UBIQUITI'
N E T W O R K S

§ 15.247, Bluetooth, § 15.407, UNII-1, UNII-2a, UNII2c, UNII-3

§ 15.407(f)

Test Requirement(s):

RF Exposure Requirements

RF Radiation Exposure Limit:

Maximum Permissible Exposure
§15.407(f): U-NII devices are subject to the radio frequency radiation exposure requirements specified in $\S 1.1307(\mathrm{~b}), \S 2.1091$ and $\S 2.1093$ of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment.
§1.1307(b)(1) and $\S 1.1307(\mathbf{b})(2)$: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.
§1.1310: As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

MPE Limit:

EUT's operating frequencies 15.247 Bluetooth @ 2402-2480 MHz; 15.407 UNII-1 @ 5180 - $5245 \mathrm{MHz} ; 15.407$ UNII-2a @ $5255-5340 \mathrm{MHz} ; 15.407$ UNII-2c @ 5480 5715 MHz; 15.407 UNII-3 @ 5735 - 5840 MHz

Limit for Uncontrolled exposure: $1 \mathrm{~mW} / \mathrm{cm}^{2}$ or $10 \mathrm{~W} / \mathrm{m}^{2}$

Equation from page 18 of OET 65, Edition 97-01
$\mathrm{S}=\mathrm{PG} / 4 \pi \mathrm{R}^{2} \quad$ or $\quad \mathrm{R}=\sqrt{(\mathrm{PG} / 4 \pi \mathrm{~S})}$
where, $\quad S=$ Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)
$\mathrm{P}=$ Power Input to antenna (mW)
$\mathrm{G}=$ Antenna Gain (numeric value)
$\mathrm{R}=$ Distance (cm)

Test Results:

Frequency $(\mathbf{M H z})$	Con. Pwr. $(\mathbf{d B m})$	Con. Pwr. $(\mathbf{m W})$	Ant. Gain $(\mathbf{d B i})$	Ant. Gain numeric	Pwr. Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Limit $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Margin	Distance $(\mathbf{c m})$	Result
2402	4.50	$2.82 *$	2	1.58	0.00	1.0	-1.00	20	Pass
5240	21.75	149.62	3	2.0	0.06	1.0	-0.94	20	Pass
5745	23.29	$213.30 *$	3	2.0	0.09	1.0	-0.91	20	Pass
5300	22.99	199.07	3	2.0	0.08	1.0	-0.92	20	Pass
5710	22.50	177.83	3	2.0	0.07	1.0	-0.93	20	Pass

[^0]Simultaneously Transmitters Summed:
0.00 (Bluetooth)
+0.09 (UNII-3)
$=0.09$

Limit of $1.0-0.09($ summed value $)=-0.91$ Margin
The safe distance for SWX-LTUINS where Power Density is less than the MPE Limit listed above was found to be 20 cm .

The product can be outfitted with a lower or higher gain antenna but with the 1 for 1 backoff, the EIRP remains the same so the MPE calculation does not change.

[^0]: * The LTU-Instant may have simultaneously transmission of the 15.247 Bluetooth, 15.407 UNII-1 or UNII2a or UNII2c or UNII-3. Asterisk notes the worst case of the possible simultaneously transmitter combinations.

