.0-<br>-50.0-<br>-45.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-10.0-<br>-50.0-<br>-20.0-<br>-50.0-<br>-20.0-<br>-50.0-<br>-20.0-<br>-50.0-<br>-50.0-<br>-20.0-<br>-50.0-<br>-20.0-<br>-50.0-<br>-20.0-<br>-50.0-<br>-20.0-<br>-35.0-<br>-35.0-<br>-40.0-<br>-45.0-<br>-35.0-<br>-45.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0-<br>-50.0- | -5.3<br>g - 5470-572<br>guired - meas<br>the antenna<br>Measure<br>Chain 1<br>4.4<br>4.1<br>3.9 | -5.6<br><b>5 MHz Band</b><br>surements to<br>gain (dBi).<br>d Output Por<br>Chain 2<br>4.7<br>4.4<br>4.1 | show eirp <<br>wer <sup>1</sup> dBm | 0.6<br>250mW.<br>Tc<br>mW<br>5.7<br>5.3        | -2.4<br>ttal<br>dBm<br>7.5<br>7.2 | 1.0<br>Limit (dBm)<br>8.0<br>8.0 | 11.0<br>Max Power<br>(W) | PASS<br>Pass or Fa<br>PASS<br>PASS |

# EMC Test Data

| Œ         | Elliott<br>An DEAT company | EMC Test         |             |  |
|-----------|----------------------------|------------------|-------------|--|
|           | Ubiquiti Networks          | Job Number:      | J82749      |  |
| Madalı    | NanaStation Loop ME        | T-Log Number:    | T82792      |  |
| woder.    | NanoStation Loco M5        | Account Manager: | Susan Pelzl |  |
| Contact:  | Jennifer Sanchez           |                  |             |  |
| Standard: | FCC 15E, RSS-210           | Class:           | N/A         |  |

#### Run #2: Peak Excursion Measurement


#### 20MHz: Device meets the requirement for the peak excursion


| Freq  | Peak Exc    | ursion(dB) | Freq  | Peak Exc    | ursion(dB) |
|-------|-------------|------------|-------|-------------|------------|
| (MHz) | Value       | Limit      | (MHz) | Value       | Limit      |
| 5265  | 12.91/12.47 | 13.0       | 5500  | 11.62/11.04 | 13.0       |
| 5300  | 12.34/12.15 | 13.0       | 5580  | 11.67/11.57 | 13.0       |
| 5320  | 12.35/11.81 | 13.0       | 5700  | 11.81/10.65 | 13.0       |

#### Plots Showing Peak Excursion (Worst Case)

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

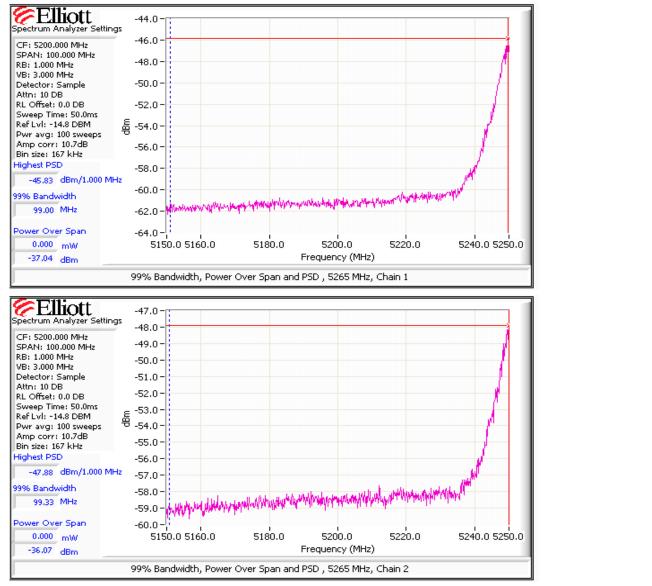


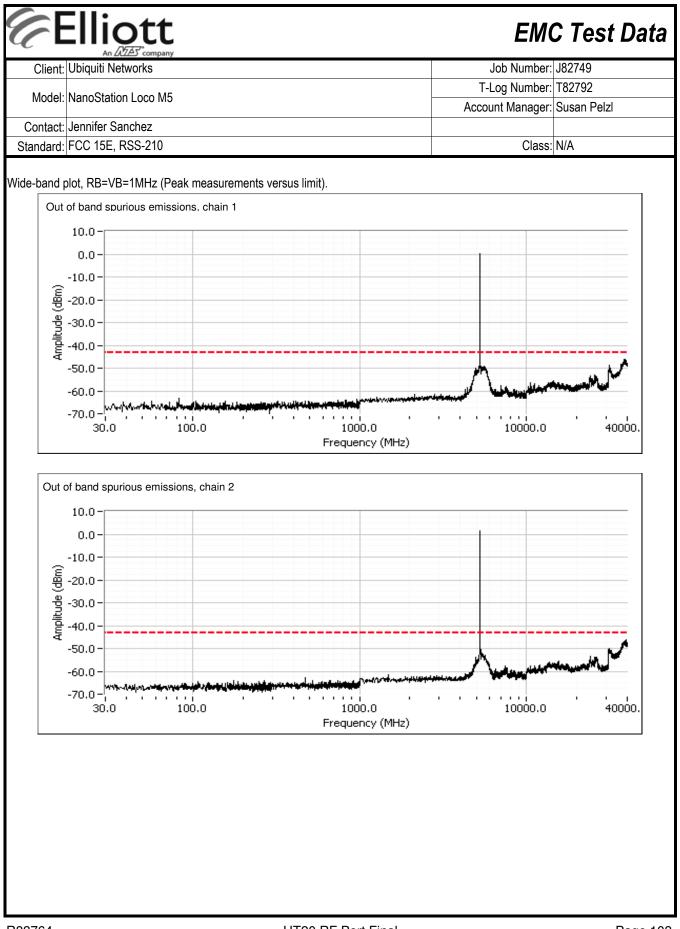


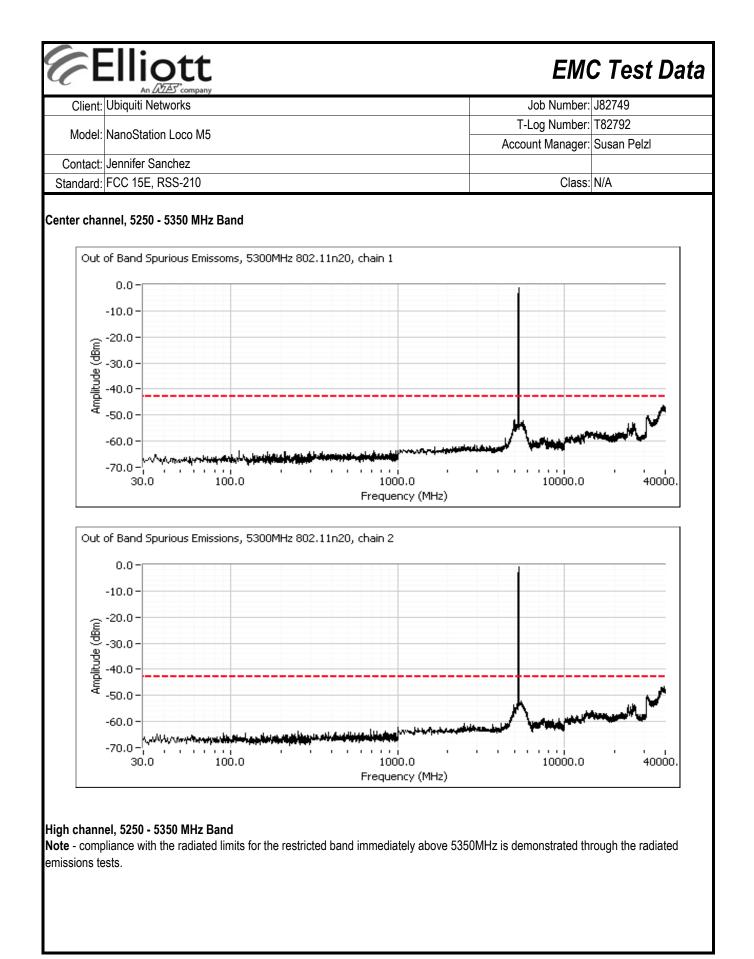
|                                 | Elliott<br>An AZAS <sup>*</sup> company                                                                                                                                                                                                                                                                             |                            | C Test Data               |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|
| Client:                         | Ubiquiti Networks                                                                                                                                                                                                                                                                                                   | Job Number:                |                           |
| Model:                          | NanoStation Loco M5                                                                                                                                                                                                                                                                                                 | T-Log Number:              |                           |
|                                 |                                                                                                                                                                                                                                                                                                                     | Account Manager:           | Susan Pelzl               |
|                                 | Jennifer Sanchez                                                                                                                                                                                                                                                                                                    |                            |                           |
| Standard:                       | FCC 15E, RSS-210                                                                                                                                                                                                                                                                                                    | Class:                     | N/A                       |
| <b>MIMO Devi</b><br>o be cohere | at Of Band Spurious Emissions - Antenna Conducted ces: Antenna gain used is the individual antenna antenna gain (the spurious ent between chains and spurious removed from the band edges are evaluated batained for each chain individually and the limit was adjusted to account for Number of transmit chains: 2 | ed as radiated emissions i | f close to the limit). Th |
|                                 | Maximum Antenna Gain: 13.0 dBi                                                                                                                                                                                                                                                                                      |                            |                           |
|                                 | Spurious Limit: -27.0 dBm/MHz eirp                                                                                                                                                                                                                                                                                  |                            |                           |
|                                 | Adjustment for 2 chains: -3.0 dB adjustment for multip                                                                                                                                                                                                                                                              |                            |                           |
|                                 | Limit Used On Plots <sup>Note 1</sup> : -43.0 dBm/MHz Average Lir                                                                                                                                                                                                                                                   | mit (RB=1MHz, VB=10Hz)     |                           |
| Note 3:<br>Note 4:<br>Note 5:   | Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limi<br>If the device is for outdoor use then the -27dBm eirp limit also applies in the<br>Signals that fall in the restricted bands of 15.205 are subject to the limit of 7                                                                  | e 5150 - 5250 MHz band.    |                           |



## EMC Test Data


|           | All 2022 Company    |                  |             |
|-----------|---------------------|------------------|-------------|
| Client:   | Ubiquiti Networks   | Job Number:      | J82749      |
| Model     | NanoStation Loco M5 | T-Log Number:    | T82792      |
| woder.    |                     | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez    |                  |             |
| Standard: | FCC 15E, RSS-210    | Class:           | N/A         |
|           |                     |                  |             |


#### Low channel, 5250 - 5350 MHz Band


Plots for each chain showing compliance with the -27dBm/MHz limit in the 5150 - 5250 MHz band. Start and stop frequencies set to 5150-5250 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

#### Channel frequency: 5265 MHz

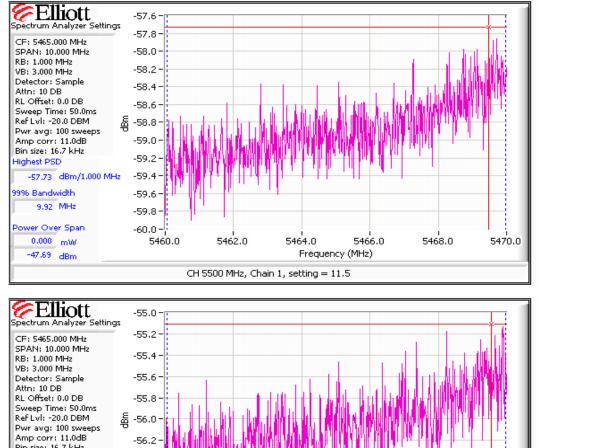
|         | Power   | Band ed | ge Level | Antenna    | Ell       | RP      | Total EIRP | Limit   | Result |
|---------|---------|---------|----------|------------|-----------|---------|------------|---------|--------|
|         | Setting | dBm/MHz | mW/MHz   | Gain (dBi) | mW/MHz    | dBm/MHz | dBm/MHz    | dBm/MHz | Result |
| Chain 1 | 7.5     | -45.8   | 0.00003  | 13.0       | 0.0005212 | -32.8   | -30.7      | -27     | PASS   |
| Chain 2 | 1.5     | -47.9   | 0.00002  | 13.0       | 0.0003251 | -34.9   | -30.7      | -21     | FA00   |

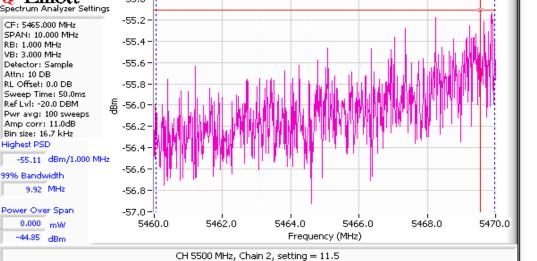


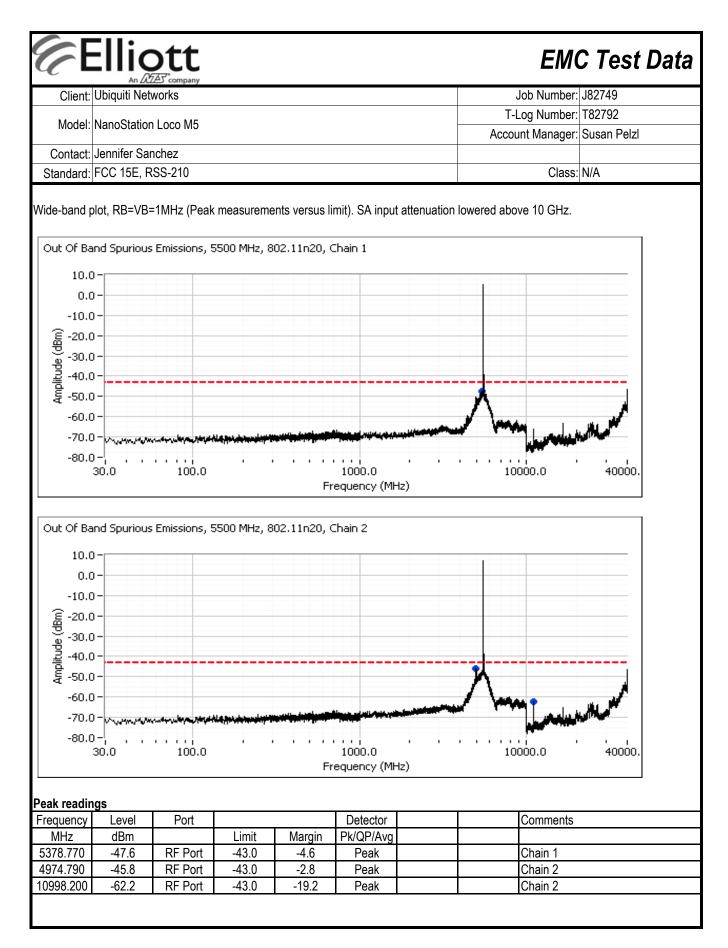


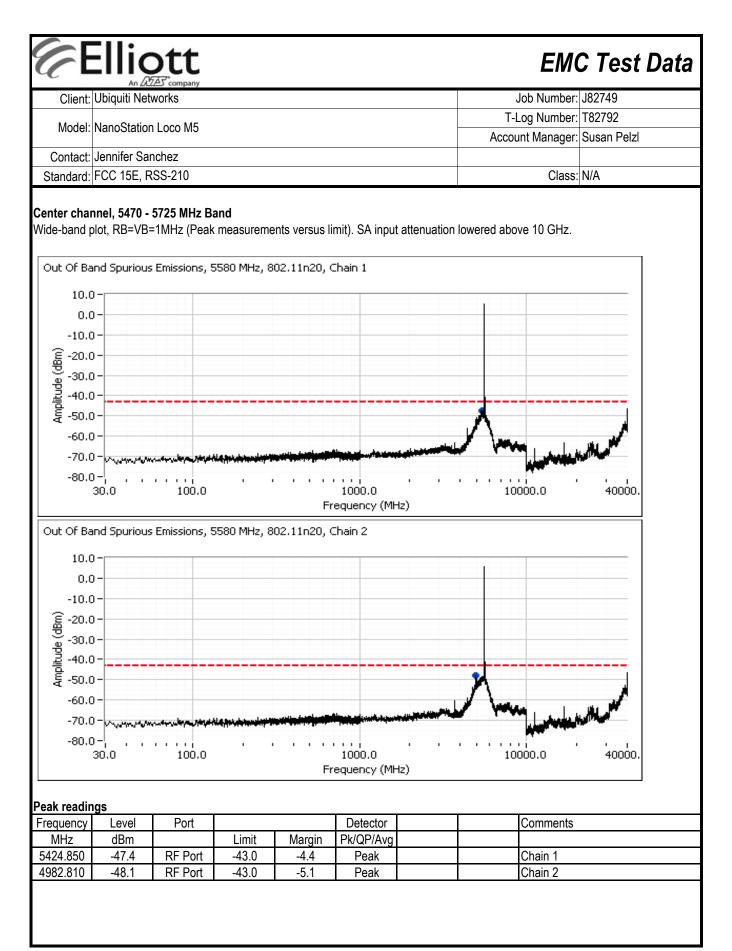


# Elliott

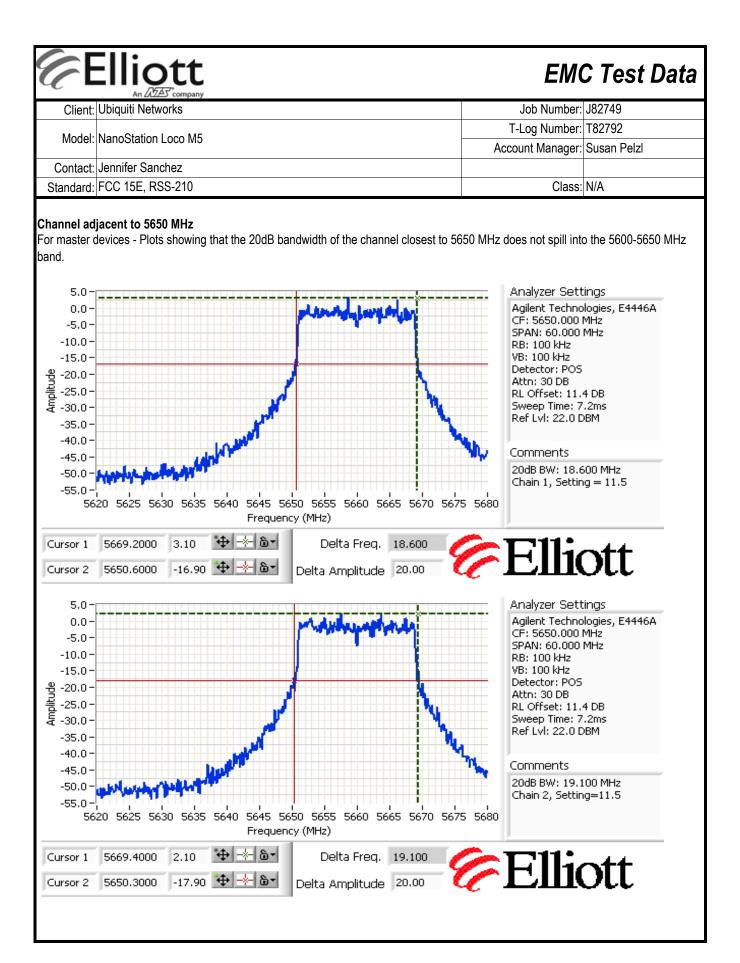

## **EMC** Test Data


|           | An 2A22 company     |                  |             |
|-----------|---------------------|------------------|-------------|
| Client:   | Ubiquiti Networks   | Job Number:      | J82749      |
| Model     | NanoStation Loco M5 | T-Log Number:    | T82792      |
| wouer.    |                     | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez    |                  |             |
| Standard: | FCC 15E, RSS-210    | Class:           | N/A         |
|           |                     |                  |             |


#### Low channel, 5470 - 5725 MHz Band


Plots for each chain showing compliance with the -27dBm/MHz limit for the 5460 - 5470 MHz band edge. Start and stop frequencies set to 5460-5470 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces). Note - compliance with the radiated limits for the restricted band immediately below 5460MHz is demonstrated through the radiated emissions tests.

|         | Power        | Band ed | ae Level | Antenna    | EI        | RP      | Total EIRP | Limit   |        |
|---------|--------------|---------|----------|------------|-----------|---------|------------|---------|--------|
|         | Setting      | dBm/MHz | mW/MHz   | Gain (dBi) | mW/MHz    | dBm/MHz | dBm/MHz    | dBm/MHz | Result |
| Chain 1 | 11.5         | -57.7   | 0.00000  | 13.0       | 3.388E-05 | -44.7   | -40.2      | -27     | PASS   |
| Chain 2 | 11. <b>3</b> | -55.1   | 0.00000  | 13.0       | 6.166E-05 | -42.1   | -4U.Z      | -21     | LH99   |





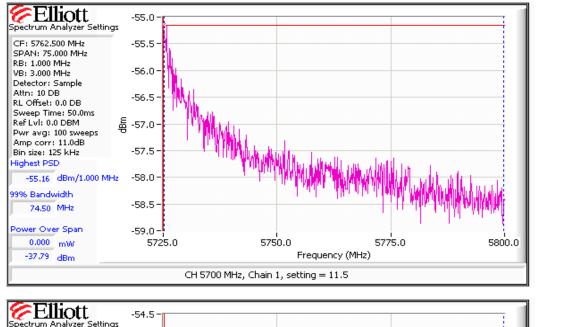


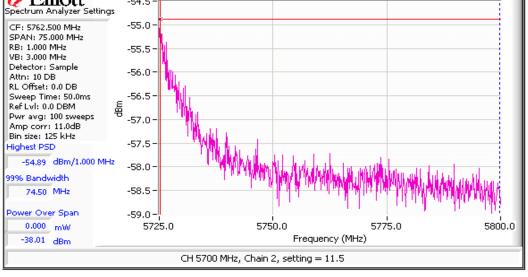


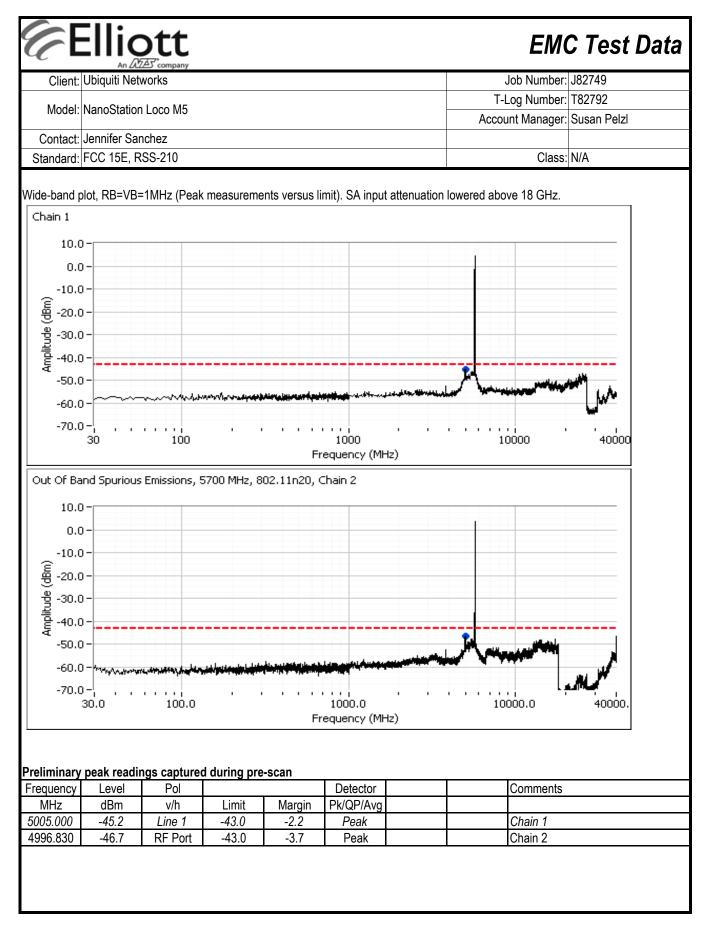

| Client: Ubio                                                                                                                                                                | An ATAS* company<br>quiti Networks                                                                                                                | Job Number:                                                                                                                                                                         | J82749                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Model                                                                                                                                                                       | noStation Loco M5                                                                                                                                 | T-Log Number:                                                                                                                                                                       | T82792                                                                                     |
| wouel: wan                                                                                                                                                                  |                                                                                                                                                   | Account Manager:                                                                                                                                                                    | Susan Pelzl                                                                                |
|                                                                                                                                                                             | nifer Sanchez                                                                                                                                     |                                                                                                                                                                                     |                                                                                            |
| andard: FCC                                                                                                                                                                 | C 15E, RSS-210                                                                                                                                    | Class:                                                                                                                                                                              | N/A                                                                                        |
| master devic<br>10.0 -<br>5.0 -<br>0.0 -<br>-5.0 -<br>-10.0 -<br>-10.0 -<br>-15.0 -<br>-15.0 -<br>-15.0 -<br>-25.0 -<br>-35.0 -<br>-35.0 -<br>-40.0 -<br>-45.0 -<br>-50.0 - | Int to 5600 MHz<br>ces - Plots showing that the 20dB bandwidth of the channel closest to 5<br>0 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 | Analyzer S<br>HP8564E<br>CF: 5590.0<br>SPAN: 60.0<br>RB: 1.000 f<br>VB: 1.000 f<br>Detector: F<br>Attn: 10 D6<br>RL Offset:<br>Sweep Time<br>Ref Lvl: 10<br>Comment:<br>Chain 1, se | ettings<br>100 MHz<br>100 MHz<br>MHz<br>11Hz<br>205<br>3<br>11.0 DB<br>e: 50.0ms<br>.0 DBM |
| Cursor 1<br>Cursor 2<br>10.0-<br>5.0-<br>0.0-<br>-5.0-<br>-10.0-<br>-15.0-<br>-15.0-<br>-15.0-<br>-20.0-<br>-25.0-                                                          | 5592.1000       8.00                                                                                                                              | Analyzer S<br>HP8564E<br>CF: 5590.0<br>SPAN: 60.0<br>RB: 1.000 f<br>VB: 1.000 f<br>Detector: F<br>Attn: 10 DE<br>RL Offset:<br>Sweep Tim<br>Ref Lvl: 10                             | ettings<br>000 MHz<br>000 MHz<br>MHz<br>MHz<br>2005<br>3<br>11.0 DB<br>e: 50.0ms           |
| -30.0 -<br>-35.0 -<br>-40.0 -<br>-45.0 -<br>-50.0 -<br>556                                                                                                                  | 50 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610<br>Frequency (MHz)<br>5592.2000 7.17 ↔ - ⓒ Delta Freq. 24.000                                | Comment:<br>Chain 2, se                                                                                                                                                             | 5<br>itting = 11.5                                                                         |



# Client: Ubiquiti Networks


## EMC Test Data


|                            | An Burney           |                  |             |
|----------------------------|---------------------|------------------|-------------|
| Client:                    | Ubiquiti Networks   | Job Number:      | J82749      |
| Model: NanoStation Loco M5 | NanoStation Lago M5 | T-Log Number:    | T82792      |
| MOUEI.                     |                     | Account Manager: | Susan Pelzl |
| Contact:                   | Jennifer Sanchez    |                  |             |
| Standard:                  | FCC 15E, RSS-210    | Class:           | N/A         |
|                            |                     |                  |             |


### High channel, 5470 - 5725 MHz Band

Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

|         | Power   | Band edge Level |         | Antenna    | EIRP      |         | Total EIRP Limit |         | Result |
|---------|---------|-----------------|---------|------------|-----------|---------|------------------|---------|--------|
|         | Setting | dBm/MHz         | mW/MHz  | Gain (dBi) | mW/MHz    | dBm/MHz | dBm/MHz          | dBm/MHz | Result |
| Chain 1 | 11.5    | -55.2           | 0.00000 | 13.0       | 6.081E-05 | -42.2   | -39.0            | -27     | PASS   |
| Chain 2 | 11.5    | -54.9           | 0.00000 | 13.0       | 6.471E-05 | -41.9   | -39.0            | -21     | FA00   |







|          |               | D <b>tt</b>                             |                                                                                               |                  | EM           | C Test Data      |
|----------|---------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|------------------|--------------|------------------|
| Client:  | Ubiquiti Netv | vorks                                   |                                                                                               |                  | Job Number:  | J82749           |
|          |               |                                         |                                                                                               | T-I              | Log Number:  | T82792           |
| Model:   | NanoStation   | Loco M5                                 |                                                                                               | Αςςοι            | unt Manager: | Susan Pelzl      |
| Contact: | Jennifer Sar  | ichez                                   |                                                                                               |                  | Ŭ            |                  |
|          | FCC 15E, R    |                                         |                                                                                               |                  | Class:       | N/A              |
| Test Spe | cific Detail  | Antenna F<br>Power, PSD, Peak Excursion | •                                                                                             | ts<br>ourious Er |              | respect to the   |
|          | Objective:    | specification listed above.             |                                                                                               | -                |              | espect to the    |
| [        | Date of Test: |                                         | Config. Used:                                                                                 | -                |              |                  |
| Te       | et Enginoor   | M. Birgani<br>Joseph Cadigal            | Config Change:                                                                                | -                |              |                  |
| Т        | est Location: |                                         | EUT Voltage:                                                                                  | PoF              |              |                  |
|          | / of Result   |                                         | _0                                                                                            |                  |              |                  |
| Ru       | ın #          | Test Performed                          | Limit                                                                                         | Pass / Fail      | Result / Mar | gin              |
|          | 1             | Power, 5250 - 5350MHz                   | 15.407(a) (1), (2)                                                                            | PASS             | 24.0 mW      |                  |
|          | 1             | PSD, 5250 - 5350MHz                     | 15.407(a) (1), (2)                                                                            | PASS             | -0.4 dBm/M   | Hz               |
|          | 1             | Max EIRP<br>5250 - 5350MHz              | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm. | PASS             | EIRP = 29.7  | ′ dBm (938 mW)   |
|          | 1             | Power, 5470 - 5725MHz                   | 15.407(a) (1), (2)                                                                            | PASS             | 24.1 mW      |                  |
|          | 1             | PSD, 5470 - 5725MHz                     | 15.407(a) (1), (2)                                                                            | PASS             | -0.7 dBm/M   | Hz               |
|          | 1             | Max EIRP<br>5470 - 5725MHz              | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold              | PASS             | EIRP = 23.9  | ) dBm (244.2 mW) |
|          | 1             | 26dB Bandwidth                          | 15.407 (Determines max power)                                                                 | -                | 42.3 MHz     |                  |
|          | 1             | 99% Bandwidth                           | RSS 210                                                                                       | N/A              | 27.0 MHz     |                  |
|          | 2             | Peak Excursion Envelope                 | 15.407(a) (6)<br>13dB                                                                         | PASS             | 10.4 dB      |                  |
|          | 3             | Antenna Conducted - Out of Band         | 15.407(b)                                                                                     | PASS             | All emission |                  |
|          | -             | Spurious                                | -27dBm/MHz                                                                                    |                  | -27dBm/MH    | z limit          |
|          |               |                                         |                                                                                               |                  |              |                  |

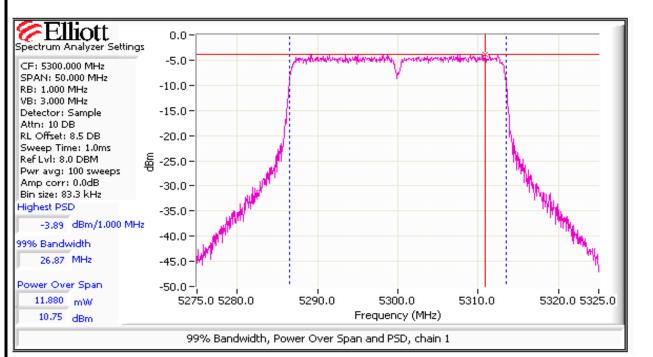
## General Test Configuration

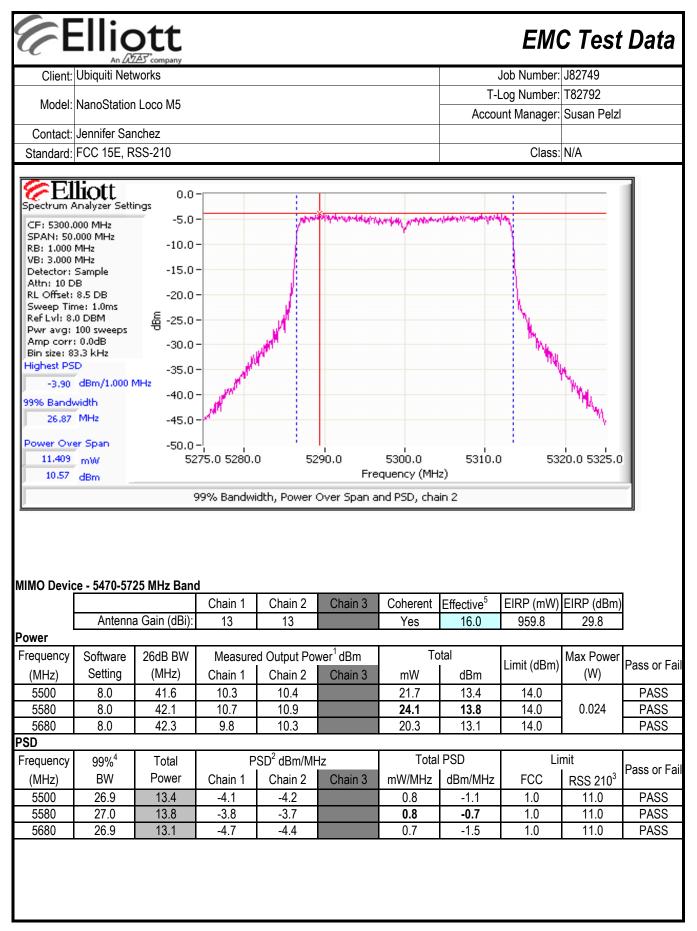
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

