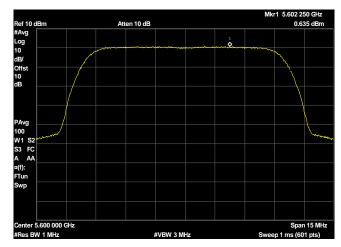
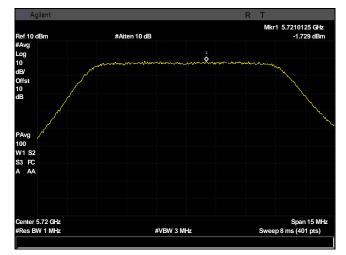


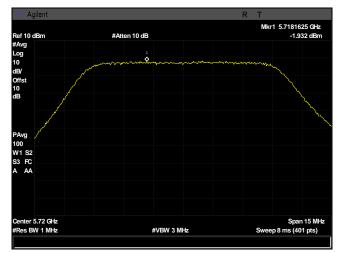
Plot 455. Power Spectral Density, UNII 2C, BW 10M, Ch 5475M, 2x2 13dBi c0



Plot 456. Power Spectral Density, UNII 2C, BW 10M, Ch 5475M, 2x2 13dBi c1



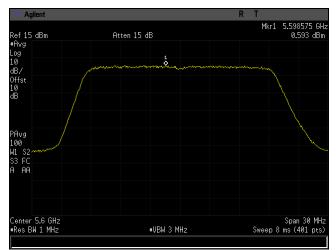
Plot 457. Power Spectral Density, UNII 2C, BW 10M, Ch 5600M, 2x2 13dBi c0



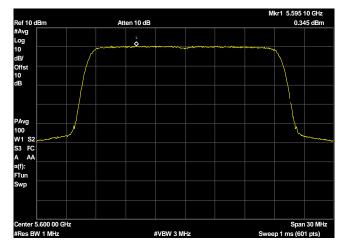
Plot 458. Power Spectral Density, UNII 2C, BW 10M, Ch 5600M, 2x2 13dBi c1

Plot 459. Power Spectral Density, UNII 2C, BW 10M, Ch 5720M, 2x2 13dBi c0

Plot 460. Power Spectral Density, UNII 2C, BW 10M, Ch 5720M, 2x2 13dBi c1

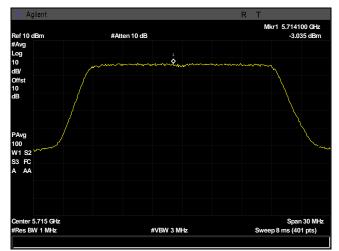


Plot 461. Power Spectral Density, UNII 2C, BW 20M, Ch 5480M, 2x2 13dBi c0



Plot 462. Power Spectral Density, UNII 2C, BW 20M, Ch 5480M, 2x2 13dBi c1

Plot 463. Power Spectral Density, UNII 2C, BW 20M, Ch 5600M, 2x2 13dBi c0



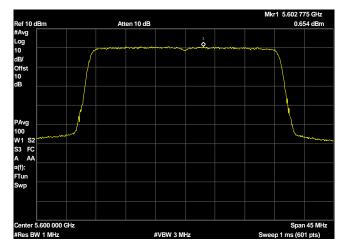
Plot 464. Power Spectral Density, UNII 2C, BW 20M, Ch 5600M, 2x2 13dBi c1



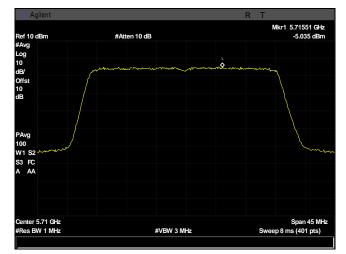
Plot 465. Power Spectral Density, UNII 2C, BW 20M, Ch 5715M, 2x2 13dBi c0

Plot 466. Power Spectral Density, UNII 2C, BW 20M, Ch 5715M, 2x2 13dBi c1

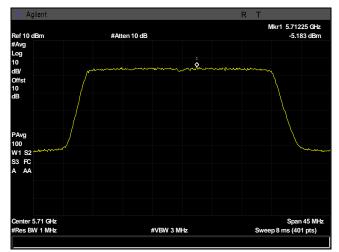
Plot 467. Power Spectral Density, UNII 2C, BW 30M, Ch 5485M, 2x2 13dBi c0



Plot 468. Power Spectral Density, UNII 2C, BW 30M, Ch 5485M, 2x2 13dBi c1



Plot 469. Power Spectral Density, UNII 2C, BW 30M, Ch 5600M, 2x2 13dBi c0



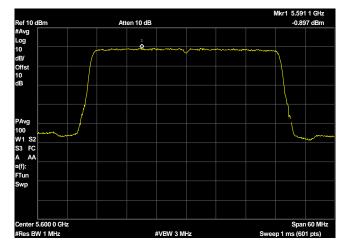
Plot 470. Power Spectral Density, UNII 2C, BW 30M, Ch 5600M, 2x2 13dBi c1

Plot 471. Power Spectral Density, UNII 2C, BW 30M, Ch 5710M, 2x2 13dBi c0



Plot 472. Power Spectral Density, UNII 2C, BW 30M, Ch 5710M, 2x2 13dBi c1

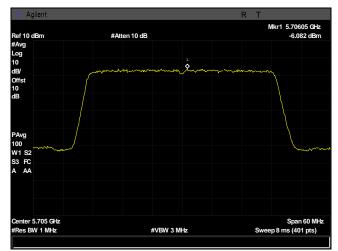
Plot 473. Power Spectral Density, UNII 2C, BW 40M, Ch 5490M, 2x2 13dBi c0



Plot 474. Power Spectral Density, UNII 2C, BW 40M, Ch 5490M, 2x2 13dBi c1



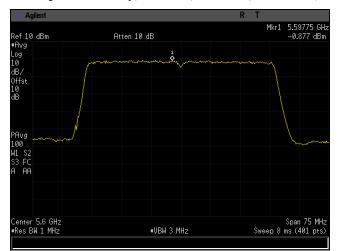
Plot 475. Power Spectral Density, UNII 2C, BW 40M, Ch 5600M, 2x2 13dBi c0



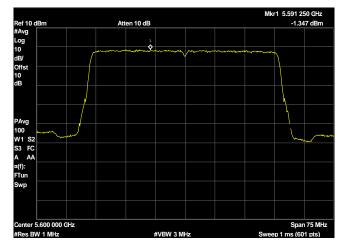
Plot 476. Power Spectral Density, UNII 2C, BW 40M, Ch 5600M, 2x2 13dBi c1

Plot 477. Power Spectral Density, UNII 2C, BW 40M, Ch 5705M, 2x2 13dBi c0

Plot 478. Power Spectral Density, UNII 2C, BW 40M, Ch 5705M, 2x2 13dBi c1



Plot 479. Power Spectral Density, UNII 2C, BW 50M, Ch 5495M, 2x2 13dBi c0



Plot 480. Power Spectral Density, UNII 2C, BW 50M, Ch 5495M, 2x2 13dBi c1



Plot 481. Power Spectral Density, UNII 2C, BW 50M, Ch 5600M, 2x2 13dBi c0

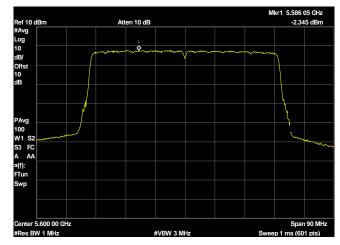
Plot 482. Power Spectral Density, UNII 2C, BW 50M, Ch 5600M, 2x2 13dBi c1

Plot 483. Power Spectral Density, UNII 2C, BW 50M, Ch 5700M, 2x2 13dBi c0



Plot 484. Power Spectral Density, UNII 2C, BW 50M, Ch 5700M, 2x2 13dBi c1

Plot 485. Power Spectral Density, UNII 2C, BW 60M, Ch 5500M, 2x2 13dBi c0



Plot 486. Power Spectral Density, UNII 2C, BW 60M, Ch 5500M, 2x2 13dBi c1

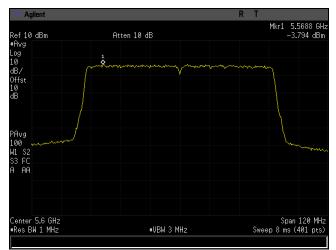
Plot 487. Power Spectral Density, UNII 2C, BW 60M, Ch 5600M, 2x2 13dBi c0

Plot 488. Power Spectral Density, UNII 2C, BW 60M, Ch 5600M, 2x2 13dBi c1

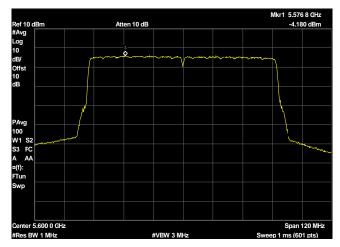


Plot 489. Power Spectral Density, UNII 2C, BW 60M, Ch 5695M, 2x2 13dBi c0

Plot 490. Power Spectral Density, UNII 2C, BW 60M, Ch 5695M, 2x2 13dBi c1



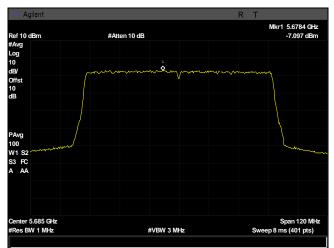
Plot 491. Power Spectral Density, UNII 2C, BW 80M, Ch 5510M, 2x2 13dBi c0



Plot 492. Power Spectral Density, UNII 2C, BW 80M, Ch 5510M, 2x2 13dBi c1



Plot 493. Power Spectral Density, UNII 2C, BW 80M, Ch 5600M, 2x2 13dBi c0

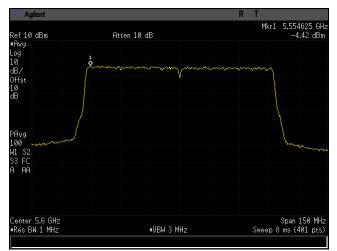


Plot 494. Power Spectral Density, UNII 2C, BW 80M, Ch 5600M, 2x2 13dBi c1

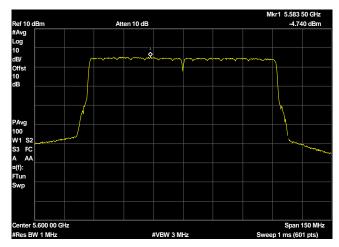
Plot 495. Power Spectral Density, UNII 2C, BW 80M, Ch 5685M, 2x2 13dBi c0



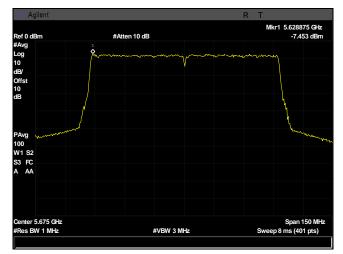
Plot 496. Power Spectral Density, UNII 2C, BW 80M, Ch 5685M, 2x2 13dBi c1



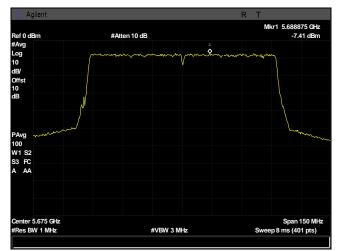
Plot 497. Power Spectral Density, UNII 2C, BW 100M, Ch 5520M, 2x2 13dBi c0



Plot 498. Power Spectral Density, UNII 2C, BW 100M, Ch 5520M, 2x2 13dBi c1



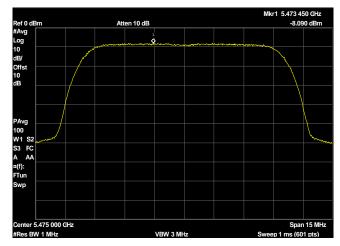
Plot 499. Power Spectral Density, UNII 2C, BW 100M, Ch 5600M, 2x2 13dBi c0



Plot 500. Power Spectral Density, UNII 2C, BW 100M, Ch 5600M, 2x2 13dBi c1

Plot 501. Power Spectral Density, UNII 2C, BW 100M, Ch 5675M, 2x2 13dBi c0

Plot 502. Power Spectral Density, UNII 2C, BW 100M, Ch 5675M, 2x2 13dBi c1



Power Spectral Density, UNII 2C, 22 dBi

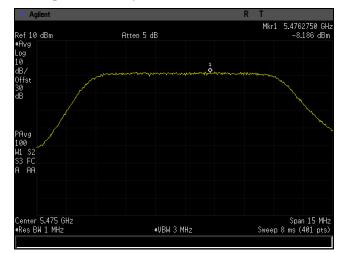
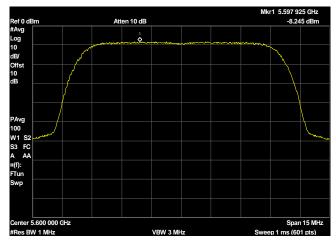
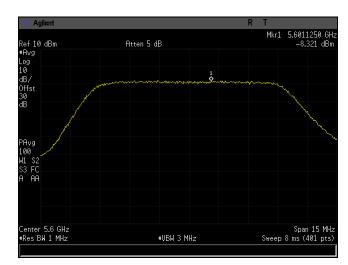

Channel BW (MHz)	Frequency (MHz)	Chain 0 (dBm)	Chain 1 (dBm)	Sum (dBm)	Limit (dBm)	Directional Gain (dBi)	Final Limit (dBm)	Margin (dB)
10	5475	-8.09	-8.186	-5.127	11	22	-5	-0.127
	5600	-8.245	-8.321	-5.272	11	22	-5	-0.272
	5720	-12.086	-13.07	-9.539	11	22	-5	-4.539
20	5480	-7.812	-8.254	-5.017	11	22	-5	-0.017
	5600	-8.155	-8.084	-5.109	11	22	-5	-0.109
	5715	-14.044	-14.52	-11.265	11	22	-5	-6.265
30	5485	-9.69	-10.29	-6.969	11	22	-5	-1.969
	5600	-8.962	-8.4	-5.661	11	22	-5	-0.661
	5710	-15.066	-15.82	-12.416	11	22	-5	-7.416
	5490	-10.813	-10.63	-7.71	11	22	-5	-2.71
40	5600	-9.675	-9.282	-6.463	11	22	-5	-1.463
	5705	-16.114	-16.78	-13.423	11	22	-5	-8.423
	5495	-12.024	-12.16	-9.081	11	22	-5	-4.081
50	5600	-10.996	-10.43	-7.693	11	22	-5	-2.693
	5700	-16.844	-17.63	-14.208	11	22	-5	-9.208
60	5500	-13.503	-13.65	-10.565	11	22	-5	-5.565
	5600	-11.999	-10.94	-8.427	11	22	-5	-3.427
	5695	-17.119	-17.57	-14.328	11	22	-5	-9.328
	5510	-17.357	-17.92	-14.619	11	22	-5	-9.619
80	5600	-12.775	-12.22	-9.478	11	22	-5	-4.478
	5685	-17.295	-18.22	-14.722	11	22	-5	-9.722
100	5520	-17.029	-16.94	-13.973	11	22	-5	-8.973
	5600	-13.89	-13.19	-10.515	11	22	-5	-5.515
	5675	-17.247	-17.81	-14.509	11	22	-5	-9.509

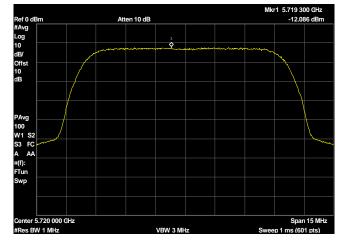
Table 19. Power Spectral Density, UNII 2C, 22 dBi, 2x2, Test Results



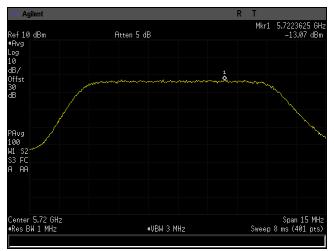
Plot 503. Power Spectral Density, UNII 2C, BW 10M, Ch 5475M, 2x2 22dBi c0



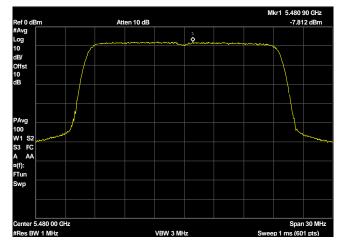
Plot 504. Power Spectral Density, UNII 2C, BW 10M, Ch 5475M, 2x2 22dBi c1



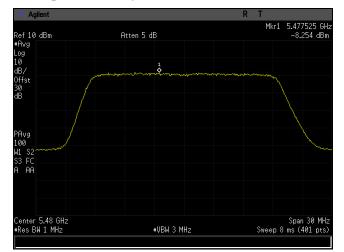
Plot 505. Power Spectral Density, UNII 2C, BW 10M, Ch 5600M, 2x2 22dBi c0



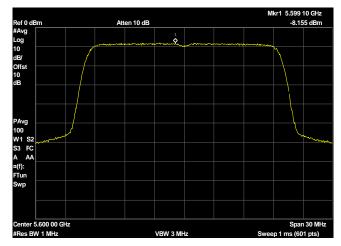
Plot 506. Power Spectral Density, UNII 2C, BW 10M, Ch 5600M, 2x2 22dBi c1



Plot 507. Power Spectral Density, UNII 2C, BW 10M, Ch 5720M, 2x2 22dBi c0



Plot 508. Power Spectral Density, UNII 2C, BW 10M, Ch 5720M, 2x2 22dBi c1



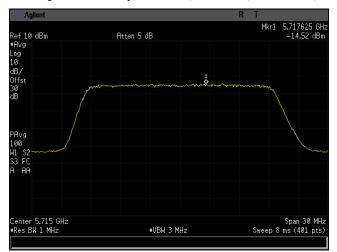
Plot 509. Power Spectral Density, UNII 2C, BW 20M, Ch 5480M, 2x2 22dBi c0



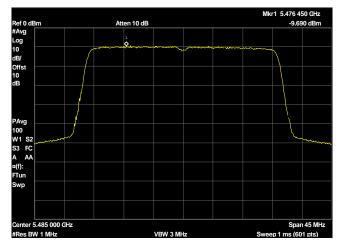
Plot 510. Power Spectral Density, UNII 2C, BW 20M, Ch 5480M, 2x2 22dBi c1