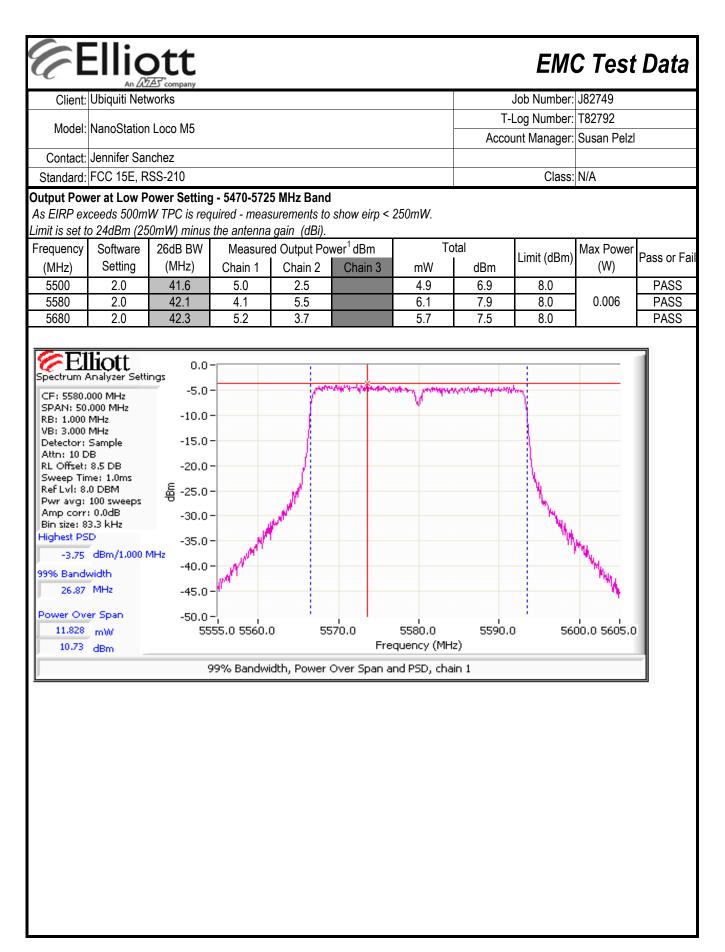
| Client <sup>.</sup>                                                                                                                                                             | Ubiquiti Netv                                                                                                                                                                                                             | ≥ company<br>v∩rks                                                                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                           | Job Number:                                                                                                                                                                                      | .182749                                                                                                                                                                          |                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Cilent.                                                                                                                                                                         |                                                                                                                                                                                                                           | VOING                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                           | Log Number:                                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                  |
| Model:                                                                                                                                                                          | NanoStation                                                                                                                                                                                                               | Loco M5                                                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                           | unt Manager:                                                                                                                                                                                     |                                                                                                                                                                                  |                                                                                                  |
| Contact:                                                                                                                                                                        | Jennifer San                                                                                                                                                                                                              | chez                                                                                                                                                                                                                                    |                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                  |
|                                                                                                                                                                                 | FCC 15E, R                                                                                                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                           | Class:                                                                                                                                                                                           | N/A                                                                                                                                                                              |                                                                                                  |
| Ambient                                                                                                                                                                         | Conditions                                                                                                                                                                                                                | 6:                                                                                                                                                                                                                                      |                                                                                                                                                                                                        | emperature:<br>el. Humidity:                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                         |                                                                                                                                                                                                  | l                                                                                                                                                                                |                                                                                                  |
| No modifi<br>Deviation                                                                                                                                                          | ions Made<br>cations were<br>Is From Th<br>ions were ma                                                                                                                                                                   | made to the<br>e Standar                                                                                                                                                                                                                | EUT during t                                                                                                                                                                                           | Ū                                                                                                                                                                                                                                           | lard.                                                                                                                                                                                  |                                                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                  |
| Run #1: Ba<br>Note 1:                                                                                                                                                           | ndwidth, Out<br>Output powe                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                        | Systems                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                  |
|                                                                                                                                                                                 | Output powe                                                                                                                                                                                                               |                                                                                                                                                                                                                                         | - ·                                                                                                                                                                                                    | •                                                                                                                                                                                                                                           |                                                                                                                                                                                        | below) RBW                                                                                                                                                                                                        | /=1MHz.VB=                                                                                                                                                                                                                | =3 MHz, sam                                                                                                                                                                                      | ple detector.                                                                                                                                                                    | power                                                                                            |
|                                                                                                                                                                                 |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                  |
| Note 1:                                                                                                                                                                         | averaging or                                                                                                                                                                                                              | n (transmitted                                                                                                                                                                                                                          | l signal was                                                                                                                                                                                           | continuous)                                                                                                                                                                                                                                 | • •                                                                                                                                                                                    | ,                                                                                                                                                                                                                 |                                                                                                                                                                                                                           | nethod 1 of D                                                                                                                                                                                    |                                                                                                                                                                                  | •                                                                                                |
|                                                                                                                                                                                 | averaging or<br>Measured us                                                                                                                                                                                               |                                                                                                                                                                                                                                         | -                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                           | and power in                                                                                                                                                                           | itegration ove                                                                                                                                                                                                    | er <b>50</b> MHz (m                                                                                                                                                                                                       | nethod 1 of D                                                                                                                                                                                    | A-02-2138A                                                                                                                                                                       | •                                                                                                |
| Note 2:                                                                                                                                                                         | Measured us<br>99% Bandwi                                                                                                                                                                                                 | sing the same<br>dth measure                                                                                                                                                                                                            | e analyzer se<br>d in accorda                                                                                                                                                                          | ettings used<br>ince with RS                                                                                                                                                                                                                | and power in<br>for output po<br>S GEN - RB                                                                                                                                            | tegration ove<br>wer. PSD is<br>> 1% of spar                                                                                                                                                                      | er <b>50</b> MHz (m<br>highest value<br>and VB >=3                                                                                                                                                                        | nethod 1 of D<br>e on the plot.<br>3xRB                                                                                                                                                          | A-02-2138A                                                                                                                                                                       | 1).                                                                                              |
| Note 2:                                                                                                                                                                         | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t                                                                                                                               | the same<br>dth measure<br>vstems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are c                                                                                                                               | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the inc<br>coherent the                                                                                     | ettings used<br>ince with RS<br>ower and tota<br>I to determine<br>als on the no<br>lividual chair<br>n the effectiv                                                                                                                        | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>is and the EI<br>e antenna ga                                                          | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>poetween the<br>RP is the sur                                                                                               | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod                                                                                                             | nethod 1 of D<br>e on the plot.<br>BxRB<br>the powers o<br>power depend<br>ns then the g                                                                                                         | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or                                                                                                    | 1).<br>al chains<br>erating<br>determin<br>n each                                                |
| Note 2:<br>Note 4:<br>Note 5:                                                                                                                                                   | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t                                                                                             | the same<br>dth measure<br>ystems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o                                                                                                               | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv                                                                   | ettings used<br>ince with RS<br>ower and tota<br>I to determine<br>als on the no<br>lividual chair<br>n the effectiv                                                                                                                        | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>is and the EI<br>e antenna ga                                                          | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>poetween the<br>RP is the sur                                                                                               | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod                                                                                                             | nethod 1 of D<br>e on the plot.<br>BxRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a                                                                                       | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or                                                                                                    | 1).<br>al chains<br>erating<br>determin<br>n each                                                |
| Note 2:<br>Note 4:<br>Note 5:                                                                                                                                                   | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the                                                                                                              | the same<br>dth measure<br>ystems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o                                                                                                               | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv                                                                   | ettings used<br>ince with RS<br>ower and tota<br>I to determine<br>als on the no<br>lividual chair<br>n the effectiv<br>e gain and to                                                                                                       | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>otal power.                                           | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>between the<br>RP is the sur<br>ain is the sur                                                                              | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod<br>n (in linear te                                                                                          | nethod 1 of D<br>e on the plot.<br>BxRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga                                                                     | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each                                                                                   | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar                                    |
| Note 2:<br>Note 4:<br>Note 5:                                                                                                                                                   | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t                                                                                             | the same<br>dth measure<br>ystems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o                                                                                                               | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv                                                                   | ettings used<br>ince with RS<br>ower and tota<br>to determine<br>als on the no<br>lividual chair<br>in the effectiv<br>e gain and to<br>Chain 2                                                                                             | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>is and the EI<br>e antenna ga                                                          | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>between the<br>RP is the sur<br>ain is the sur<br>Coherent                                                                  | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>n of the prod                                                                                                             | nethod 1 of D<br>e on the plot.<br>BXRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga                                                                     | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or                                                                                                    | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar                                    |
| Note 2:<br>Note 4:<br>Note 5:                                                                                                                                                   | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t                                                                                             | the same<br>dth measure<br>vstems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o                                                                                                               | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the inc<br>coherent the<br>f the effectiv<br>Chain 1                                                        | ettings used<br>ince with RS<br>ower and tota<br>I to determine<br>als on the no<br>lividual chair<br>n the effectiv<br>e gain and to                                                                                                       | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>otal power.                                           | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>between the<br>RP is the sur<br>ain is the sur                                                                              | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear ter<br>Effective <sup>5</sup>                                                               | nethod 1 of D<br>e on the plot.<br>BxRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga                                                                     | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)                                                                     | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar                                    |
| Note 2:<br>Note 4:<br>Note 5:                                                                                                                                                   | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t                                                                                             | the same<br>dth measure<br>vstems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o                                                                                                               | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv<br>d<br>Chain 1<br>13                                             | ettings used<br>ince with RS<br>ower and tota<br>to determine<br>als on the no<br>lividual chair<br>in the effectiv<br>e gain and to<br>Chain 2                                                                                             | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>otal power.                                           | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>petween the<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes                                                           | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear ter<br>Effective <sup>5</sup>                                                               | e on the plot.<br>SxRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9                                                                | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7                                                             | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar                                    |
| Note 2:<br>Note 4:<br>Note 5:                                                                                                                                                   | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna                                                                 | the same<br>dth measure<br>ystems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br><b>50 MHz Banc</b><br>a Gain (dBi):                                                                        | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv<br>d<br>Chain 1<br>13                                             | ettings used<br>nce with RS<br>ower and tota<br>l to determine<br>lals on the no<br>lividual chair<br>n the effectiv<br>e gain and to<br>Chain 2<br>13                                                                                      | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>otal power.                                           | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>petween the<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes                                                           | er <b>50</b> MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0                                                | nethod 1 of D<br>e on the plot.<br>BXRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga                                                                     | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7                                                             | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar                                    |
| Note 2:<br>Note 4:<br>Note 5:<br>MIMO Device<br>Power<br>Frequency<br>(MHz)<br>5275                                                                                             | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna                                                                 | sing the same<br>dth measure<br>/stems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br><b>50 MHz Banc</b><br><b>60 MHz Banc</b><br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>40.3                 | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the inc<br>coherent the<br>f the effectiv<br>Chain 1<br>13<br>Measure                                       | ettings used<br>ince with RS<br>ower and tota<br>I to determine<br>als on the no<br>lividual chair<br>in the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Po                                                                      | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>tal power.<br>Chain 3<br>wer <sup>1</sup> dBm         | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>between the sur<br>ain is the sur<br>Coherent<br>Yes                                                                        | er <b>50</b> MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0                                                | e on the plot.<br>SxRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9                                                                | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7<br>Max Power<br>(W)                                         | 1).<br>al chains<br>erating<br>determin<br>each<br>chain ar<br>Pass or<br>PASS                   |
| Note 2:<br>Note 4:<br>Note 5:<br>MIMO Devid<br>Power<br>Frequency<br>(MHz)<br>5275<br>5300                                                                                      | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna<br>Software<br>Setting<br>5.0<br>8.0                            | sing the same<br>dth measure<br>ystems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br>60 MHz Banc<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>40.3<br>42.2                                      | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent their<br>f the effectiv<br>Chain 1<br>13<br>Measure<br>Chain 1<br>2.1<br>10.8           | ettings used<br>nce with RS<br>ower and tota<br>I to determine<br>als on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Por<br>Chain 2<br>3.7<br>10.6                                             | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>tal power.<br>Chain 3<br>wer <sup>1</sup> dBm         | tegration over<br>wer. PSD is<br>> 1% of spar-<br>alculated form<br>nd limits for F<br>between the sum-<br>in is the sum-<br>Coherent<br>Yes<br>To<br>mW<br>4.0<br>23.5                                           | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0<br>otal<br>dBm<br>6.0<br>13.7                         | e on the plot.<br>BXRB<br>the powers o<br>cower depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9<br>Limit (dBm)<br>14.0<br>14.0                                 | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7<br>Max Power                                                | 1).<br>al chains<br>erating<br>determin<br>each<br>chain an<br>Pass or<br>PASS<br>PASS           |
| Note 2:<br>Note 4:<br>Note 5:<br>MIMO Devia<br>Power<br>Frequency<br>(MHz)<br>5275<br>5300<br>5315                                                                              | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna<br>Software<br>Setting<br>5.0                                   | sing the same<br>dth measure<br>/stems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br><b>50 MHz Banc</b><br><b>60 MHz Banc</b><br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>40.3                 | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv<br>Chain 1<br>13<br>Measure<br>Chain 1<br>2.1                     | ettings used<br>ince with RS<br>ower and tota<br>to determine<br>tals on the no<br>lividual chain<br>in the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Por<br>Chain 2<br>3.7                                                    | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent l<br>as and the EI<br>e antenna ga<br>tal power.<br>Chain 3<br>wer <sup>1</sup> dBm         | tegration over<br>wer. PSD is<br>> 1% of sparal<br>culated form<br>nd limits for F<br>between the<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes<br>To<br>mW<br>4.0                                        | er <b>50</b> MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear te<br>Effective <sup>5</sup><br>16.0<br>btal<br>dBm<br>6.0                           | hethod 1 of D<br>e on the plot.<br>3xRB<br>the powers o<br>bower depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9<br>Limit (dBm)<br>14.0                        | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7<br>Max Power<br>(W)                                         | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar<br>Pass or<br>PASS<br>PASS         |
| Note 2:           Note 4:           Note 5:           IIMO Devia           Power           Frequency           (MHz)           5275           5300           5315           PSD | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna<br>Software<br>Setting<br>5.0<br>8.0<br>5.0                     | sing the same<br>dth measure<br>vstems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br><b>50 MHz Banc</b><br><b>60 MHz Banc</b><br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>40.3<br>42.2<br>41.3 | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv<br>f<br>Chain 1<br>13<br>Measure<br>Chain 1<br>2.1<br>10.8<br>3.9 | ettings used<br>ince with RS<br>ower and tota<br>to determine<br>als on the no<br>lividual chain<br>in the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Por<br>Chain 2<br>3.7<br>10.6<br>2.4                                      | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>ph-coherent f<br>and the EI<br>e antenna ga<br>that power.<br>Chain 3<br>wer <sup>1</sup> dBm<br>Chain 3 | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>between the f<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes<br>To<br>mW<br>4.0<br>23.5<br>4.2                       | er <b>50</b> MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0<br>tal<br>dBm<br>6.0<br>13.7<br>6.2            | hethod 1 of D<br>e on the plot.<br>SxRB<br>the powers o<br>power depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9<br>Limit (dBm)<br>14.0<br>14.0                | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7<br>Max Power<br>(W)<br>0.024                                | 1).<br>al chains<br>erating<br>determin<br>chain ar<br>Pass or<br>PASS                           |
| Note 2:<br>Note 4:<br>Note 5:<br>Note 5:<br>MIMO Devia<br>Power<br>Frequency<br>(MHz)<br>5275<br>5300<br>5315<br>PSD<br>Frequency                                               | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna<br>Software<br>Setting<br>5.0<br>8.0<br>5.0<br>99% <sup>4</sup> | sing the same<br>dth measure<br>/stems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br>60 MHz Banc<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>40.3<br>42.2<br>41.3<br>Total                     | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv<br>Chain 1<br>13<br>Measure<br>Chain 1<br>2.1<br>10.8<br>3.9      | ettings used<br>nce with RS<br>ower and tota<br>to determine<br>tals on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Por<br>Chain 2<br>3.7<br>10.6<br>2.4                                       | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent h<br>is and the EI<br>e antenna ga<br>otal power.<br>Chain 3<br>Chain 3<br>Chain 3          | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>between the<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes<br>To<br>mW<br>4.0<br>23.5<br>4.2<br>Tota                 | er <b>50</b> MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear te<br>Effective <sup>5</sup><br>16.0<br>btal<br>dBm<br>6.0<br>13.7<br>6.2            | hethod 1 of D<br>e on the plot.<br>3xRB<br>the powers o<br>bower depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9<br>Limit (dBm)<br>14.0<br>14.0<br>14.0<br>Lin | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7<br>Max Power<br>(W)<br>0.024                                | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar<br>Pass or<br>PASS<br>PASS         |
| Note 2:<br>Note 4:<br>Note 5:<br>Note 5:<br>Note 5:<br>MIMO Devid<br>Power<br>Frequency<br>(MHz)<br>5275<br>5300<br>5315<br>PSD<br>Frequency<br>(MHz)                           | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna<br>Software<br>Setting<br>5.0<br>8.0<br>5.0<br>8.0<br>5.0       | sing the same<br>dth measure<br>ystems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br>60 MHz Banc<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>40.3<br>42.2<br>41.3<br>Total<br>Power            | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the inco<br>coherent the<br>f the effectiv<br>Chain 1<br>2.1<br>10.8<br>3.9<br>P<br>Chain 1                 | ettings used<br>ince with RS<br>ower and tota<br>to determine<br>als on the no<br>lividual chain<br>in the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Por<br>Chain 2<br>3.7<br>10.6<br>2.4<br>SD <sup>2</sup> dBm/Mł<br>Chain 2 | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>ph-coherent f<br>and the EI<br>e antenna ga<br>that power.<br>Chain 3<br>Wer <sup>1</sup> dBm<br>Chain 3 | tegration over<br>wer. PSD is<br>> 1% of sparal<br>culated form<br>nd limits for F<br>between the f<br>RP is the sural<br>in is the sural<br>Coherent<br>Yes<br>To<br>mW<br>4.0<br>23.5<br>4.2<br>Total<br>mW/MHz | er 50 MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear ter<br>Effective <sup>5</sup><br>16.0<br>0<br>tal<br>6.0<br>13.7<br>6.2<br>I PSD<br>dBm/MHz | e on the plot.<br>axRB<br>the powers o<br>bower depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9<br>Limit (dBm)<br>14.0<br>14.0<br>14.0<br>Lin<br>FCC           | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7<br>Max Power<br>(W)<br>0.024<br>mit<br>RSS 210 <sup>3</sup> | 1).<br>al chains<br>erating<br>determin<br>n each<br>chain ar<br>Pass or<br>PASS<br>PASS<br>PASS |
| Note 2:<br>Note 4:<br>Note 5:<br>Note 5:<br>MIMO Devia<br>Power<br>Frequency<br>(MHz)<br>5275<br>5300<br>5315<br>PSD<br>Frequency                                               | Measured us<br>99% Bandwi<br>For MIMO sy<br>linear terms)<br>mode of the<br>the limits is t<br>chain. If the<br>the EIRP is t<br>ce - 5250-535<br>Antenna<br>Software<br>Setting<br>5.0<br>8.0<br>5.0<br>99% <sup>4</sup> | sing the same<br>dth measure<br>/stems the to<br>. The antenr<br>MIMO device<br>he highest ga<br>signals are o<br>he product o<br>60 MHz Banc<br>a Gain (dBi):<br>26dB BW<br>(MHz)<br>40.3<br>42.2<br>41.3<br>Total                     | e analyzer se<br>d in accorda<br>tal output po<br>na gain used<br>e. If the sign<br>ain of the ind<br>coherent the<br>f the effectiv<br>Chain 1<br>13<br>Measure<br>Chain 1<br>2.1<br>10.8<br>3.9      | ettings used<br>nce with RS<br>ower and tota<br>to determine<br>tals on the no<br>lividual chain<br>n the effectiv<br>e gain and to<br>Chain 2<br>13<br>d Output Por<br>Chain 2<br>3.7<br>10.6<br>2.4                                       | and power in<br>for output po<br>S GEN - RB<br>al PSD are ca<br>the EIRP a<br>pon-coherent h<br>is and the EI<br>e antenna ga<br>otal power.<br>Chain 3<br>Chain 3<br>Chain 3          | tegration over<br>wer. PSD is<br>> 1% of spar<br>alculated form<br>nd limits for F<br>between the<br>RP is the sur<br>ain is the sur<br>Coherent<br>Yes<br>To<br>mW<br>4.0<br>23.5<br>4.2<br>Tota                 | er <b>50</b> MHz (n<br>highest value<br>and VB >=3<br>n the sum of<br>PSD/Output p<br>transmit chai<br>m of the prod<br>n (in linear te<br>Effective <sup>5</sup><br>16.0<br>btal<br>dBm<br>6.0<br>13.7<br>6.2            | hethod 1 of D<br>e on the plot.<br>3xRB<br>the powers o<br>bower depend<br>ns then the g<br>ucts of gain a<br>rms) of the ga<br>EIRP (mW)<br>937.9<br>Limit (dBm)<br>14.0<br>14.0<br>14.0<br>Lin | A-02-2138A<br>f the individu<br>ds on the ope<br>gain used to<br>and power or<br>ains for each<br>EIRP (dBm)<br>29.7<br>Max Power<br>(W)<br>0.024                                | 1).<br>al chains<br>erating<br>determin<br>chain an<br>chain an<br>Pass or<br>PASS               |

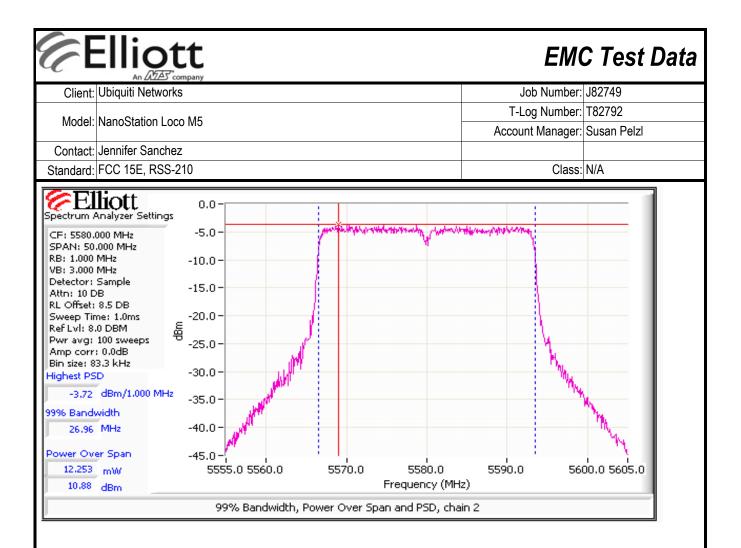
# Elliott

## EMC Test Data


|                    | An 2A22 company      |                  |             |
|--------------------|----------------------|------------------|-------------|
| Client:            | Ubiquiti Networks    | Job Number:      | J82749      |
| Model <sup>.</sup> | Ners Chatian Laga ME | T-Log Number:    | T82792      |
| wouer.             | NanoStation Loco M5  | Account Manager: | Susan Pelzl |
| Contact:           | Jennifer Sanchez     |                  |             |
| Standard:          | FCC 15E, RSS-210     | Class:           | N/A         |
|                    |                      |                  |             |


### Output Power at Low Power Setting - 5250-5350 MHz Band

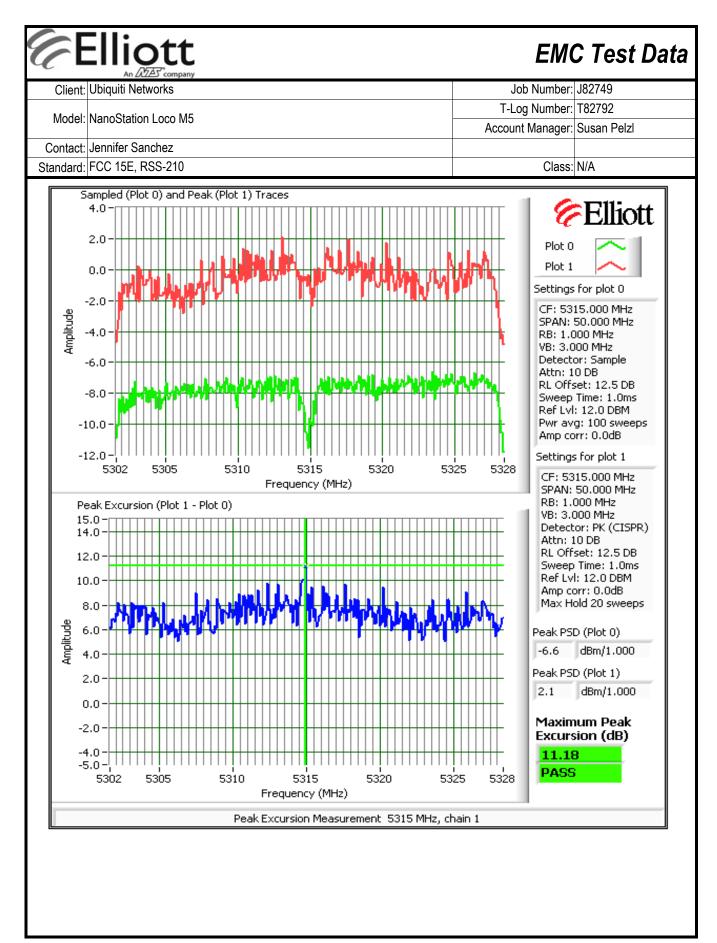

EIRP does not exceed 500mW, therefore TPC is not required and measurements at a low power setting are not required. As EIRP exceeds 500mW TPC is required - measurements to show eirp < 250mW.


Limit is set to 24dBm (250mW) minus the antenna gain (dBi).

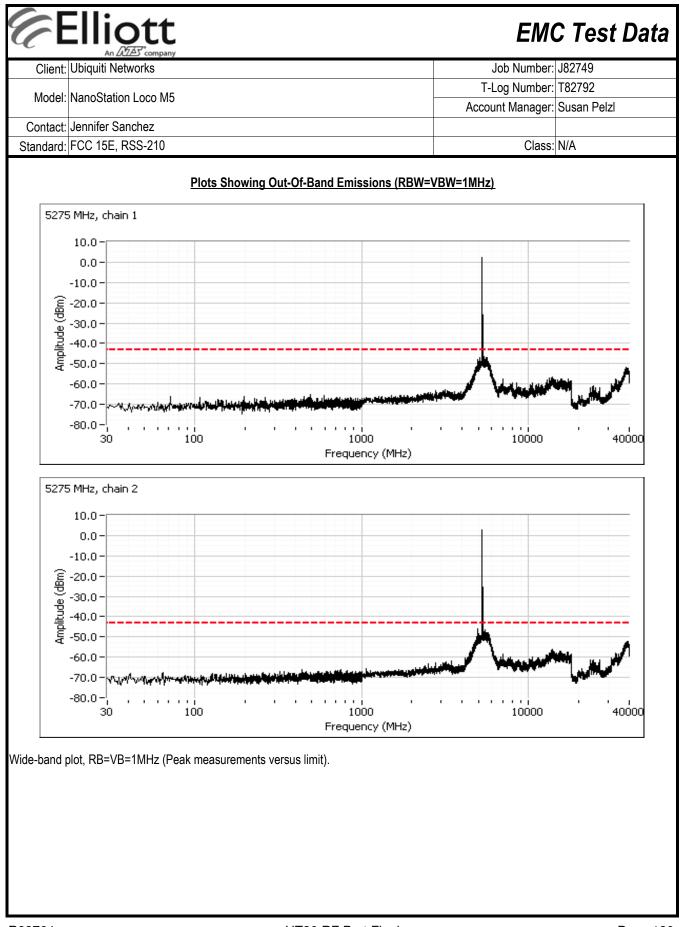
| Frequency | Software | 26dB BW | Measure | d Output Pov | wer <sup>1</sup> dBm | To  | otal | Limit (dBm)  | Max Power | Pass or Fail |
|-----------|----------|---------|---------|--------------|----------------------|-----|------|--------------|-----------|--------------|
| (MHz)     | Setting  | (MHz)   | Chain 1 | Chain 2      | Chain 3              | mW  | dBm  | сіпіі (авіп) | (W)       | Fass 01 Fall |
| 5275      | 3.0      | 40.3    | 5.1     | 4.2          |                      | 5.9 | 7.7  | 8.0          |           | PASS         |
| 5300      | 2.0      | 42.2    | 5.2     | 3.9          |                      | 5.7 | 7.6  | 8.0          | 0.006     | PASS         |
| 5315      | 2.5      | 41.3    | 5.3     | 3.0          |                      | 5.4 | 7.3  | 8.0          |           | PASS         |
|           |          |         |         |              |                      |     |      |              |           |              |