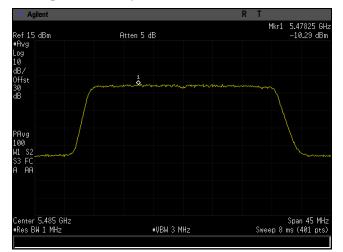
Plot 511. Power Spectral Density, UNII 2C, BW 20M, Ch 5600M, 2x2 22dBi c0



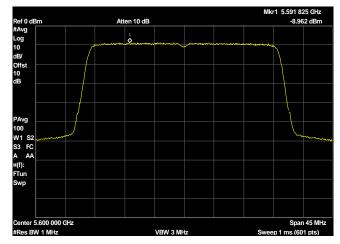
Plot 512. Power Spectral Density, UNII 2C, BW 20M, Ch 5600M, 2x2 22dBi c1



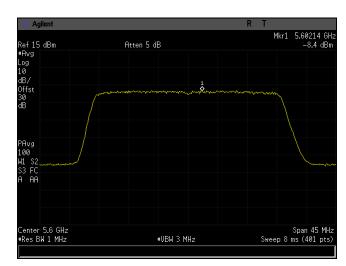
Plot 513. Power Spectral Density, UNII 2C, BW 20M, Ch 5715M, 2x2 22dBi c0



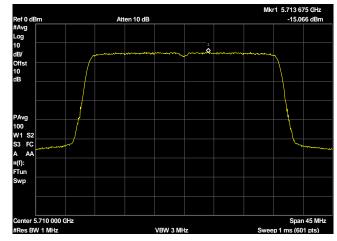
Plot 514. Power Spectral Density, UNII 2C, BW 20M, Ch 5715M, 2x2 22dBi c1



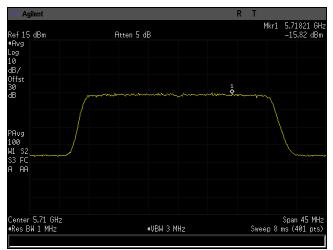
Plot 515. Power Spectral Density, UNII 2C, BW 30M, Ch 5485M, 2x2 22dBi c0



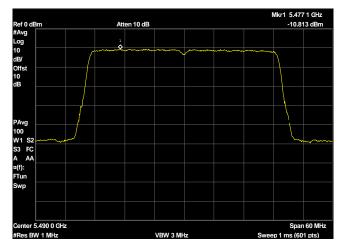
Plot 516. Power Spectral Density, UNII 2C, BW 30M, Ch 5485M, 2x2 22dBi c1



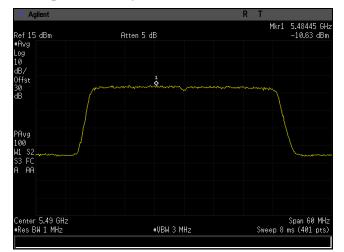
Plot 517. Power Spectral Density, UNII 2C, BW 30M, Ch 5600M, 2x2 22dBi c0



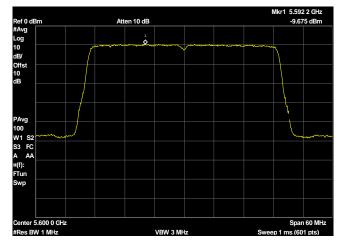
Plot 518. Power Spectral Density, UNII 2C, BW 30M, Ch 5600M, 2x2 22dBi c1



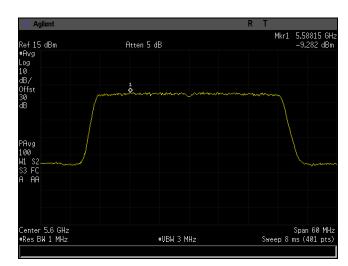
Plot 519. Power Spectral Density, UNII 2C, BW 30M, Ch 5710M, 2x2 22dBi c0



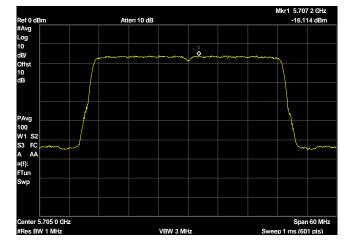
Plot 520. Power Spectral Density, UNII 2C, BW 30M, Ch 5710M, 2x2 22dBi c1



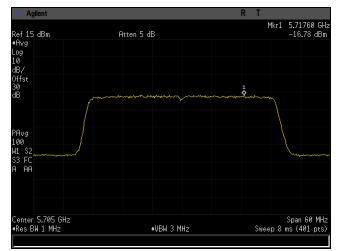
Plot 521. Power Spectral Density, UNII 2C, BW 40M, Ch 5490M, 2x2 22dBi c0



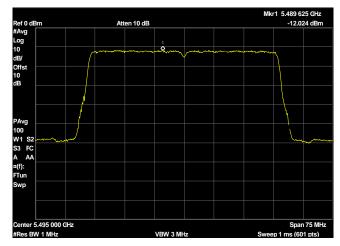
Plot 522. Power Spectral Density, UNII 2C, BW 40M, Ch 5490M, 2x2 22dBi c1



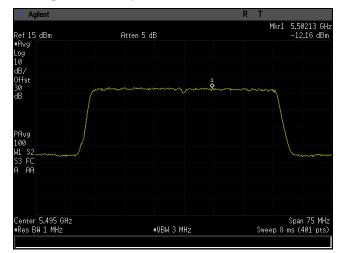
Plot 523. Power Spectral Density, UNII 2C, BW 40M, Ch 5600M, 2x2 22dBi c0



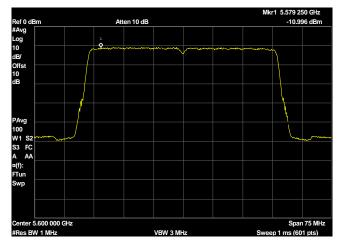
Plot 524. Power Spectral Density, UNII 2C, BW 40M, Ch 5600M, 2x2 22dBi c1



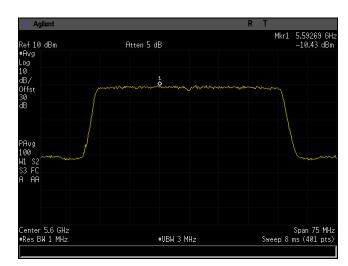
Plot 525. Power Spectral Density, UNII 2C, BW 40M, Ch 5705M, 2x2 22dBi c0



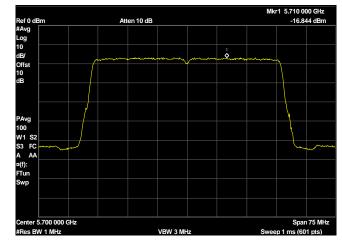
Plot 526. Power Spectral Density, UNII 2C, BW 40M, Ch 5705M, 2x2 22dBi c1



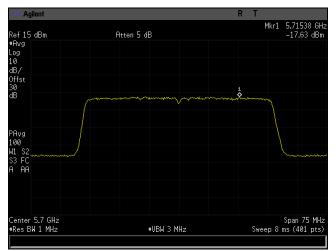
Plot 527. Power Spectral Density, UNII 2C, BW 50M, Ch 5495M, 2x2 22dBi c0



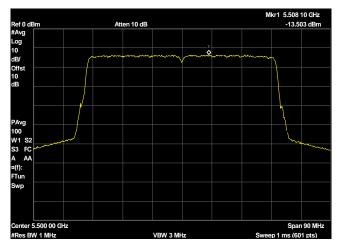
Plot 528. Power Spectral Density, UNII 2C, BW 50M, Ch 5495M, 2x2 22dBi c1



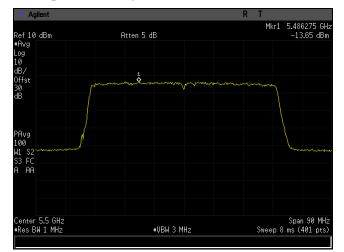
Plot 529. Power Spectral Density, UNII 2C, BW 50M, Ch 5600M, 2x2 22dBi c0



Plot 530. Power Spectral Density, UNII 2C, BW 50M, Ch 5600M, 2x2 22dBi c1

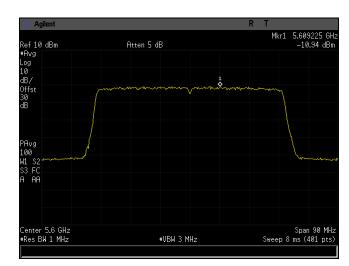


Plot 531. Power Spectral Density, UNII 2C, BW 50M, Ch 5700M, 2x2 22dBi c0

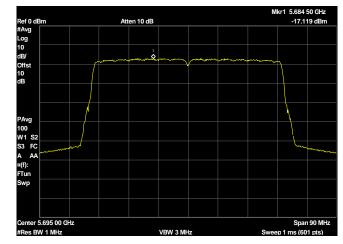


Plot 532. Power Spectral Density, UNII 2C, BW 50M, Ch 5700M, 2x2 22dBi c1

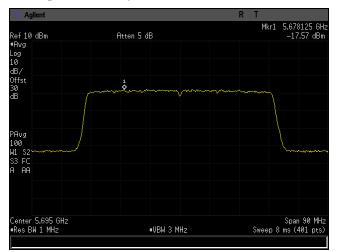
Plot 533. Power Spectral Density, UNII 2C, BW 60M, Ch 5500M, 2x2 22dBi c0



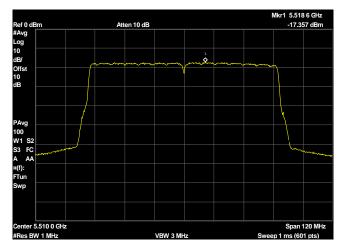
Plot 534. Power Spectral Density, UNII 2C, BW 60M, Ch 5500M, 2x2 22dBi c1



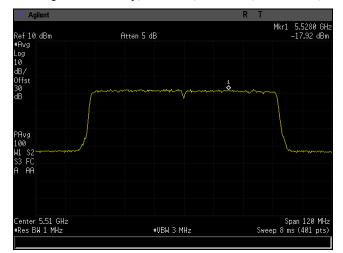
Plot 535. Power Spectral Density, UNII 2C, BW 60M, Ch 5600M, 2x2 22dBi c0



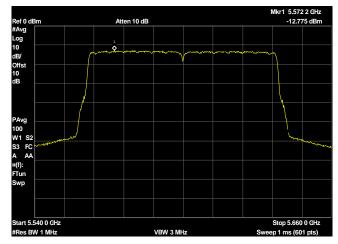
Plot 536. Power Spectral Density, UNII 2C, BW 60M, Ch 5600M, 2x2 22dBi c1



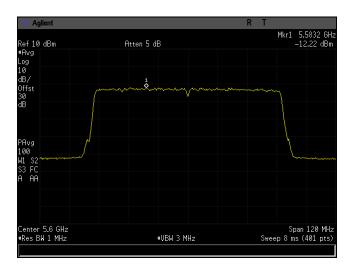
Plot 537. Power Spectral Density, UNII 2C, BW 60M, Ch 5695M, 2x2 22dBi c0



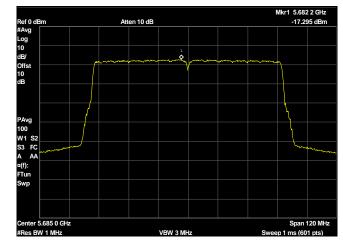
Plot 538. Power Spectral Density, UNII 2C, BW 60M, Ch 5695M, 2x2 22dBi c1



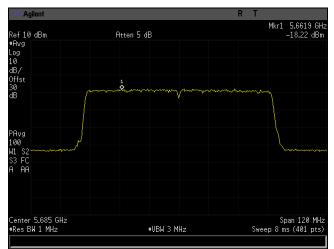
Plot 539. Power Spectral Density, UNII 2C, BW 80M, Ch 5510M, 2x2 22dBi c0



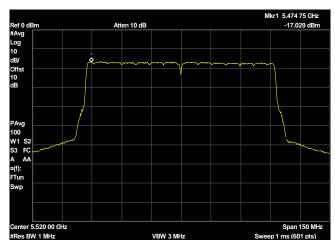
Plot 540. Power Spectral Density, UNII 2C, BW 80M, Ch 5510M, 2x2 22dBi c1



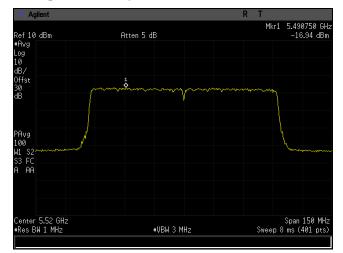
Plot 541. Power Spectral Density, UNII 2C, BW 80M, Ch 5600M, 2x2 22dBi c0



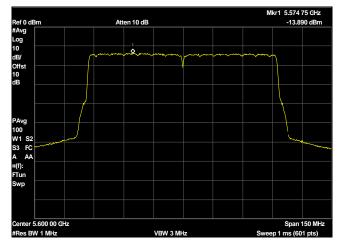
Plot 542. Power Spectral Density, UNII 2C, BW 80M, Ch 5600M, 2x2 22dBi c1



Plot 543. Power Spectral Density, UNII 2C, BW 80M, Ch 5685M, 2x2 22dBi c0

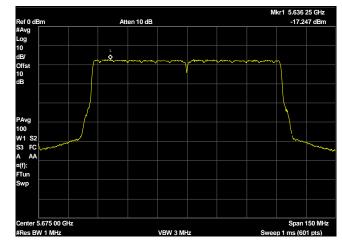


Plot 544. Power Spectral Density, UNII 2C, BW 80M, Ch 5685M, 2x2 22dBi c1

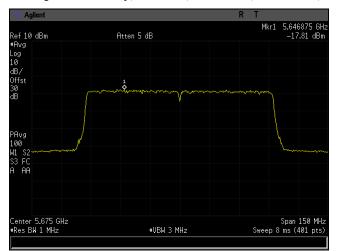


Plot 545. Power Spectral Density, UNII 2C, BW 100M, Ch 5520M, 2x2 22dBi c0

Plot 546. Power Spectral Density, UNII 2C, BW 100M, Ch 5520M, 2x2 22dBi c1



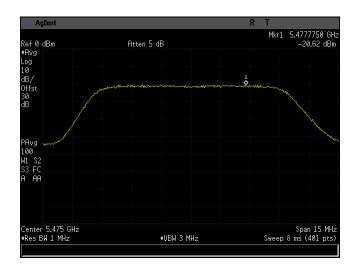
Plot 547. Power Spectral Density, UNII 2C, BW 100M, Ch 5600M, 2x2 22dBi c0



Plot 548. Power Spectral Density, UNII 2C, BW 100M, Ch 5600M, 2x2 22dBi c1

Plot 549. Power Spectral Density, UNII 2C, BW 100M, Ch 5675M, 2x2 22dBi c0

Plot 550. Power Spectral Density, UNII 2C, BW 100M, Ch 5675M, 2x2 22dBi c1



Channel BW (MHz)	Frequency (MHz)	Chain 0 (dBm)	Chain 1 (dBm)	Sum (dBm)	Limit (dBm)	Directional Gain (dBi)	Final Limit (dBm)	Margin (dB)
10	5475	-20.62	-20.37	-17.482	11	34	-17	-0.482
	5600	-20.33	-20.37	-17.339	11	34	-17	-0.339
	5720	-20.6	-20.44	-17.508	11	34	-17	-0.508
20	5480	-23.926	-24.21	-21.055	11	34	-17	-4.055
	5600	-19.879	-20.39	-17.116	11	34	-17	-0.116
	5715	-19.98	-20.28	-17.117	11	34	-17	-0.117
	5485	-25.489	-25.53	-22.499	11	34	-17	-5.499
30	5600	-20.548	-20.487	-17.507	11	34	-17	-0.507
	5710	-20.629	-20.582	-17.595	11	34	-17	-0.595
	5490	-27.309	-27.05	-24.167	11	34	-17	-7.167
40	5600	-21.59	-21.6	-18.584	11	34	-17	-1.584
	5705	-21.69	-22.2	-18.927	11	34	-17	-1.927
	5495	-26.68	-28.22	-24.371	11	34	-17	-7.371
50	5600	-22.992	-22.726	-19.846	11	34	-17	-2.846
	5700	-22.662	-23.044	-19.838	11	34	-17	-2.838
60	5500	-29.431	-29.16	-26.283	11	34	-17	-9.283
	5600	-23.692	-23.387	-20.526	11	34	-17	-3.526
	5695	-23.525	-23.387	-20.445	11	34	-17	-3.445
	5510	-30.143	-29.98	-27.05	11	34	-17	-10.05
80	5600	-24.941	-24.9	-21.91	11	34	-17	-4.91
	5685	-25.226	-24.83	-22.013	11	34	-17	-5.013
100	5520	-33.392	-32.75	-30.048	11	34	-17	-13.048
	5600	-26.269	-26.015	-23.129	11	34	-17	-6.129
	5675	-25.706	-25.846	-22.765	11	34	-17	-5.765

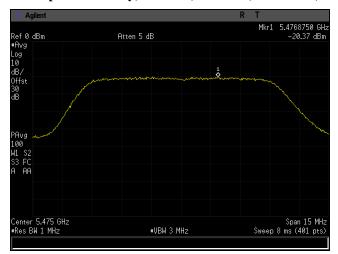
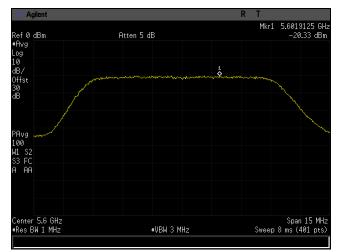

Power Spectral Density, UNII 2C, 34 dBi

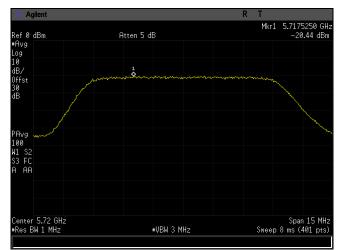
Table 20. Power Spectral Density, UNII 2C, 34 dBi, 2x2, Test Results



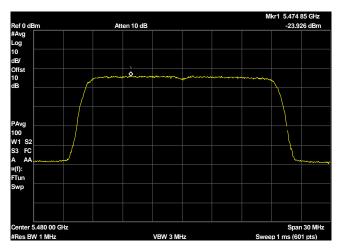
Plot 551. Power Spectral Density, UNII 2C, BW 10M, Ch 5475M, 2x2 34dBi c0

Plot 552. Power Spectral Density, UNII 2C, BW 10M, Ch 5475M, 2x2 34dBi c1

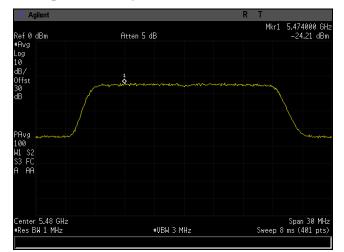
Plot 553. Power Spectral Density, UNII 2C, BW 10M, Ch 5600M, 2x2 34dBi c0



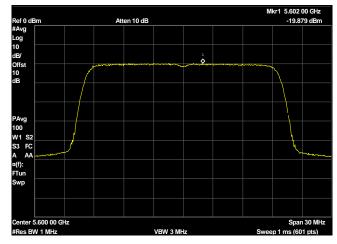
Plot 554. Power Spectral Density, UNII 2C, BW 10M, Ch 5600M, 2x2 34dBi c1



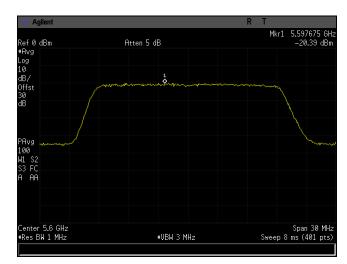
Plot 555. Power Spectral Density, UNII 2C, BW 10M, Ch 5720M, 2x2 34dBi c0



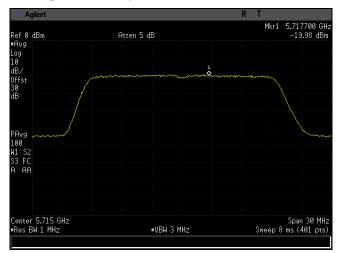
Plot 556. Power Spectral Density, UNII 2C, BW 10M, Ch 5720M, 2x2 34dBi c1



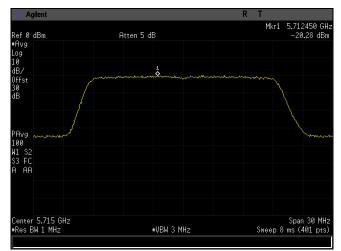
Plot 557. Power Spectral Density, UNII 2C, BW 20M, Ch 5480M, 2x2 34dBi c0



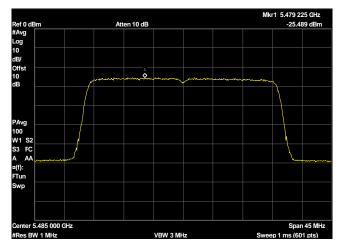
Plot 558. Power Spectral Density, UNII 2C, BW 20M, Ch 5480M, 2x2 34dBi c1



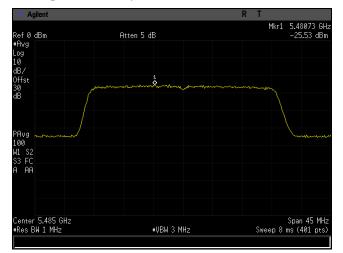
Plot 559. Power Spectral Density, UNII 2C, BW 20M, Ch 5600M, 2x2 34dBi c0



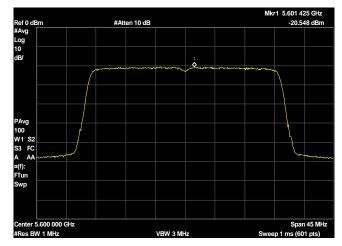
Plot 560. Power Spectral Density, UNII 2C, BW 20M, Ch 5600M, 2x2 34dBi c1



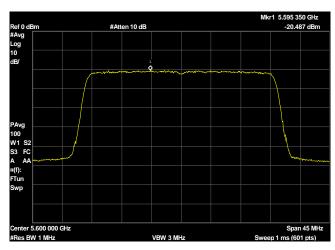
Plot 561. Power Spectral Density, UNII 2C, BW 20M, Ch 5715M, 2x2 34dBi c0



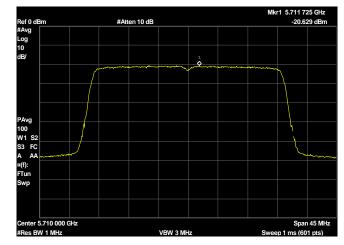
Plot 562. Power Spectral Density, UNII 2C, BW 20M, Ch 5715M, 2x2 34dBi c1



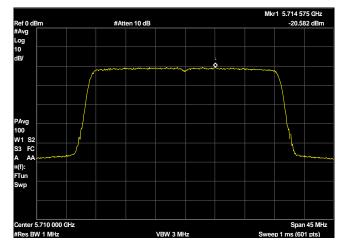
Plot 563. Power Spectral Density, UNII 2C, BW 30M, Ch 5485M, 2x2 34dBi c0



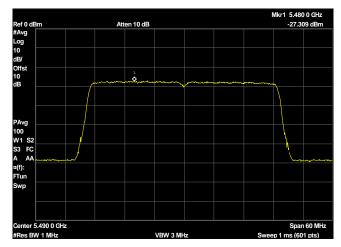
Plot 564. Power Spectral Density, UNII 2C, BW 30M, Ch 5485M, 2x2 34dBi c1



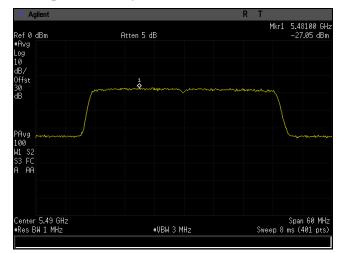
Plot 565. Power Spectral Density, UNII 2C, BW 30M, Ch 5600M, 2x2 34dBi c0



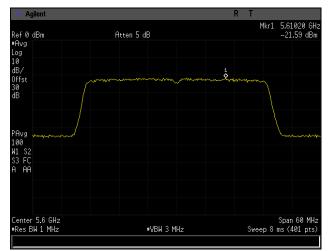
Plot 566. Power Spectral Density, UNII 2C, BW 30M, Ch 5600M, 2x2 34dBi c1



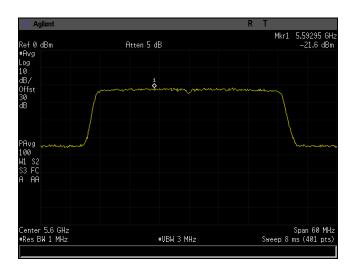
Plot 567. Power Spectral Density, UNII 2C, BW 30M, Ch 5710M, 2x2 34dBi c0



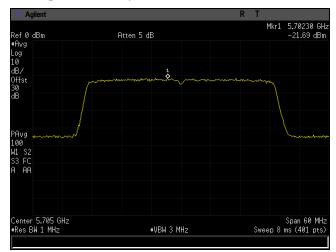
Plot 568. Power Spectral Density, UNII 2C, BW 30M, Ch 5710M, 2x2 34dBi c1



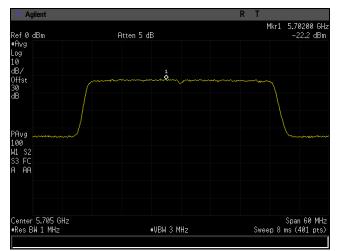
Plot 569. Power Spectral Density, UNII 2C, BW 40M, Ch 5490M, 2x2 34dBi c0



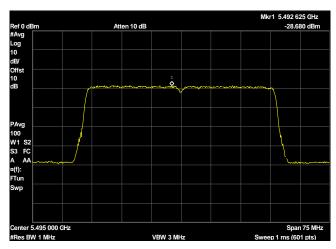
Plot 570. Power Spectral Density, UNII 2C, BW 40M, Ch 5490M, 2x2 34dBi c1



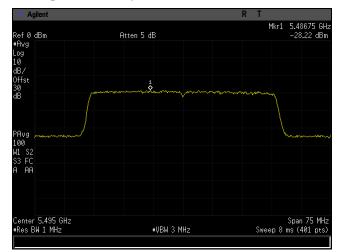
Plot 571. Power Spectral Density, UNII 2C, BW 40M, Ch 5600M, 2x2 34dBi c0



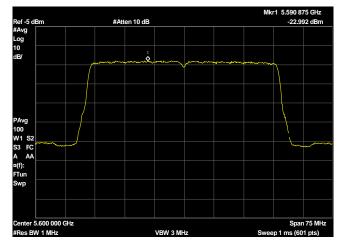
Plot 572. Power Spectral Density, UNII 2C, BW 40M, Ch 5600M, 2x2 34dBi c1



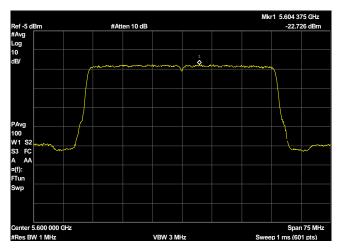
Plot 573. Power Spectral Density, UNII 2C, BW 40M, Ch 5705M, 2x2 34dBi c0



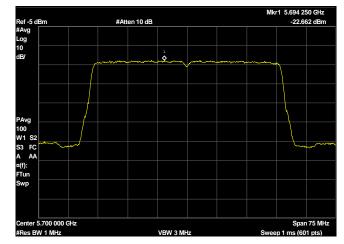
Plot 574. Power Spectral Density, UNII 2C, BW 40M, Ch 5705M, 2x2 34dBi c1



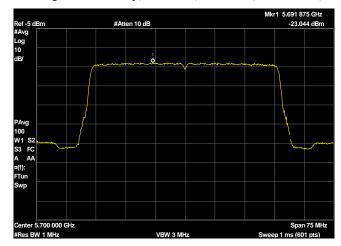
Plot 575. Power Spectral Density, UNII 2C, BW 50M, Ch 5495M, 2x2 34dBi c0



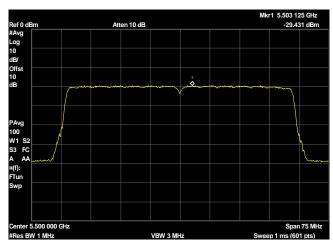
Plot 576. Power Spectral Density, UNII 2C, BW 50M, Ch 5495M, 2x2 34dBi c1



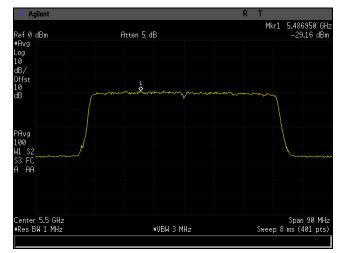
Plot 577. Power Spectral Density, UNII 2C, BW 50M, Ch 5600M, 2x2 34dBi c0



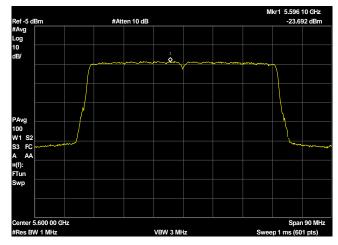
Plot 578. Power Spectral Density, UNII 2C, BW 50M, Ch 5600M, 2x2 34dBi c1



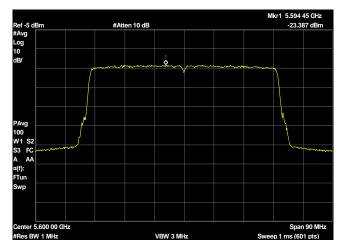
Plot 579. Power Spectral Density, UNII 2C, BW 50M, Ch 5700M, 2x2 34dBi c0



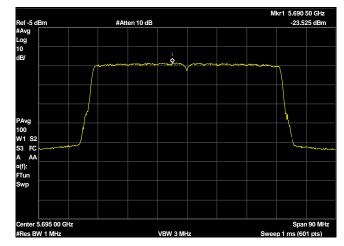
Plot 580. Power Spectral Density, UNII 2C, BW 50M, Ch 5700M, 2x2 34dBi c1



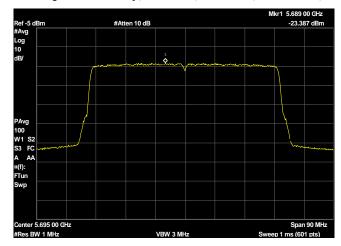
Plot 581. Power Spectral Density, UNII 2C, BW 60M, Ch 5500M, 2x2 34dBi c0



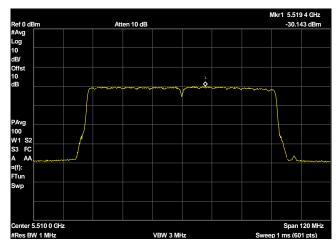
Plot 582. Power Spectral Density, UNII 2C, BW 60M, Ch 5500M, 2x2 34dBi c1



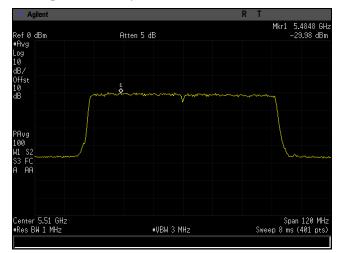
Plot 583. Power Spectral Density, UNII 2C, BW 60M, Ch 5600M, 2x2 34dBi c0



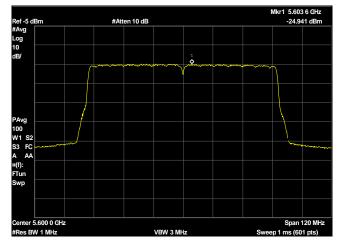
Plot 584. Power Spectral Density, UNII 2C, BW 60M, Ch 5600M, 2x2 34dBi c1



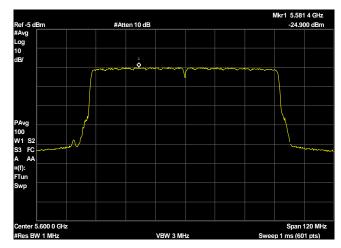
Plot 585. Power Spectral Density, UNII 2C, BW 60M, Ch 5695M, 2x2 34dBi c0



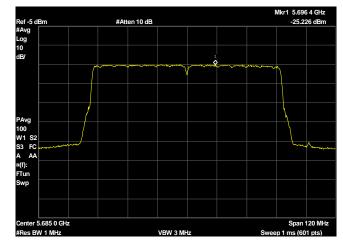
Plot 586. Power Spectral Density, UNII 2C, BW 60M, Ch 5695M, 2x2 34dBi c1



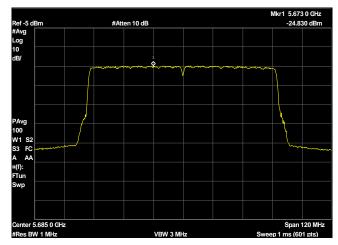
Plot 587. Power Spectral Density, UNII 2C, BW 80M, Ch 5510M, 2x2 34dBi c0



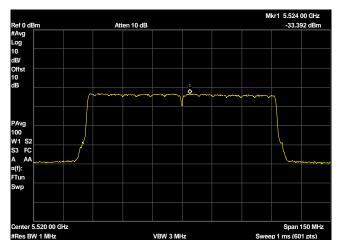
Plot 588. Power Spectral Density, UNII 2C, BW 80M, Ch 5510M, 2x2 34dBi c1



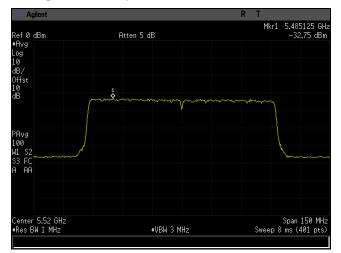
Plot 589. Power Spectral Density, UNII 2C, BW 80M, Ch 5600M, 2x2 34dBi c0



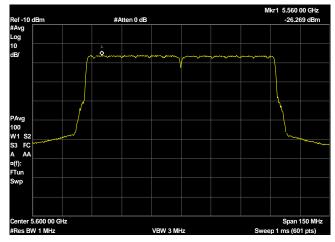
Plot 590. Power Spectral Density, UNII 2C, BW 80M, Ch 5600M, 2x2 34dBi c1



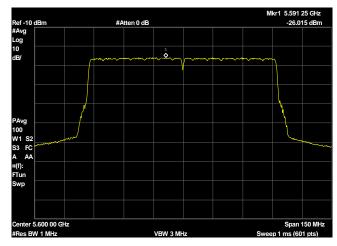
Plot 591. Power Spectral Density, UNII 2C, BW 80M, Ch 5685M, 2x2 34dBi c0



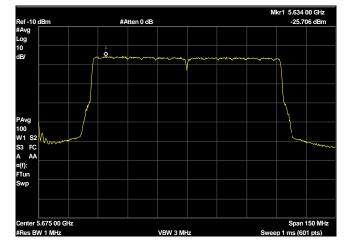
Plot 592. Power Spectral Density, UNII 2C, BW 80M, Ch 5685M, 2x2 34dBi c1



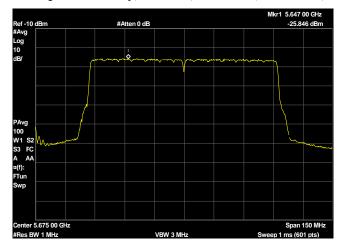
Plot 593. Power Spectral Density, UNII 2C, BW 100M, Ch 5520M, 2x2 34dBi c0



Plot 594. Power Spectral Density, UNII 2C, BW 100M, Ch 5520M, 2x2 34dBi c1



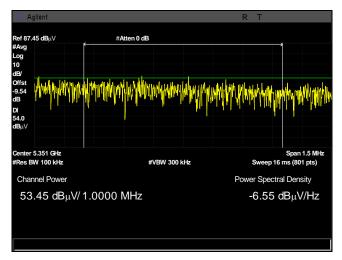
Plot 595. Power Spectral Density, UNII 2C, BW 100M, Ch 5600M, 2x2 34dBi c0