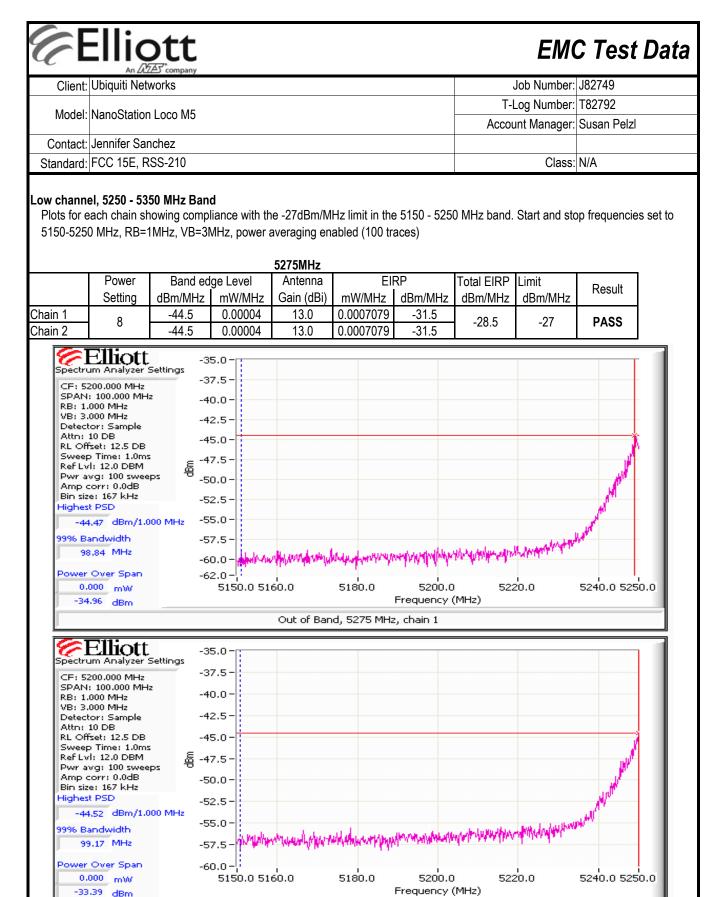


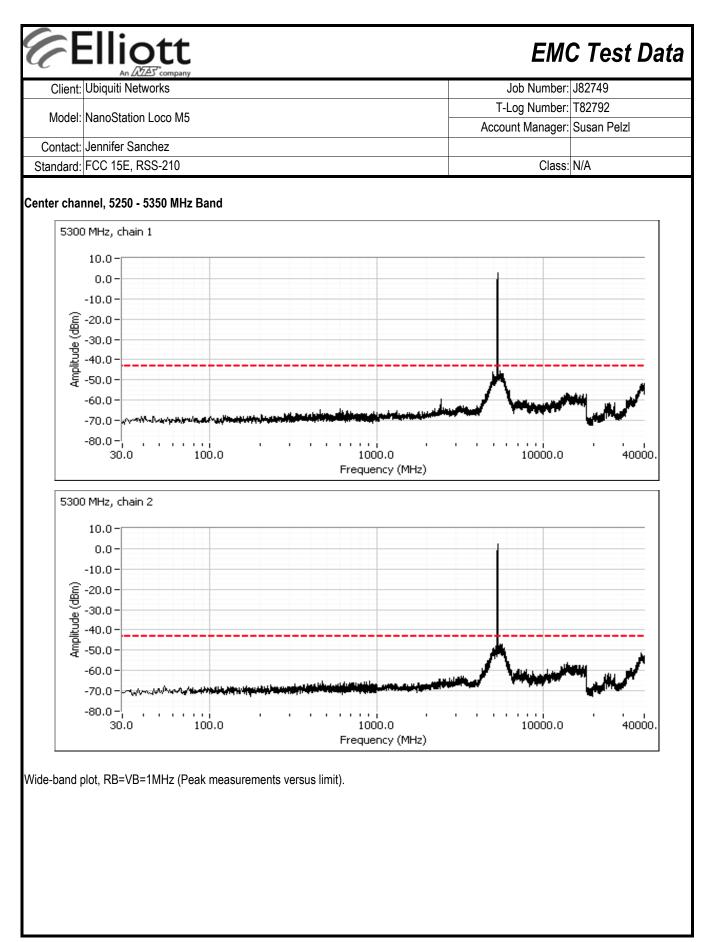








#### Run #2: Peak Excursion Measurement

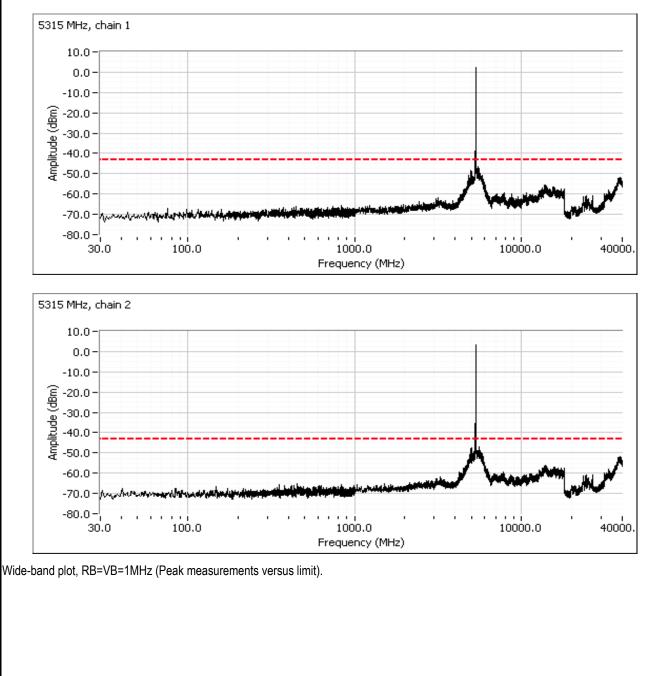

HT 30 Device meets the requirement for the peak excursion

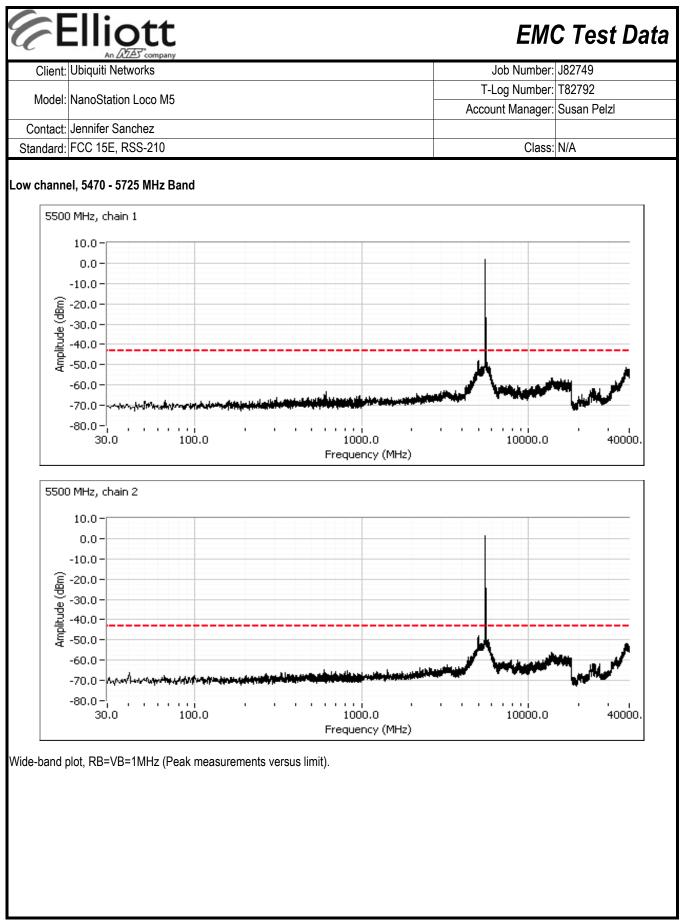

| Freq  | Peak Excursion(dB) |       | Freq  | Peak Exc | ursion(dB) |
|-------|--------------------|-------|-------|----------|------------|
| (MHz) | Value              | Limit | (MHz) | Value    | Limit      |
| 5275  | 9.8/9.6            | 13.0  | 5500  | 9.8/8.7  | 13.0       |
| 5300  | 10.4/10.7          | 13.0  | 5580  | 8.8/8.5  | 13.0       |
| 5315  | <b>11.2</b> /11.1  | 13.0  | 5680  | 8.6/8.8  | 13.0       |

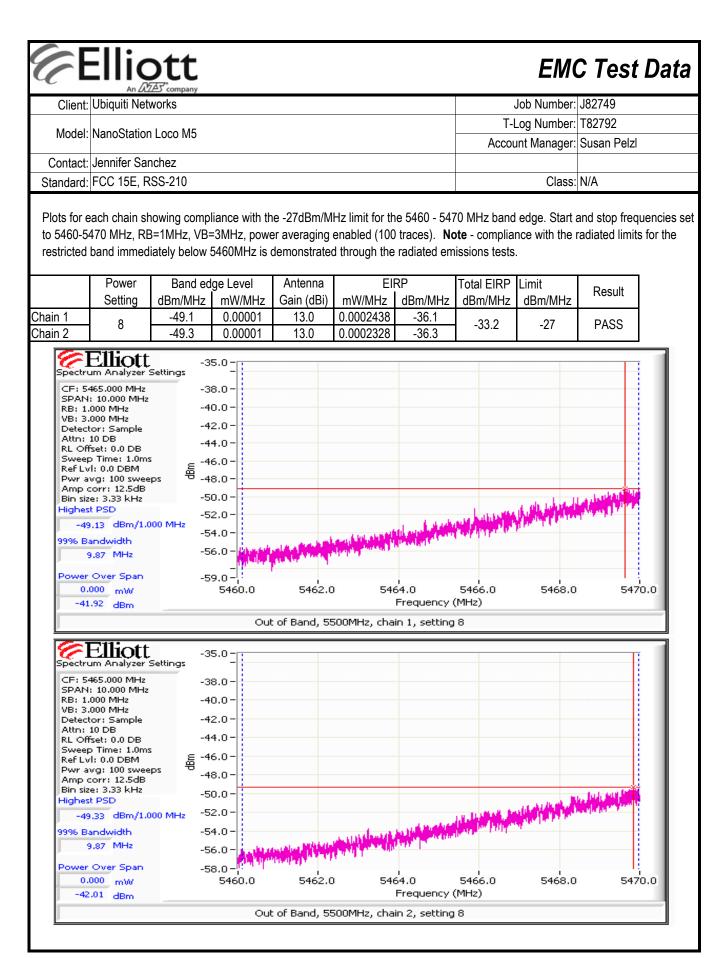


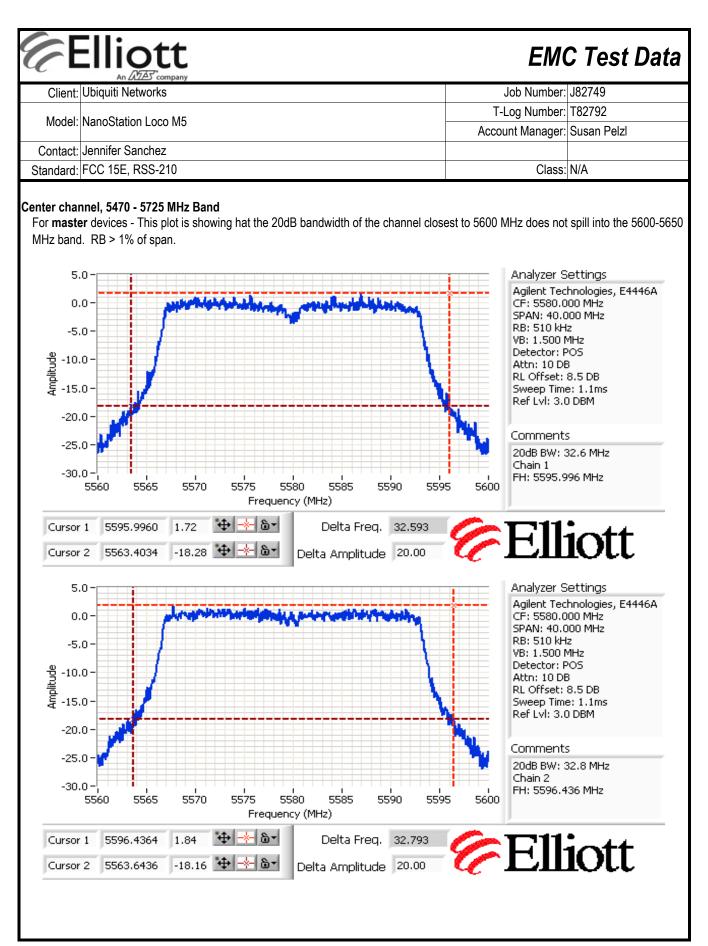
|                               | Ubiquiti Networks                                                                                                                                                                                                                    |                                                                                                                                                                                                                    | Job Number:                                                                                                                       | 1827/19               |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Client.                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    | T-Log Number:                                                                                                                     |                       |
| Model:                        | NanoStation Loco M5                                                                                                                                                                                                                  |                                                                                                                                                                                                                    | Account Manager:                                                                                                                  |                       |
| Contact:                      | Jennifer Sanchez                                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                   |                       |
| Standard:                     | FCC 15E, RSS-210                                                                                                                                                                                                                     |                                                                                                                                                                                                                    | Class:                                                                                                                            | N/A                   |
| the limit).<br>simultane      | The plots were obtained for each chain indiv<br>ously<br>Number of transmit chains:<br>Maximum Antenna Gain:<br>Spurious Limit:<br>Adjustment for 2 chains:<br>Limit Used On Plots <sup>Note 1</sup> :                               | ridually and the limit was adjuste<br>2<br>13.0<br>dBi<br>-27.0 dBm/MHz eirp<br>-3.0 dB adjustment for multip<br>-43.0 dBm/MHz Average Lin                                                                         | ole chains.                                                                                                                       |                       |
|                               | The -27dBm/MHz limit is an eirp limit. The                                                                                                                                                                                           |                                                                                                                                                                                                                    |                                                                                                                                   |                       |
| lote 1:                       | consideration the maximum antenna gain a<br>field strength measurements for signals mo<br>determine compliance as the antenna gain i                                                                                                 | nd number of transmitters (limit<br>re than 50MHz from the bands                                                                                                                                                   | = -27dBm - antenna gain<br>and that are close to the line                                                                         | - 10Log[N]). Radiated |
|                               | -                                                                                                                                                                                                                                    | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci                                                                                                                | = -27dBm - antenna gain<br>and that are close to the lines.                                                                       | - 10Log[N]). Radiated |
| Note 1:<br>Note 2:<br>Note 3: | field strength measurements for signals mo<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825                                                    | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>rred during digital device radiate<br>Band edge are subject to a limit                                      | = -27dBm - antenna gain<br>and that are close to the lives.<br>and emissions test.<br>it of -17dBm EIRP                           | - 10Log[N]). Radiated |
| Note 2:<br>Note 3:<br>Note 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| Note 2:<br>Note 3:            | field strength measurements for signals mo<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825                                                    | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| Note 2:<br>Note 3:<br>Note 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |
| lote 2:<br>lote 3:<br>lote 4: | field strength measurements for signals mon<br>determine compliance as the antenna gain<br>All spurious signals below 1GHz are measu<br>Signals within 10MHz of the 5.725 or 5.825<br>If the device is for outdoor use then the -270 | nd number of transmitters (limit<br>re than 50MHz from the bands<br>is not known at these frequenci<br>red during digital device radiate<br>Band edge are subject to a limit<br>dBm eirp limit also applies in the | = -27dBm - antenna gain<br>and that are close to the lives.<br>ad emissions test.<br>it of -17dBm EIRP<br>e 5150 - 5250 MHz band. | - 10Log[N]). Radiated |

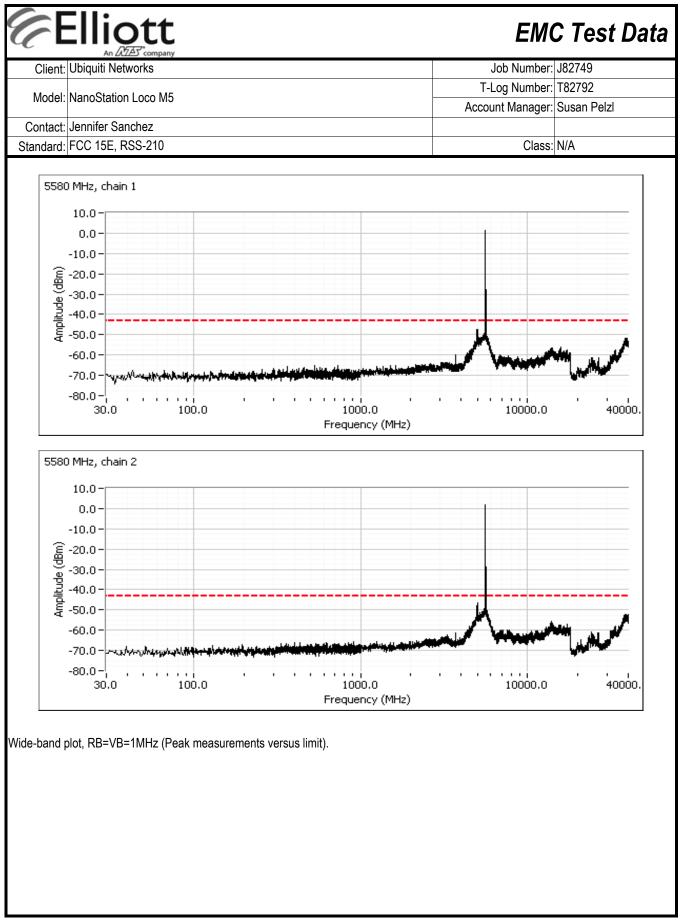


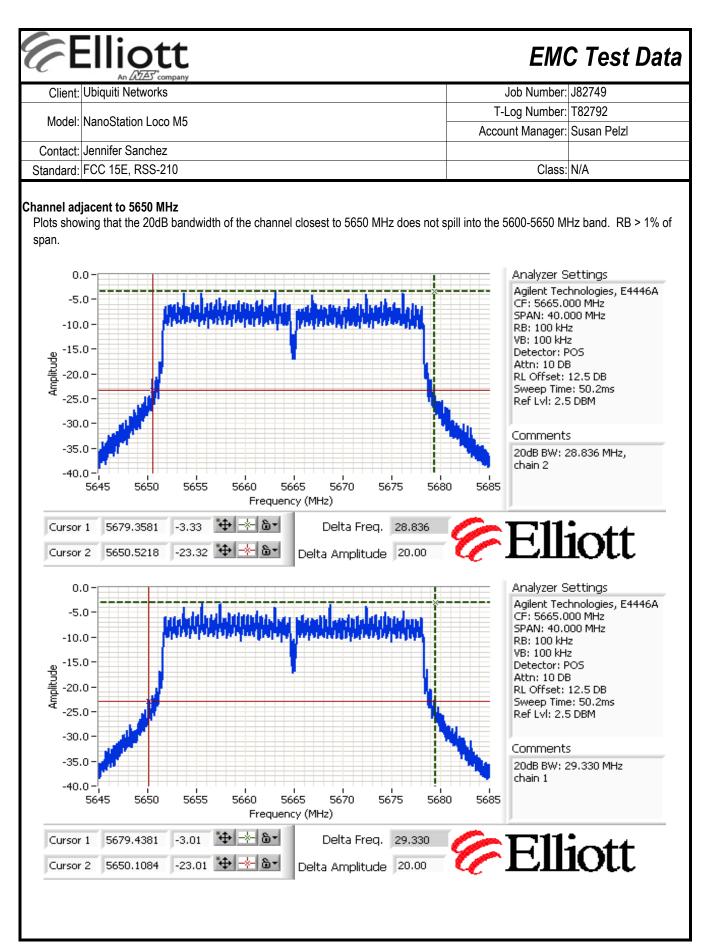


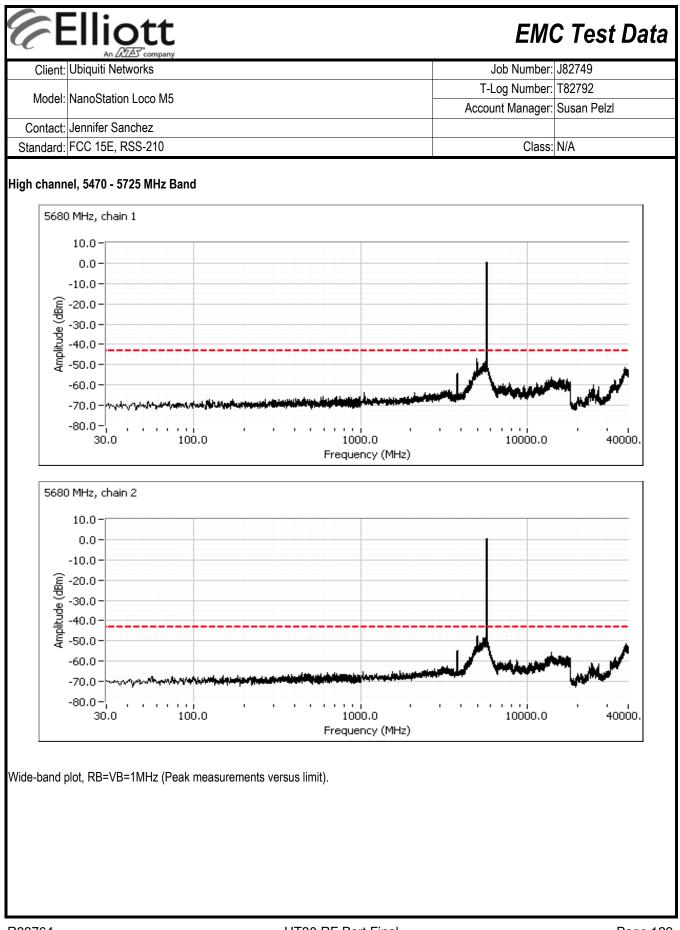





# Client: Ubiquiti Networks Job Number: J82749 Model: NanoStation Loco M5 T-Log Number: T82792 Contact: Jennifer Sanchez Susan Pelzl Standard: FCC 15E, RSS-210 Class: N/A


#### High channel, 5250 - 5350 MHz Band


**Note** - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.



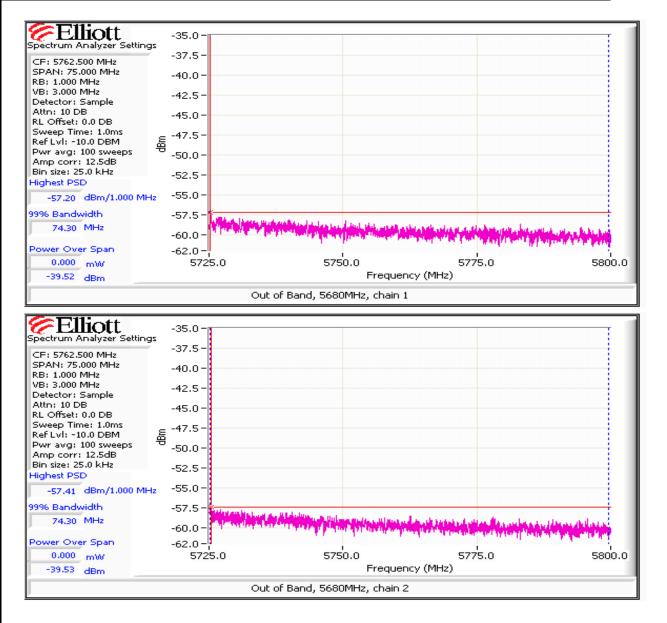








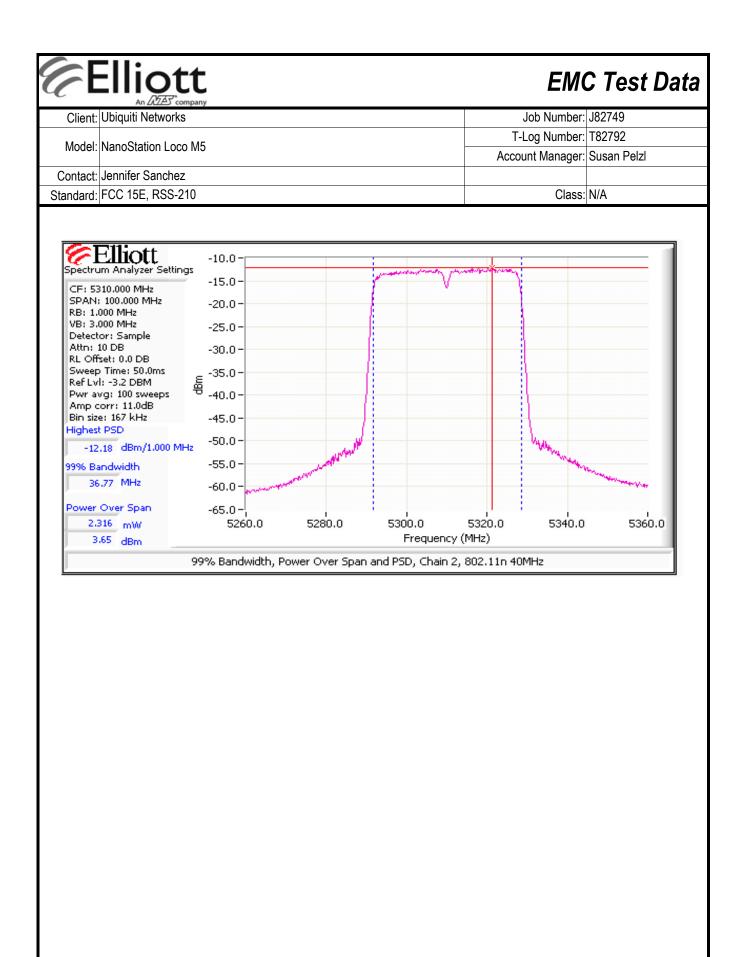




## Elliott

## EMC Test Data

| ·                  | An Due company      |                  |             |
|--------------------|---------------------|------------------|-------------|
| Client:            | Ubiquiti Networks   | Job Number:      | J82749      |
| Model: NanoStation | NanoStation Lass M5 | T-Log Number:    | Т82792      |
|                    |                     | Account Manager: | Susan Pelzl |
| Contact:           | Jennifer Sanchez    |                  |             |
| Standard:          | FCC 15E, RSS-210    | Class:           | N/A         |
|                    |                     |                  |             |

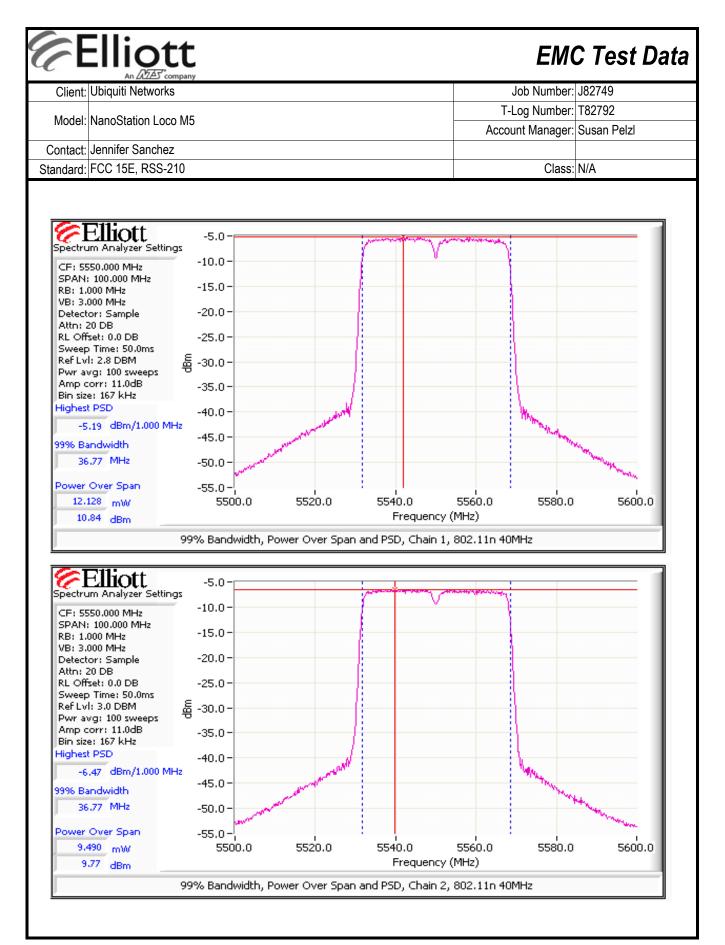
Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):


|         | Power   | Band edge Level |         |            |           | Total EIRP | Limit   | Result  |        |
|---------|---------|-----------------|---------|------------|-----------|------------|---------|---------|--------|
|         | Setting | dBm/MHz         | mW/MHz  | Gain (dBi) | mW/MHz    | dBm/MHz    | dBm/MHz | dBm/MHz | Result |
| Chain 1 | Q       | -57.2           | 0.00000 | 13.0       | 3.802E-05 | -44.2      | -41.3   | -27     | PASS   |
| Chain 2 | 0       | -57.4           | 0.00000 | 13.0       | 3.622E-05 | -44.4      | -41.5   | -21     | FA00   |



|                            |               |                                                                                                                            |                                                                                                                                                                                                                                                                 |                      | EMC Test Dat                                                                                                    |
|----------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| Client: U                  | Jbiquiti Netv | vorks                                                                                                                      |                                                                                                                                                                                                                                                                 | ,                    | Job Number: J82749                                                                                              |
| Model·N                    | VanoStation   | Loco M5                                                                                                                    |                                                                                                                                                                                                                                                                 |                      | Log Number: T82792                                                                                              |
|                            |               |                                                                                                                            |                                                                                                                                                                                                                                                                 | Αссοι                | unt Manager: Susan Pelzl                                                                                        |
|                            | Jennifer San  |                                                                                                                            |                                                                                                                                                                                                                                                                 |                      |                                                                                                                 |
| andard: F                  | FCC 15E, R    | 55-210                                                                                                                     |                                                                                                                                                                                                                                                                 |                      | Class: N/A                                                                                                      |
|                            |               | -                                                                                                                          | N) and FCC 15.40<br>Port Measuremen<br>n, Bandwidth and Sp                                                                                                                                                                                                      | ts                   | nissions                                                                                                        |
| st Speci <sup>.</sup>      | ific Detail   | S                                                                                                                          |                                                                                                                                                                                                                                                                 |                      |                                                                                                                 |
| •                          | Objective:    | The objective of this test session is to specification listed above.                                                       | perform final qualification                                                                                                                                                                                                                                     | n testing of th      | e EUT with respect to the                                                                                       |
| Test                       | t Engineer:   | 4/18/2011 18:24<br>Rafael Varelas<br>Fremont Chamber #7                                                                    | Config. Used:<br>Config Change:<br>EUT Voltage:                                                                                                                                                                                                                 | none                 |                                                                                                                 |
| mmary o                    | of Result     | S                                                                                                                          |                                                                                                                                                                                                                                                                 |                      |                                                                                                                 |
| Run                        | #             | Test Performed                                                                                                             | Limit                                                                                                                                                                                                                                                           | Pass / Fail          | Result / Margin                                                                                                 |
| 1                          |               | Power, 5250 - 5350MHz                                                                                                      | 15.407(a) (1), (2)                                                                                                                                                                                                                                              | Pass                 | 802.11n n40MHz: 15.5 mW                                                                                         |
| 1                          |               |                                                                                                                            |                                                                                                                                                                                                                                                                 |                      |                                                                                                                 |
| 1                          |               | PSD, 5250 - 5350MHz                                                                                                        | 15.407(a) (1), (2)                                                                                                                                                                                                                                              | Pass                 | 802.11n n40MHz: -2.5 dBm/MH                                                                                     |
|                            |               | PSD, 5250 - 5350MHz<br>Max EIRP<br>5250 - 5350MHz                                                                          | 15.407(a) (1), (2)<br>TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.                                                                                                                                             | Pass<br>Pass         | 802.11n n40MHz: -2.5 dBm/MH<br>EIRP = 6.9 dBm (4.9 mW)                                                          |
| 1                          |               | Max EIRP                                                                                                                   | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407(a) (1), (2)                                                                                                                                             | Pass<br>Pass         | EIRP = 6.9 dBm (4.9 mW)<br>802.11n n40MHz: 22.9 mW                                                              |
| 1                          |               | Max EIRP<br>5250 - 5350MHz                                                                                                 | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407(a) (1), (2)<br>15.407(a) (1), (2)<br>TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.                      | Pass<br>Pass         | EIRP = 6.9 dBm (4.9 mW)<br>802.11n n40MHz: 22.9 mW                                                              |
| 1<br>1<br>1<br>1           |               | Max EIRP<br>5250 - 5350MHz<br>Power, 5470 - 5725MHz<br>PSD, 5470 - 5725MHz<br>Max EIRP                                     | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407(a) (1), (2)<br>15.407(a) (1), (2)<br>TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold                                   | Pass<br>Pass         | EIRP = 6.9 dBm (4.9 mW)<br>802.11n n40MHz: 22.9 mW<br>802.11n n40MHz: -2.6 dBm/MH                               |
| 1<br>1<br>1<br>1<br>1      |               | Max EIRP<br>5250 - 5350MHz<br>Power, 5470 - 5725MHz<br>PSD, 5470 - 5725MHz<br>Max EIRP<br>5470 - 5725MHz                   | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407(a) (1), (2)<br>TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407                                  | Pass<br>Pass         | EIRP = 6.9 dBm (4.9 mW)<br>802.11n n40MHz: 22.9 mW<br>802.11n n40MHz: -2.6 dBm/MH<br>EIRP = 29.3 dBm (860.9 mW) |
| 1<br>1<br>1<br>1<br>1<br>1 |               | Max EIRP<br>5250 - 5350MHz<br>Power, 5470 - 5725MHz<br>PSD, 5470 - 5725MHz<br>Max EIRP<br>5470 - 5725MHz<br>26dB Bandwidth | TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407(a) (1), (2)<br>TPC required if EIRP≥<br>500mW (27dBm).<br>EIRP ≥ 200mW<br>(23dBm) DFS threshold<br>= -64dBm.<br>15.407<br>(Information only)<br>RSS 210 | Pass<br>Pass<br>Pass | 802.11n n40MHz: 22.9 mW<br>802.11n n40MHz: -2.6 dBm/MH<br>EIRP = 29.3 dBm (860.9 mW)<br>> 20MHz for all modes   |

| Client                                                 | Elliott                                                                                                                      |                                                                                          |                                                    | Job Number:                                             | C Test Data                              |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------|
| Clien                                                  |                                                                                                                              |                                                                                          |                                                    | T-Log Number:                                           |                                          |
| Mode                                                   | : NanoStation Loco M5                                                                                                        |                                                                                          |                                                    | Account Manager:                                        |                                          |
| Contact                                                | : Jennifer Sanchez                                                                                                           |                                                                                          |                                                    | 7.000unt Manager.                                       |                                          |
|                                                        | ; FCC 15E, RSS-210                                                                                                           |                                                                                          |                                                    | Class:                                                  | N/A                                      |
|                                                        | Test Configuration                                                                                                           |                                                                                          |                                                    | 0.000                                                   |                                          |
| nalyzer or                                             | suring the conducted emission<br>power meter via a suitable at<br>e external attenuators and cal                             | tenuator to prevent overloa                                                              |                                                    |                                                         | •                                        |
| Ambient Conditions:Temperature:20 °CRel. Humidity:36 % |                                                                                                                              |                                                                                          |                                                    |                                                         |                                          |
|                                                        | tions Made During Test<br>ations were made to the EUT                                                                        | •                                                                                        |                                                    |                                                         |                                          |
| Deviatio                                               | ns From The Standard                                                                                                         |                                                                                          |                                                    |                                                         |                                          |
|                                                        | ns were made from the requir                                                                                                 | ements of the standard.                                                                  |                                                    |                                                         |                                          |
| <b>Run #1: Ba</b><br>Note 1:                           | andwidth, Output Power and<br>Output power measured using averaging on (transmitted sing)                                    | ng a spectrum analyzer (se                                                               | e plots below). RB\                                |                                                         | •                                        |
| Note 2:                                                | Measured using the same a                                                                                                    |                                                                                          |                                                    |                                                         |                                          |
| Note 3:                                                | For RSS-210 the limit for the<br>10dBm/MHz. The limits are<br>PSD (calculated from the me<br>the measured value exceeds      | also corrected for instances<br>easured power divided by t<br>s the average by more thar | s where the highest<br>he measured 99% l<br>i 3dB. | measured value of the PSI<br>bandwidth) by more than 3d | D exceeds the average                    |
| Note 4:                                                | 99% Bandwidth measured in                                                                                                    |                                                                                          |                                                    |                                                         |                                          |
| NOLE 4.                                                | For MIMO systems the total linear terms). The antenna                                                                        | gain used to determine the<br>If the signals on the non-co                               | EIRP and limits for<br>herent between the          | PSD/Output power depend<br>transmit chains then the g   | s on the operating ain used to determine |
| Note 5:                                                | mode of the MIMO device.<br>the limits is the highest gain<br>chain. If the signals are coh<br>the EIRP is the product of th | erent then the effective ant                                                             | enna gain is the su                                |                                                         | •                                        |
|                                                        | the limits is the highest gain chain. If the signals are coh                                                                 | erent then the effective ant                                                             | enna gain is the su                                |                                                         | •                                        |


| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ubiquiti Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |              |                            |                        | Job Number: J82749 |                               |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|----------------------------|------------------------|--------------------|-------------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |              |                            | T-Log Number: T82792   |                    |                               |                        |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NanoStation Loco M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |              |                            | Accou                  | unt Manager:       | Susan Pelzl                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jennifer Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |              |                            |                        |                    |                               |                        |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FCC 15E, R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS-210                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |              |                            |                        | Class:             | N/A                           |                        |
| MO Devid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ce - 5250-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 MHz Band                                                                                                                                                                                                                                  | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |              |                            |                        |                    |                               |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              | Chain 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chain 2                                      | Chain 3      | Coherent                   | Effective <sup>5</sup> | EIRP (mW)          | EIRP (dBm)                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a Gain (dBi):                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                           |              | Yes                        | 16.0                   | 225.7              | 23.5                          |                        |
| wer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | 1            |                            | 1.1                    | 1                  |                               |                        |
| requency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26dB BW                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed Output Pov                                |              |                            | otal                   | Limit (dBm)        | Max Power                     | Pass or Fa             |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (MHz)                                                                                                                                                                                                                                        | Chain 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chain 2                                      | Chain 3      | mW                         | dBm                    | , ,                | (W)                           |                        |
| 5275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.7                                                                                                                                                                                                                                         | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.1                                          |              | 5.5                        | 7.4                    | 14.0               | 0.006                         | PASS                   |
| 5310<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.0                                                                                                                                                                                                                                         | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7                                          |              | 5.7                        | 7.5                    | 14.0               |                               | PASS                   |
| requency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99% <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SD <sup>2</sup> dBm/MF                       | J            | Total                      | I PSD                  | Li                 | mit                           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chain 2                                      | Chain 3      | mW/MHz                     |                        | FCC                | RSS 210 <sup>3</sup>          | Pass or Fa             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |              |                            |                        |                    | RSS 210                       |                        |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              | Chain 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | onaino       |                            |                        |                    |                               | DACC                   |
| 5275<br>5310<br>ote - high o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.6<br>36.9<br>channel at 53<br><b>ver at Low P</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.4<br>7.5                                                                                                                                                                                                                                   | -9.9<br>-10.6<br>meets band<br>g - 5250-535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | 0.2<br>0.1<br>nts when ope | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS<br>PASS<br>elow). |
| 5275<br>5310<br>ote - high o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.6<br>36.9<br>channel at 53<br><b>ver at Low P</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.4<br>7.5<br>310MHz only<br>ower Setting                                                                                                                                                                                                    | -9.9<br>-10.6<br>meets band<br>g - 5250-535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ote - high o<br><b>itput Pow</b><br>s <i>EIRP</i> do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excee<br>Elliott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF                                                                                                                                                                                     | -9.9<br>-10.6<br>meets band<br>g - 5250-535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ote - high o<br>s EIRP do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excee<br>Elliott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>-10<br>5ettings                                                                                                                                                                  | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ote - high o<br>utput Pow<br>s EIRP do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excee<br>Elliott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>od 500mW TF<br>-10<br>5ettings<br>-10                                                                                                                                                           | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ote - high o<br>utput Pow<br>s EIRP do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excee<br>Elliott<br>um Analyzer 5<br>310.000 MHz<br>100.000 MHz<br>100.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>-10<br>5ettings<br>-10<br>5ettings<br>-10<br>2 -20                                                                                                                               | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ote - high o<br>utput Pow<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 1,1<br>VB: 3,1<br>VB: 3,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excee<br>Elliott<br>m Analyzer S<br>310.000 MHz<br>100.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>-10<br>5ettings<br>-10<br>5ettings<br>-10<br>2 -20                                                                                                                               | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>te - high o<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>VB: 3J<br>Detect<br>Attn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excee<br>Elliott<br>um Analyzer 5<br>310.000 MHz<br>1000 MHz<br>000 MHz<br>000 MHz<br>000 MHz<br>001 Sample<br>10 DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>5ettings<br>-10<br>5ettings<br>-10<br>-20<br>-20<br>-20                                                                                                                          | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ite - high o<br>ite - high o<br>ite - high o<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN;<br>RB: 1.0<br>VB: 3.0<br>Detect<br>Attn: 3<br>RL Off<br>Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.6<br>36.9<br>channel at 53<br>wer at Low P<br>bes not excees<br>Elliott<br>um Analyzer S<br>310.000 MHz<br>: 100.000 MHz<br>: 50.000 MHz<br>: 50.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>5ettings -10<br>5ettings -10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10                                                                                      | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ite - high o<br>itput Pow<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN;<br>RB: 1,0<br>VB: 3,0<br>Detect:<br>RL Off<br>Sweep<br>Ref Lv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excees<br>Elliott<br>um Analyzer S<br>310.000 MHz<br>: 100.000 MHz<br>: 100.000 MHz<br>000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>od 500mW TF<br>5ettings -10<br>5ettings -10<br>2 -20<br>-30<br>-30                                                                                                                              | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ote - high of<br>utput Pow<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 1,1<br>VB: 3,1<br>Detect<br>Attn: 3<br>RL Off<br>Sweep<br>Ref Lv<br>Pwr av<br>Amp of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>ver                                                                                                                                                    | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>5ettings -10<br>5ettings -10<br>-10<br>5ettings -10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10                                                               | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>te - high of<br>s EIRP do<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 11,<br>VB: 3,<br>Detect<br>Attn: 1<br>RL Off<br>Sweep<br>Ref LV<br>Pwr av<br>Amp o<br>Bin size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>ver                                                                                                                                                    | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>5ettings -10<br>5ettings -10<br>-10<br>5ettings -10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10                                                               | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ite - high of<br>itput Pow<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 1,0<br>VB: 3,0<br>Detect<br>Attn:<br>RL Off<br>Sweep<br>Ref Lv<br>Pwr av<br>Amp of<br>Bin size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>ver                                                                                                                                                    | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>od 500mW TF<br>5ettings -10<br>5ettings -10<br>5ettings -10<br>5ettings -10<br>-10<br>5ettings -10<br>-10<br>-10<br>5ettings -10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10 | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ite - high of<br>itput Pow<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 1,1<br>VB: 3,1<br>Deten:<br>RE: 1,1<br>VB: 3,1<br>RE: 1,1<br>VB: 3,1<br>Deten:<br>RE: 1,1<br>VB: 3,1<br>RE: 1,1<br>VB: 3,1<br>VB: 3 | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>bes not excees<br>Elliott<br>Im Analyzer S<br>810,000 MHz<br>10000 MHz<br>1000 MHz<br>1                                    | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ed 500mW TF<br>5ettings -10<br>5ettings -10<br>2 -20<br>-30<br>-30<br>-30<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40                                                                             | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>5.0 -<br>5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ite - high of<br>s EIRP do<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 1,1<br>VB: 3,1<br>VB: 3          | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>ver                                                                                                                                                    | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>5ettings -10<br>5ettings -10<br>-10<br>5ettings -10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10                                                               | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>0.0 -<br>5.0 | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ite - high of<br>s EIRP do<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 1,1<br>VB: 3,1<br>VB: 3          | 36.6<br>36.9<br>channel at 53<br>wer at Low P<br>bes not exceed<br>Elliott<br>um Analyzer S<br>810.000 MHz<br>: 100.000 MHZ<br>: 100.0000 MHZ<br>: 100.000 MHZ<br>: 100.000 MHZ<br>: 100.000 MHZ | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>-10<br>-10<br>-10<br>-10<br>-20<br>-30<br>-30<br>-30<br>-30<br>-30<br>-30<br>-35<br>-40<br>-40<br>-40<br>-55<br>-60                                                              | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>5.0 -<br>5.0 | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | d requireme  | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0                  | PASS                   |
| 5275<br>5310<br>ite - high of<br>s EIRP do<br>s EIRP do<br>Spectru<br>CF: 53<br>SPAN:<br>RB: 1,1<br>VB: 3,1<br>Detter:<br>RE: 1,1<br>VB: 3,1<br>Detter:<br>RE: 1,1<br>VB: 3,1<br>Detter:<br>RE: 1,1<br>VB: 3,1<br>Detter:<br>RE: 1,1<br>VB: 3,1<br>Detter:<br>Sweep<br>Ref Lv<br>Pwr an<br>Amp of<br>Bin izz<br>Highest<br>-10<br>99% Ba<br>36<br>Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.6<br>36.9<br>channel at 53<br>ver at Low P<br>ver                                                                                                                                                    | 7.4<br>7.5<br>310MHz only<br>ower Setting<br>ad 500mW TF<br>-10<br>-10<br>-10<br>-10<br>-20<br>-30<br>-30<br>-30<br>-30<br>-30<br>-30<br>-35<br>-40<br>-40<br>-40<br>-55<br>-60                                                              | -9.9<br>-10.6<br>meets band<br>g - 5250-535<br>PC is not req<br>0.0 -<br>5.0 | -11.1<br>-12.2<br>edge radiate<br>0 MHz Band | ed requireme | <b>0.2</b> 0.1             | <b>-7.5</b><br>-8.3    | 1.0<br>1.0         | 11.0<br>11.0<br>etting (see b | PASS<br>elow).         |



| Client <sup>.</sup> |                  | works         |         |                        |                      |              |                        | Job Number:  | J82749               |            |
|---------------------|------------------|---------------|---------|------------------------|----------------------|--------------|------------------------|--------------|----------------------|------------|
| onorm.              | ••••             |               |         |                        |                      |              |                        | Log Number:  |                      |            |
| Model:              | NanoStation      | Loco M5       |         |                        |                      |              | int Manager:           |              |                      |            |
| Contact             | Jennifer Sar     | aha7          |         |                        |                      |              |                        | int manager. | Susan reizi          |            |
|                     |                  |               |         |                        |                      |              |                        | Class        | N1/A                 |            |
|                     | FCC 15E, R       |               | -       |                        |                      |              |                        | Class:       | N/A                  |            |
| MIMO Devid          | ce - 5470-572    | 25 MHz Band   |         |                        |                      |              | 5                      |              |                      | 1          |
|                     |                  |               | Chain 1 | Chain 2                | Chain 3              |              | Effective <sup>5</sup> | ( )          | EIRP (dBm)           |            |
|                     |                  | a Gain (dBi): | 13      | 13                     |                      | Yes          | 16.0                   | 860.9        | 29.3                 |            |
| Power (mea          | sured at two     | different set |         |                        |                      | g 9.5 does n | ot meet band           | edge require | ements)              |            |
| Frequency           | Software         | 26dB BW       | Measure | d Output Pov           | wer <sup>1</sup> dBm | To           | otal                   | Limit (dBm)  | Max Power            | Deep or F  |
| (MHz)               | Setting          | (MHz)         | Chain 1 | Chain 2                | Chain 3              | mW           | dBm                    | стин (авти)  | (W)                  | Pass or Fa |
| 5510                | 9.0              | 54.0          | 10.3    | 9.5                    |                      | 19.6         | 12.9                   | 14.0         |                      | PASS       |
| 5550                | 9.5              | 53.8          | 10.8    | 9.8                    |                      | 21.6         | 13.3                   | 14.0         | 0.022                | PASS       |
| 5670                | 8.5              | 52.0          | 7.8     | 6.1                    |                      | 10.2         | 10.1                   | 14.0         |                      | PASS       |
| PSD                 |                  |               |         |                        |                      |              |                        |              |                      |            |
| Frequency           | 99% <sup>4</sup> | Total         | Р       | SD <sup>2</sup> dBm/M⊦ | Ηz                   | Total        | PSD                    | Li           | nit                  | D          |
| (MHz)               | BW               | Power         | Chain 1 | Chain 2                | Chain 3              | mW/MHz       | dBm/MHz                | FCC          | RSS 210 <sup>3</sup> | Pass or Fa |
| 5510                | 36.8             | 12.9          | -5.6    | -6.2                   |                      | 0.5          | -2.9                   | 1.0          | 11.0                 | PASS       |
| 5550                | 36.8             | 13.3          | -5.2    | -6.5                   |                      | 0.5          | -2.8                   | 1.0          | 11.0                 | PASS       |
| 5670                | 36.6             | 10.1          | -8.0    | -9.7                   |                      | 0.3          | -5.7                   | 1.0          | 11.0                 | PASS       |

As EIRP exceeds 500mW TPC is required - measurements to show eirp < 250mW. Limit is set to 24dBm (250mW) minus the antenna gain (dBi).

| Frequency | Software | 26dB BW | Measure | Measured Output Power <sup>1</sup> dBm |         |     | Total |             | Max Power | Doce or Fail   |  |  |  |
|-----------|----------|---------|---------|----------------------------------------|---------|-----|-------|-------------|-----------|----------------|--|--|--|
| (MHz)     | Setting  | (MHz)   | Chain 1 | Chain 2                                | Chain 3 | mW  | dBm   | Limit (dBm) | (W)       | F 855 UI F 811 |  |  |  |
| 5510      | 4.0      |         | 5.6     | 3.9                                    |         | 6.1 | 7.8   | 8.0         |           | PASS           |  |  |  |
| 5550      | 4.0      |         | 5.6     | 4.0                                    |         | 6.1 | 7.9   | 8.0         | 0.006     | PASS           |  |  |  |
| 5670      | 4.5      |         | 5.3     | 4.0                                    |         | 5.9 | 7.7   | 8.0         |           | PASS           |  |  |  |

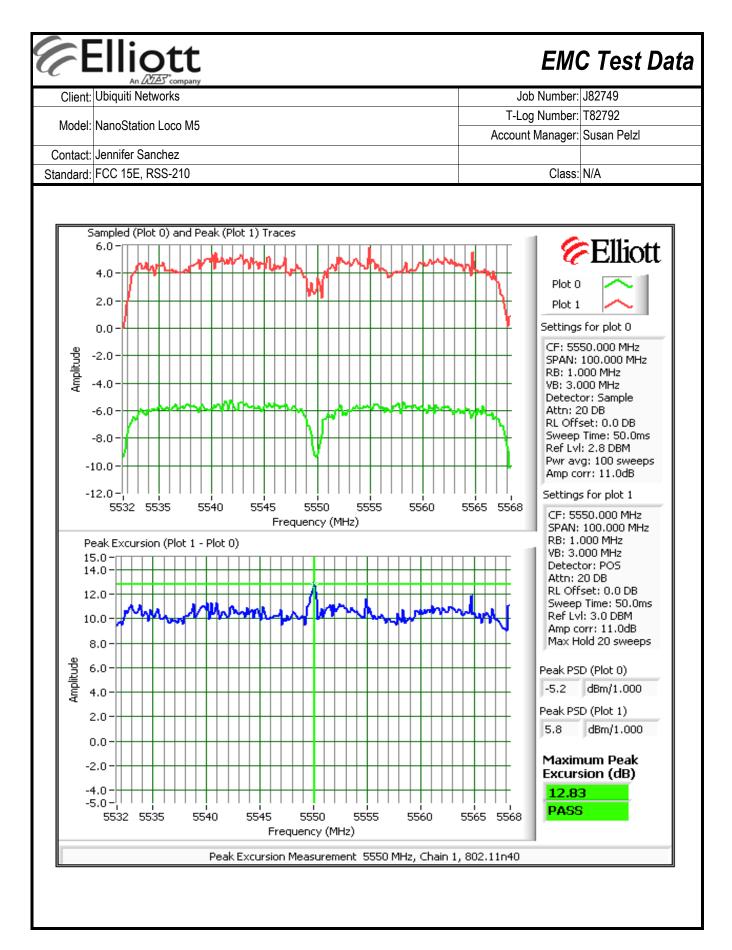




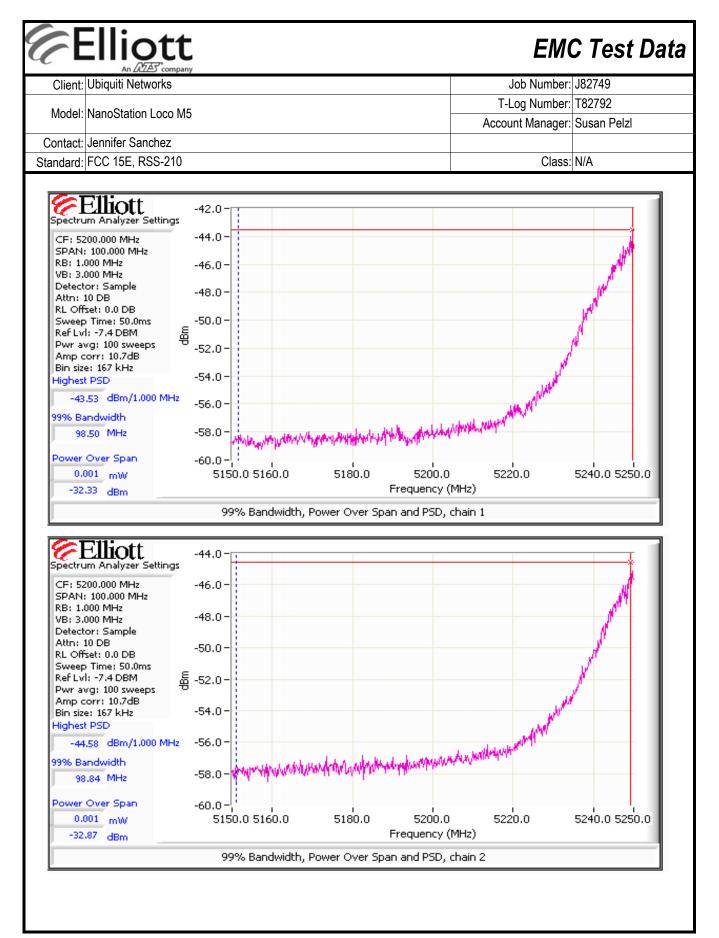
## EMC Test Data

|           | An ZALED company    |                  |             |
|-----------|---------------------|------------------|-------------|
| Client:   | Ubiquiti Networks   | Job Number:      | J82749      |
| Modol:    | NanoStation Loco M5 | T-Log Number:    | T82792      |
| wouer.    |                     | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez    |                  |             |
| Standard: | FCC 15E, RSS-210    | Class:           | N/A         |
|           |                     |                  |             |

### Run #2: Peak Excursion Measurement


#### 40MHz: Device meets the requirement for the peak excursion

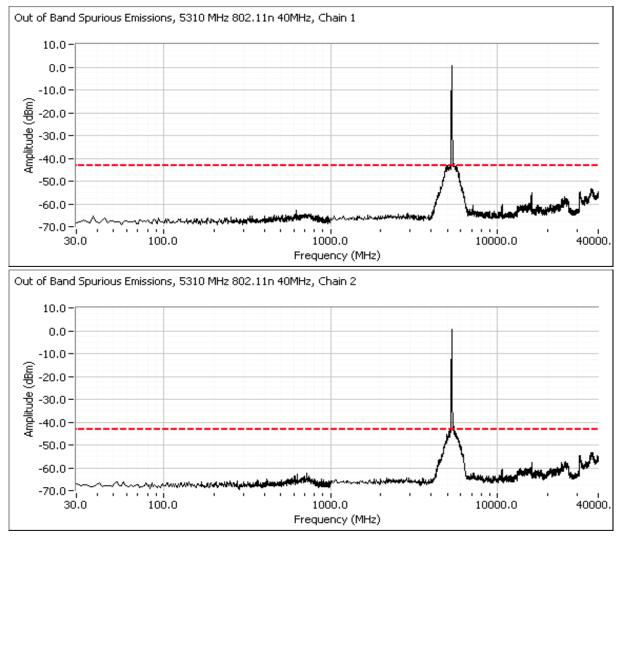
| Freq  | Peak Excursion(dB) |       | Freq  | Peak Excursion(dB) |           | Freq  | Peak Exc | ursion(dB) |
|-------|--------------------|-------|-------|--------------------|-----------|-------|----------|------------|
| (MHz) | Value              | Limit | (MHz) | Value              | Limit     | (MHz) | Value    | Limit      |
| 5190  |                    | 13.0  | 5275  | 11.1               | 11.1 13.0 |       | 12.6     | 13.0       |
| 5230  |                    | 13.0  | 5310  | 12.7               | 13.0      | 5550  | 12.8     | 13.0       |
|       |                    |       |       |                    |           | 5670  | 11.8     | 13.0       |


## Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)




|                                 | Ellic                                        | ott                                                                               |                                    |                                   |                                  |                                |                | EM                            | C Test        | Dat        |
|---------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|-----------------------------------|----------------------------------|--------------------------------|----------------|-------------------------------|---------------|------------|
|                                 | Ubiquiti Net                                 | Company                                                                           |                                    |                                   |                                  |                                |                | Job Number:                   | J82749        |            |
|                                 |                                              |                                                                                   |                                    |                                   |                                  |                                | T-l            | _og Number:                   | T82792        |            |
| Model                           | NanoStatior                                  | n Loco M5                                                                         |                                    |                                   |                                  |                                |                | -                             | Susan Pelzl   |            |
| Contact                         | Jennifer Sa                                  | nchez                                                                             |                                    |                                   |                                  |                                |                |                               |               |            |
| Standard                        | FCC 15E, R                                   | SS-210                                                                            |                                    |                                   |                                  |                                |                | Class:                        | N/A           |            |
|                                 |                                              | Spurious Em                                                                       |                                    |                                   |                                  |                                | -fabia data -  |                               | 1.4           | -in a d fa |
|                                 |                                              | a gain used is<br>nd the limit w                                                  |                                    | -                                 |                                  |                                |                |                               | lots were obt | ained to   |
|                                 | -                                            | umber of tran                                                                     | •                                  |                                   |                                  |                                | inditaneouol   | y                             |               |            |
|                                 |                                              | Maximum An                                                                        |                                    |                                   |                                  |                                |                |                               |               |            |
|                                 |                                              |                                                                                   | urious Limit:                      |                                   | dBm/MHz e                        | irp                            |                |                               |               |            |
|                                 |                                              | Adjustment                                                                        |                                    |                                   | dB adjustme                      | •                              | e chains.      |                               |               |            |
|                                 |                                              | _imit Used Or                                                                     |                                    | 12 0                              | dBm/MHz                          |                                |                | z, VB=10Hz)                   |               |            |
|                                 | L                                            |                                                                                   | 1 11015 .                          | -23.0                             | dBm/MHz                          | Peak Limit (                   | RB=VB=1MH      | łz)                           |               |            |
| Note 1:<br>Note 2:              | consideration<br>more than 5<br>known at the | n/MHz limit is<br>on the maximu<br>0MHz from th<br>ese frequenci<br>signals below | um antenna<br>he bands and<br>ies. | gain (limit = -<br>d that are clo | -27dBm - anto<br>ose to the limi | enna gain). I<br>t are made to | Radiated field | d strength me<br>compliance a | easurements   | for sign   |
| Note 3:                         |                                              | in 10MHz of                                                                       |                                    |                                   |                                  |                                |                |                               |               |            |
| Note 4:                         |                                              | is for outdoo                                                                     |                                    |                                   | -                                |                                |                |                               |               |            |
| Note 5:                         |                                              | fall in the res                                                                   |                                    |                                   |                                  |                                |                |                               |               |            |
|                                 | ch chain sho                                 | 50 MHz Bano<br>wing complian                                                      | d (5275 MHz<br>nce with the        | <b>z)</b><br>-27dBm/MHz           |                                  | ·                              | ·              |                               | frequencies   | set to 51  |
|                                 | Power                                        |                                                                                   | ge Level                           | Antenna                           |                                  | RP                             | Total EIRP     | Limit                         |               | 1          |
|                                 |                                              |                                                                                   |                                    | Gain (dBi)                        | mW/MHz                           | dBm/MHz                        | dBm/MHz        | dBm/MHz                       | Result        |            |
|                                 | Setting                                      | dBm/MHz                                                                           | mW/MHz                             |                                   |                                  |                                |                |                               |               |            |
| 5250 MHz,<br>Chain 1<br>Chain 2 |                                              | dBm/MHz<br>-43.5<br>-44.6                                                         | 0.00004                            | 13.0<br>13.0                      | 0.0008851 0.000695               | -30.5<br>-31.6                 | -28.0          | -27                           | PASS          |            |



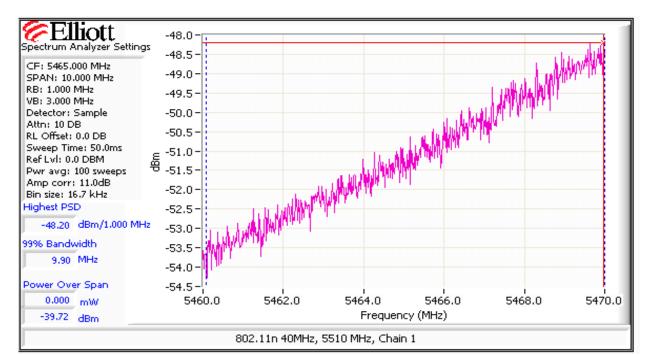
# Client: Ubiquiti Networks Job Number: J82749 Model: NanoStation Loco M5 T-Log Number: T82792 Contact: Jennifer Sanchez Susan Pelzl Standard: FCC 15E, RSS-210 Class: N/A

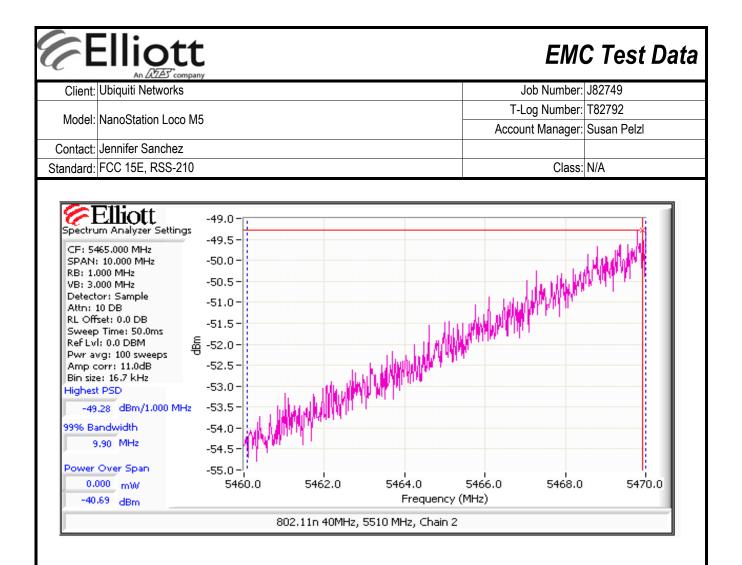
### High channel, 5250 - 5350 MHz Band

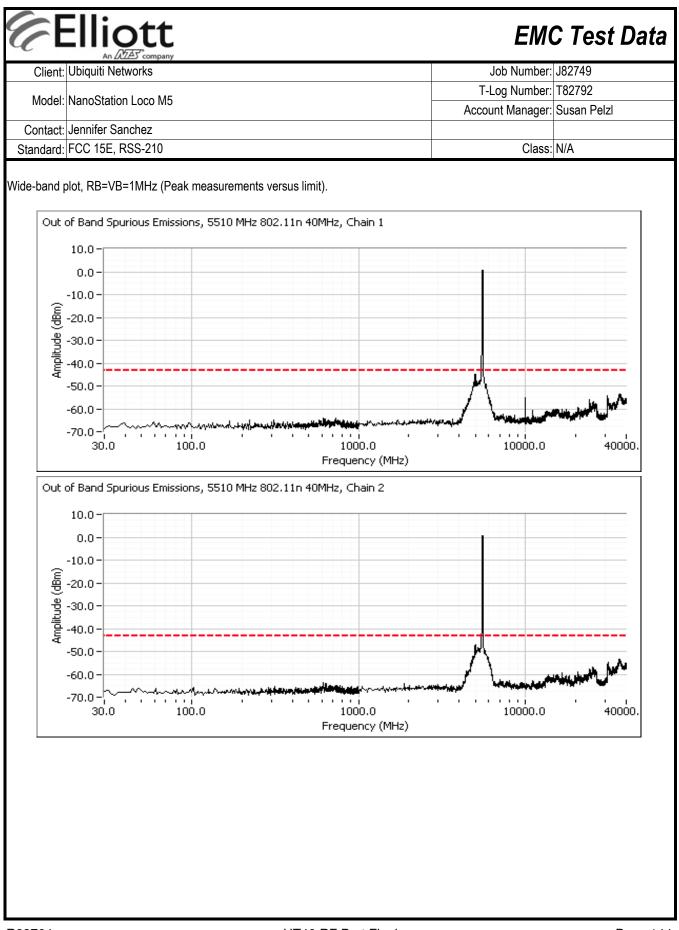
Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