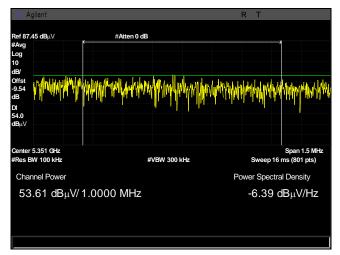
Plot 596. Power Spectral Density, UNII 2C, BW 100M, Ch 5600M, 2x2 34dBi c1

Plot 597. Power Spectral Density, UNII 2C, BW 100M, Ch 5675M, 2x2 34dBi c0

Plot 598. Power Spectral Density, UNII 2C, BW 100M, Ch 5675M, 2x2 34dBi c1


Electromagnetic Compatibility Criteria for Intentional Radiators

15.407(b)(2-3) & (6-7) Undesirable Emissions


Test Requirements:	§ 15.407(b)(2): For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
	§ 15.407(b)(3): For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
	§ 15.407(b)(6): Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
	§ 15.407(b)(7): The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
Test Procedure:	The EUT was placed on a non-conducting stand on a turntable in a chamber. To find the maximum emission the EUT was set to transmit on low, mid, and high channels. Additionally, the turntable was rotated 360 degrees, the EUT was oriented through its three orthogonal axes, and the receive antenna height was varied in order to maximize emissions.
	For frequencies from 30 MHz to 1 GHz, measurements were first made using a peak detector with a 100 kHz resolution bandwidth. Emissions which exceeded the limits were re-measured using a quasi-peak detector with a 120 kHz resolution bandwidth.
	Above 1 GHz, measurements were made pursuant the method described in FCC KDB 789033 D02 General UNII Test Procedure New Rules v01. The equation, EIRP=E + 20 log D - 104.8 was used to convert field strength to EIRP (E = field strength (dB μ V/m) and D = Reference measurement distance).
	For emissions above 1 GHz and in restricted bands, measurements of the field strength were made with a peak detector and an average detector and compared with the limits of 15.209.
	As an alternative, according to FCC KDB 789033 D02 General UNII Test Procedure New Rules v01, all emissions above 1 GHz that comply with the peak and average limits of 15.209 satisfy the requirements of unwanted emissions in 15.407.
Test Results:	For below 1 GHz, the EUT was compliant with the requirements of this section. The worst case configuration is used to show compliance with the requirements. QP detector was used to measure the emissions that appeared to be above the limit during the pre-scan.
	For above 1 GHz, the EUT was compliant with the requirements of this section. Emissions that appear to be above the limit were investigated by zooming into the frequency of interest and changing the VBW to 30Hz. Power integration method was used to measure the power around the bandedge. Bandedge plots have been corrected for antenna correction factors, cable loss; units are $dB\mu V/m$.
	Above 18GHz, only noise floor was seen.
Test Engineer(s):	Donald Salguero
Test Date(s):	August 30, 2017

Undesirable Emissions, UNII 2A

Plot 599. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 10M, 5345M, pwr integration

Plot 600. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 20M, 5340M, pwr integration

🔆 Agilent							RΤ			
Ref 87.45 dB μV		##	Atten 0 dB							
#Avg Log		*								
10 dB/										
Offst -9.54 dB	WWW	yunyan mulanya	W	Ww.Nywwhi		///www.	WWW.M	W	Night	(H"Men ^{al} la
DI 54.0 dBµ≀∨						1 1 - 1		1		
Center 5.351 G									Cnon	1.5 MHz
#Res BW 100 k				#VBW 300	kHz		Swee	ep 16	Span ms (80	
Channel Po	wer					P	ower Sp	ectra	al Dens	sity
51.85 c	BμV/	1.0000 I	MHz				-8.1	5 c	BµV	//Hz

Plot 601. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 30M, 5335M, pwr integration

🔆 Agilent		RT
Ref 87.45 dB μ∀	#Atten 0 dB	
#Avg Log 10 dB/		
Offst -9.54 dB DI 54.0 dB⊔V	nardellandellen van her andellen andellen andellen andellen andellen andellen andellen andellen andellen andel	united and the subsection of
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 1.5 MHz Sweep 16 ms (801 pts)
Channel Power		Power Spectral Density
52.27 dBμV/	1.0000 MHz	-7.73 dB μ V/Hz

Plot 602. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 40M, 5330M, pwr integration

🔆 Agilent		RT	
Ref 87.45 dB μV	#Atten 0 dB		
#Avg Log 10 dB/			
Offst -9.54 dB	returned and the particular of the second	Arompto, with all total bade	/m/h/hith
DI 54.0 dBµV			r i li
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	: Sweep 16 n	Span 1.5 MHz ns (801 pts)
Channel Power		Power Spectral	
53.19 dBμV/1	.0000 MHz	-6.81 d	BμV/Hz

Plot 603. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 50M, 5325M, pwr integration

🔆 Agilent		RT	
Ref 87.45 dBμV #Avg	#Atten 0 dB		
#Avg Log 10 dB/			
Offst -9.54 dB	alad have been all the second of the second	valestilleurstelsen val het wenne begen het be	m
DI 54.0 dBµtV			· · · · · ·
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 16 r	Span 1.5 MHz ns (801 pts)
Channel Power		Power Spectral	Density
53.27 dBµV/	1.0000 MHz	-6.56 d	BμV/Hz

Plot 604. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 60M, 5320M, pwr integration

🔆 Agilent		R T
Ref 87.45 dBµ∨	#Atten 0 dB	
#Avg Log 10 dB/		
Offst -9.54 dB	the here with the training property and the	holphandhulupa an
DI 54.0 dBµV		
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 1.5 MHz Sweep 16 ms (801 pts)
Channel Power		Power Spectral Density
53.57 dBμV/	1.0000 MHz	-6.43 dBµV/Hz

Plot 605. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 80M, 5310M, pwr integration

🔆 Agilent		R	Т
Ref 87.45 dB ₁ \/ HAvg LOg 10 dB/ Offst dB DI 54.0 dB ₁ \/		pton was a construction of the second se	yphynophydraethanol
Center 5.351 GHz			Span 1.5 MHz
#Res BW 100 kHz	#VBW 300 k	Hz	Sweep 16 ms (801 pts)
Channel Power		Powe	er Spectral Density
53.41 dBμV/ 1	1.0000 MHz	-	6.59 dBμV/Hz

Plot 606. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 13dBi, 100M, 5300M, pwr integration

(秋) A	gilent															l	R	Т						
-																								
	45 dB μV		_		#/	Atten () dB	_			_					_				_	_			
#Peak																								
Log																								
10																								
dB/	I daklar.	a	anti			d	1			h	Ι.													
Offst -9.54	which which	M.N.N	1Wr	YYÛNW	W	WM/N	Мn	14	W	WY	Par	Ŵ.	ww.	M N	JH	1./	Mu	M	N,	1.	hali	Ma	. A MI	
-9.54 dB	- '	M MA					1				-1	r 4	ľ	W	1r1	M	1	y - 11	ľ	YW.	W,		he d.	A.I. A
Center	5.351 GHz																				Sp	an	1.5	ЛHz
#Res B	W 100 kHz						#	¢VΒ	W 3	100 k	Hz							Sw	ee	p8	ms	(80	1 pts	;)
Char	nnel Powe	r														Po	we	r Sp	e	ctra	l De	ens	sity	
56	.71 dB	μV/	1.0	000	0	ΜН	Z										-	3.2	26) c	lΒι	ı٧	′/H	z

Plot 607. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 10M, 5345M, pwr integration

读 A	gilent				R	Т		
	45 dB μV	#Atten () dB					
#Peak		ì					1	
Log								
10								
dB/	b							
Offst -9.54	, MANY MARKING	h-yhlandyndlanduryurdug	MANNAMINA	ANA AND	MANNA	Mr Www.M	all-railly	NMAM
dB							1.1.4.1.4	- 11 v
Center	5.351 GHz						Span 1.5	MHz
#Res B	W 100 kHz		#VBW 300 kH	łz		Sweep 8	ms (801 p	ts)
Char	nnel Power				Powe	er Spectra	al Density	/
56	.60 dBµV/	1.0000 MH	Z			3.40	dBµV/ŀ	Ηz

Plot 608. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 20M, 5340M, pwr integration

来 A	gilent		F	RΤ	
Ref 87. #Peak Log 10	45 dBµV	#Atten 0 dB			
dB/ Offst -9.54 dB	nyayontra alaya	YNWWMANNNYKNIAMANANYKNIAN	Mystrone way by about	www.	fuillearrynapolyny ferM
	5.351 GHz W 100 kHz	#VBW 300 kH	z	Swee	Span 1.5 MHz p 8 ms (801 pts)
Char	nnel Power		Po	wer Spec	ctral Density
54	.67 dBμ₩	1.0000 MHz		-5.33	3 dBμV/Hz

Plot 609. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 30M, 5335M, pwr integration

(종) A(gilent									R	Т				
Ref 87.4	45 dB μV		# A	tten 0 dE											
#Peak		ľ.											1		
Log															
10															
dB/	and a state														
Offst	MIMMMMM	(in Man	.hu.Mb	Manahat		add t as	hunte.			1	A. ILA				
-9.54	MMMMMM	M	Manhan	e. Mai IW	M.	A Mail And	WWW Y	TYN	WWW W	M/M	MAN	(All all all all all all all all all all	(TYP)	w wy	MYYM
dB													l l		
Center	5.351 GHz												Sna	n 1.5 N	1H7
	W 100 kHz				#VBV	V 300 I	(Hz				Sw	/eep {	3 ms (8		
Char	nnel Power									Pow	/er S	pectr	al Der	nsity	
54	.99 dBμV	/1.0	000 I	MHz							-5.0	01	dΒu	V/H	z
															1

Plot 610. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 40M, 5330M, pwr integration

- — Agilent			RT	
Ref 87.45 dB μV	#Atten 0 dB			
#Peak Log				
10 dB/ Offst WWW//////////////////////////////////	n wanter and the second	hthan have and a start and a	eneryleddiwrynd	radio anti-
Center 5.351 GHz #Res BW 100 kHz	#VBW 30	0 kHz	Sweep 8	Span 1.5 MHz ms (801 pts)
Channel Power		P	ower Spectra	al Density
56.16 dBμV/	/1.0000 MHz		-3.84 (dBμV/Hz

Plot 611. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 50M, 5325M, pwr integration

业 A	gilent													R	Т				
#Peak Log	45 dB μV		<	;	#Atter	n 0 dB	3										*		
10 dB/ Offst -9.54 dB	Naphapturu	WM.	4 _W h	Mpm	nuliy	YN YW	ul y	hight	NAW	MM	nm))	₩ [₩]	\W\U	nyr4	ip.yh/	+N/m	nr/h	Y MY	YM NNM
	5.351 GHz W 100 kHz						#VE	3W 30	10 kl	Hz					Swe	ep 8			.5 MHz pts)
Char	nnel Powe	er											Ρ	owe	r Spe	ectra	al D	ens	ity
56	.68 dE	3μV/ '	1.0	000	Mł	Ηz								-	3.3	2 (dΒį	ιV	/Hz


Plot 612. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 60M, 5320M, pwr integration

Ste A	gilent						R	Т			
D-(07											
#Peak	45 dB μV	#A	tten 0 dB								
Log 10											
Offst -9.54 dB	Aller Joseph Mark Way Davis and	paulitantering	protection	ali-Halqamyun	hallowed behave	rquanihirphya	VNW	m	Wh	Mpring	et yll hydryd
	5.351 GHz W 100 kHz		#	VBW 300	⟨Hz			Swee		Span ns (801	1.5 MHz 1 pts)
Char	nnel Power					Po	ower	Spec	ctral	Dens	sity
56	.85 dBµV/	1.0000 N	ЛНz				-3	8.77	′ d	ΒμV	/Hz
											Í

Plot 613. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 80M, 5310M, pwr integration

·洪 A	gilent													1	R	Т					
	45 dB μV				#Att	en 0 dB	3														
#Peak																		1			
Log																					
10																					
dB/																					
Offst	ANNIM	MMA	hΝ.	lu doirt	A.	NMM	A.M	AMM.	M.	NM. Ì	MALA	MA	λ μ υ	M	. N	M.	N.IN	ИИ	s. bu	d.a	hin na
-9.54 dB		1	Ľ.	W 4.1 .	·'Y'				γry		1" 10	. 1	Y	11	γ	M.M.		γ	11	NMI	hihad
Center	5.351 GHz																		Spa	n 1.	5 MHz
#Res B	W 100 kHz						#VB	W 30	0 kł	łz						Swe	eep		ns (8		
Char	nnel Powe	er												Po	we	r Sp	ect	ral	De	nsit	y
56	.49 dB	μV/	1.(0000) N	1Hz									-	3.5	51	d	Bμ	V/	Ηz

Plot 614. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 13dBi, 100M, 5300M, pwr integration

Plot 615. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 10M, 5345M, pwr integration

🔆 Agilent		R T
Ref 87.45 dBµV	#Atten 10 dB	
#Avg Log 10 dB/		
Offst -9.54 dB	A guide production of the state	pagaghauland faafallillah aftironderondika
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 1.5 MHz Sweep 20 ms (1001 pts)
Channel Power		Power Spectral Density
53.76 dBμV	/1.0000 MHz	-6.24 dBµV/Hz
Undefined header		

Plot 616. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 20M, 5340M, pwr integration

🔆 Agilent		F	₹Т	
Ref 87.45 dBµV	#Atten 10 dB			
#Avg Log 10 dB/		na ki ana ana a		
-9.54	and a state a supplicit of participants		hindre and the	anti i contra anti a
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 ki	-z	Sweep 20 n	Span 1.5 MHz ns (1001 pts)
Channel Power		Po	wer Spectra	al Density
53.45 dBμV/1	I.0000 MHz		-6.55 (BµV/Hz
Undefined header				

Plot 617. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 30M, 5335M, pwr integration

ALC: A	gilent										R 1	Г				
	45 dB µV			#A	tten 10	dB										
#Avg Log 10 dB/ Offst -9.54 dB	(~ 14 1%)		Ŵ	A.		WW		n in the second se	1411/61		***		Ŵ	MAN /	W M	V WAY
uв	1 10 1.		r I		1 [[]	111	1.1h		"1 II Y		11.1			ļ	r	
	5.351 GHz W 100 kHz					#	VBW 300	kHz			Swe	ep 2	0 m	Span s (100		
Char	nnel Powe	er								Po	wer S	Spec	ctra	l Den	sity	
53	.30 dB	μV/	1.(0000	MH	Z					-6	.70) d	Bμ\	//H:	Z
Undefi	ned heade	r														

Plot 618. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 40M, 5330M, pwr integration

🔆 Agilent		R T
Ref 87.45 dBµ∨	#Atten 10 dB	
#Avg Log 10 dB/ Offst dB	antine permition for the second states	uluy uluy luy alaya haya maran ana ana ana ana ana ana ana ana ana
Center 5.351 GHz		
#Res BW 100 kHz	#VBW 300 kHz	Span 1.5 MHz Sweep 20 ms (1001 pts)
Channel Power		Power Spectral Density
53.50 dBμV/	1.0000 MHz	-6.50 dBμV/Hz
Undefined header		

Plot 619. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 50M, 5325M, pwr integration

🔆 Agilent		R T
Ref 87.45 dB⊔V	#Atten 10 dB	
#Avg Log 10		
dB/ Offst -9.54 dB	ereterili de la constanti de la constante de la	n yanyani nini analar inangah
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 1.5 MHz Sweep 20 ms (1001 pts)
Channel Power		Power Spectral Density
53.42 dBμV/1.00	00 MHz	-6.58 dB μ V/Hz
Undefined header		

Plot 620. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 60M, 5320M, pwr integration

- 朱 Ag	gilent												R	Т					
Ref 87.4 #Avg	45 dB μV		-	##	tten 1	0 dB										1			
Log 10 dB/																			
Offst -9.54 dB	n Mir Y	Wahy	łľ	1	4144	∿^\ h	1	411	Wh	Ma		M	M	mM	Ŵ	M	hy	114	
	5.351 GHz												-		~~			1.5 M	Hz
#Res B	W 100 kHz					#	ŧVB	W 300) KH2	-			Sv	veep	20 n	1S (1	001	pts)	
Char	nnel Powe	er										Po	wei	· Spe	ectra	al De	ens	ity	
53	.23 dB	βμV/ <i>΄</i>	1.0	000	MF	łz							-(6.7	1 0	₿ļ	ιV	/Hz	2
Undefi	ned heade	r																	

Plot 621. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 80M, 5310M, pwr integration

(新)A	gilent						RΤ			
Ref 87.	45 dB μV	#Att	en 10 dB							
#Avg Log 10 dB/ Offst	ditante h. Mathiland	lincelai nota	la harlan s fa		t in a la difica di	katush tak	a di sud at	, 	ولي م	ht.th.
-9.54 dB	4444444444444	land a dable	WIIIW.	- ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	W	lind in A set	An Albert	T	M.A.	AN ANN AN
	5.351 GHz W 100 kHz		#	VBW 300 F	:Hz		Sweep	20 m	Span 1 s (1001	
Char	nnel Power					Po	ower Spe	ectra	l Densi	ty
53	.75 dBμV/ ′	1.0000 N	ЛНz				-6.2	5 d	BμV/	′Hz
Undef	ined header									

Plot 622. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 22dB, sector, 100M, 5300M, pwr integration

· 朱 Ag	gilent						RΤ			
Ref 87.4	15 dB μV	#At	ten 10 dB							
#Peak		í –								
Log										
10 dB/										
Offst	hand of the states	المعرف بالبطط					1.			
-9.54 dB	benelsey there are	e se se	ow When when	her and here	W MANYANA	mmmym	w/waya	h (mir	Yplytew	ntopologi
Center	5.351 GHz								Span 1.	5 MHz
#Res B	W 100 kHz		#	VBW 300 k	Hz		Sweep	10 ms	(1001	pts)
Chan	nel Power					P	ower Sp	ectral	Densi	ty
55	.91 dBµV/	1.0000	MHz				-4.0	9 dE	3μV/	Hz
Undefi	ned header									

Plot 623. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 10M, 5345M, pwr integration