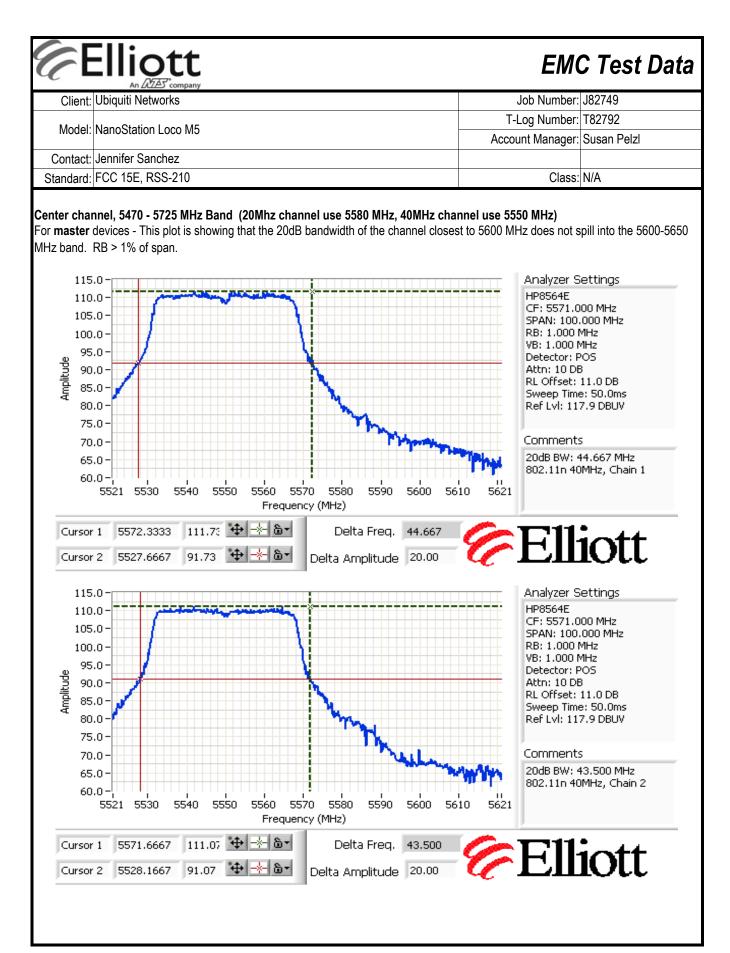


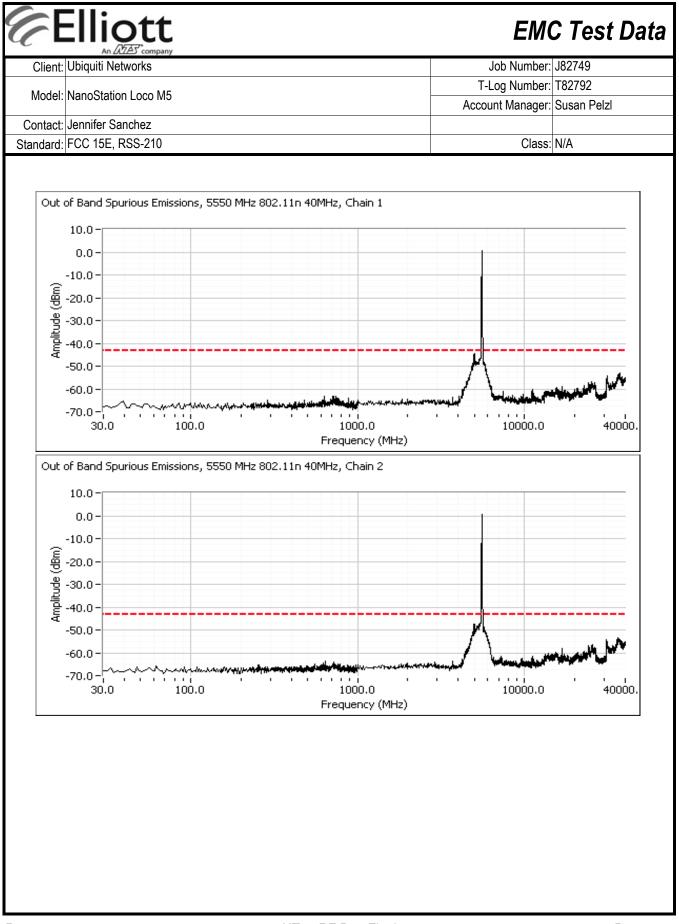
# Elliott

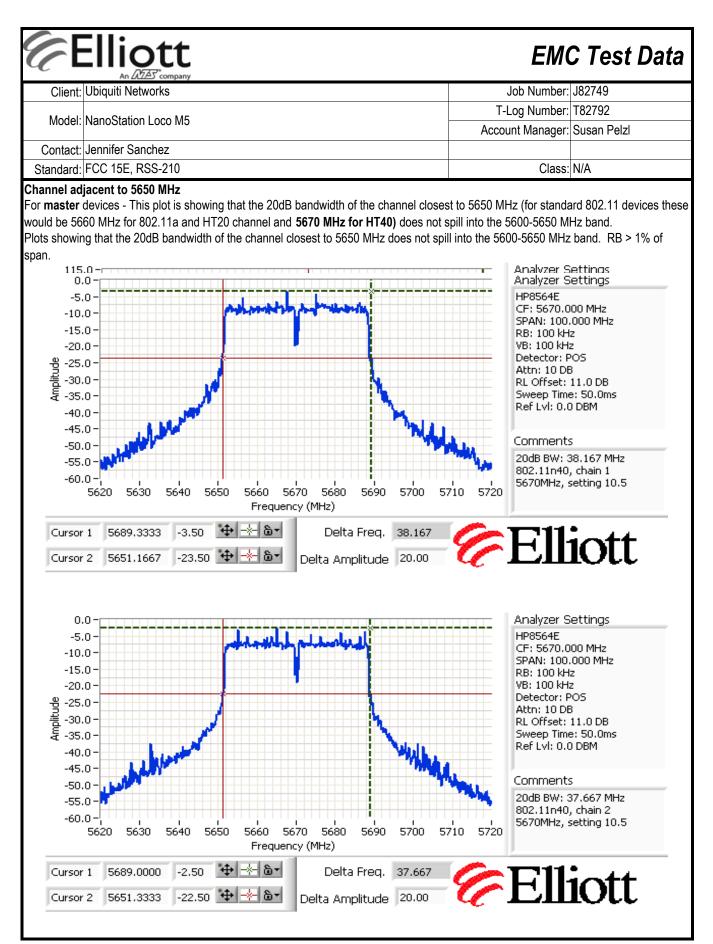

## EMC Test Data


|           | An Durb company     |                  |             |
|-----------|---------------------|------------------|-------------|
| Client:   | Ubiquiti Networks   | Job Number:      | J82749      |
| Madal     | NanoStation Loco M5 | T-Log Number:    | T82792      |
| MOUEI.    |                     | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez    |                  |             |
| Standard: | FCC 15E, RSS-210    | Class:           | N/A         |
|           |                     |                  |             |


#### Low channel, 5470 - 5725 MHz Band


Plots for each chain showing compliance with the -27dBm/MHz limit for the 5460 - 5470 MHz band edge. Start and stop frequencies set to 5460-5470 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces). **Note** - compliance with the radiated limits for the restricted band immediately below 5460MHz is demonstrated through the radiated emissions tests.


|         | Power   | Band edge Level |         | Antenna    | Ell       | EIRP    |         | Limit   | Result |
|---------|---------|-----------------|---------|------------|-----------|---------|---------|---------|--------|
|         | Setting | dBm/MHz         | mW/MHz  | Gain (dBi) | mW/MHz    | dBm/MHz | dBm/MHz | dBm/MHz | Result |
| Chain 1 | 9.5     | -48.2           | 0.00002 | 13.0       | 0.000302  | -35.2   | -32.7   | -27     | PASS   |
| Chain 2 | 9.0     | -49.3           | 0.00001 | 13.0       | 0.0002344 | -36.3   | -32.1   | -21     | FA00   |

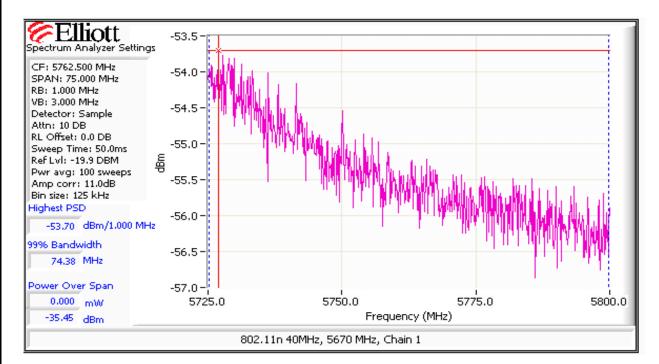


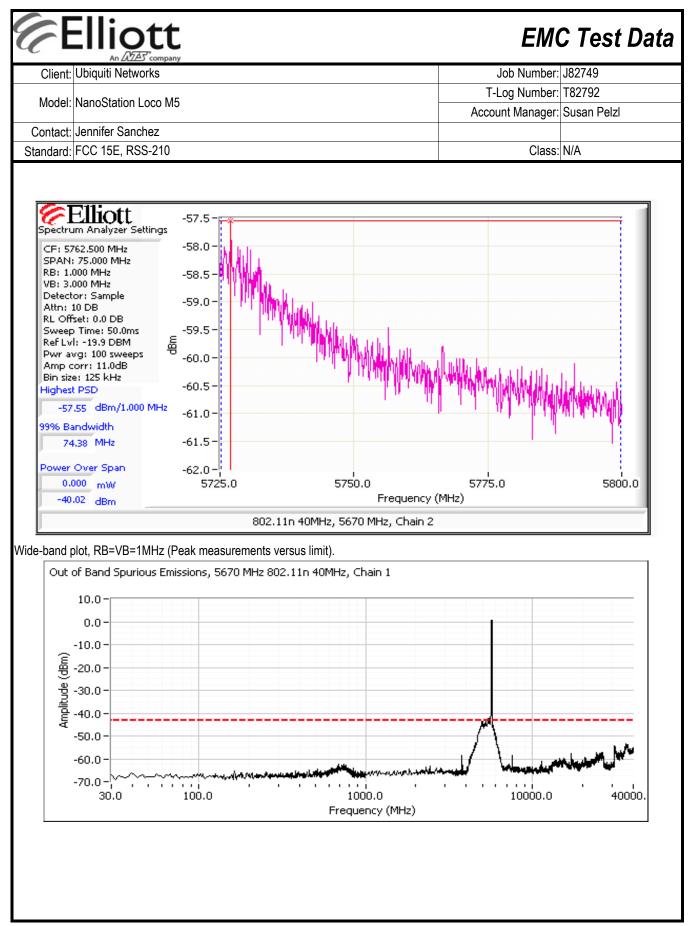


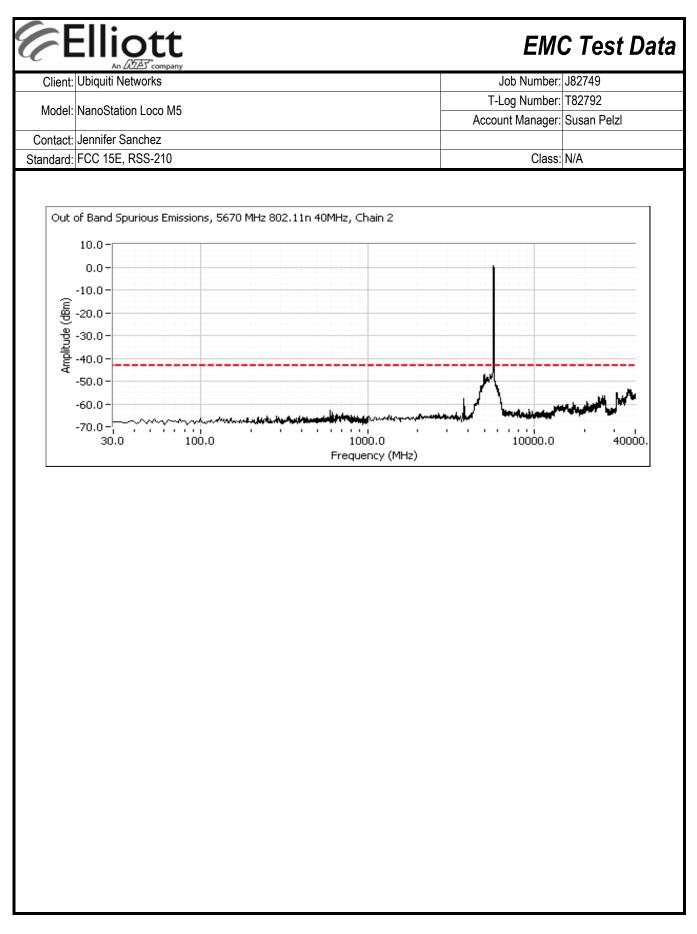








| Œ         | Elliott<br>An DEAS' company | EMO              | C Test Data |
|-----------|-----------------------------|------------------|-------------|
| Client:   | Ubiquiti Networks           | Job Number:      | J82749      |
| Madalı    | NanaStation Loss ME         | T-Log Number:    | T82792      |
| woder.    | NanoStation Loco M5         | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez            |                  |             |
| Standard: | FCC 15E, RSS-210            | Class:           | N/A         |
|           |                             |                  |             |


#### High channel, 5470 - 5725 MHz Band

Plots for each chain showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. Start and stop frequencies set to 5725-5800 MHz, RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

|         | Power   | Band ed | ge Level | Antenna    | Ell       | RP      | Total EIRP | Limit   | Result |
|---------|---------|---------|----------|------------|-----------|---------|------------|---------|--------|
|         | Setting | dBm/MHz | mW/MHz   | Gain (dBi) | mW/MHz    | dBm/MHz | dBm/MHz    | dBm/MHz | Resuit |
| Chain 1 | 10.5    | -53.7   | 0.00000  | 13.0       | 8.511E-05 | -40.7   | -39.2      | -27     | PASS   |
| Chain 2 | 10.5    | -57.6   | 0.00000  | 13.0       | 3.508E-05 | -44.6   | -39.2      | -21     | FA00   |







# Elliott

## EMC Test Data

|           | An Z(ZA) company    |                  |             |
|-----------|---------------------|------------------|-------------|
| Client:   | Ubiquiti Networks   | Job Number:      | J82749      |
| Model     | NanoStation Loco M5 | T-Log Number:    | T82792      |
| Mouel.    |                     | Account Manager: | Susan Pelzl |
| Contact:  | Jennifer Sanchez    |                  |             |
| Standard: | FCC 15E, RSS-210    | Class:           | N/A         |
|           |                     |                  |             |

### RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

#### **Test Specific Details**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

#### **General Test Configuration**

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with cables routed beneath the floor.

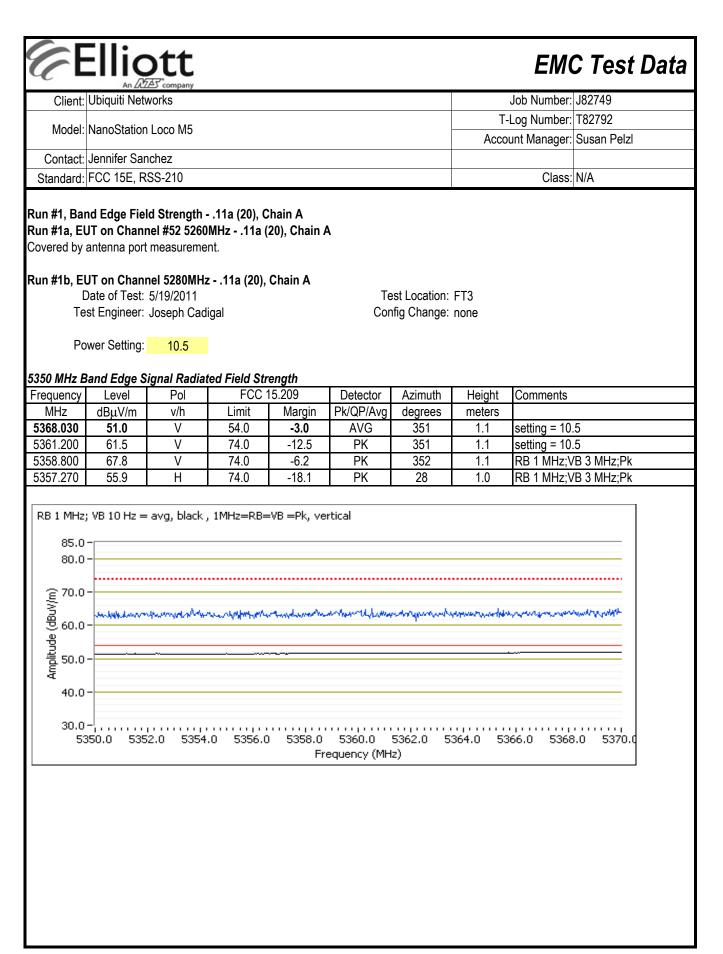
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

#### Ambient Conditions:

| Temperature:   | 20.4 °C |
|----------------|---------|
| Rel. Humidity: | 36 %    |

#### Summary of Results

Compliance with the -27dBm/MHz eirp limit in the frequency bands 5150-5250MHz, 5460-5470MHz and imediately above 5725 MHz is demonstarted through conducted measurements. Radiated measurements are used to demonstarte compliance in the 5350-5460MHz restricted band for the highest channel in the 5250-5350MHz band and the lowest channel in the 5470-5725 MHz band. Final power setting is the power setting that is at the maximum rating for that particular mode/channel. In all cases the measurements were made at or above the final power level.


| Run #   | Mode                 | Channel         | Final power<br>Setting                | Power<br>Setting<br>Tested | Test Performed                      | Limit  | Result / Margin                    |
|---------|----------------------|-----------------|---------------------------------------|----------------------------|-------------------------------------|--------|------------------------------------|
| Run #1  | .11a (20)<br>Chain A | 5320MHz         | 5.0<br>(8 for<br>adjacent<br>channel) | 11.0                       | Restricted Band Edge at 5350 MHz    | 15.209 | 53.8dBµV/m @<br>5351.6MHz (-0.2dB) |
|         |                      | 5500 MHz        | 12.0                                  | 12.0                       | Restricted Band Edge at<br>5460 MHz | 15.209 | 52.1dBµV/m @<br>5455.9MHz (-1.9dB) |
| Run # 3 | HT20                 | #64<br>5320MHz  | 5.0                                   | 9.5                        | Restricted Band Edge at<br>5350 MHz | 15.209 | 51.7dBµV/m @<br>5350.1MHz (-2.3dB) |
| Kun # 3 | Chain A+B            | #100<br>5500MHz | 9.0                                   | 11.5                       | Restricted Band Edge at<br>5460 MHz | 15.209 | 52.1dBµV/m @<br>5459.6MHz (-1.9dB) |
|         |                      | 5275MHz         | 5.0                                   | 7.0                        | Restricted Band Edge at<br>5350 MHz | 15.209 | 52.8dBµV/m @<br>5350.3MHz (-1.2dB) |
| Run #4  | HT40<br>Chain A+B    | 5310MHz         | 3.0                                   | 3.0                        | Restricted Band Edge at<br>5350 MHz | 15.209 | 53.0dBµV/m @<br>5350.4MHz (-1.0dB) |
|         |                      | #102<br>5510MHz | 9.0                                   | 9.0                        | Restricted Band Edge at<br>5460 MHz | 15.209 | 53.7dBµV/m @<br>5459.9MHz (-0.3dB) |

| Client <sup>.</sup> | Ubiquiti Netv       | vorks            |                        |                            |                                     | Job Number:      | 182749                            |
|---------------------|---------------------|------------------|------------------------|----------------------------|-------------------------------------|------------------|-----------------------------------|
| Oliont.             |                     |                  |                        |                            |                                     | T-Log Number:    |                                   |
| Model:              | NanoStation         | Loco M5          |                        |                            |                                     | Account Manager: |                                   |
| Contact:            | Jennifer Sar        | nchez            |                        |                            |                                     |                  |                                   |
| Standard:           | FCC 15E, R          | SS-210           |                        |                            |                                     | Class:           | N/A                               |
|                     |                     |                  |                        |                            |                                     |                  |                                   |
| Run #               | Mode                | Channel          | Final power<br>Setting | Power<br>Setting<br>Tested | Test Performed                      | Limit            | Result / Margin                   |
| Run # 5             | HT5                 | 5340MHz          | 4.5                    | 8.5                        | Restricted Band Edge at<br>5350 MHz | 15.209           | 53.3dBµV/m @<br>5350.0MHz (-0.7dE |
| Kull # 5            | Chain A+B           | 5475 MHz         | 5.0                    | 10.5                       | Restricted Band Edge at<br>5460 MHz | 15.209           | 52.9dBµV/m @<br>5459.1MHz (-1.1dE |
| D # C               | HT8<br>Obain A. D   | HT8<br>5330MHz   | 5.0                    | 11.0                       | Restricted Band Edge at<br>5350 MHz | 15.209           | 53.8dBµV/m @<br>5350.3MHz (-0.2dE |
| Run # 6             | Chain A+B           | HT8<br>5475 MHz  | 4.5                    | 11.0                       | Restricted Band Edge at<br>5460 MHz | 15.209           | 53.5dBµV/m @<br>5459.9MHz (-0.5dE |
| Jun # 7             | HT10<br>Chain A - D | HT10<br>5330MHz  | 5.0                    | 9.0                        | Restricted Band Edge at 5350 MHz    | 15.209           | 53.8dBµV/m @<br>5351.7MHz (-0.2dE |
| Run # 7             | Chain A+B           | HT10<br>5480 MHz | 6.0                    | 10.5                       | Restricted Band Edge at 5460 MHz    | 15.209           | 52.5dBµV/m @<br>5459.4MHz (-1.5dE |
| Dup # 9             | HT30<br>Chain A - P | HT30<br>5315MHz  | 5.0                    | 5.5                        | Restricted Band Edge at 5350 MHz    | 15.209           | 53.9dBµV/m @<br>5350.0MHz (-0.1dl |
| Run # 8             | Chain A+B           | HT30<br>5500 MHz | 8.0                    | 9.5                        | Restricted Band Edge at<br>5460 MHz | 15.209           | 53.7dBµV/m @<br>5459.2MHz (-0.3dl |

Modifications Made During Testing No modifications were made to the EUT during testing

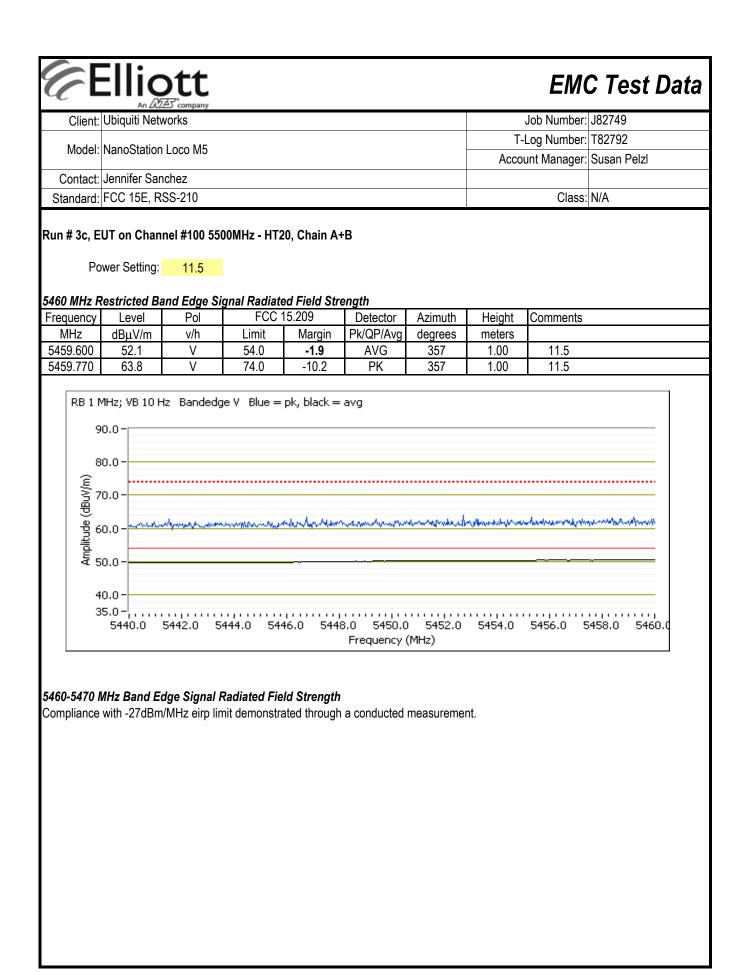
#### **Deviations From The Standard**

No deviations were made from the requirements of the standard.



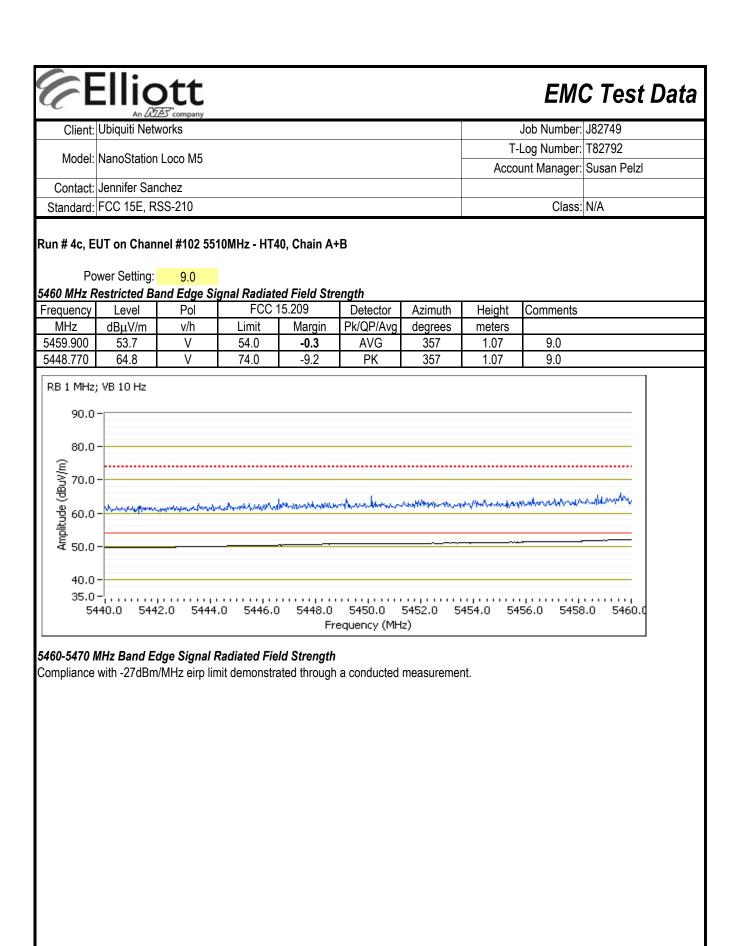
| Model: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jbiquiti Netv                                                  | vorks      |               |                  |                       |                 |               | Job Number: J82749             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------|---------------|------------------|-----------------------|-----------------|---------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |            |               |                  |                       |                 |               | Log Number: T82792             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |            |               |                  |                       |                 | Acco          | unt Manager: Susan Pelzl       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lennifer San                                                   |            |               |                  |                       |                 |               |                                |
| Standard: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |            | 44. (00)      |                  |                       |                 |               | Class: N/A                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ate of Test:                                                   |            | z11a (20),    | Chain A          | Τe                    | est Location:   | FT3           |                                |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Engineer:                                                    | Joseph Cad | ligal         |                  | Cor                   | nfig Change:    | none          |                                |
| Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ver Setting:                                                   | 10.0       |               |                  |                       |                 |               |                                |
| FUW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or ocurry.                                                     | 10.0       |               |                  |                       |                 |               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |            | ted Field Str |                  |                       | A_1             | 11.2.1.6      | O                              |
| requency<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Level<br>dBµV/m                                                | Pol<br>v/h | Limit         | 15.209<br>Margin | Detector<br>Pk/QP/Avg | Azimuth degrees | Height meters | Comments                       |
| 5360.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.3                                                           | V          | 54.0          | -2.7             | AVG                   | 350             | 1.0           | setting = 10                   |
| 5359.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61.8                                                           | V          | 74.0          | -12.2            | PK                    | 350             | 1.0           | setting = 10                   |
| 5361.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.5                                                           | Н          | 54.0          | -9.5             | AVG                   | 31              | 1.0           | RB 1 MHz;VB 10 Hz;Pk           |
| 356.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.4                                                           | Н          | 74.0          | -17.6            | PK                    | 31              | 1.0           | RB 1 MHz;VB 3 MHz;Pk           |
| (m//vulture<br>e0.0 - (m//vulture<br>e0.0 - (m//vulture<br>e0.0 - (m//vulture<br>e0.0 - (m//vulture)<br>e0.0 - (m//vultur | ityters og skiller for som |            |               |                  |                       | ······          |               | hyen bon klass nor et og fin k |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |            |               |                  |                       |                 |               |                                |
| 30.0 -<br>535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.0 535                                                       | 2.0 5354   | .0 5356.0     | ) 5358.0         | 5360.0<br>equency (MH | 5362.0 5        | 364.0 53      | 366.0 5368.0 5370.0            |

Page 154

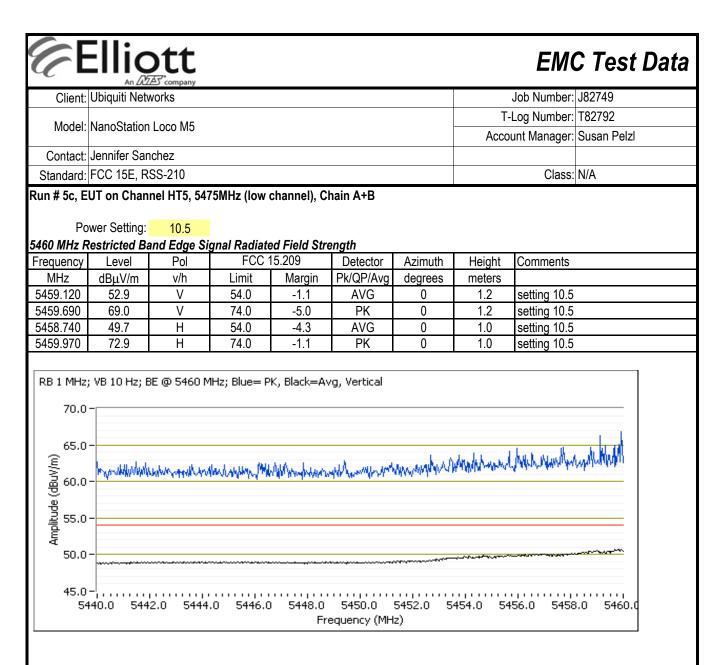

| <b>C</b> E                                      | Ellic                                         | D <b>tt</b>                    |                        |                 |                       |                              |                  | EM           | C Test Data |
|-------------------------------------------------|-----------------------------------------------|--------------------------------|------------------------|-----------------|-----------------------|------------------------------|------------------|--------------|-------------|
| Client:                                         | Ubiquiti Net                                  |                                |                        |                 |                       |                              |                  | Job Number:  | J82749      |
| Madal                                           | NanoStation                                   |                                |                        |                 |                       |                              | T-               | Log Number:  | T82792      |
|                                                 |                                               |                                |                        |                 |                       |                              | Acco             | unt Manager: | Susan Pelzl |
|                                                 | Jennifer Sar                                  |                                |                        |                 |                       |                              |                  |              |             |
|                                                 | FCC 15E, R                                    |                                |                        |                 |                       |                              |                  | Class:       | N/A         |
| E<br>Te<br>Po                                   | Date of Test:<br>st Engineer:<br>wer Setting: | 5/9/2011<br>Joseph Cad<br>11.0 |                        |                 | -                     | est Location:<br>fig Change: |                  |              |             |
|                                                 |                                               |                                | ted Field Str<br>FCC 1 |                 | Detector              | A —inecutio                  | Llaisht          | Commonto     |             |
| Frequency<br>MHz                                | Level<br>dBµV/m                               | Pol<br>v/h                     | Limit                  | 5.209<br>Margin | Detector<br>Pk/QP/Avg | Azimuth<br>degrees           | Height<br>meters | Comments     |             |
| 5358.300                                        | 53.2                                          | V                              | 54.0                   | -0.8            | AVG                   | 360                          | 1.2              | setting =11  |             |
| 5361.130                                        | 65.0                                          | V                              | 74.0                   | -9.0            | PK                    | 360                          | 1.2              | setting =11  |             |
| 5361.970                                        | 37.6                                          | Н                              | 54.0                   | -16.4           | AVG                   | 30                           | 1.0              | setting =11  |             |
| 5366.070                                        | 49.3                                          | Н                              | 74.0                   | -24.7           | PK                    | 30                           | 1.0              | setting =11  |             |
| (m/kngp) 50.0<br>apnjiduw<br>30.0<br>20.0<br>53 |                                               |                                |                        |                 | 5360.0 Sequency (MH   | 5362.0 53                    |                  |              |             |
|                                                 |                                               |                                |                        |                 |                       |                              |                  |              |             |

| <b>E</b>                                  | Ellic                                                               | D <b>tt</b> |               |               |                  |                               |               | EMO          | C Test Data |
|-------------------------------------------|---------------------------------------------------------------------|-------------|---------------|---------------|------------------|-------------------------------|---------------|--------------|-------------|
| Client:                                   | Ubiquiti Netv                                                       |             |               |               |                  |                               |               | Job Number:  | J82749      |
| Model                                     | NanoStation                                                         | Loso M5     |               |               |                  |                               | T-            | Log Number:  | T82792      |
|                                           |                                                                     |             |               |               |                  |                               | Acco          | unt Manager: | Susan Pelzl |
|                                           | Jennifer San<br>FCC 15E, R                                          |             |               |               |                  |                               |               | Class:       | N/A         |
| E<br>Te                                   | <b>JT on Chanr</b><br>Date of Test:<br>st Engineer:<br>wer Setting: | 5/9/2011    |               | Chain A       |                  | est Location:<br>ıfig Change: |               |              |             |
|                                           | and Edge S                                                          |             |               |               |                  |                               |               |              |             |
| Frequency                                 | Level                                                               | Pol         | FCC 1         |               | Detector         | Azimuth                       | Height        | Comments     |             |
| MHz<br>5357.600                           | dBµV/m<br><b>54.0</b>                                               | v/h<br>V    | Limit<br>54.0 | Margin<br>0.0 | Pk/QP/Avg<br>AVG | degrees<br>358                | meters<br>1.1 | setting = 11 |             |
| 5363.970                                  | <b>54.0</b><br>65.3                                                 | V           | 54.0<br>74.0  | -8.7          | PK               | 358                           | 1.1           | setting = 11 |             |
| ///ngp) 50.0<br>epn1ljdwy<br>30.0<br>20.0 | - h,, do-bridanh,<br>                                               |             |               |               |                  |                               |               | 5351.0       |             |
|                                           |                                                                     |             |               |               |                  |                               |               |              |             |

| (CE             | Elli                                                 | ott<br>MAS company |               |                |                  |                             |                | EM           | C Test Data |
|-----------------|------------------------------------------------------|--------------------|---------------|----------------|------------------|-----------------------------|----------------|--------------|-------------|
| Client:         |                                                      | Networks           |               |                |                  |                             |                | Job Number:  | J82749      |
| Madali          | Nana Ch                                              | tion Loop ME       |               |                |                  |                             | T-             | Log Number:  | T82792      |
| wodel:          | Nanosta                                              | ation Loco M5      |               |                |                  |                             | Acco           | unt Manager: | Susan Pelzl |
|                 |                                                      | Sanchez            |               |                |                  |                             |                |              |             |
| Standard:       | FCC 15                                               | E, RSS-210         |               |                |                  |                             |                | Class:       | N/A         |
| E<br>Te<br>Po   | Date of T<br>st Engine<br>wer Sett<br><b>and Edg</b> | ge Signal Radiat   | ted Field Str | ength          | Te<br>Con        | st Location:<br>fig Change: | none           |              |             |
| Frequency       | Leve                                                 |                    |               | 15.209         | Detector         | Azimuth                     | Height         | Comments     |             |
| MHz<br>5351.570 | <u>dBµV/</u><br>53.8                                 |                    | Limit<br>54.0 | Margin<br>-0.2 | Pk/QP/Avg<br>AVG | degrees<br>12               | meters<br>1.00 | Power Setti  | ng          |
| 5351.570        | 70.9                                                 |                    | 74.0          | -0.2           | PK               | 12                          | 1.00           | 11.0<br>11.0 |             |
|                 | 50.0 -<br>40.0 -                                     | .0 5352.0          |               |                |                  | .0 5362.0                   |                |              |             |
|                 |                                                      |                    |               |                |                  |                             |                |              |             |

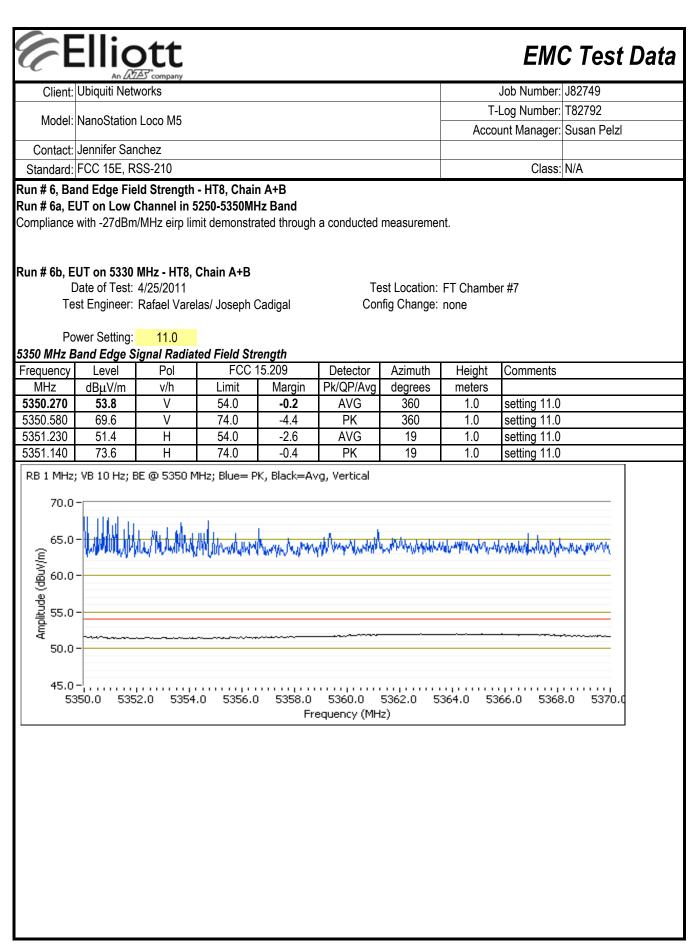

| Client:       Ubiquiti Networks       Job Number:       J82749         Model:       NanoStation Loco M5       T-Log Number:       T82792         Contact:       Jennifer Sanchez       Account Manager:       Susan Pelzl         Contact:       Jennifer Sanchez       Class:       N/A         Standard:       FCC 15E, RSS-210       Class:       N/A         un #1c, EUT on Channel #100 5500MHz11a (20), Chain A       Power Setting:       12.0         Model:       12.0       12.0       12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Ellic         | ott          |                  |               |          |                   |          | EMO               | C Test Data                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------|------------------|---------------|----------|-------------------|----------|-------------------|------------------------------------|
| Model:         NanoStation Loco M5         Account Manager:         Susan Pelzl           Contact:         Jennifer Sanchez         Class:         N/A           Standard:         FCC 15E, RSS-210         Class:         N/A           un #1c, EUT on Channel #100 5500MHz11a (20), Chain A         Power Setting:         12.0           f60 MHz Restricted Band Edge Signal Radiated Field Strength         For Market Strength           requency         Level         Pol         FCC 15.209         Detector         Azimuth         Height         Comments           MHz         dBµV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           455.900         52.1         V         54.0         -1.9         AVG         0         1.00           i457.230         62.8         V         74.0         -11.2         PK         0         1.00           g8.0.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th></th> <th>An ZALZ</th> <th>Company</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> |               | An ZALZ       | Company      |                  |               |          |                   |          |                   |                                    |
| Contact:         Jennifer Sanchez           Standard:         FCC 15E, RSS-210         Class: N/A           un #1c, EUT on Channel #100 5500MHz11a (20), Chain A         Power Setting:         12.0 <i>I60 MHz Restricted Band Edge Signal Radiated Field Strength</i> requency         Level         Pol           FCC 15.2.09         Detector         Azimuth         Height         Comments           MHz         dBµV/m         vh         Limit         Margin         Pk/QP/Avg         degrees         meters           455.900         52.1         V         54.0         -1.9         AVG         0         1.00           457.230         62.8         V         74.0         -1.12         PK         0         1.00           90.0         -         -         -         11.2         PK         0         1.00           90.0         -         -         -         -         1.0         -         -           90.0         -         -         -         -         0         1.00         -           90.0         -         -         -         -         -         -         -         -         -           90.0         -                                                                                                                                                                                    | Model         | NanoStation   | Loco M5      |                  |               |          |                   |          | -                 |                                    |
| Standard:         FCC 15E, RSS-210         Class:         N/A           un #1c, EUT on Channel #100 5500MHz11a (20), Chain A         Power Setting:         12.0           f60 MHz Restricted Band Edge Signal Radiated Field Strength         requency         Level         Pol         FCC 15.209         Detector         Azimuth         Height         Comments           MHz         dBµV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           3455.900         52.1         V         54.0         -1.9         AVG         0         1.00           i457.230         62.8         V         74.0         -11.2         PK         0         1.00           g9.0         -         -         -         -         -         -         -           g9.0         -         -         -         -         -         -         -           g9.0         -         -         -         -         -         -         -           g9.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                        | Contact:      | Jennifer San  | chez         |                  |               |          |                   | ACCO     | unt manager.      | Susan Peizi                        |
| Power Setting:       12.0         160 MHz Restricted Band Edge Signal Radiated Field Strength         requency       Level       Pol       FCC 15.209       Detector       Azimuth       Height       Comments         MHz       dBµV/m       v/h       Limit       Margin       Pk/QP/Avg       degrees       meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Standard:     | FCC 15E, R    | SS-210       |                  |               |          |                   |          | Class:            | N/A                                |
| Ido MHz Restricted Band Edge Signal Radiated Field Strength         requency       Level       Pol       FCC 15.209       Detector       Azimuth       Height       Comments         MHz       dBµV/m       v/h       Limit       Margin       Pk/QP/Avg       degrees       meters         5455.900       52.1       V       54.0       -1.9       AVG       0       1.00         5455.230       62.8       V       74.0       -11.2       PK       0       1.00         RB 1 MHz; VB 10 Hz       Bandedge V       Blue = pk, black = avg       95.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0                                                                                                                                                                                   | un #1c, E     | UT on Chanr   | iel #100 550 | 0MHz11a          | (20), Chain   | A        |                   |          |                   |                                    |
| requency         Level         Pol         FCC 15.209         Detector         Azimuth         Height         Comments           MHz         dBµV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           3455.900         52.1         V         54.0         -1.9         AVG         0         1.00           3457.230         62.8         V         74.0         -11.2         PK         0         1.00           RB 1 MHz; VB 10 Hz         Bandedge V         Blue = pk, black = avg         95.0         90.0         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         <                                                                                                                                                                                                              | Po            | ower Setting: | 12.0         |                  |               |          |                   |          |                   |                                    |
| requency         Level         Pol         FCC 15.209         Detector         Azimuth         Height         Comments           MHz         dBµV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           3455.900         52.1         V         54.0         -1.9         AVG         0         1.00           3457.230         62.8         V         74.0         -11.2         PK         0         1.00           RB 1 MHz; VB 10 Hz         Bandedge V         Blue = pk, black = avg         95.0         90.0         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         -           90.0         -         -         -         -         -         -         <                                                                                                                                                                                                              | 160 MHz I     | Restricted Ba | nd Edae Si   | anal Radiate     | ed Field Stre | enath    |                   |          |                   |                                    |
| S455.900       52.1       V       54.0       -1.9       AVG       0       1.00         S457.230       62.8       V       74.0       -11.2       PK       0       1.00         RB 1 MHz; VB 10 Hz       Bandedge V       Blue = pk, black = avg       95.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0<                                                                                                                                                                                | requency      | Level         | Pol          | FCC <sup>2</sup> | 15.209        | Detector |                   | <u> </u> | Comments          |                                    |
| 3457.230         62.8         V         74.0         -11.2         PK         0         1.00           RB 1 MHz; VB 10 Hz         Bandedge V         Blue = pk, black = avg         95.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0                                                                                      |               |               |              |                  | <u> </u>      | U U      |                   |          |                   |                                    |
| RB 1 MHz; VB 10 Hz       Bandedge V       Blue = pk, black = avg         95.0       90.0         90.0       90.0         (W) 09       90.0         90.0       90.0         90.0       90.0         (W) 09       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0         90.0       90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |              |                  |               |          | -                 |          |                   |                                    |
| Trequency (mrz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tude (dBuV/m) | 70.0-         |              | Arres Brown Mar  |               |          | unia destrutadore | ahrran   | munulastatication | anter a survey and a survey of the |

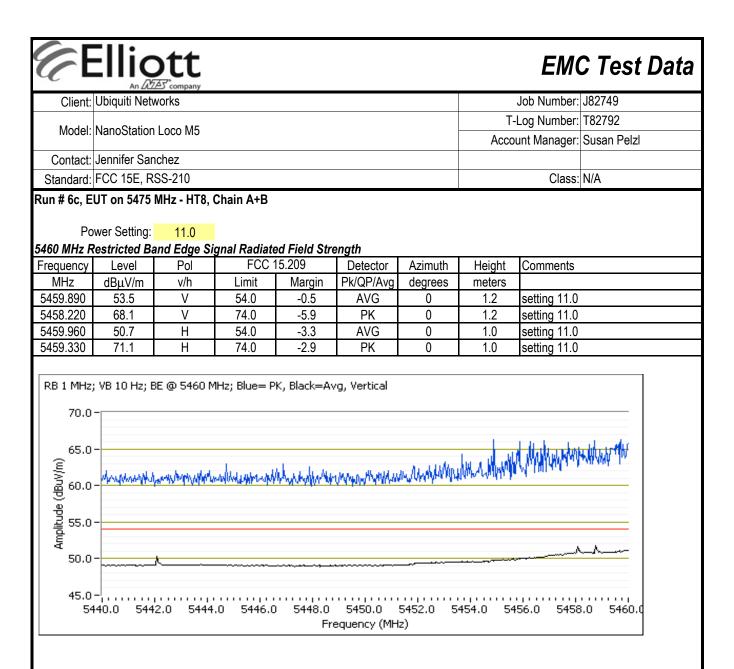
| Client:                                     | Ubiquiti Net                           | works                                                               |                                           |                                                                                                                 |                   |                                                |               | Job Number:  |                    |
|---------------------------------------------|----------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------|---------------|--------------|--------------------|
| Model:                                      | NanoStatior                            | Loco M5                                                             |                                           |                                                                                                                 |                   |                                                |               | Log Number:  |                    |
| Contact                                     | Jennifer Sar                           | ichez                                                               |                                           |                                                                                                                 |                   |                                                | Accou         | unt Manager: | Susan Pelzl        |
|                                             | FCC 15E, R                             |                                                                     |                                           |                                                                                                                 |                   |                                                |               | Class:       | N/A                |
| i <b>n # 3a, E</b><br>50 MHz E<br>easured c | UT on Chan<br>Band Edge S<br>onducted. | eld Strength<br>nel #52 5260<br><i>ignal Radiat</i><br>nel #64 5320 | 0MHz - HT20<br>ted Field Str              | ), Chain A+E<br>rength                                                                                          |                   |                                                |               |              |                    |
|                                             | Date of Test:                          |                                                                     |                                           |                                                                                                                 |                   | est Location:                                  | FT7           |              |                    |
| Те                                          | st Engineer:                           | John Caizzi                                                         |                                           |                                                                                                                 | Cor               | nfig Change:                                   | none          |              |                    |
| Pc                                          | wer Setting:                           | 9.5                                                                 |                                           |                                                                                                                 |                   |                                                |               |              |                    |
|                                             | -                                      |                                                                     |                                           |                                                                                                                 |                   |                                                |               |              |                    |
| requency                                    | Level                                  | <b>ignal Radiat</b><br>Pol                                          |                                           | rength<br>15.209                                                                                                | Detector          | Azimuth                                        | Height        | Comments     |                    |
| MHz                                         | dBµV/m                                 | v/h                                                                 | Limit                                     | Margin                                                                                                          | Pk/QP/Avg         | degrees                                        | meters        |              |                    |
| 350.130<br>355.530                          | 51.7<br>63.7                           | V                                                                   | 54.0<br>74.0                              | <b>-2.3</b><br>-10.3                                                                                            | AVG<br>PK         | 0                                              | 1.10<br>1.10  | 9.5<br>9.5   |                    |
| (m//m)                                      | 80.0 -<br>70.0 -<br>60.0 -<br>50.0 -   | mondation                                                           | han an a | and for the state of | da, Azetheringano | un koka da | abor reported | alanat mata  | tulistikan prikopy |
| Amp                                         | 50.0                                   |                                                                     |                                           |                                                                                                                 |                   |                                                |               |              |                    |
|                                             | 40.0-                                  |                                                                     |                                           |                                                                                                                 |                   |                                                |               |              |                    |




| UIGIN                                            | Ubiquiti Netv        | works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                          |                             |                                                                                                                                                                                                                                   |               | Job Number:   | J82749   |
|--------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|----------|
|                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |                             |                                                                                                                                                                                                                                   | Ţ             | Log Number:   |          |
| Model                                            | NanoStation          | Loco M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                          |                             |                                                                                                                                                                                                                                   |               | unt Manager:  |          |
| Contact                                          | Jennifer Sar         | nchez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                          |                             |                                                                                                                                                                                                                                   |               |               |          |
| tandard                                          | FCC 15E, R           | SS-210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                          |                             |                                                                                                                                                                                                                                   |               | Class:        | N/A      |
| ipliance<br># 4b, I                              | EUT on Chan          | MHz eirp lir<br>nel #5275M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nit demonstr            | ated through             | ain A+B<br>a conducted      | measuremei                                                                                                                                                                                                                        | nt.           |               |          |
|                                                  | Date of Test:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |                             | st Location:                                                                                                                                                                                                                      | -             |               |          |
| 10                                               | est Engineer:        | Joseph Cad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | igal                    |                          | Con                         | fig Change:                                                                                                                                                                                                                       | none          |               |          |
| Р                                                | ower Setting:        | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                          |                             |                                                                                                                                                                                                                                   |               |               |          |
|                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |                             |                                                                                                                                                                                                                                   |               |               |          |
| 50 MHz<br>requency                               | Band Edge S<br>Level | ignal Radia<br>Pol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ted Field Sti           | r <b>ength</b><br>15.209 | Detector                    | Azimuth                                                                                                                                                                                                                           | Height        | Comments      |          |
| MHz                                              | dBµV/m               | v/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit                   | Margin                   | Pk/QP/Avg                   | degrees                                                                                                                                                                                                                           | meters        | Commenta      |          |
| 350.270                                          | 52.8                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.0                    | -1.2                     | AVG                         | 355                                                                                                                                                                                                                               | 1.0           | MHz;VB 10     | Hz:Pk    |
| 354.230                                          | 51.9                 | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.0                    | -2.1                     | AVG                         | 13                                                                                                                                                                                                                                | 1.2           | MHz;VB 10     |          |
| 55.070                                           | 64.4                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.0                    | -9.6                     | PK                          | 355                                                                                                                                                                                                                               | 1.0           | MHz;VB 3 M    |          |
| 50.230                                           | 63.0                 | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.0                    | -11.0                    | PK                          | 13                                                                                                                                                                                                                                | 1.2           | MHz;VB 3 M    |          |
| 85.0                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                          |                             |                                                                                                                                                                                                                                   |               |               |          |
| 85.0<br>80.0<br>(@ 70.0<br>(@ 70.0<br>9)<br>60.0 | 1-<br>1-<br>1-       | tah manaharah dari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | had all and the second  | nn halalan               | total and the second second | al francisco                                                                                                                                                                                                                      | dana dana da  | wrwhwy.ww     | when the |
| 80.0<br>(m( 70.0<br>(m/\m)<br>60.0               | -<br> -<br> -<br> -  | ratur and the state of the stat | 4,0.1,1.19h-01,00,14-00 | mmphayma                 | 44MMMAA4~~~                 | al que de cara de cara<br>Como de cara de | danda yana ya | wyrwinwy ordd | w.hr.Men |

|                                                         | Ellic                                | D <b>tt</b>          |               |             |                       |               |                              | EMO         | C Test Dat |
|---------------------------------------------------------|--------------------------------------|----------------------|---------------|-------------|-----------------------|---------------|------------------------------|-------------|------------|
| Client                                                  | Ubiquiti Net                         |                      |               |             |                       |               |                              | Job Number: | J82749     |
| Madal                                                   | : NanoStation                        |                      |               |             |                       |               | T-Log Number: T82792         |             | T82792     |
|                                                         |                                      |                      |               |             |                       |               | Account Manager: Susan Pelzl |             |            |
|                                                         | : Jennifer Sar                       |                      |               |             |                       |               |                              |             |            |
| Standard                                                | : FCC 15E, R                         | SS-210               |               |             |                       |               |                              | Class:      | N/A        |
| ·                                                       | E <b>UT on Chan</b><br>Date of Test: | 5/9/2011             |               | ), Chain A+ | Te                    | est Location: |                              |             |            |
|                                                         | est Engineer:                        |                      | igal          |             | Con                   | fig Change:   | none                         |             |            |
|                                                         | ower Setting:<br><b>Band Edge S</b>  | 3.0<br>Jignal Radiat | tad Fiald Sti | ronath      |                       |               |                              |             |            |
| requency                                                |                                      | Pol                  |               | 15.209      | Detector              | Azimuth       | Height                       | Comments    |            |
| MHz                                                     | dBµV/m                               | v/h                  | Limit         | Margin      | Pk/QP/Avg             | degrees       | meters                       |             |            |
| 350.400                                                 | 53.0                                 | V                    | 54.0          | -1.0        | AVG                   | 0             | 1.4                          | setting = 3 |            |
| 350.370                                                 | 51.0                                 | H                    | 54.0          | -3.0        | AVG                   | 360           | 1.1                          | setting = 3 |            |
| 351.230                                                 | 64.0                                 | V                    | 74.0          | -10.0       | PK                    | 0             | 1.4                          | setting = 3 |            |
| 350.230                                                 | 61.8                                 | Н                    | 74.0          | -12.2       | PK                    | 360           | 1.1                          | setting = 3 |            |
| (@/\ngp) 40.0<br>ephilode<br>W 30.0<br>ephilode<br>20.0 | )                                    |                      |               |             |                       |               |                              | ~~~~        |            |
|                                                         |                                      |                      |               |             |                       |               |                              |             |            |
| 5                                                       | 350.0 535                            | 2.0 5354             | .0 5356.0     | ) 5358.0    | 5360.0<br>equency (MH | 5362.0 53     | 364.0 53                     | 366.0 5368  | .0 5370.0  |

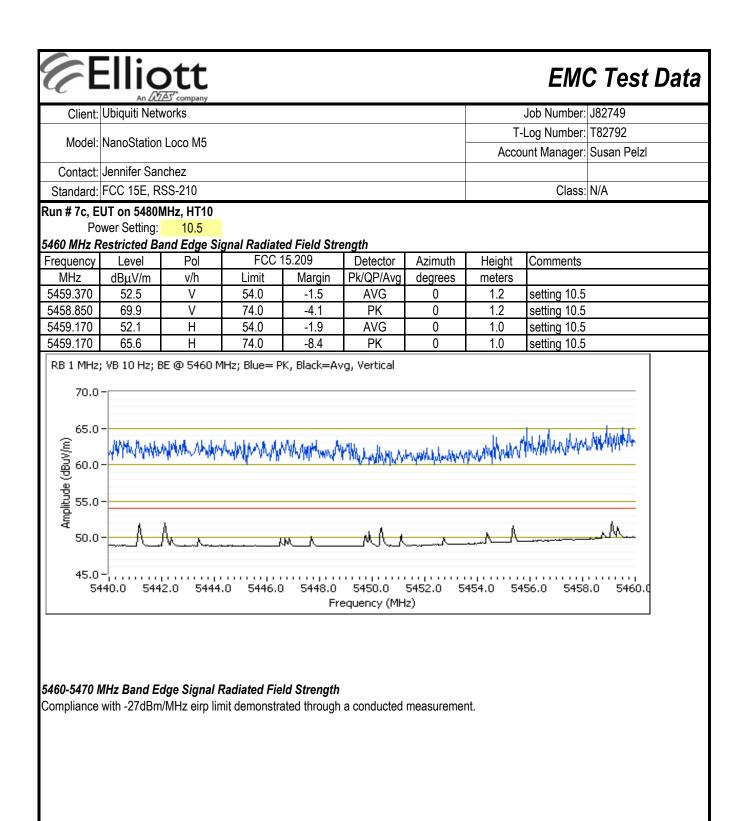


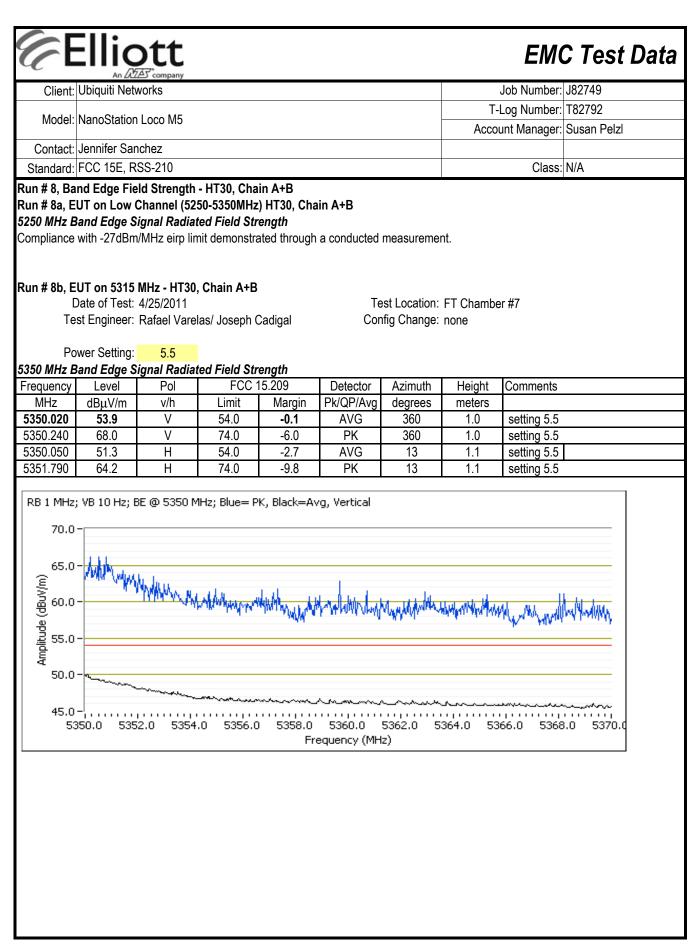


| Client:                                      | Ubiquiti Net                                             | works                           |                  |                     |                          |               | Job Number: J82749 |                                     |  |
|----------------------------------------------|----------------------------------------------------------|---------------------------------|------------------|---------------------|--------------------------|---------------|--------------------|-------------------------------------|--|
| Madali                                       | NanoStation                                              |                                 |                  |                     |                          |               | T-I                | Log Number: T82792                  |  |
|                                              |                                                          |                                 |                  | Αссοι               | unt Manager: Susan Pelzl |               |                    |                                     |  |
|                                              | Jennifer Sar                                             |                                 |                  |                     |                          |               |                    |                                     |  |
|                                              | FCC 15E, R                                               |                                 |                  |                     |                          |               |                    | Class: N/A                          |  |
| un # 5a, E<br>250 MHz E                      | nd Edge Fie<br>UT on Low (<br>Band Edge S<br>with -27dBm | Channel<br><i>ignal Radia</i> t | ted Field Str    | ength               | a conducted              | measuremer    | nt.                |                                     |  |
|                                              | <b>UT on 5340</b><br>Date of Test:                       |                                 | Chain A+B        |                     | Te                       | est Location: | FT Chambe          | r #7                                |  |
|                                              | st Engineer:                                             |                                 | las/Joseph C     | adigal              |                          | fig Change:   |                    | 1 // /                              |  |
| n-                                           | wor Cotting                                              | 0 5                             | -                |                     |                          |               |                    |                                     |  |
|                                              | ower Setting:<br>Band Edge S                             | 8.5<br>ignal Radiat             | ted Field Str    | ength               |                          |               |                    |                                     |  |
| Frequency                                    | Level                                                    | Pol                             | FCC <sup>2</sup> | 5.209               | Detector                 | Azimuth       | Height             | Comments                            |  |
| MHz                                          | dBµV/m                                                   | v/h                             | Limit            | Margin              | Pk/QP/Avg                | degrees       | meters             |                                     |  |
| <b>5350.020</b><br>5352.850                  | <b>53.3</b><br>68.7                                      | V                               | 54.0<br>74.0     | <b>-0.7</b><br>-5.3 | AVG<br>PK                | 360<br>360    | 1.0<br>1.0         | setting 8.5                         |  |
| 5352.850                                     | 51.0                                                     | V<br>H                          | 74.0<br>54.0     | -5.5<br>-3.0        | AVG                      | 17            | 1.0                | setting 8.5<br>RB 1 MHz;VB 10 Hz;Pk |  |
| 5352.890                                     | 72.0                                                     | H                               | 74.0             | -2.0                | PK                       | 17            | 1.0                | RB 1 MHz;VB 3 MHz;Pk                |  |
| 70.0<br>65.0<br>60.0<br>55.0<br>55.0<br>50.0 | - 444444                                                 | 2.0 5354                        | .0 5356.0        |                     |                          | 5362.0 5:     |                    | A                                   |  |

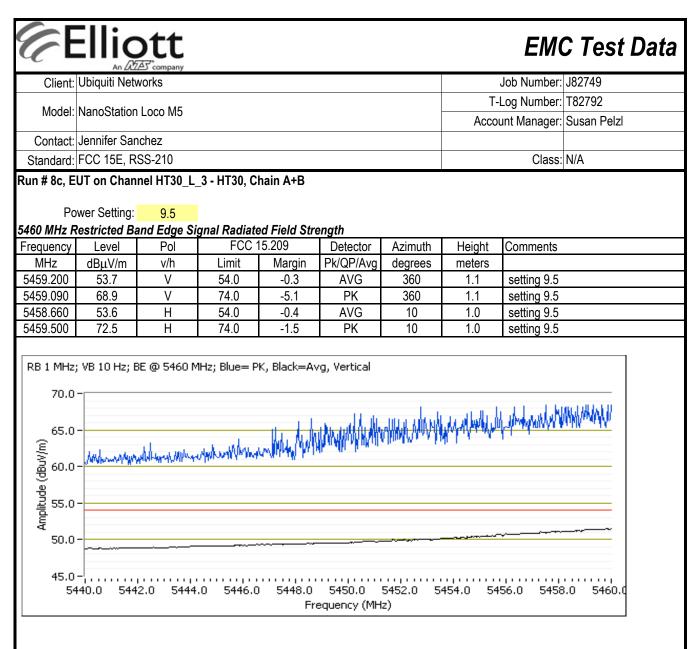


#### 5460-5470 MHz Band Edge Signal Radiated Field Strength

Compliance with -27dBm/MHz eirp limit demonstrated through a conducted measurement.





#### 5460-5470 MHz Band Edge Signal Radiated Field Strength

Compliance with -27dBm/MHz eirp limit demonstrated through a conducted measurement.

|                                              |                                                          | ∆ company                   |                             |                               |                        |                              |                      | Job Number:                | 1827/0           |
|----------------------------------------------|----------------------------------------------------------|-----------------------------|-----------------------------|-------------------------------|------------------------|------------------------------|----------------------|----------------------------|------------------|
|                                              |                                                          |                             |                             |                               |                        |                              | T-Log Number: T82792 |                            |                  |
| Model:                                       | NanoStation                                              | Loco M5                     |                             |                               |                        |                              |                      | -                          | Susan Pelzl      |
| Contact:                                     | Jennifer Sar                                             | chez                        |                             |                               |                        |                              |                      |                            |                  |
| Standard:                                    | FCC 15E, R                                               | SS-210                      |                             |                               |                        |                              |                      | Class:                     | N/A              |
| un # 7a, E<br>250 MHz E                      | nd Edge Fie<br>UT on Low (<br>Band Edge S<br>with -27dBm | Channel (52<br>ignal Radiat | 50-5350MHz<br>ted Field Str | ) - HT10, Ch<br>e <i>ngth</i> | ain A+B<br>a conducted | measuremer                   | nt.                  |                            |                  |
|                                              | UT on 5330                                               |                             | Chain A+B                   |                               | -                      |                              |                      | <i>u</i> <b>-</b>          |                  |
|                                              | Date of Test:<br>est Engineer:                           |                             | las/Josenh C                | adinal                        |                        | est Location:<br>fig Change: |                      | r#/                        |                  |
|                                              |                                                          |                             |                             |                               | 001                    |                              |                      |                            |                  |
|                                              | ower Setting:<br>Band Edge S                             | 9.0<br>ional Radiai         | ted Field Str               | enath                         |                        |                              |                      |                            |                  |
| Frequency                                    | Level                                                    | Pol                         | FCC 2                       | 15.209                        | Detector               | Azimuth                      | Height               | Comments                   |                  |
| MHz                                          | dBµV/m                                                   | v/h                         | Limit                       | Margin                        | Pk/QP/Avg              |                              | meters               |                            |                  |
| <b>5351.700</b><br>5350.200                  | <b>53.8</b><br>67.7                                      | V<br>V                      | 54.0<br>74.0                | <b>-0.2</b><br>-6.3           | AVG<br>PK              | 0                            | 1.0<br>1.0           | setting 9.0<br>setting 9.0 |                  |
| 5350.200                                     | 52.0                                                     | H                           | 54.0                        | -2.0                          | AVG                    | 13                           | 1.1                  | setting 9.0                |                  |
| 5352.130                                     | 69.5                                                     | Н                           | 74.0                        | -4.5                          | PK                     | 13                           | 1.1                  | setting 9.0                |                  |
| 75.0<br>70.0<br>(m/\ng) 65.0<br>60.0<br>55.0 | -<br>Hanpanad                                            | . 1                         |                             |                               | nhunnunnun<br>V-VL     |                              |                      |                            | undrynadtha<br>v |







#### 5460-5470 MHz Band Edge Signal Radiated Field Strength

Compliance with -27dBm/MHz eirp limit demonstrated through a conducted measurement.

|           |               |                 |                                  |                  |                                               | EMO                         | C Test Dat                        |
|-----------|---------------|-----------------|----------------------------------|------------------|-----------------------------------------------|-----------------------------|-----------------------------------|
| Client:   | Ubiquiti Net  | works           |                                  |                  |                                               | Job Number:                 | J82749                            |
| Madal     | NanoStation   | Loop M5         |                                  |                  |                                               | T-Log Number:               | T82792                            |
| Model.    | NanoStation   |                 |                                  |                  |                                               | Account Manager:            | Susan Pelzl                       |
|           | Jennifer Sar  |                 |                                  |                  |                                               |                             |                                   |
| Standard: | FCC 15E, R    | SS-210          |                                  |                  |                                               | Class:                      | N/A                               |
|           | R             | RSS 210 a       | and FCC                          | 15.407 (         | UNII) Radiated Sr                             | ourious Emission            | IS                                |
| Test Spe  | cific Detai   | Is              |                                  |                  |                                               |                             |                                   |
|           | Objective:    |                 | e of this test<br>i listed above |                  | perform final qualification                   | n testing of the EUT with r | espect to the                     |
| I         | Date of Test: | 5/9 & 6/1/20    | 11                               |                  | Config. Used:                                 | 1                           |                                   |
|           | •             | •               | igal/R. Varela                   | as               | Config Change:                                |                             |                                   |
| Te        | est Location: | FT Chambe       | r#4                              |                  | EUT Voltage:                                  | POE                         |                                   |
| Ambient   | Condition     | Т               | emperature:<br>el. Humidity:     | 20.4<br>36       |                                               |                             |                                   |
| Summarv   | / of Result   | S               |                                  |                  |                                               |                             |                                   |
|           |               |                 | ng that is at th                 | ne maximum       | rating for that particular n                  | node/channel. In all case   | s the measurements                |
|           | at or above t | •               |                                  |                  |                                               |                             |                                   |
|           |               |                 | •                                |                  | 5350 MHz Band. The cent                       |                             |                                   |
|           |               |                 |                                  |                  | nels for that worst-case N 5250-5350MHz band. | IIMO mode and for the 80    | 2.11a SISO mode we                |
|           |               |                 |                                  |                  |                                               |                             |                                   |
| Run #     | Mode          | Channel         | Final power<br>Setting           | Power<br>Setting | Test Performed                                | Limit                       | Result / Margin                   |
| run#      | woue          | Charmer         | Power                            | Tested           | restrenomed                                   | Linin                       | i tesuit / margin                 |
|           | 802.11a       | #60             |                                  |                  |                                               |                             | 53.5dBµV/m @                      |
|           | Chain A       | 5300MHz         | 8.0                              | 8.0              |                                               |                             | 5416.7MHz (-0.5dl                 |
|           |               | 5300MHz         | 7.5                              | 7.5              | 1                                             |                             | 52.1dBµV/m @                      |
|           |               | HT20            | 1.5                              | 1.J              |                                               |                             | 5418.2MHz (-1.9dl                 |
|           |               | 5310MHz         | 3.0                              | 9.0              |                                               |                             | 47.2dBµV/m @                      |
|           |               | HT40<br>5300MHz |                                  |                  | Radiated Emissions,                           |                             | 4982.0MHz (-6.8dl<br>52.1dBµV/m @ |
| Run #1    | MIMO          | HT5             | 4.5                              | 4.5              | 1 - 40 GHz                                    | FCC 15.209 / 15 E           | 5429.9MHz (-1.9dl                 |
| modes     |               |                 |                                  |                  |                                               |                             | 50 EdBui\//m @                    |