₩ A	gilent						RΤ			
Ref 87. #Peak Log 10	45 dB μV	#Att	en 10 dB					,		
dB/	nna <mark>hannaha</mark> /maa	uphumatically	WWWWWWW	rthymphilte	h hannan	hardende had gehaden.	n harphai	w a 11/4	nu <mark>n</mark> un	k-phi,45.Kr.dw
	5.351 GHz W 100 kHz		#	VBW 300 F	(Hz		Swee	p 10 m	Span Is (1001	1.5 MHz pts)
Char	nnel Power					Pc	wer Sp	pectra	l Dens	sity
57	.01 dBμV/	1.0000 M	ИНz				-2.9	99 c	lΒµV	//Hz
Undefi	ined header									

Plot 624. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 20M, 5340M, pwr integration

漸 Au	jilent						RΤ			
Ref 87.4 #Peak	I5 dB μV	#Atte	en 10 dB							
#Peak Log 10 dB/										
Offst -9.54 dB	unit (Military) Par	hannaparhandh	NAMANAN	mariyyya ya	iki/Hindukvi	nimi (Miliya	ulty Mahl	***	hind hind	Way-piller
	5.351 GHz W 100 kHz		#	VBW 300 I	(Hz		Sweep	10 m		1.5 MHz I pts)
Chan	nel Power					Po	ower Spe	ctra	l Dens	sity
55	.93 dBµV/	1.0000 N	ЛНz				-4.0	7 d	BμV	//Hz
Undefi	ned header									

Plot 625. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 30M, 5335M, pwr integration

(本 A)	gilent																R	٦	Г					
Ref 87.4	15 dB μV				#At	ten 1	0 dB																	
#Peak			÷																		1			
Log																								
10																								
dB/	Allhod Late .	nAM 1.																						
Offst -9,54	. And MAN	WWW	Wh	WMW	Ŵ	Addin	114/1	M	ww.	i Ni	Ŵ	YW	W	dlas	N/N	чh	Anta	4	WA.	NHW	4	Mu	r.h	White H
-9.54 dB	111111	. 11	-		. 1	. 14				1	1		- 11-	1	P.11	77		1 1	1	4.4	ľ	1.10	r.l.	. We .
	5.351 GHz																							5 MHz
#Res B	W 100 kHz							#VE	3W :	300	kHz	z					5	SWE	ep	10 r	ns	(10	01 p	ots)
Char	nel Powe	r														P	OWe	er S	Spe	ectr	al	Der	nsit	y
56	.18 dB	μV/	1.(000	0	МΗ	z											-3	.8	2 (dE	3μ'	V/	Hz
Undefi	ned heade	r																						

Plot 626. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 40M, 5330M, pwr integration

* A	gilent								F	RΤ			
#Peak Log	45 dΒ μV		<	#Att	en 10 dB								
10 dB/ Offst -9.54 dB	hill work his	rhyily,	laforfill	n m un	K/hanklingdh	nisturi	nh,∼wki∳	sibylythyb	- Yudiya	tywaktu	hanyhl	Hwy);	44477 1 4444
	5.351 GHz W 100 kHz					#VBW 30	0 kHz			Sweep	0 10 ms		1.5 MHz 1 pts)
Char	nnel Powe	er							Po	wer Sp	ectral	Dens	sity
56	.21 dE	βµV/ ′	1.000	00	MHz					-3.7	'9 d	Вμ∖	//Hz
Undefi	ined heade	r											

Plot 627. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 50M, 5325M, pwr integration

🔆 Agilent							RΤ		
Ref 87.45 dB	ιV	#Att	en 10 dB						
#Peak		ř –							
Log									
10									
dB/	meet kins	Labor Lat							
Offst	UN WUY N	WINDOW AND INCOME	Minister ou	a had a hid a la	nhan hada ba	La sur			
-9.54		and a second la		M. WLAL	and shirt had	The start which have	WWWWWWWWWW	WWW WWW	hill with a state of the
dB		alvander ander de la presentation d							n in the solution
0 1 5 0 5 4	~								
Center 5.351									in 1.5 MHz
#Res BW 100	KHZ		#	VBW 300 H	HZ		Sweep	10 ms (10	01 pts)
Channel F	ower					Po	ower Spe	ctral De	nsity
56.79	dBµV/	1.0000	ИНz				-3.2	1 dBμ	.V/Hz
Undefined h	eader								

Plot 628. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 60M, 5320M, pwr integration

🔆 Agilent							R T			
Ref 87.45 dBµV		#Att	en 10 dB							
#Peak	(1	
Log										
10										
dB/		an har in in	1.1							
Offst	AND THE L	MA MANA	MAM	MANAN	All Anderson	a. Isan Milan Is	halli			
-9.54	Y M	Mallingarafi	ייישין	1.6.11.1.011	A I A A A A A A A A A A A A A A A A A A	AND AN AND	1 Minutes	V MMAN	MWW	r which have
aв							· 1.			· · ·
Center 5.351 GHz									Spar	1.5 MHz
#Res BW 100 kHz			#	VBW 300 k	Hz		Swe	ep 10 n	ns (100	11 pts)
Channel Powe	r					Po	ower S	Spectra	al Den	sity
56.35 dB	6μV/1	0000	ИНz				-3.	65 c	Bµ\	//Hz
Undefined header	r									

Plot 629. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 80M, 5310M, pwr integration

* A	gilent													R	Т				
	45 dΒ μV			#.	Atte	en 10	dB										_		
#Peak Log 10																			
dB/ Offst -9.54	pronovity)	nMatritu	MŲ	(Nhunda)	NWI	man	W	HAN VI	1	digage	4/11/	hypert	n 	1	Wiji	M	ww	m(ry)	handadar Antoliadar
dB												1							
	5.351 GHz W 100 kHz						#	VBW :	300 k	Hz				Sv	veep	10 m	Spar s (100		
Char	nel Powe	er											Po	wei	. Spe	ectra	l Der	isity	
56	.71 dB	βμV/ '	1.0	0000	N	1Hz	_							-(3.2	9 c	Bμ	V/H	Z
Undefi	ned heade	r																	

Plot 630. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 22dB, sector, 100M, 5300M, pwr integration

🔆 Agilent		F	₹Т	
Ref 97.41 dB μV	#Atten 20 dB			
#Avg Log				
10 dB/				
Offst				
-1.58 dB	alland half warmen and hald and the management	all hadded de be ar he blande.	all and a share have	An antibility interesting
a di angla a	al for all any preserved and a standard a	lah ke ta kasalan kasala	. White	A MALINA MARKAN
		. 1, 1		
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 k	u-	Sween 20 m	Span 1.5 MHz ns (1001 pts)
#Res BW 100 KHZ	#VDYV 500 K	n2	Sweep 20 II	is (1001 pls)
Channel Power		Po	wer Spectra	al Density
53.81 dBμV/	1.0000 MHz		-6.19 c	BμV/Hz
Lindofined booder				
Undefined header				

Plot 631. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 10M, 5345M, pwr integration

Plot 632. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 20M, 5340M, pwr integration

🔆 Agilen	ť			RT	
Ref 91.41 di	βμV	#Atten 20 d	В		
#Avg Log					
10 dB/ Offst -1.58 dB) WARDAN LUNDAMANANA	whether the state of the state	harmana kana kana kana kana kana kana kana
	·	1 11 1 10 10 10	al dan andam la	the last other and the	Man and Andrew
Center 5.35	1 GHz				Span 1.5 MHz
#Res BW 10	00 kHz		#VBW 300 kHz	Sweep 2	0 ms (1001 pts)
Channel	Power			Power Spec	tral Density
53.53	8 dBμV/	1.0000 MHz		-6.47	′ dBµV/Hz
Undefined	header				

Plot 633. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 30M, 5335M, pwr integration

🔆 Agilent		RT	
Ref 86.41 dBµ.∨ #Avg	#Atten 20 dB		
#Avg Log 10 dB/ Offst	all illaithir aidd if tro oras tur com		
-1.58 dB		kaleuuliteleen oo hoo hoo hoo hoo hoo hoo hoo hoo hoo	WYWW
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 ki		n 1.5 MHz 11 pts)
Channel Power		Power Spectral Den	sity
53.14 dΒμV	/1.0000 MHz	-6.86 dBµ∖	//Hz
Undefined header			

Plot 634. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 40M, 5330M, pwr integration

🔆 Agilent		R T
Ref 87.41 dB μ∀	#Atten 20 dB	
#Avg Log 10 dB/		
Offst -1.58 dB	ntur annu an ann ann an ann ann ann ann ann	e in the state of the second states and the second states and the second states and the second states are second states and the second states are second states
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 1.5 MH Sweep 20 ms (1001 pts)
Channel Power		Power Spectral Density
53.76 dBμV/	1.0000 MHz	-6.24 dBμV/Hz
Undefined header		

Plot 635. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 50M, 5325M, pwr integration

业 Ap	jilent													R	Т					
Ref 85.4	11 dB μV			#/	Atte	en 20 d	в													
#Avg Log			<u> </u>														7			
10 dB/ Offst -1.58 dB	1114			upon () ph	ł	1	ł		NÌ.		W	M			Ŵ	Ŵ		W.M.	Wn	drud (
G						Ι.		44 1 4 4	ľ	11 . 1			1		urdhi		ľ	W.	1.1	
	5.351 GHz W 100 kHz						#	VBW 300	kH	z				S	weep	020	m	Spar s (100		
Chan	nel Powe	r											Po	we	r Sp	ect	tra	l Der	sity	
52	.82 dB	μV/ ′	1.0	0000	Ν	ЛНz								-	7.1	8	С	Bμ\	//⊦	Ιz
Undefi	ned heade	1																		

Plot 636. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 60M, 5320M, pwr integration

🔆 Agilent			RT	
Ref 86.41 dBµ∨ #Avq	#Atten 20 dB			
Log				
dB/ Offst -1.58	unitalitati dala ana ana ana ana ana ana ana ana ana	M-aliter Andread and an	an a	l Malah e Madaana
dB	, and do a difficult of the filler.	u. na a calla de da	a hada sa ka a sa a sa a sa a sa a sa a sa	L. AL MALANA
Center 5.351 GHz #Res BW 100 kHz	#VBW 300	kHz	Sweep 20 n	Span 1.5 MHz ns (1001 pts)
Channel Power		Po	ower Spectra	al Density
53.23 dBμV/	1.0000 MHz		-6.77 c	BµV/Hz
Undefined header				

Plot 637. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 80M, 5310M, pwr integration

🔆 Agilent		RΤ	
Ref 86.41 dBµ∀	#Atten 20 dB		
#Avg Log 10 dB/	#Allen 20 ub		9
Offst -1.58 dB	under ihre den filter ster den ster filter ster ster ster ster ster ster ster s	n sin sin sin sin sin sin sin sin sin si	annin ann ann ann
Center 5.351 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 20 n	Span 1.5 MHz ns (1001 pts)
Channel Power		Power Spectra	al Density
53.54 dBµV/	1.0000 MHz	-6.46 0	dBµV/Hz
Undefined header			

Plot 638. Undesirable Emissions, UNII 2A, AVG, bandedge 5350, 34dBi, 100M, 5300M, pwr integration

业 A	gilent									R	Т			
Ref 97.4	41 dB μV			#Att	en 20 d	в								
#Peak Log 10 dB/ Offst														
	hillinger	H/MM	hull a th	n Milit	in y w	hippon	**\//\/\	hlinhair Ang da	K-MANNA MAN	ploth	Myinyi	u.A.M	w V Ny	Myran
	5.351 GHz									_				1.5 MHz
	w 100 kHz nnel Powe					#VBV	V 300 H	ίΗz	F		veep 1 r Spec			
56	.29 dE	βμV/ 1	000.1	00	MHz					-;	3.71	dB	μV	/Hz
Undefi	ned heade	r												

Plot 639. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 10M, 5345M, pwr integration

录 Ag	gilent										R	T				
Ref 86.4 #Peak	41 dB μV			#At	ten 20 d	зB								*		
#Peak Log 10 dB/																
Offst -1.58 dB	Maryaha Malayana	dir,haqir	hunder	wyApro	* * ****	hr/4	man ni	hy ip.	i miljud	er fruitme	va ^l lyts	N MARY	hymili	alungury	n franki	M
	5.351 GHz W 100 kHz					#\	VBW 300	kHz				Swee	p 10 r	Span ns (100	1.5 MHz 1 pts)	
Chan	nel Powe	r									Pov	ver Sp	pectra	al Den	sity	
56	.26 dB	μV/ 1	.00	000	MHz							-3.7	74 (dBμ∖	//Hz	
Undefi	ned header															

Plot 640. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 20M, 5340M, pwr integration

🔆 Agilent		F	хт	
Ref 91.41 dBµV	#Atten 20 dB			
#Peak	K			
Log 10				
dB/ Offst				
-1.58	haddalla an	aller alla langener ya Viperi da	han management	VMMMaddarennM
Center 5.351 GHz #Res BW 100 kHz	#VBW 300	<hz< td=""><td>Sweep 10 m</td><td>Span 1.5 MHz Is (1001 pts)</td></hz<>	Sweep 10 m	Span 1.5 MHz Is (1001 pts)
Channel Power		Po	wer Spectra	l Density
58.03 dBμV/	1.0000 MHz		-1.97 c	BuV/Hz
Undefined header				

Plot 641. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 30M, 5335M, pwr integration

- 26 A	gilent								RΤ			
	41 dB µV			#Att	en 20 dB							
#Peak Log			<u> </u>									
10 dB/ Offst -1.58	MWMM	n/ ^{privl} im	hyphi	W alker	n ^{lun} i armin	VAMANANANAN	w Willow Alexand	MALA, Loo Nat	k fod, us das	liha a	atatk of	and all the
dB		•				and the	, a Just in	. A la Manda	.Underfull	14UM	r wyw	- ANN - IL
	5.351 GHz W 100 kHz					#VBW 300	(Hz		Swee	o 10 m	Span s (100 ⁻	1.5 MHz 1 pts)
Char	nnel Powe	er						Po	ower Sp			
56	.72 dE	3μV/ ′	1.00	000	MHz				-3.2	28 c	Bμ∖	//Hz
Undefi	ined heade	r										

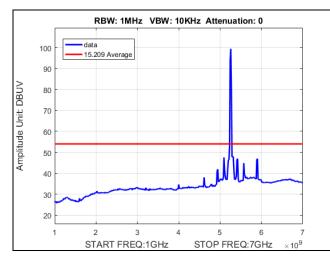
Plot 642. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 40M, 5330M, pwr integration

录 A	jilent						RΤ		
Ref 87.4	41 dB μV	#Att	en 20 dB						
#Peak Log 10 dB/ Offst -1.58 dB	hhummun	hardhant yaar	N eliminini ju	ullul over the	R h yaaltaathad	ronthlyndaut	white the	nstrandyan	hodyryddiad
	5.351 GHz W 100 kHz		#	VBW 300 k	Hz		Sweep	Spai 10 ms (10	n 1.5 MHz 01 pts)
Char	nel Power					Po	ower Spe	ectral Der	nsity
57	.33 dBμV/	1.0000 1	ИНz				-2.6	7 dΒμ	V/Hz
Undefi	ned header								

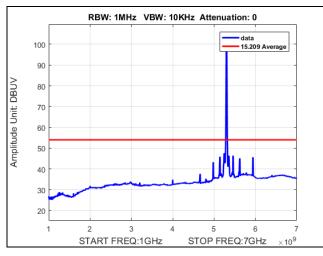
Plot 643. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 50M, 5325M, pwr integration

🔆 Agile	ent										R	Т				
D. (05. ()	B 1/															
Ref 85.41 #Peak	αΒμν	K		#At	ten 20 d	зВ								*		
#Feak Log																
10																
dB/	بالم الملية	A. K. S	الد بيد ال													
Offst	Minininini	WY P	WW	run	MAG	MW	Whatkenin	ANNA	AL LANKA		lika.	holds	15.10	a la		
-1.58 dB	o tra k	· /	L L	11	11	1	. I. Mi	up i pj	, WLL.	PITY	mpy	"" "NY	P. V.M	AN AN	10 miles	() Wi
dB																
Center 5.3															n 1.5 Mi	Ιz
#Res BW	100 kHz					#	VBW 300 k	Hz			S١	veep	10 m	ns (100	01 pts)	
Channe	el Power									Po	owe	r Spe	ectra	al Der	nsity	
56.8	88 dBμ\	V/ 1	.000)0 I	MHz						-;	3.1	2 c	Β μ'	V/Hz	
Undefine	d header															

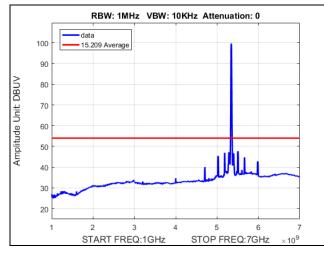
Plot 644. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 60M, 5320M, pwr integration


录 A	gilent							R 1	Γ		
Ref 86.4 #Peak	41 dB μV	×	#Atte	en 20 dB							
Log											
10 dB/	a de standade en										
Offst -1.58	MAR ANNUMANY	with the state	WAY	When When	anner Vera	hippy	WHAT WANT	rtillhilly	MM	N/MANA	mmm
dB											11
	5.351 GHz W 100 kHz			#	VBW 300 I	(Hz		Swe	ep 10	Span ms (100	1.5 MHz 1 pts)
Chan	nnel Power						Po	ower S	Spect	ral Den	sity
56	.45 dBμV	/1.00	00 N	ИНz				-3	.55	dBµ∖	//Hz
Undefi	ned header										

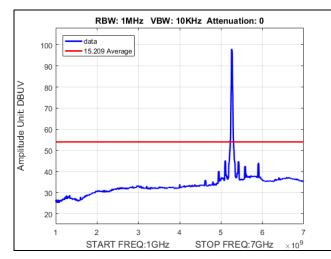
Plot 645. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 80M, 5310M, pwr integration