5300MHz

HT8 5300MHz

HT10

5300MHz

HT30

5.5

6.0

8.0

6.0

6.0

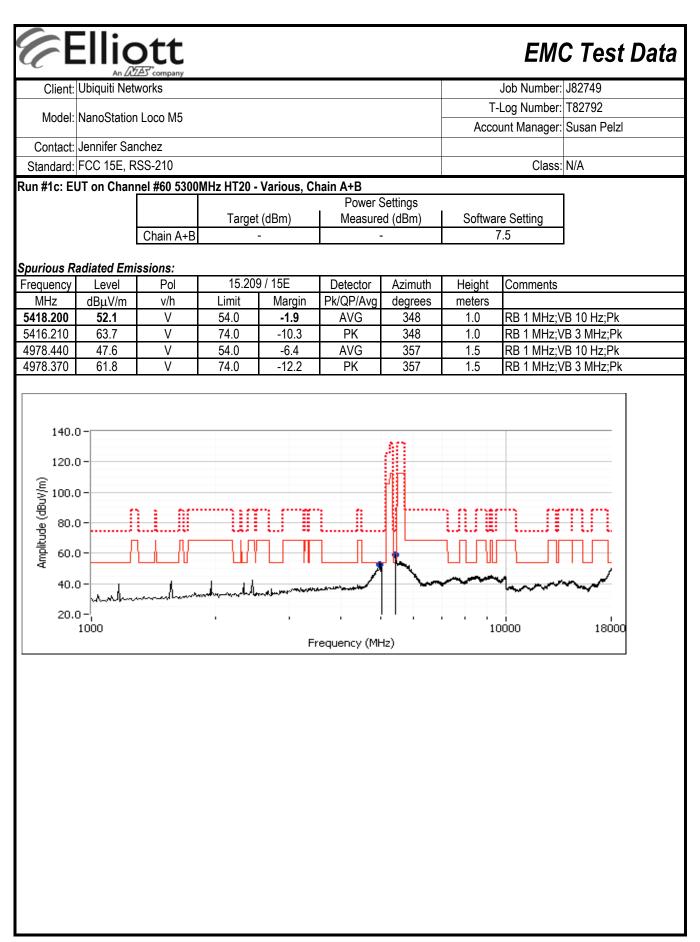
8.0

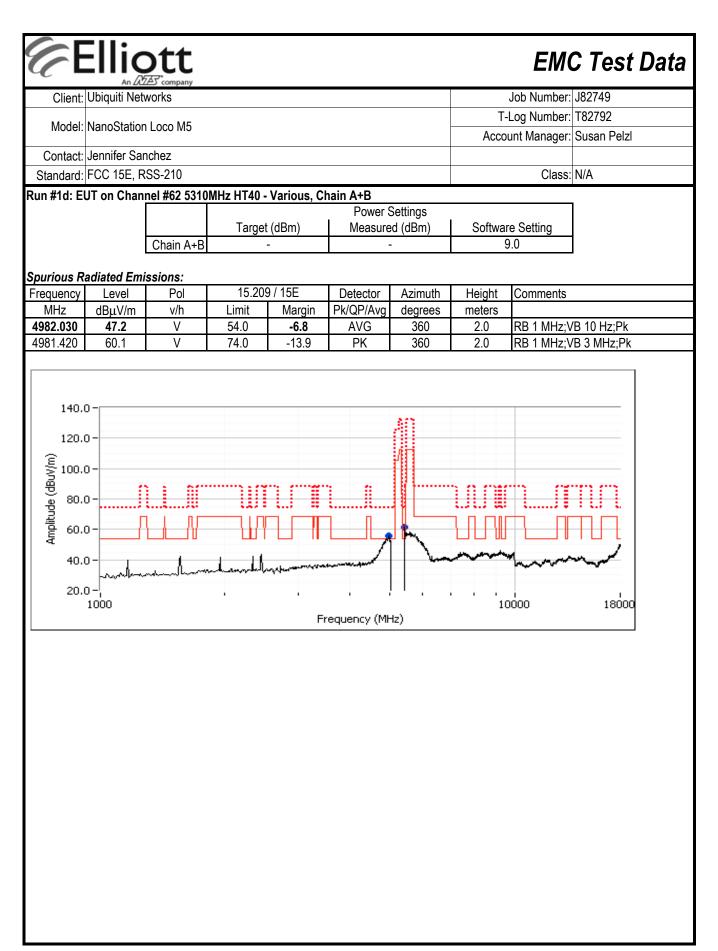
Chain A+B

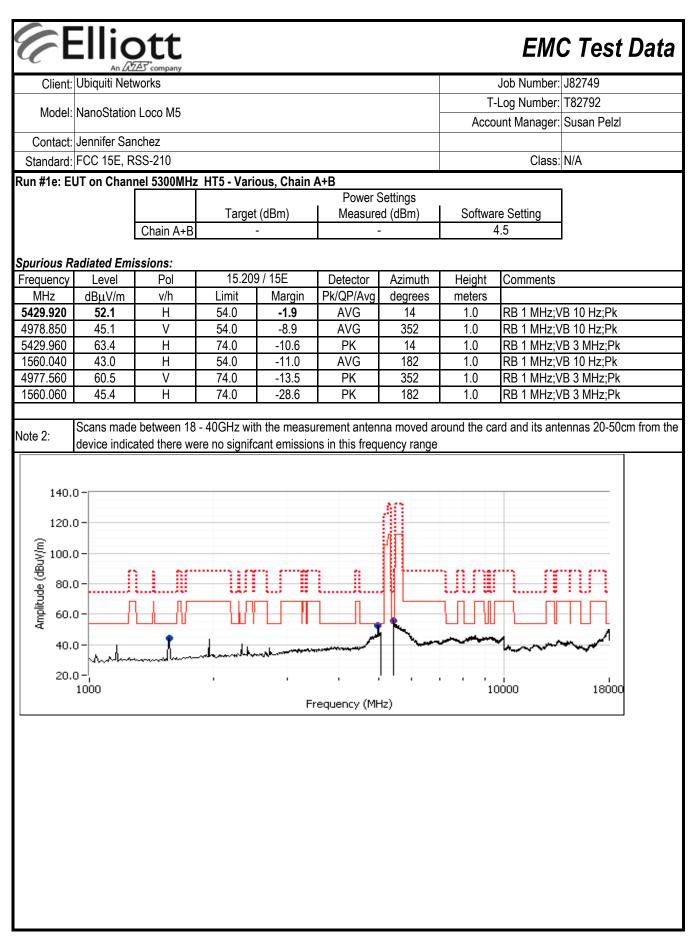
50.5dBµV/m @

5426.6MHz (-3.5dB)

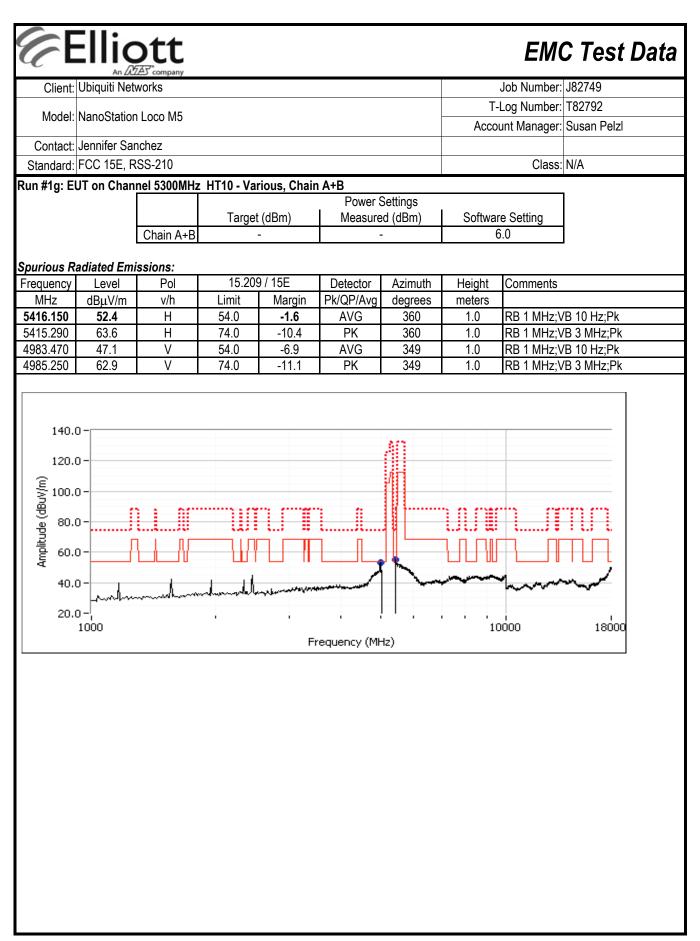
52.4dBµV/m @

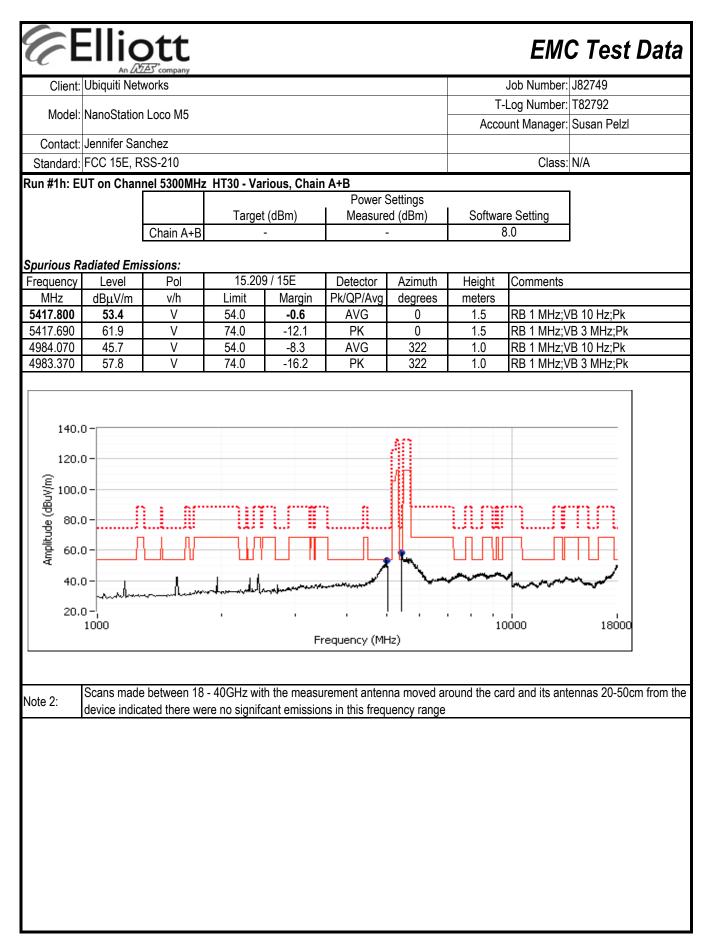

5416.2MHz (-1.6dB)

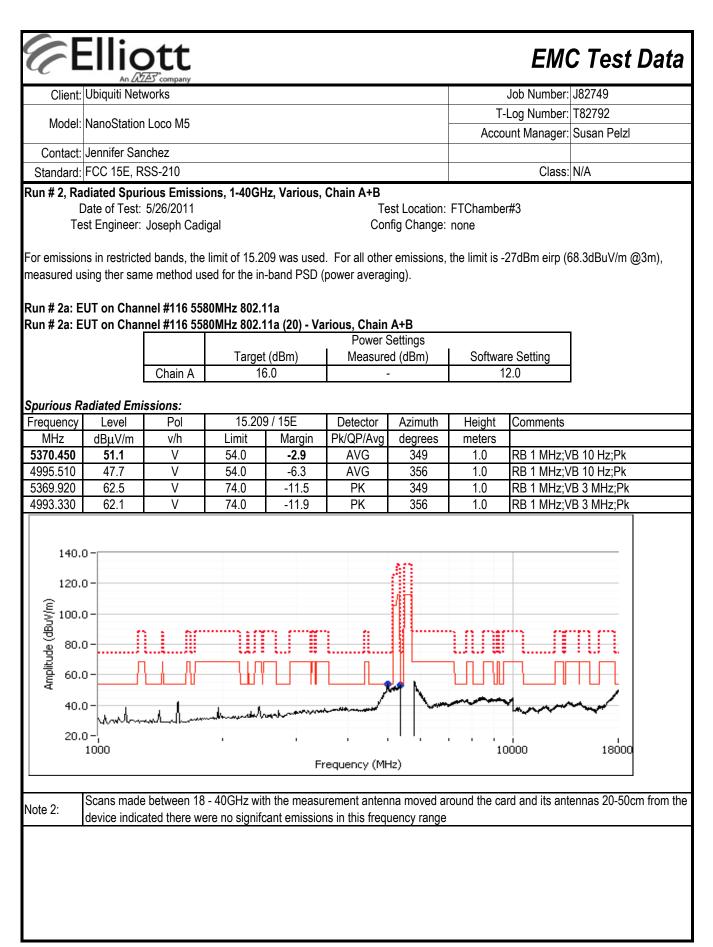

53.4dBµV/m @


5417.8MHz (-0.6dB)

|                        |                    | A∑ company                  |                                 |                            |                                                                             |                                   | 100740                                            |
|------------------------|--------------------|-----------------------------|---------------------------------|----------------------------|-----------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Client:                | Ubiquiti Netw      | vorks                       |                                 |                            |                                                                             | Job Number:                       |                                                   |
| Model:                 | NanoStation        | Loco M5                     |                                 |                            |                                                                             | T-Log Number:<br>Account Manager: |                                                   |
| Contact:               | Jennifer San       | ichez                       |                                 |                            |                                                                             |                                   |                                                   |
| Standard:              | FCC 15E, R         | SS-210                      |                                 |                            |                                                                             | Class:                            | N/A                                               |
| etermine th            | ne worst-case      | MIMO mod                    | e. The high a                   | nd low chan                | 5725 MHz Band. The cent<br>nels for that worst-case M<br>5470-5725MHz band. |                                   |                                                   |
| Run #                  | Mode               | Channel                     | Final power<br>Setting<br>Power | Power<br>Setting<br>Tested | Test Performed                                                              | Limit                             | Result / Margin                                   |
|                        | 802.11a<br>Chain A | 5580MHz<br>802.11a          | 12.0                            | 12.0                       | Radiated Emissions,                                                         | FCC 15.209 / 15 E                 | 51.1dBµV/m @<br>5370.5MHz (-2.9dB                 |
|                        |                    | 5580MHz<br>HT20             | 11.5                            | 11.5                       | 1 - 40 GHz                                                                  |                                   | 53.8dBµV/m @<br>5372.8MHz (-0.2dB                 |
|                        |                    | 5550MHz<br>HT40             | 9.5                             | 10.5                       | Dedicted Emissions                                                          | FCC 15.209 / 15 E                 | 52.8dBµV/m @<br>5371.8MHz (-1.2dB                 |
| Run # 2                | MIMO<br>modes      | 5595MHz<br>HT5              | 4.5                             | 5.5                        | Radiated Emissions,<br>1 - 40 GHz                                           |                                   | 50.0dBµV/m @<br>5372.0MHz (-4.0dB                 |
|                        | Chain A+B          | 5595MHz<br>HT8              | 5.5                             | 5.5                        |                                                                             |                                   | 46.8dBµV/m @<br>5372.6MHz (-7.2dB                 |
|                        |                    | 5300 MHz<br>HT10<br>5300MHz | 6.5                             | 6.5                        | Radiated Emissions,<br>1 - 40 GHz                                           | FCC 15.209 / 15 E                 | 52.0dBµV/m @<br>5457.3MHz (-2.0dB<br>52.2dBµV/m @ |
| inal moasu             | romonto ton        | HT30                        | 8.0<br>channol in SI            | 8.0                        | nd worst case MIMO mode                                                     | in each hand:                     | 5451.3MHz (-1.8dB                                 |
|                        | rements, top       | 5270MHz                     | 8.0                             | 8.0                        |                                                                             |                                   | 51.4dBµV/m @<br>5450.5MHz (-2.6dB                 |
| Run # 3                | 802.11a            | 5320MHz                     | 5.0                             | 5.0                        |                                                                             |                                   | 52.4dBµV/m @<br>5456.4MHz (-1.6dB                 |
| Rull # 3               | Chain A            | 5500MHz                     | 12.0                            | 12.0                       |                                                                             |                                   | 53.2dBµV/m @<br>5356.7MHz (-0.8dB                 |
|                        |                    | 5700MHz                     | 9.0                             | 9.0                        | Radiated Emissions,                                                         | FCC 15.209 / 15 E                 | 53.5dBµV/m @<br>5353.0MHz (-0.5dB                 |
|                        |                    | 5275MHz<br>HT30             | 5.0                             | 5.0                        | 1 - 40 GHz                                                                  | 1 00 10.2037 13 E                 | 53.8dBµV/m @<br>5456.0MHz (-0.2dB                 |
| Run #4                 | MIMO<br>modes      | 5315MHz<br>HT30             | 5.0                             | 5.0                        |                                                                             |                                   | 53.1dBµV/m @<br>5451.1MHz (-0.9dB                 |
|                        | Chain A+B          | 5500MHz<br>HT20             | 9.0                             | 9.0                        |                                                                             |                                   | 52.8dBµV/m @<br>5352.5MHz (-1.2dB                 |
|                        |                    | 5700MHz<br>HT20             | 8.5                             | 8.5                        |                                                                             |                                   | 52.1dBµV/m @<br>5351.9MHz (-1.9dB                 |
| eceiver S <sub>l</sub> |                    |                             |                                 |                            |                                                                             |                                   |                                                   |
| Run #5                 | Receive<br>Mode    | 5300 MHz                    | N/A                             | -                          | Radiated Emissions,                                                         | RSS GEN                           | 31.8dBµV/m @<br>1275.4MHz (-22.2dE                |
|                        | Chains<br>A+B      | 5580 MHz                    | N/A                             | -                          | 1 - 18 GHz                                                                  |                                   | 43.0dBµV/m @<br>1440.0MHz (-11.0dB                |

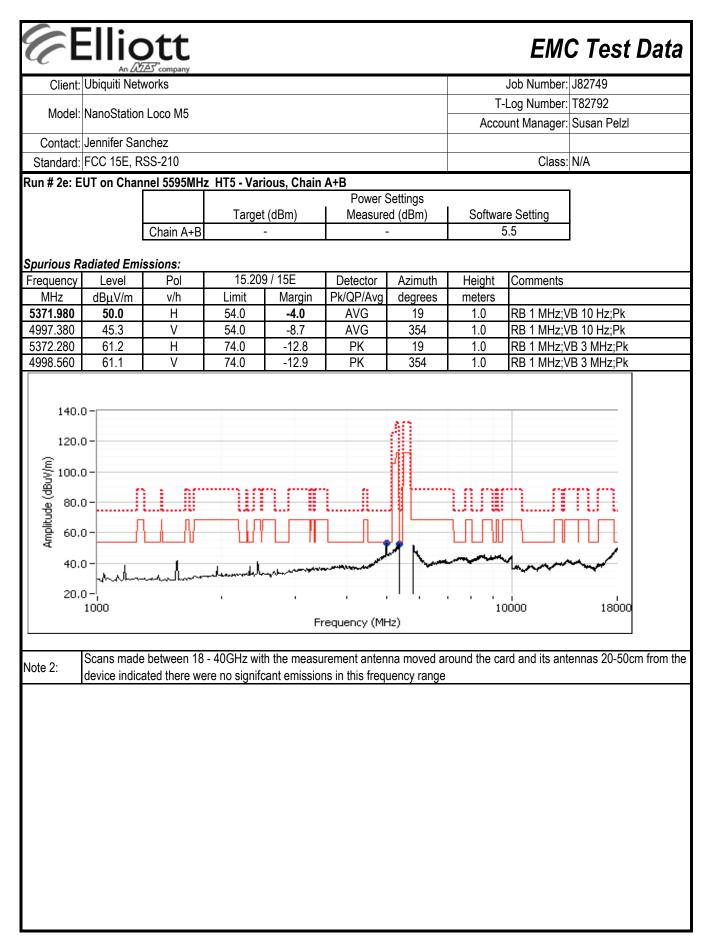

|                                                      | -11: -                     |                       |                          |                     |                  |              |                                        |                |              |               |
|------------------------------------------------------|----------------------------|-----------------------|--------------------------|---------------------|------------------|--------------|----------------------------------------|----------------|--------------|---------------|
|                                                      |                            | Company               |                          |                     |                  |              |                                        | EMO            | C Test       | Data          |
| Client:                                              | Ubiquiti Net               | works                 |                          |                     |                  |              |                                        | Job Number:    | J82749       |               |
| Model                                                | NanoStation                | Loco M5               |                          |                     |                  |              | T-l                                    | Log Number:    | T82792       |               |
|                                                      |                            |                       |                          |                     |                  |              | Αςςοι                                  | unt Manager:   | Susan Pelzl  |               |
|                                                      | Jennifer Sar<br>FCC 15E, R |                       |                          |                     |                  |              |                                        | Class:         | N/A          |               |
|                                                      |                            |                       | ooting                   |                     |                  |              |                                        | 01000.         | 14/74        |               |
| Modificati<br>No modificat                           |                            | -                     | •                        | tina                |                  |              |                                        |                |              |               |
|                                                      |                            |                       | <b>J</b>                 | 5                   |                  |              |                                        |                |              |               |
| Deviation                                            | s From Th                  | ne Standar            | ď                        |                     |                  |              |                                        |                |              |               |
| No deviation                                         | s were made                | e from the red        | quirements o             | f the standar       | rd.              |              |                                        |                |              |               |
| Run #1, Rad                                          | liated Spuri               | ous Emissic           | ons. 1-40GH              | z. Various. (       | Chain A+B        |              |                                        |                |              |               |
|                                                      | Date of Test:              |                       |                          | ,                   |                  | st Location: | FTChamber                              | #4             |              |               |
| Te                                                   | st Engineer:               | Joseph Cad            | igal                     |                     | Cor              | fig Change:  | none                                   |                |              |               |
|                                                      |                            | al have de 14         | limit - f 45 O           | ·<br>۱۰۰۰           | Fac all 10       |              | the line if the f                      |                |              | )))<br>))     |
|                                                      |                            |                       |                          |                     |                  |              | the limit is -2                        | zı anm eirb (6 | 68.3dBuV/m @ | <i>უ</i> კლ), |
| measureu us                                          | sing ther sall             |                       |                          | -ballu PSD (        | power averag     | nny).        |                                        |                |              |               |
| Run #1a: El                                          | JT on Chani                | nel #60 5300          | <u>MHz 80</u> 2.11       | <u>a - Chai</u> n A |                  |              |                                        |                | _            |               |
|                                                      |                            |                       |                          |                     | Power S          | -            |                                        |                |              |               |
|                                                      |                            |                       | Target                   | (dBm)               | Measure          | d (dBm)      | Software Setting                       |                |              |               |
|                                                      |                            | Chain A               |                          | -                   | -                |              | 8.0                                    |                |              |               |
| Sourious R                                           | adiated Emi                | ssions <sup>.</sup>   |                          |                     |                  |              |                                        |                |              |               |
| Frequency                                            | Level                      | Pol                   | 15.209                   | )/15E               | Detector         | Azimuth      | Height                                 | Comments       |              |               |
| MHz                                                  | dBµV/m                     | v/h                   | Limit                    | Margin              | Pk/QP/Avg        | degrees      | meters                                 |                |              |               |
| 5416.670                                             | 53.5                       | V                     | 54.0                     | -0.5                | AVG              | 350          | 1.5                                    | RB 1 MHz;V     |              |               |
| 5415.170                                             | 63.5                       | V                     | 74.0                     | -10.5               | PK               | 350          |                                        | RB 1 MHz;V     |              |               |
| 4975.730                                             | 49.6                       | V                     | 54.0                     | -4.4                | AVG              | 350          | 1.5                                    | RB 1 MHz;V     |              |               |
| 4974.670                                             | 64.0                       | V                     | 74.0                     | -10.0               | PK               | 350          | 1.5                                    | RB 1 MHz;V     | /B 3 MHz;Pk  |               |
|                                                      | Scans made                 | between 18            | - 40GHz wit              | h the measu         | rement anten     | na moved ar  | round the car                          | rd and its ant | ennas 20-50c | m from the    |
| Note 2:                                              |                            |                       |                          |                     | ns in this frequ |              |                                        |                |              |               |
|                                                      |                            |                       |                          |                     |                  |              |                                        |                |              |               |
|                                                      |                            |                       |                          |                     |                  |              |                                        |                |              |               |
| 140.0                                                | )-[                        |                       |                          |                     |                  |              |                                        |                |              |               |
|                                                      |                            |                       |                          |                     |                  | AO -         |                                        |                |              |               |
| 120.0                                                | )-                         |                       |                          |                     |                  |              |                                        |                |              |               |
| Ê 100.0                                              |                            |                       |                          |                     |                  | 11           |                                        |                |              |               |
| <br>                                                 | · .                        |                       |                          |                     |                  |              |                                        |                |              |               |
| <u> </u>                                             | )-                         |                       |                          |                     |                  |              |                                        |                |              |               |
| Amplitude (dBuV/m)<br>9.08 (dBuV/m)<br>9.09 (dBuV/m) | - F                        |                       |                          |                     | п п              | ][[          |                                        |                |              |               |
| 면 60.0<br>북                                          |                            | l I I I I I           | Шľ                       |                     |                  |              |                                        |                | ΙUΙ          |               |
| 40.0                                                 |                            | 8.                    |                          | a barrent barrent   |                  | <b>`</b> ~~  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | harrow         | m            |               |
| 20.4                                                 | 2-hr.nlm                   | موادر سيها ليريب ماود | 14-98-5-98/-6-97-98/-64/ | 14 V m              |                  |              |                                        |                |              |               |
| 20.0                                                 | 1000                       |                       |                          |                     |                  |              |                                        | ;<br>1000      | 18000        |               |
|                                                      |                            |                       |                          | Fr                  | requency (MH     | łz)          |                                        |                |              |               |
|                                                      |                            |                       |                          |                     |                  |              |                                        |                |              |               |

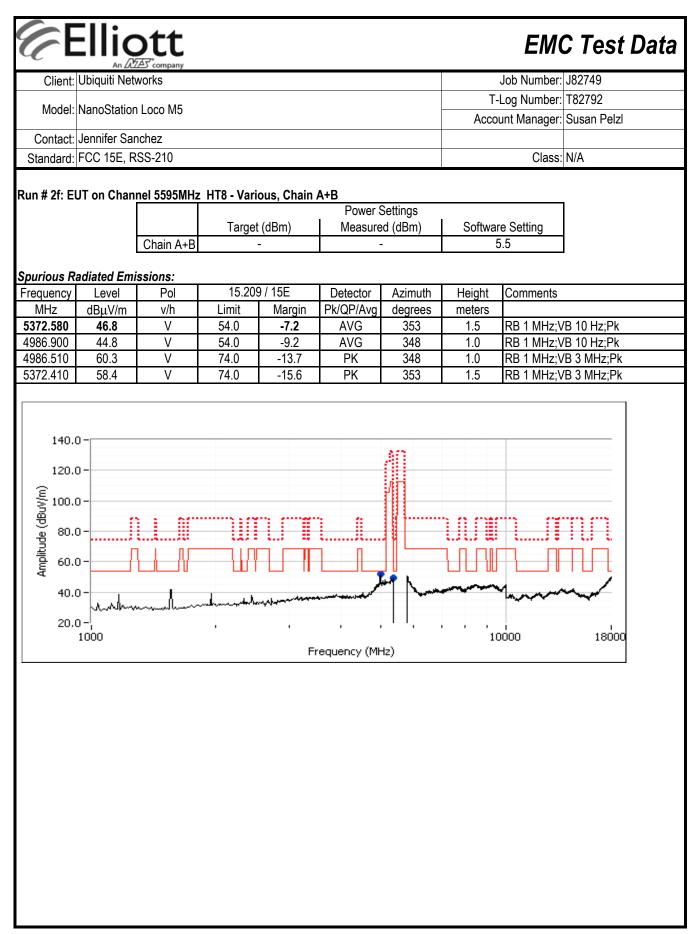


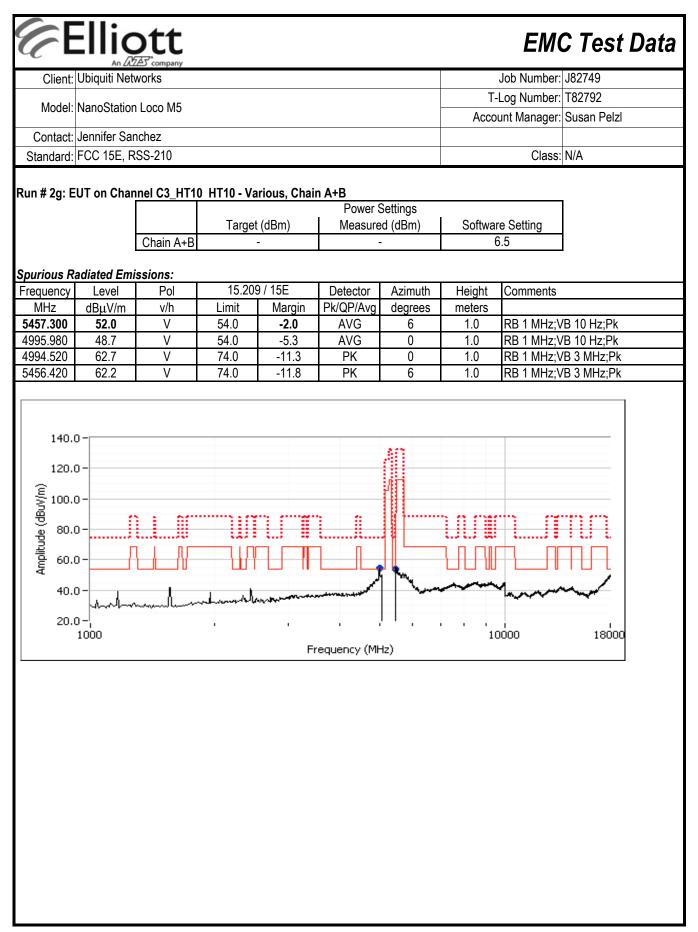



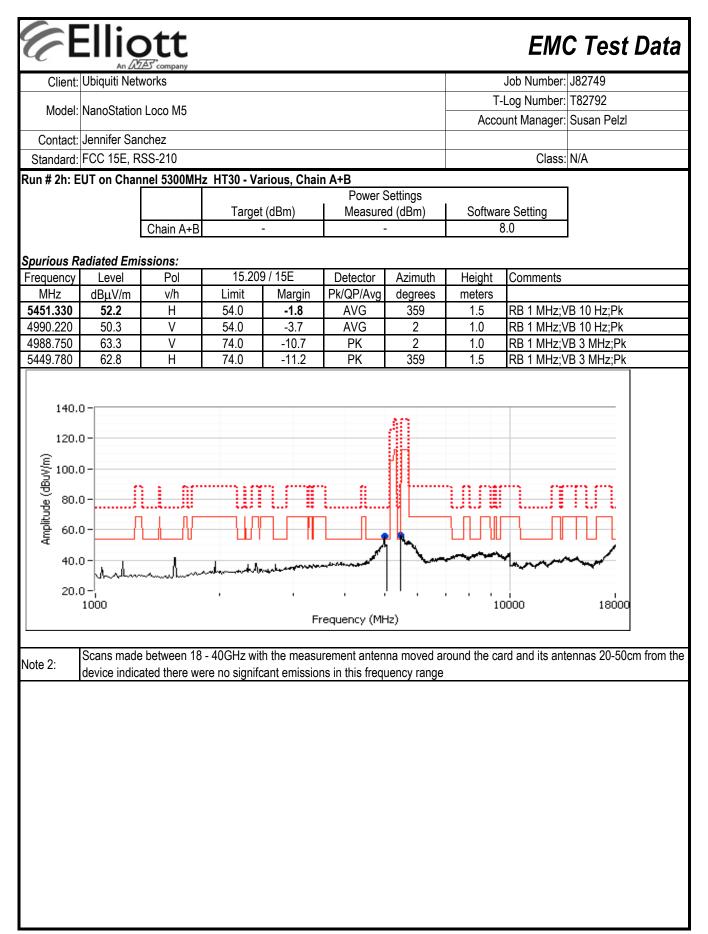



|                                                |                             | 2                              |              |                |              |            |                      |                          |             |  |
|------------------------------------------------|-----------------------------|--------------------------------|--------------|----------------|--------------|------------|----------------------|--------------------------|-------------|--|
|                                                |                             | Dtt<br>Ar <sup>*</sup> company |              |                |              |            |                      | EM                       | C Test Data |  |
| Client:                                        | Ubiquiti Net                | works                          |              |                |              |            | Job Number: J82749   |                          |             |  |
| Model:                                         | NanoStatior                 | Loco M5                        |              |                |              |            | T-Log Number: T82792 |                          |             |  |
|                                                |                             |                                |              |                |              |            | Acco                 | unt Manager:             | Susan Pelzl |  |
|                                                | Jennifer Sar                |                                |              |                |              |            |                      | Class                    | NI/A        |  |
|                                                | FCC 15E, R                  |                                |              | Chain (        |              |            |                      | Class:                   | N/A         |  |
| Run #11: EC                                    | on Chanr                    | el 5300MHz                     | HIO - Vario  | ous, chain r   | Power S      | Settinas   |                      |                          |             |  |
|                                                | Target (dBm) Measured (dBm) |                                |              |                |              |            | Softwar              | e Setting                |             |  |
|                                                |                             | Chain A+B                      |              | -              | -            |            | 6                    | 5.0                      |             |  |
| Sourious P                                     | adiated Emi                 | ssions.                        |              |                |              |            |                      |                          |             |  |
| Frequency                                      | Level                       | Pol                            | 15.209       | 9 / 15E        | Detector     | Azimuth    | Height               | Comments                 |             |  |
| MHz                                            | dBµV/m                      | v/h                            | Limit        | Margin         | Pk/QP/Avg    | degrees    | meters               |                          |             |  |
| 5426.640                                       | 50.5                        | Н                              | 54.0         | -3.5           | AVG          | 12         | 1.3                  | RB 1 MHz;\               |             |  |
| 4997.500<br>1560.010                           | 46.1<br>43.6                | V<br>H                         | 54.0<br>54.0 | -7.9<br>-10.4  | AVG<br>AVG   | 345<br>163 | 1.3<br>1.0           | RB 1 MHz;\<br>RB 1 MHz;\ |             |  |
| 5425.990                                       | 43.6<br>61.4                | H<br>H                         | 54.0<br>74.0 | -10.4<br>-12.6 | PK           | 103        | 1.0                  |                          | /B 3 MHz;Pk |  |
| 4996.740                                       | 60.2                        | V                              | 74.0         | -13.8          | PK           | 345        | 1.3                  |                          | /B 3 MHz;Pk |  |
| 1560.060                                       | 45.9                        | Н                              | 74.0         | -28.1          | PK           | 163        | 1.0                  | RB 1 MHz;\               | /B 3 MHz;Pk |  |
| 120.<br>(w/\ngp) apn1/dwy<br>60.<br>40.<br>20. | 0-<br>0-<br>0-<br>0-        |                                |              |                | requency (MH |            |                      |                          |             |  |
|                                                |                             |                                |              |                |              |            |                      |                          |             |  |



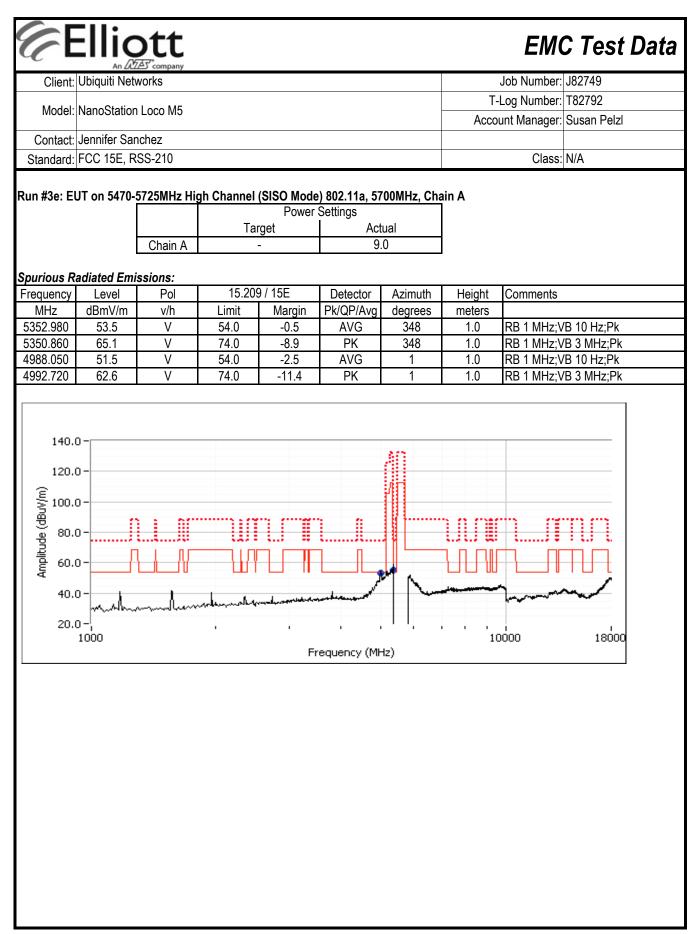



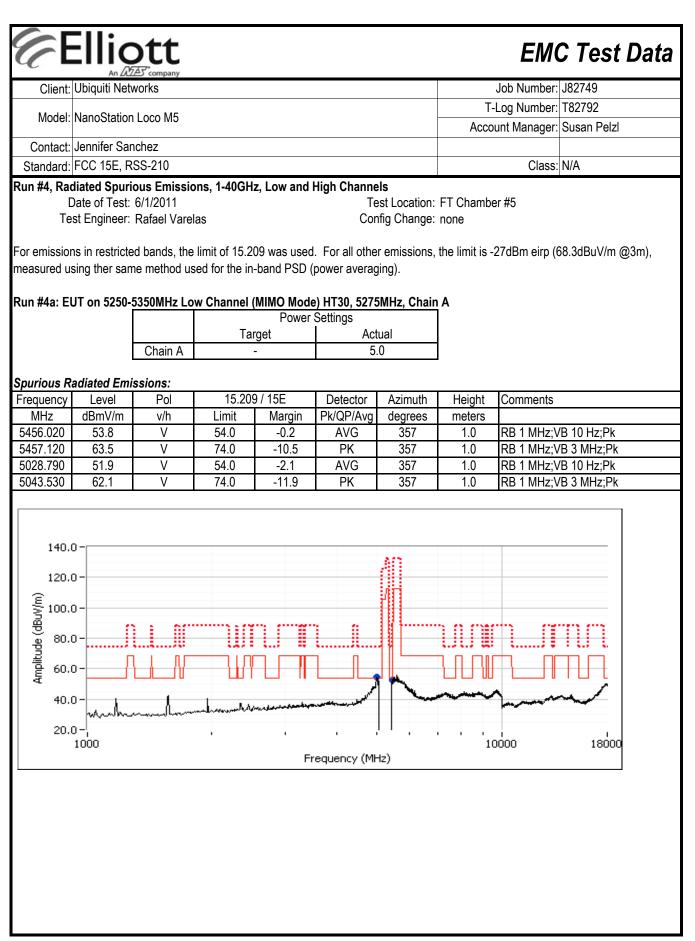


|                                                                                                                | An AZ               |                       |              |               |                    |            |                                            |            | C Test Data                |
|----------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------|---------------|--------------------|------------|--------------------------------------------|------------|----------------------------|
|                                                                                                                |                     |                       |              |               |                    |            | Job Number: J82749<br>T-Log Number: T82792 |            |                            |
| Model: Na                                                                                                      | anoStation          | Loco M5               |              |               |                    |            | Account Manager: Susan Pelzl               |            |                            |
| Contact: Jer                                                                                                   |                     |                       |              |               |                    |            |                                            | <u> </u>   |                            |
| Standard: FC                                                                                                   |                     |                       |              |               |                    |            |                                            | Class:     | N/A                        |
| Run # 2c: EUT                                                                                                  | on Chan             | nel #116 558          | BOMHz HT20   | - Various,    |                    | attin      |                                            |            |                            |
|                                                                                                                |                     |                       | Target       | (dBm)         | Power S<br>Measure |            | Softwar                                    | e Setting  |                            |
|                                                                                                                |                     | Chain A+B             |              |               | -                  |            |                                            | 1.5        |                            |
|                                                                                                                |                     |                       |              |               |                    |            |                                            |            | •                          |
| Spurious Radia<br>Frequency                                                                                    | iated Emis<br>Level | <b>ssions:</b><br>Pol | 15 200       | 9 / 15E       | Detector           | Azimuth    | Height                                     | Comments   |                            |
|                                                                                                                | dBµV/m              | v/h                   | Limit        | Margin        | Pk/QP/Avg          | degrees    | meters                                     | Commenta   |                            |
| 5372.750                                                                                                       | 53.8                | V                     | 54.0         | -0.2          | AVG                | 355        | 1.0                                        | RB 1 MHz;V | /B 10 Hz;Pk                |
| 5142.300                                                                                                       | 49.8                | V                     | 54.0         | -4.2          | AVG                | 355        | 1.0                                        | RB 1 MHz;V | /B 10 Hz;Pk                |
| 4997.110                                                                                                       | 49.4                | V                     | 54.0         | -4.6          | AVG                | 343        | 1.0                                        | RB 1 MHz;V |                            |
| 5374.740<br>4996.890                                                                                           | 64.6<br>62.5        | V<br>V                | 74.0<br>74.0 | -9.4<br>-11.5 | PK<br>PK           | 355<br>343 | 1.0<br>1.0                                 |            | /B 3 MHz;Pk<br>/B 3 MHz;Pk |
| 5142.200                                                                                                       | 61.0                | V                     | 74.0         | -11.5         | PK                 | 355        | 1.0                                        |            | /B 3 MHz;Pk                |
| (W) 100.0 -<br>P 80.0 -<br>P 80.0 -<br>P 80.0 -<br>P 80.0 -<br>P 80.0 -<br>P 80.0 -<br>40.0 -<br>20.0 -<br>100 |                     |                       |              |               | requency (MH       |            |                                            |            |                            |

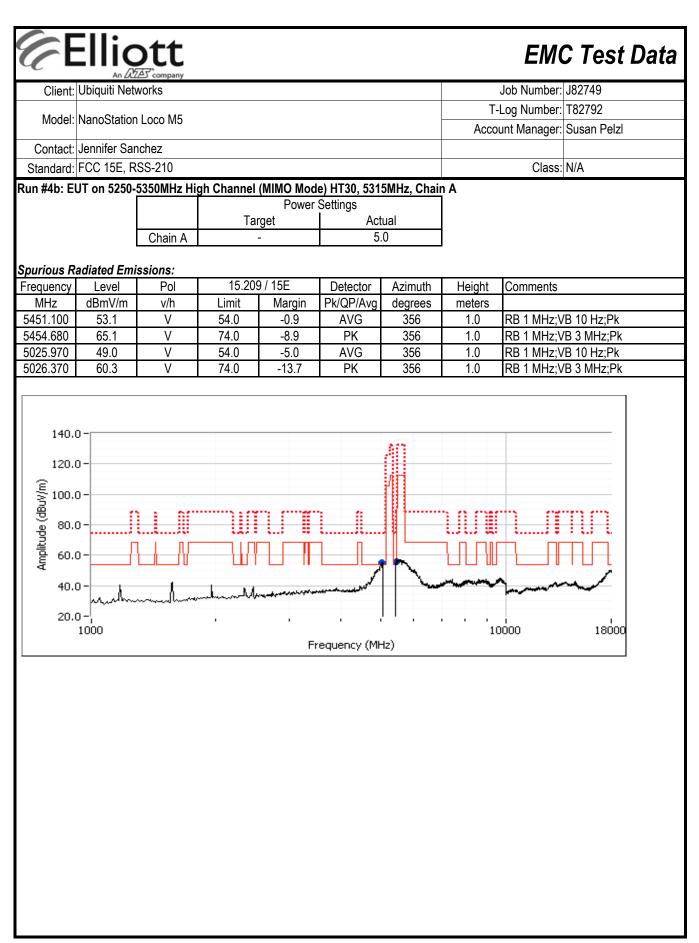
| Client:                                                                                                       | An 22<br>Ubiquiti Netv | btt<br>Company<br>works |                          |                   |                    |                     |                              | Job Number: | J82749      |
|---------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|--------------------------|-------------------|--------------------|---------------------|------------------------------|-------------|-------------|
|                                                                                                               | •                      |                         |                          |                   |                    |                     | T-Log Number: T827           |             | T82792      |
| Model:                                                                                                        | NanoStation            | LOCO M5                 |                          |                   |                    |                     | Account Manager: Susan Pelzl |             | Susan Pelzl |
|                                                                                                               | Jennifer Sar           |                         |                          |                   |                    |                     |                              |             |             |
|                                                                                                               | FCC 15E, R             |                         |                          |                   |                    |                     |                              | Class:      | N/A         |
| un # 2d: E                                                                                                    | UT on Chan             | nel #110 55             | 50MHz HT40               | ) - Various,      |                    | N - 11 <sup>1</sup> |                              |             |             |
|                                                                                                               |                        |                         | Tarnet                   | (dBm)             | Power S<br>Measure | · ·                 | Softwar                      | e Setting   |             |
|                                                                                                               |                        | Chain A+B               | - Turget                 | -                 | -                  |                     |                              | 0.5         |             |
|                                                                                                               |                        |                         |                          |                   | <b>.</b>           |                     |                              |             |             |
|                                                                                                               | adiated Emi            |                         | 45.000                   |                   |                    |                     |                              |             |             |
| requency<br>MHz                                                                                               |                        | Pol<br>v/h              |                          | 9 / 15E<br>Margin | Detector           | Azimuth             | Height                       | Comments    |             |
| MHZ<br>5371.830                                                                                               | dBµV/m<br><b>52.8</b>  | V/h<br>H                | Limit<br>54.0            | Margin<br>-1.2    | Pk/QP/Avg<br>AVG   | degrees<br>19       | meters<br>1.0                | RB 1 MHz;V  | B 10 Hz·Pk  |
| 4989.400                                                                                                      | 49.1                   | V                       | 54.0                     | -4.9              | AVG                | 354                 | 1.0                          | RB 1 MHz;V  |             |
| 5133.210                                                                                                      | 49.1                   | V                       | 54.0                     | -4.9              | AVG                | 347                 | 1.0                          | RB 1 MHz;V  | ,           |
| 5371.960                                                                                                      | 63.8                   | Н                       | 74.0                     | -10.2             | PK                 | 19                  | 1.0                          | RB 1 MHz;V  |             |
| 4991.310                                                                                                      | 62.5                   | V<br>V                  | 74.0                     | -11.5             | PK                 | 354                 | 1.0                          | RB 1 MHz;V  |             |
| 5133.230                                                                                                      | 60.2                   | V                       | 74.0                     | -13.8             | PK                 | 347                 | 1.0                          | RB 1 MHz;V  |             |
| 120.0<br>(W) 100.0<br>(MR) 80.0<br>(MR) 80.0<br>(MR) 80.0<br>(MR) 80.0<br>(MR) 80.0<br>(MR) 80.0<br>(MR) 80.0 | )<br>)                 |                         | lite<br>lite<br>alumanor | L T               |                    |                     |                              |             |             |

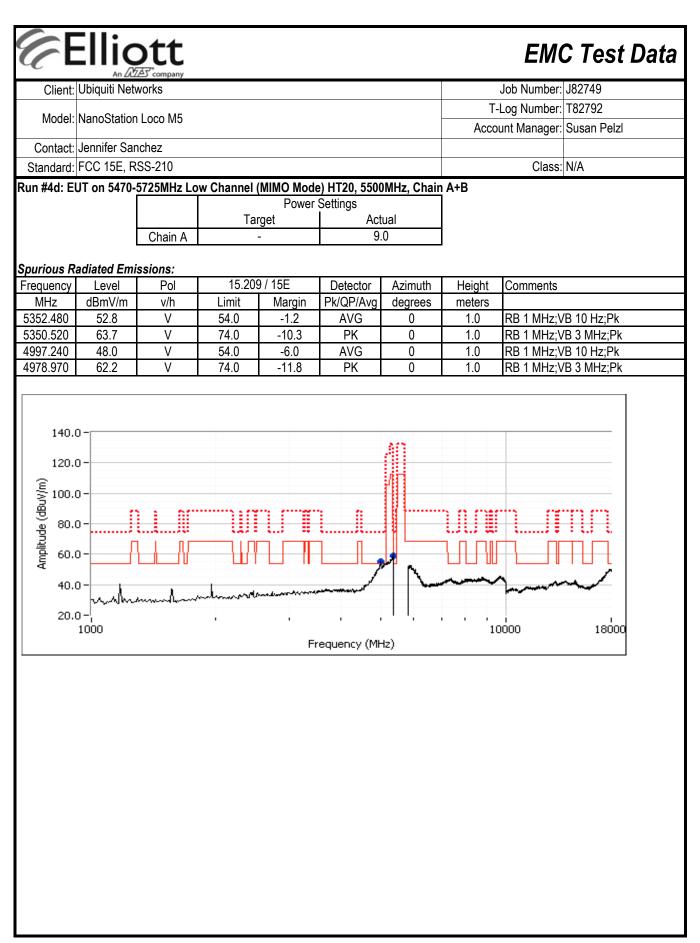


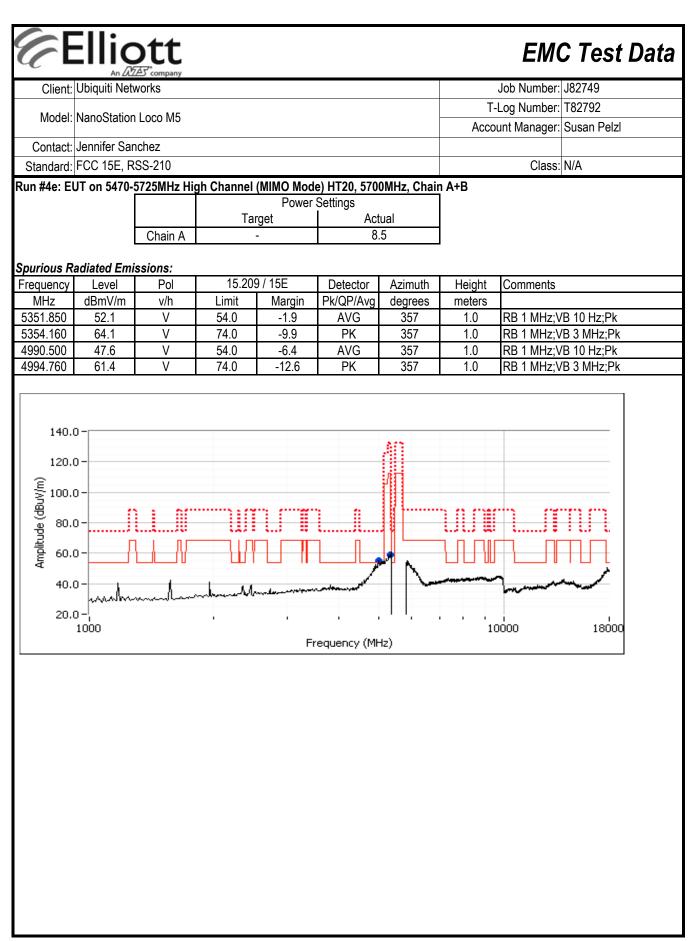


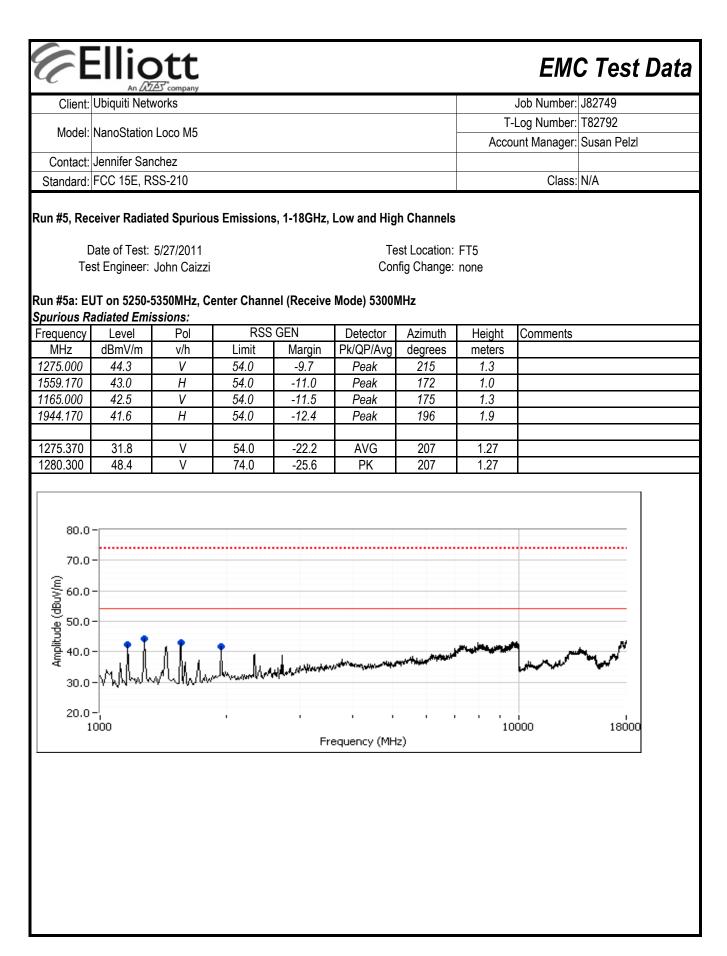


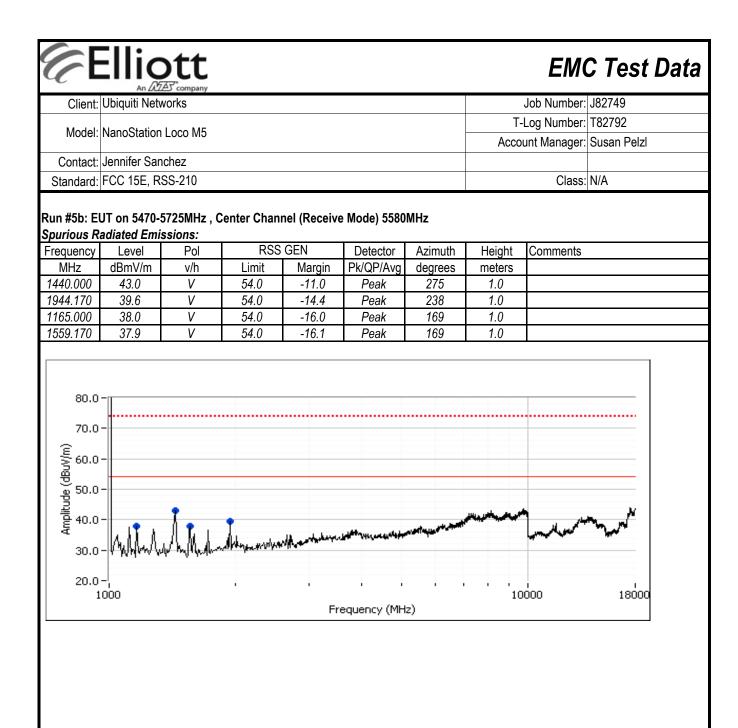





| Client: I<br>Model: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | An AZ                                           |                                          |                      |               |             |                                              |            | EM                       | C Test Data       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------|---------------|-------------|----------------------------------------------|------------|--------------------------|-------------------|
| Model: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ubiquiti Netv                                   | AS company                               |                      |               |             |                                              |            | Job Number:              | J82749            |
| wouer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NanaStation                                     | Loso M5                                  |                      |               |             |                                              | T-         | Log Number:              | T82792            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NanoStation                                     |                                          |                      |               |             |                                              | Accou      | unt Manager:             | Susan Pelzl       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jennifer Sar                                    |                                          |                      |               |             |                                              |            |                          |                   |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FCC 15E, R                                      | SS-210                                   |                      |               |             |                                              |            | Class:                   | N/A               |
| D<br>Tes<br>For emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eate of Test:<br>st Engineer:<br>s in restricte | 6/1/2011<br>Rafael Varel<br>d bands, the | as<br>limit of 15.20 | )9 was used   | Con         | est Location:<br>fig Change:<br>r emissions, |            |                          | \$8.3dBuV/m @3m), |
| Run #3a: EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JT on 5250-                                     | 5350MHz Lo                               | w Channel (          | SISO Mode)    | 802.11a, 52 | 70MHz, Cha                                   | in A       |                          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                          |                      | Power         | Settings    |                                              |            |                          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | Oheir A                                  |                      | get           | Act         |                                              |            |                          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l                                               | Chain A                                  | •                    |               | 8.          | U                                            | l          |                          |                   |
| Spurious Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | adiated Emi                                     | ssions:                                  |                      |               |             |                                              |            |                          |                   |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Level                                           | Pol                                      |                      | ) / 15E       | Detector    | Azimuth                                      | Height     | Comments                 |                   |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dBmV/m                                          | v/h                                      | Limit                | Margin        | Pk/QP/Avg   | degrees                                      | meters     |                          |                   |
| 5450.500<br>5451.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.4<br>62.5                                    | V<br>V                                   | 54.0<br>74.0         | -2.6<br>-11.5 | AVG<br>PK   | 358<br>358                                   | 1.0<br>1.0 | RB 1 MHz;\<br>RB 1 MHz;\ |                   |
| 4984.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.9                                            | V                                        | 54.0                 | -11.5         | AVG         | <u> </u>                                     | 1.0        | RB 1 MHz;V               |                   |
| 4974.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64.0                                            | V                                        | 74.0                 | -10.0         | PK          | 6                                            | 1.2        | RB 1 MHz;V               |                   |
| 1560.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.9                                            | Н                                        | 54.0                 | -11.1         | Peak        | 183                                          | 1.0        |                          | •                 |
| 140.0<br>120.0<br>(Janovinge)<br>100.0<br>(Janovinge)<br>100.0<br>(Janovinge)<br>100.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>140.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0<br>(Janovinge)<br>120.0 | ) -<br>) -<br>) -<br>) -<br>) -                 |                                          | <br><br><br>         |               | equency (MH | 1z)                                          |            |                          |                   |


|                                                    |                      | A company   |                 |                   |                       |                |                    | EMC Test Dat                                   |  |
|----------------------------------------------------|----------------------|-------------|-----------------|-------------------|-----------------------|----------------|--------------------|------------------------------------------------|--|
| Client:                                            | Ubiquiti Netv        | vorks       |                 |                   |                       |                | Job Number: J82749 |                                                |  |
| Model:                                             | NanoStation          | Loco M5     |                 |                   |                       | -              |                    | Log Number: T82792<br>unt Manager: Susan Pelzl |  |
| Contact:                                           | Jennifer San         | ichez       |                 |                   |                       |                | 7,000              |                                                |  |
| Standard:                                          | FCC 15E, R           | SS-210      |                 |                   |                       |                |                    | Class: N/A                                     |  |
| un #3b: E                                          | UT on 5250-          | 5350MHz Hig | gh Channel      |                   | e) 802.11a, 53        | 20MHz, Cha     | in A               |                                                |  |
|                                                    |                      |             | То              |                   | Settings              |                |                    |                                                |  |
|                                                    |                      | Chain A     | Ta              | rget<br>-         | Act                   |                |                    |                                                |  |
|                                                    | l                    | Ondin A     |                 |                   | 0.                    | •              |                    |                                                |  |
|                                                    | adiated Emi          |             | 15.00           |                   | <u> </u>              |                |                    |                                                |  |
| requency<br>MHz                                    | Level<br>dBmV/m      | Pol<br>v/h  | 15.209<br>Limit | 9 / 15E<br>Margin | Detector<br>Pk/QP/Avg | Azimuth        | Height<br>meters   | Comments                                       |  |
| 1VIHZ<br>5456.390                                  | 68mv/m<br>52.4       | V/n<br>V    | 54.0            | Margin<br>-1.6    | AVG                   | degrees<br>357 | 1.0                | RB 1 MHz;VB 10 Hz;Pk                           |  |
| 453.440                                            | 63.4                 | V           | 74.0            | -10.6             | PK                    | 357            | 1.0                | RB 1 MHz;VB 3 MHz;Pk                           |  |
| 979.120                                            | 51.2                 | V           | 54.0            | -2.8              | AVG                   | 352            | 1.2                | RB 1 MHz;VB 10 Hz;Pk                           |  |
| 1975.190<br>1560.150                               | 65.3<br>41.2         | V<br>H      | 74.0<br>54.0    | -8.7<br>-12.8     | PK<br>Peak            | 352<br>174     | <u>1.2</u><br>1.6  | RB 1 MHz;VB 3 MHz;Pk                           |  |
| 120.1<br>(m/\n00.1<br>80.1<br>80.1<br>40.1<br>40.1 | 0-<br>0-<br>0-<br>0- |             | <br><br>        | - derererer       | requency (MH          |                |                    |                                                |  |


|                                  | Ubiquiti Netv | ≧r <sup>*</sup> company<br>vorks |                      |              |                |            |                   | Job Number:              | J82749      |
|----------------------------------|---------------|----------------------------------|----------------------|--------------|----------------|------------|-------------------|--------------------------|-------------|
| Model:                           | NanoStation   | Loco M5                          |                      |              |                |            |                   | Log Number:              |             |
| Contact                          | Jennifer San  | choz                             |                      |              |                |            | Acco              | unt Manager:             | Susan Pelzl |
|                                  | FCC 15E, R    |                                  |                      |              |                |            |                   | Class:                   | N/A         |
|                                  |               |                                  | w Channel            | SISO Mode    | e) 802.11a, 55 | 00MHz. Cha | in A              | 0.0.001                  |             |
|                                  | ]             |                                  |                      |              | Settings       |            |                   |                          |             |
|                                  |               |                                  | Tai                  | rget         | Act            |            |                   |                          |             |
|                                  |               | Chain A                          |                      | -            | 12             | .0         |                   |                          |             |
| Spurious R                       | adiated Emis  | ssions:                          |                      |              |                |            |                   |                          |             |
| Frequency                        | Level         | Pol                              |                      | 9 / 15E      | Detector       | Azimuth    | Height            | Comments                 |             |
| MHz                              | dBmV/m        | v/h                              | Limit                | Margin       | Pk/QP/Avg      | degrees    | meters            |                          |             |
| 5356.650<br>5356.760             | 53.2<br>64.9  | V<br>V                           | 54.0<br>74.0         | -0.8<br>-9.1 | AVG<br>PK      | 355<br>355 | <u>1.1</u><br>1.1 | RB 1 MHz;V<br>RB 1 MHz;V |             |
| 4980.920                         | 64.9<br>50.4  | V                                | 54.0                 | -9.1         | AVG            | 355        | 1.1               | RB 1 MHZ;V               |             |
| 4979.450                         | 64.6          | V                                | 74.0                 | -9.4         | PK             | 355        | 1.1               | RB 1 MHz;V               |             |
| 1560.150                         | 40.7          | Н                                | 54.0                 | -13.3        | Peak           | 189        | 1.0               |                          |             |
| Amplitude (dBuV/m)<br>80.<br>90. | o             |                                  | ll<br>ll<br>dhreader |              |                |            |                   |                          |             |














# Appendix C Photographs of Test Configurations

## Appendix D Industry Canada / FCC ID Label & Label Location

# Appendix E Operator's Manual

## Appendix F Block Diagram

# Appendix G Theory of Operation

#### Appendix H RF Exposure Information

The device is a fixed mounted device. The user's manual specifies a minimum separation distance of at least 20cm, consistent with this classification.

FCC part 1.1310, Table 1 limits the power density for uncontrolled exposure. The power density,  $P_d$  (mW/cm<sup>2</sup>) calculated from the maximum EIRP,  $P_t$  (mW) and the distance, d (m), between the transmitting antenna and the closest person, can be calculated using:

| Frequency           | MPE<br>Limit<br>(mW/cm <sup>2</sup> ) | Output<br>Power<br>(mW) | Max.<br>Antenna<br>Gain (dBi) | EIRP<br>(mW) | Pd at 20cm<br>(mW/cm <sup>2</sup> ) | Distance<br>where Pd =<br>limit (cm) |
|---------------------|---------------------------------------|-------------------------|-------------------------------|--------------|-------------------------------------|--------------------------------------|
| 5250 to<br>5350 MHz | 1.00                                  | 23.5                    | 16.0                          | 935.4        | 0.2                                 | 8.6                                  |
| 5470 to<br>5725 MHz | 1.00                                  | 24.1                    | 16.0                          | 959.4        | 0.2                                 | 8.7                                  |

$$P_d = P_t / (4 \pi d^2)$$

As shown in the calculations above, the power density 20cm from the device is below the maximum permitted level for uncontrolled exposure.

#### End of Report

This page is intentionally blank and marks the last page of this test report.