漱 A	gilent															R	Т					
Ref 86.4 #Peak	41 dB μV				#Att	en 2	0 dB												×			
Log 10																						
Offst -1.58 dB	unnuha	'Alliday'	hillit	hyper	d/n	17/1	WP	(publ	"YMA	MM	hmy	(N)	hyyW	M	₩	rw	hwh	WY	ev/W	r vy	unilu	nypro
	5.351 GHz W 100 kHz						#	ŧVΒ'	W 30	0 kł	-Iz					Sw	/eep	10 r			1.5 M pts)	
Char	nnel Powe	r													Po	wer	Spe	ectra	al D	ens	sity	
56	.53 dB	μV/ <i>΄</i>	1.0	00	0 1	МН	z									-<	3.4	7(βB	μV	//Hz	<u> </u>
Undefi	ined heade																					1

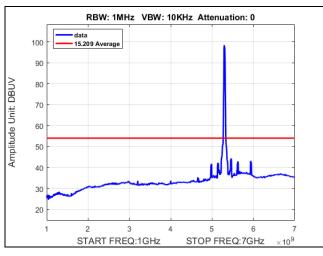
Plot 646. Undesirable Emissions, UNII 2A, PK, bandedge 5350, 34dBi, 100M, 5300M, pwr integration



Plot 647. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 10M, 5255M

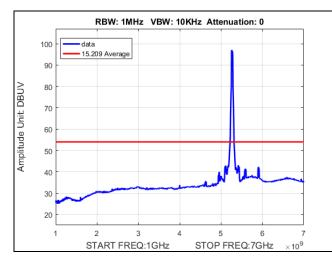


Plot 648. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 10M, 5300M

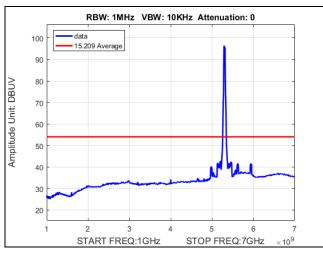


Plot 649. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 10M, 5345M

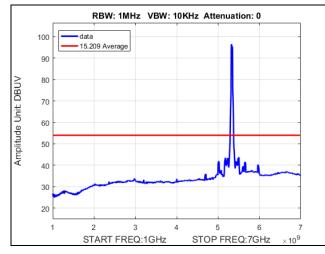
Plot 650. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 20M, 5260M



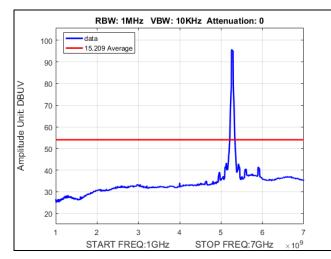
Plot 651. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 20M, 5300M



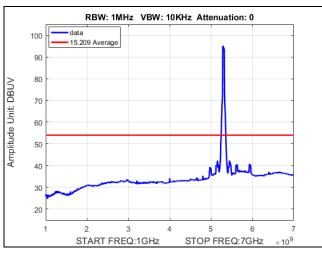
Plot 652. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 20M, 5340M



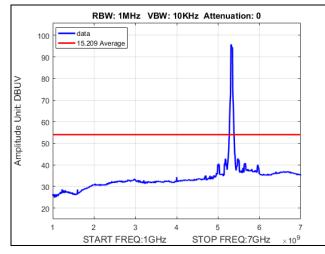
Plot 653. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 30M, 5265M



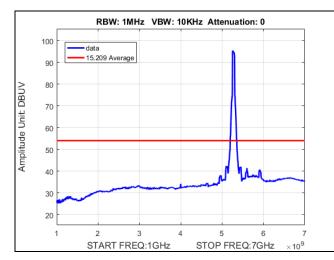
Plot 654. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 30M, 5300M



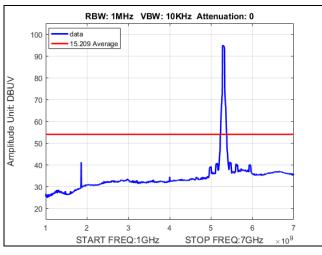
Plot 655. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 30M, 5335M



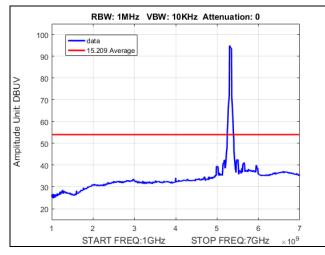
Plot 656. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 40M, 5270M



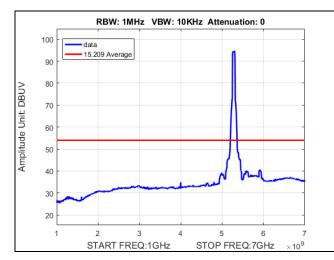
Plot 657. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 40M, 5300M



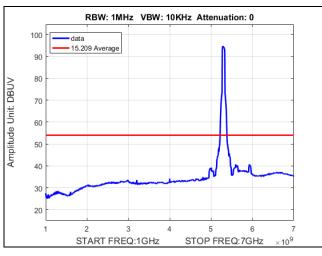
Plot 658. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 40M, 5330M



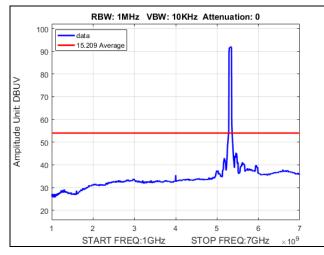
Plot 659. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 50M, 5275M



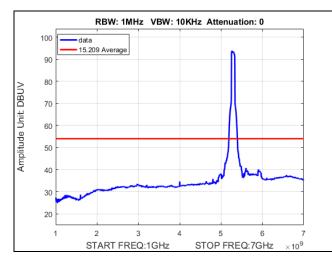
Plot 660. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 50M, 5300M



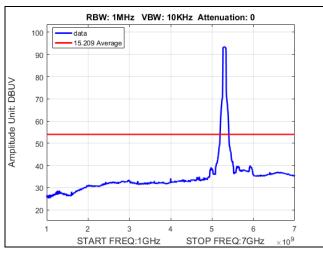
Plot 661. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 50M, 5325M



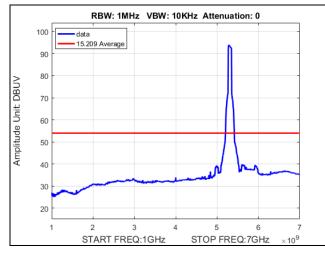
Plot 662. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 60M, 5280M



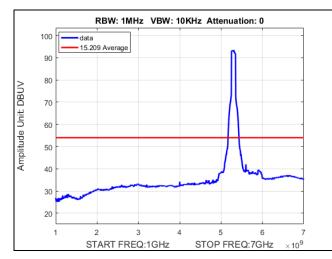
Plot 663. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 60M, 5300M



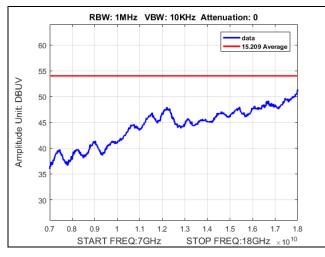
Plot 664. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 60M, 5320M



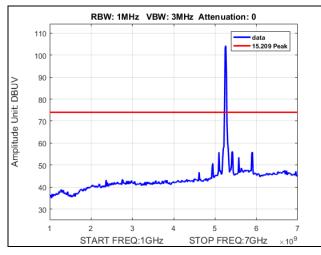
Plot 665. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 80M, 5290M



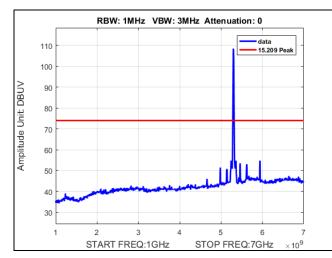
Plot 666. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 80M, 5300M



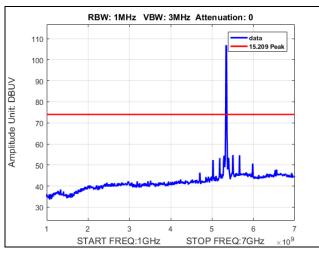
Plot 667. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 80M, 5310M



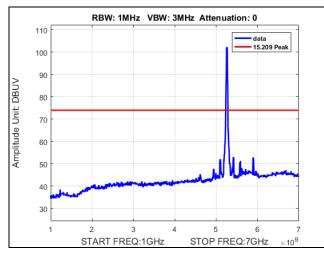
Plot 668. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, 100M, 5300M



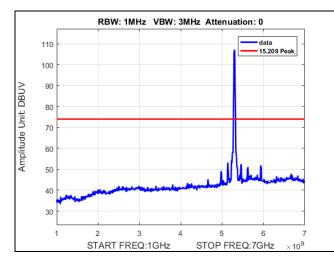
Plot 669. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 13dBi, worst case, 7-18GHz



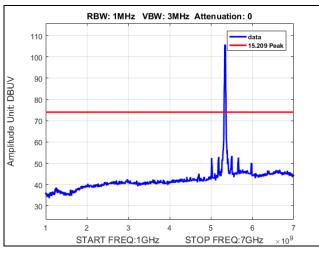
Plot 670. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 10M, 5255M



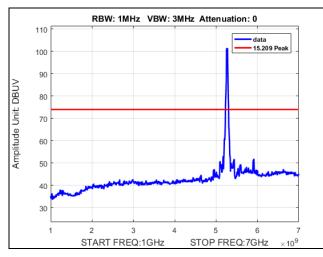
Plot 671. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 10M, 5300M



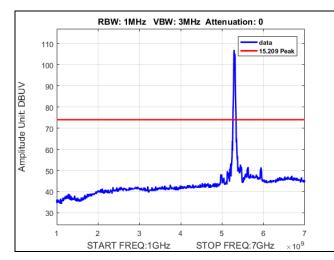
Plot 672. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 10M, 5345M



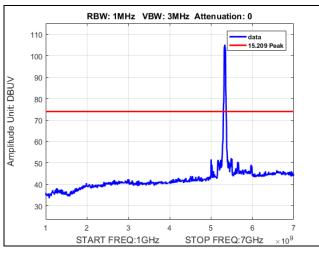
Plot 673. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 20M, 5260M



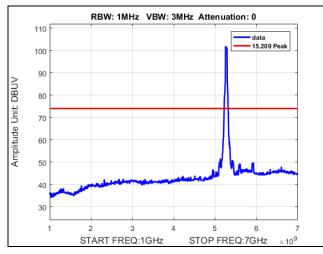
Plot 674. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 20M, 5300M



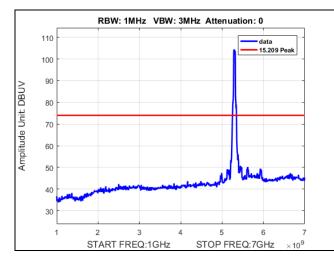
Plot 675. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 20M, 5340M



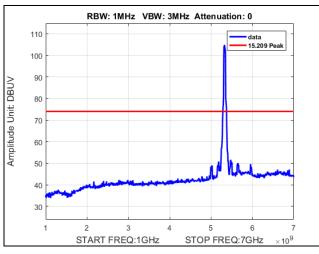
Plot 676. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 30M, 5265M



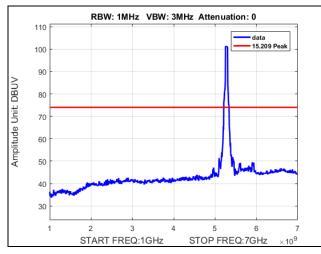
Plot 677. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 30M, 5300M



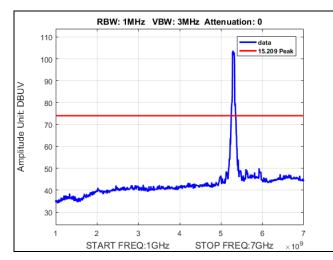
Plot 678. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 30M, 5335M



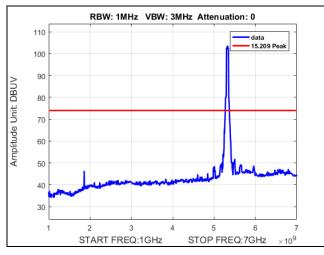
Plot 679. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 40M, 5270M



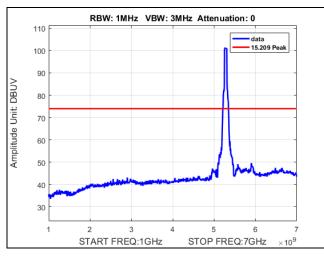
Plot 680. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 40M, 5300M



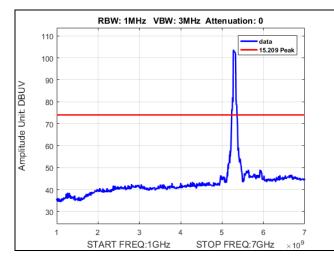
Plot 681. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 40M, 5330M



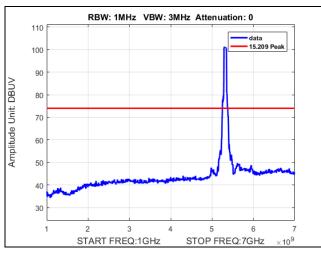
Plot 682. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 50M, 5275M



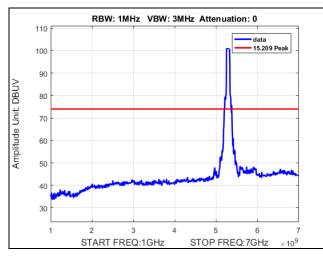
Plot 683. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 50M, 5300M



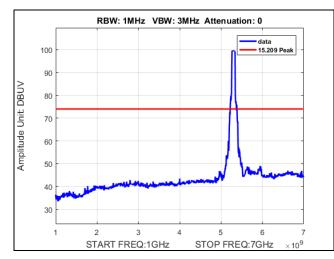
Plot 684. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 50M, 5325M



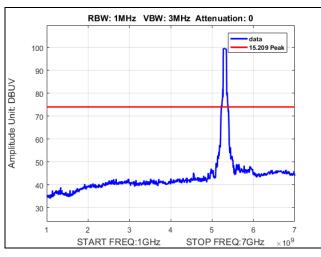
Plot 685. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 60M, 5280M



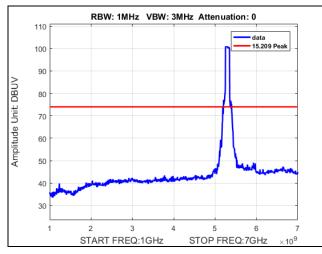
Plot 686. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 60M, 5300M



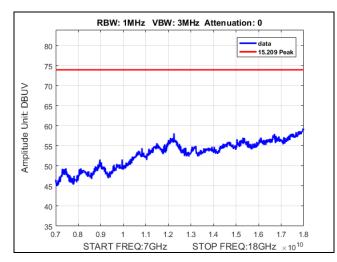
Plot 687. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 60M, 5320M



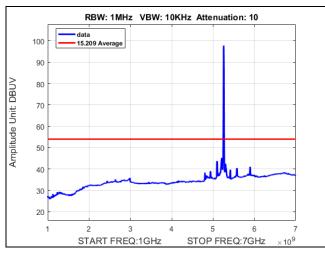
Plot 688. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 80M, 5290M



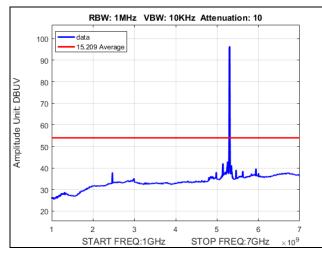
Plot 689. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 80M, 5300M



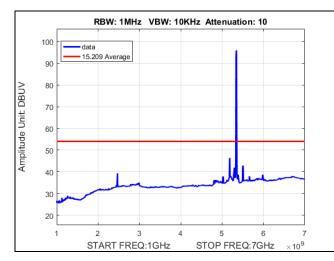
Plot 690. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 80M, 5310M



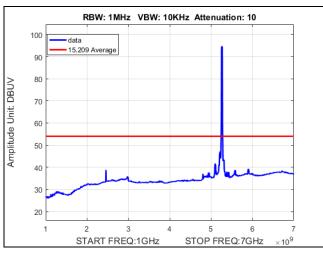
Plot 691. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, 100M, 5300M



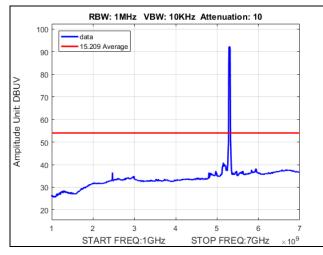
Plot 692. Undesirable Emissions, UNII 2A, PK, radiated spurious, 13dBi, worst case, 7-18GHz



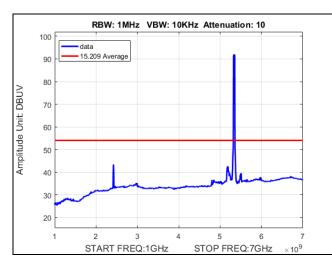
Plot 693. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 10M, 5255M, 1-7GHz



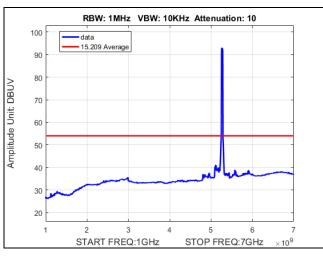
Plot 694. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 10M, 5300M, 1-7GHz



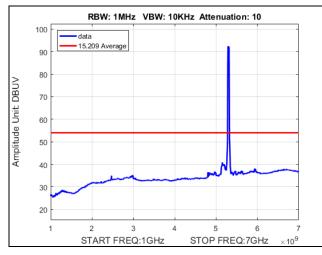
Plot 695. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 10M, 5345M, 1-7GHz



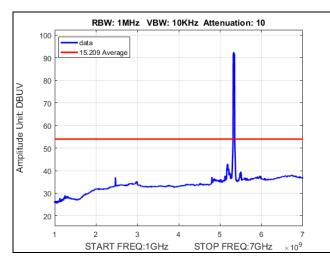
Plot 696. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 20M, 5260M, 1-7GHz



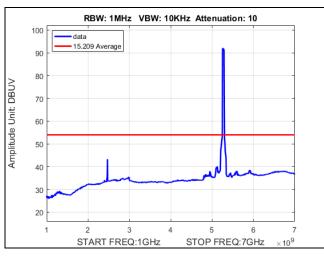
Plot 697. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 20M, 5300M, 1-7GHz



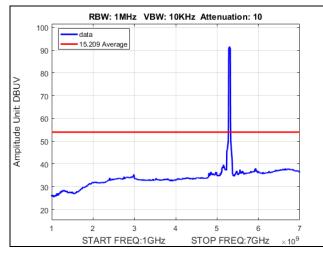
Plot 698. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 20M, 5340M, 1-7GHz



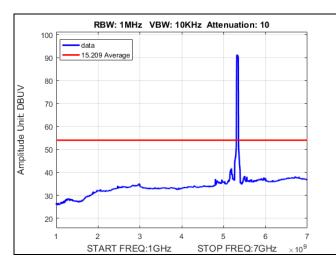
Plot 699. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 30M, 5265M, 1-7GHz



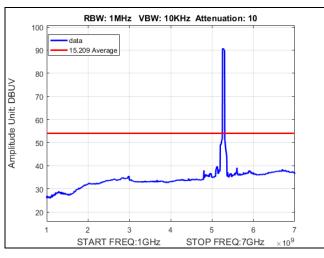
Plot 700. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 30M, 5300M, 1-7GHz



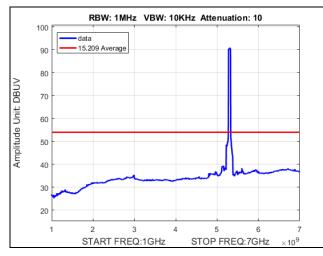
Plot 701. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 30M, 5335M, 1-7GHz



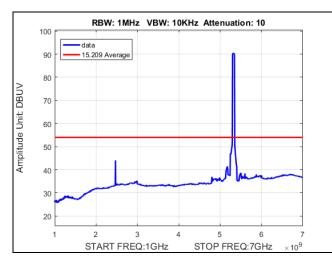
Plot 702. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 40M, 5270M, 1-7GHz



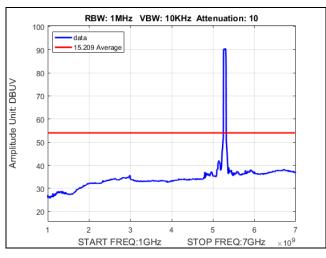
Plot 703. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 40M, 5300M, 1-7GHz



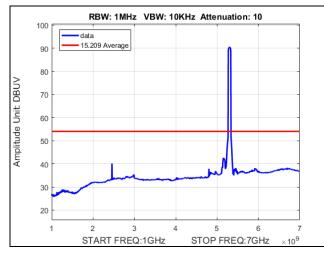
Plot 704. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 40M, 5330M, 1-7GHz



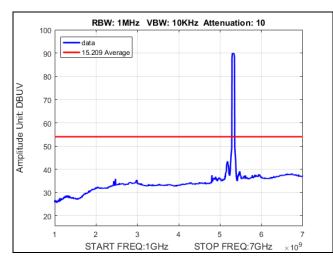
Plot 705. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 50M, 5275M, 1-7GHz



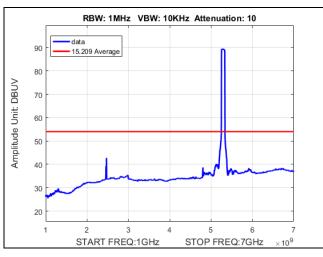
Plot 706. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 50M, 5300M, 1-7GHz



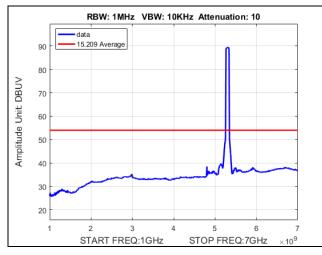
Plot 707. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 50M, 5325M, 1-7GHz



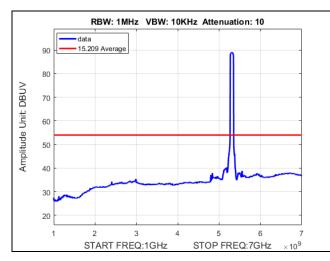
Plot 708. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 60M, 5280M, 1-7GHz



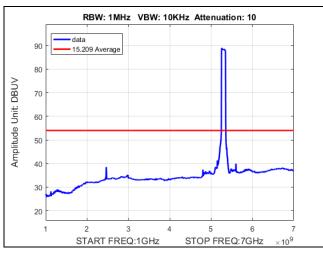
Plot 709. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 60M, 5300M, 1-7GHz



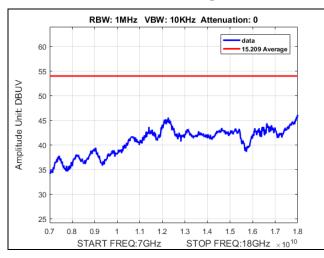
Plot 710. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 60M, 5320M, 1-7GHz



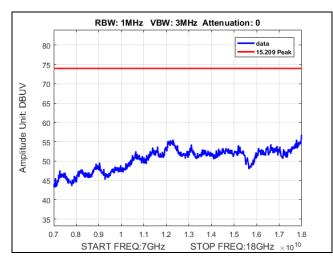
Plot 711. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 80M, 5290M, 1-7GHz



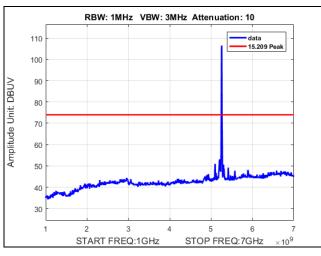
Plot 712. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 80M, 5300M, 1-7GHz



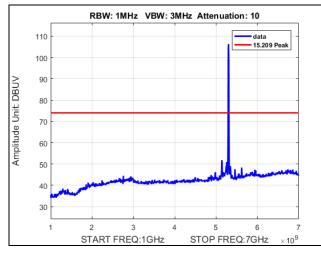
Plot 713. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 80M, 5310M, 1-7GHz



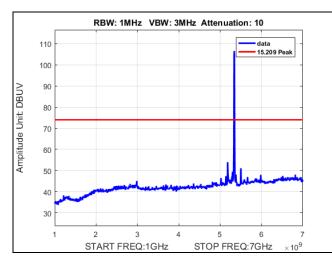
Plot 714. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, 100M, 5300M, 1-7GHz



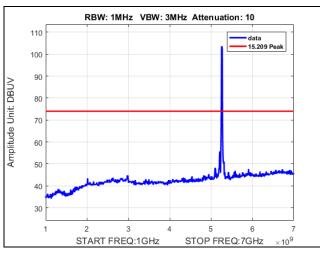
Plot 715. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 22dBi sector, worst case, 7-18GHz



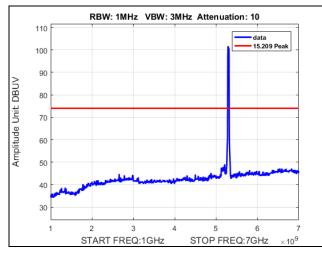
Plot 716. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, worst case, 7-18GHz



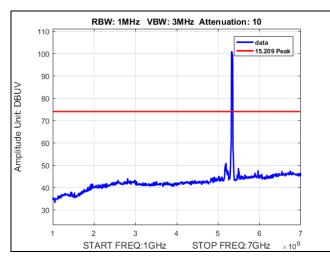
Plot 717. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 10M, 5255M, 1-7GHz



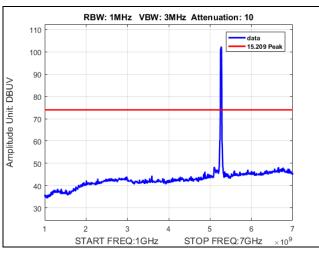
Plot 718. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 10M, 5300M, 1-7GHz



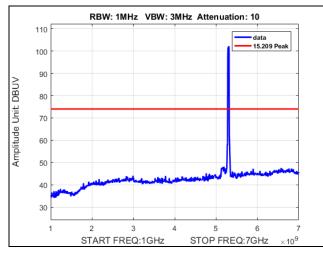
Plot 719. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 10M, 5345M, 1-7GHz



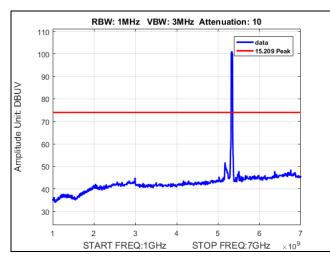
Plot 720. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 20M, 5260M, 1-7GHz



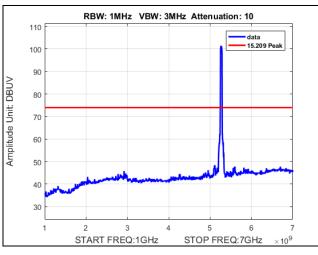
Plot 721. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 20M, 5300M, 1-7GHz



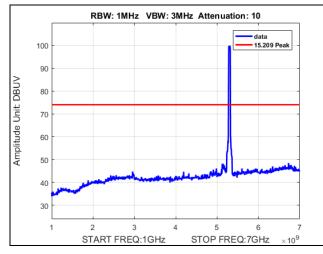
Plot 722. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 20M, 5340M, 1-7GHz



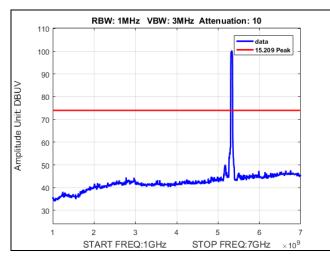
Plot 723. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 30M, 5265M, 1-7GHz



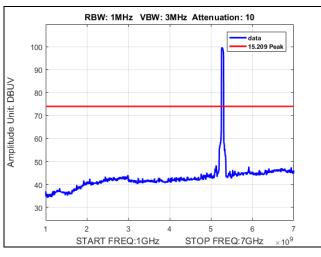
Plot 724. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 30M, 5300M, 1-7GHz



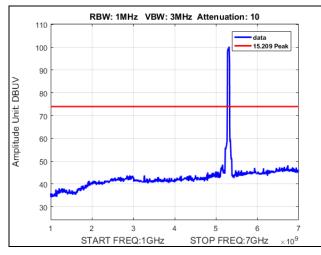
Plot 725. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 30M, 5335M, 1-7GHz



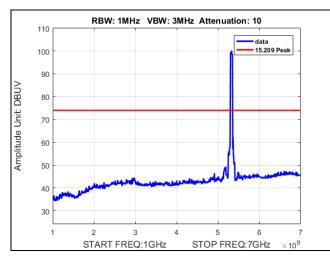
Plot 726. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 40M, 5270M, 1-7GHz



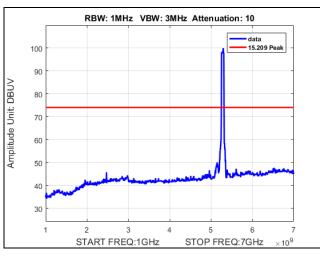
Plot 727. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 40M, 5300M, 1-7GHz



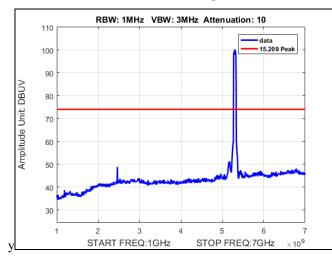
Plot 728. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 40M, 5330M, 1-7GHz



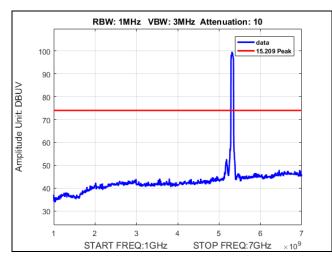
Plot 729. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 50M, 5275M, 1-7GHz



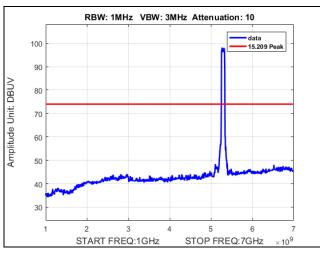
Plot 730. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 50M, 5300M, 1-7GHz



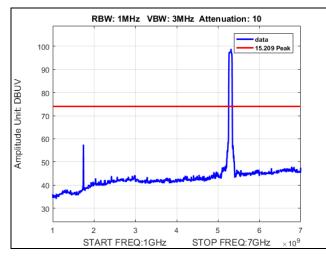
Plot 731. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 50M, 5325M, 1-7GHz



Plot 732. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 60M, 5280M, 1-7GHz



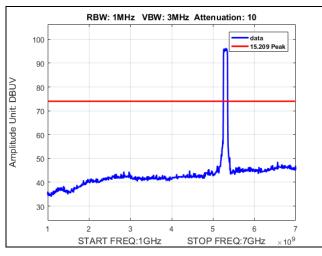
Plot 733. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 60M, 5300M, 1-7GHz



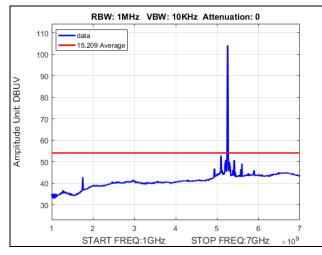
Plot 734. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 60M, 5320M, 1-7GHz



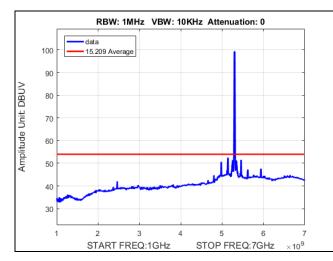
Plot 735. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 80M, 5290M, 1-7GHz



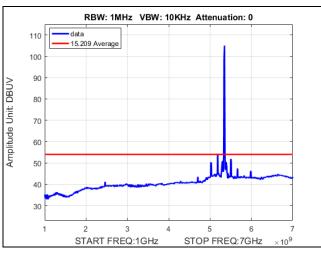
Plot 736. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 80M, 5300M, 1-7GHz



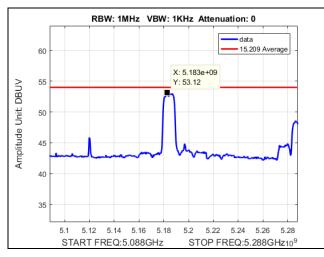
Plot 737. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 80M, 5310M, 1-7GHz



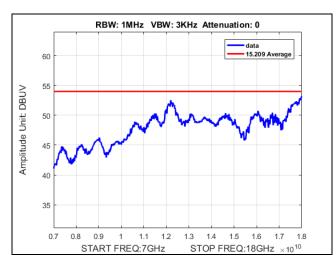
Plot 738. Undesirable Emissions, UNII 2A, PK, radiated spurious, 22dBi sector, 100M, 5300M, 1-7GHz



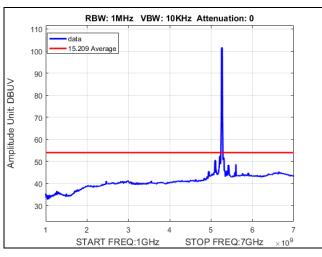
Plot 739. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 10M, 5255M, 1-7GHz



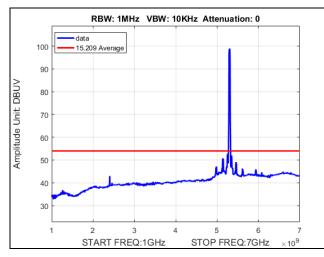
Plot 740. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 10M, 5300M, 1-7GHz



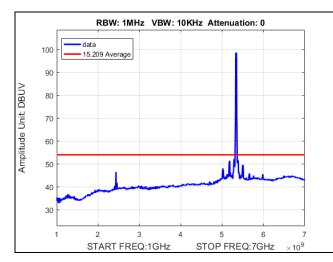
Plot 741. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 10M, 5345M, 1-7GHz



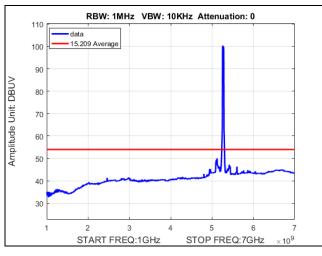
Plot 742. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 10M, 5345M, zoomed in spur



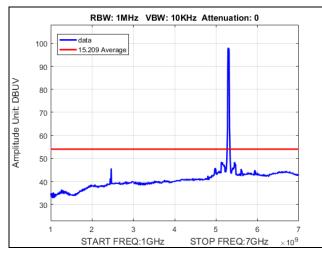
Plot 743. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, worst case, 7-18GHz



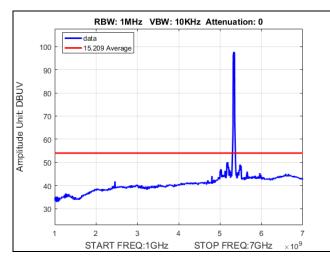
Plot 744. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 20M, 5260M, 1-7GHz



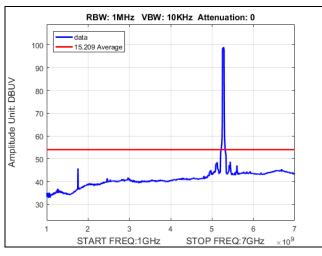
Plot 745. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 20M, 5300M, 1-7GHz



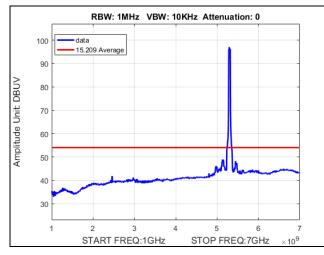
Plot 746. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 20M, 5340M, 1-7GHz



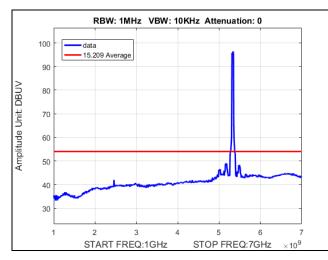
Plot 747. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 30M, 5265M, 1-7GHz



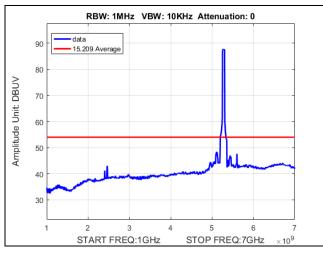
Plot 748. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 30M, 5300M, 1-7GHz



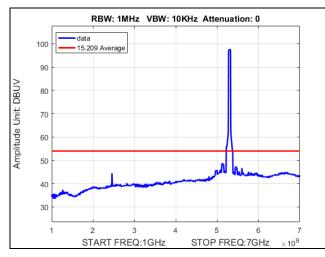
Plot 749. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 30M, 5335M, 1-7GHz



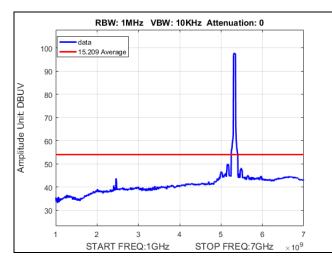
Plot 750. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 40M, 5270M, 1-7GHz



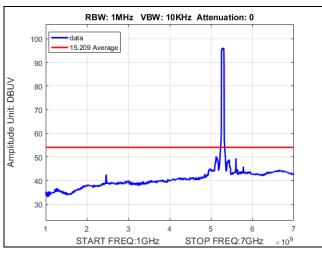
Plot 751. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 40M, 5300M, 1-7GHz



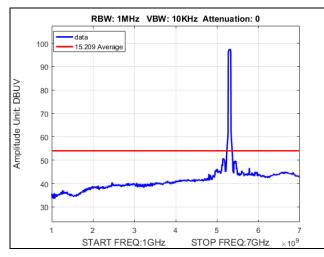
Plot 752. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 40M, 5330M, 1-7GHz



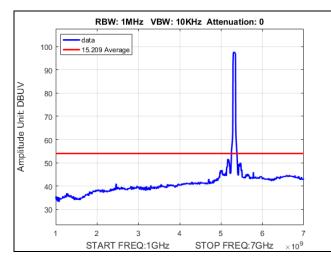
Plot 753. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 50M, 5275M, 1-7GHz



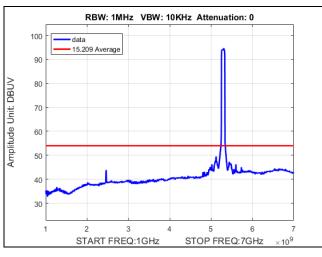
Plot 754. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 50M, 5300M, 1-7GHz



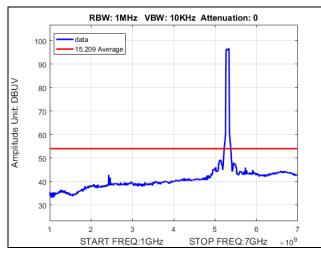
Plot 755. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 50M, 5325M, 1-7GHz



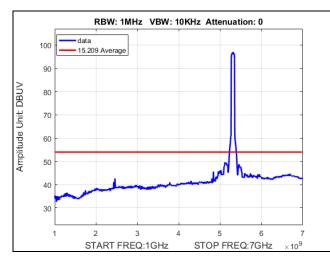
Plot 756. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 60M, 5280M, 1-7GHz



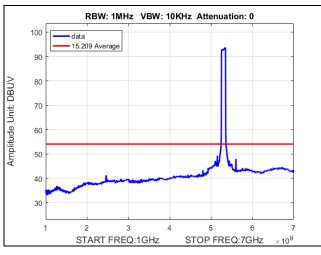
Plot 757. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 60M, 5300M, 1-7GHz



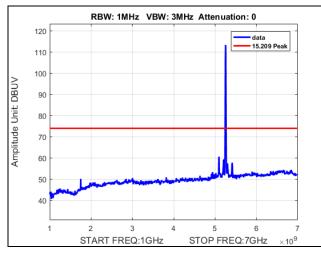
Plot 758. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 60M, 5320M, 1-7GHz



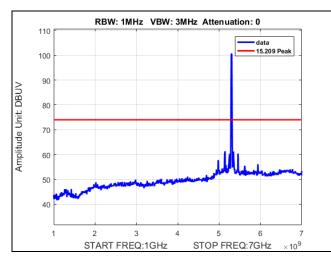
Plot 759. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 80M, 5290M, 1-7GHz



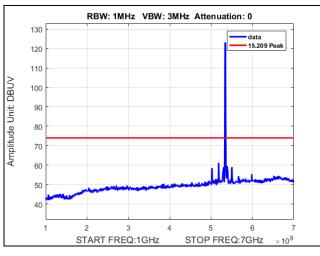
Plot 760. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 80M, 5300M, 1-7GHz



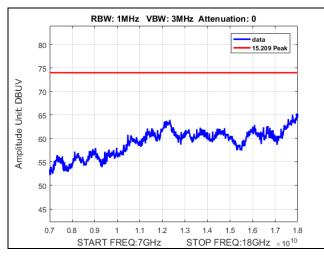
Plot 761. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 80M, 5310M, 1-7GHz



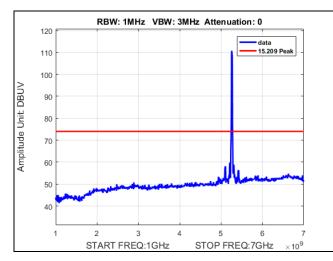
Plot 762. Undesirable Emissions, UNII 2A, AVG, radiated spurious, 34dBi dish, 100M, 5300M, 1-7GHz



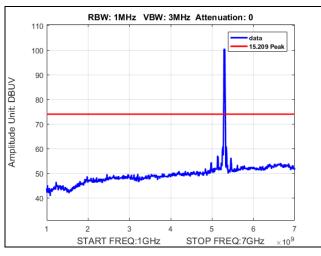
Plot 763. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 10M, 5255M, 1-7GHz



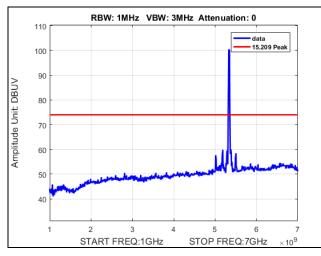
Plot 764. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 10M, 5300M, 1-7GHz



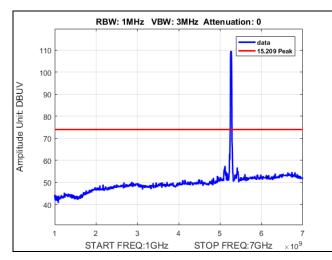
Plot 765. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 10M, 5345M, 1-7GHz



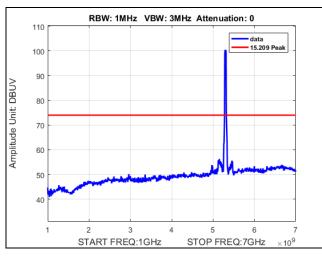
Plot 766. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, worst case, 7-18GHz



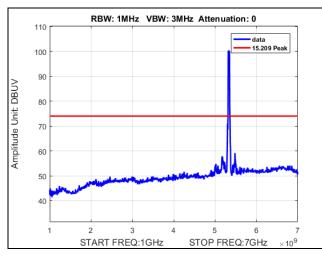
Plot 767. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 20M, 5260M, 1-7GHz



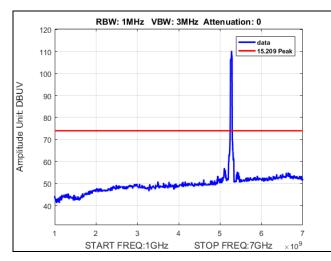
Plot 768. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 20M, 5300M, 1-7GHz



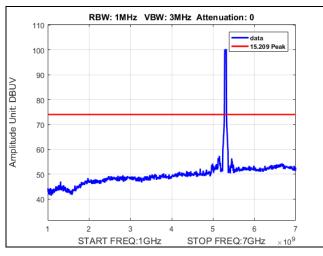
Plot 769. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 20M, 5340M, 1-7GHz



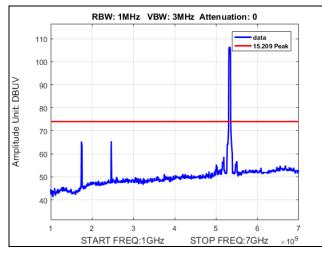
Plot 770. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 30M, 5265M, 1-7GHz



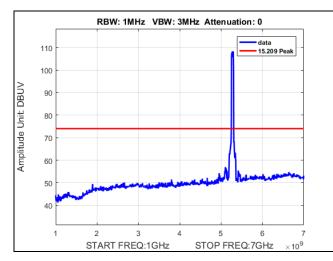
Plot 771. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 30M, 5300M, 1-7GHz



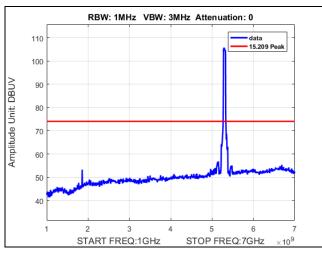
Plot 772. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 30M, 5335M, 1-7GHz



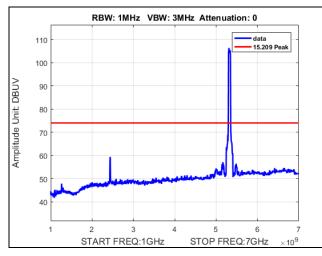
Plot 773. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 40M, 5270M, 1-7GHz



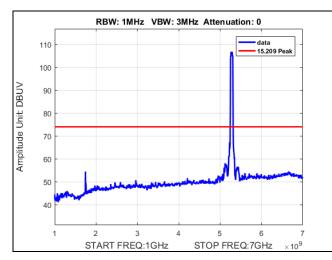
Plot 774. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 40M, 5300M, 1-7GHz



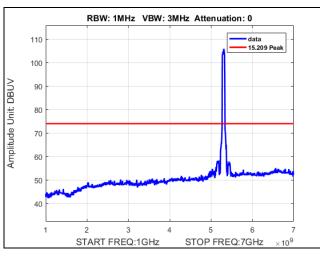
Plot 775. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 40M, 5330M, 1-7GHz



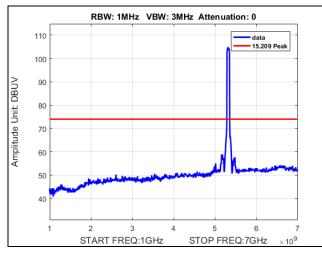
Plot 776. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 50M, 5275M, 1-7GHz



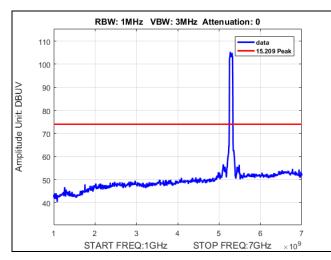
Plot 777. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 50M, 5300M, 1-7GHz



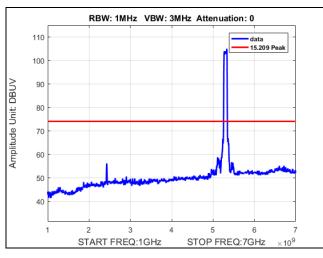
Plot 778. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 50M, 5325M, 1-7GHz



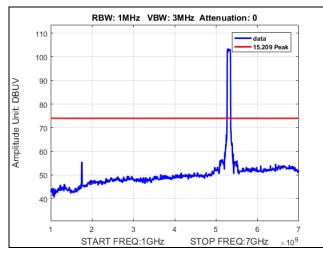
Plot 779. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 60M, 5280M, 1-7GHz



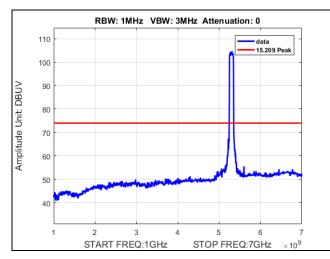
Plot 780. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 60M, 5300M, 1-7GHz



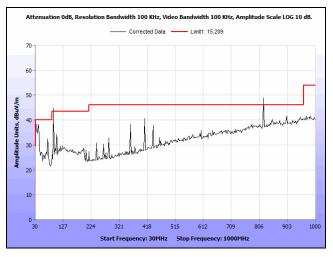
Plot 781. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 60M, 5320M, 1-7GHz



Plot 782. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 80M, 5290M, 1-7GHz

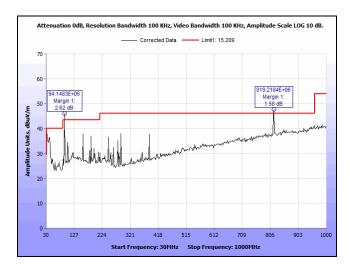


Plot 783. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 80M, 5300M, 1-7GHz



Plot 784. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 80M, 5310M, 1-7GHz

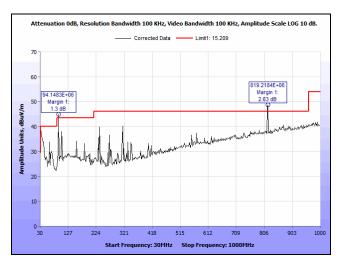
Plot 785. Undesirable Emissions, UNII 2A, PK, radiated spurious, 34dBi dish, 100M, 5300M, 1-7GHz



Plot 786. Undesirable Emissions, UNII 2A, radiated emissions below 1GHz, 13dBi, worst case

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)	Cable Loss (dB) (+)	Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuV/m)	Limit	Margin (dB)
41.95103	262	Н	3.723	6.58	13.53	0.69	0	20.8	40	-19.2
41.95103	73	V	1	19.2	13.53	0.69	0	33.42	40	-6.58
95.12021	274	Н	3.476	23.31	9.44	1.07	0	33.82	43.5	-9.68
95.12021	190	V	1.0952	16.14	9.44	1.07	0	26.65	43.5	-16.85
837.2144	222	Н	1	5.8	22.39	2.74	0	30.93	46	-15.07
837.2144	-13	V	2.6378	5.72	22.39	2.74	0	30.85	46	-15.15

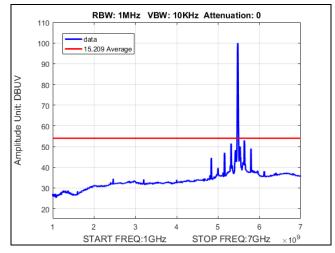
Table 21. Radiated Emissions bellows 1GHz, 13dBi, worst case, Quasi-Peak measurements, points of interest.



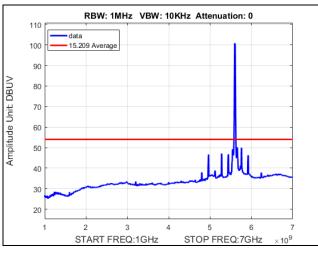
Plot 787. Undesirable Emissions, UNII 2A, radiated emissions below 1GHz, 22dBi, worst case

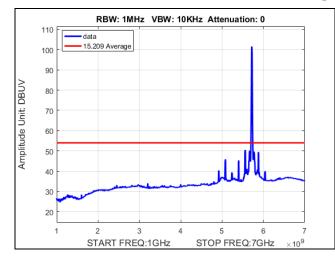
Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)		Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
94.1483	249	Н	2.4534	8.75	9.14	1.52	0	19.41	43.5	-24.09
94.1483	336	V	3.3547	8.06	9.14	1.52	0	18.72	43.5	-24.78
819.2184	333	Н	1.8517	6.03	22.38	4.29	0	32.7	46	-13.3
819.2184	27	V	1.5069	6.03	22.38	4.29	0	32.7	46	-13.3

Table 22. Radiated Emissions bellows 1GHz, 22dBi, worst case, Quasi-Peak measurements, points of interest.

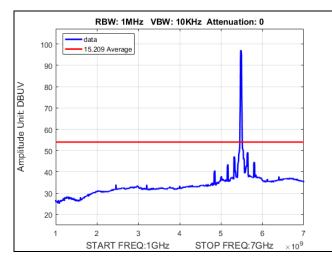

Plot 788. Undesirable Emissions, UNII 2A, radiated emissions below 1GHz, 34dBi, worst case

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)		Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
94.1483	111	H	3.0195	8.41	9.14	1.52	0	19.07	43.5	-24.43
94.1483	302	V	2.8386	7.69	9.14	1.52	0	18.35	43.5	-25.15
819.2184	285	Н	2.2791	6.03	22.38	4.29	0	32.7	46	-13.3
819.2184	53	V	2.5634	6.03	22.38	4.29	0	32.7	46	-13.3

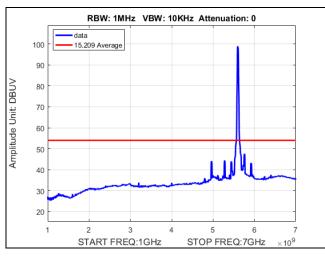

Table 23. Radiated Emissions bellows 1GHz, 34dBi, worst case, Quasi-Peak measurements, points of interest.


Undesirable Emissions, UNII 2C

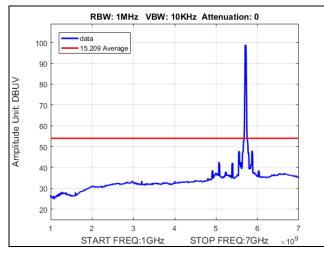
Plot 789. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 10M, 5475M



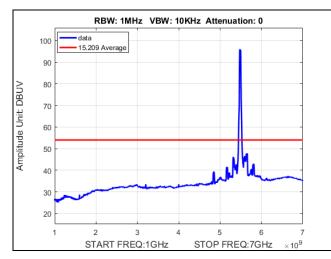
Plot 790. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 10M, 5600M



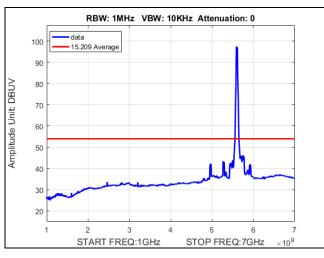
Plot 791. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 10M, 5720M



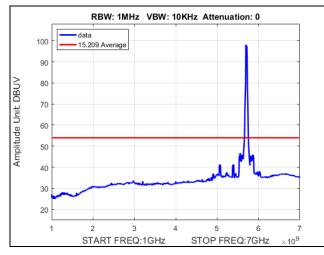
Plot 792. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 20M, 5480M



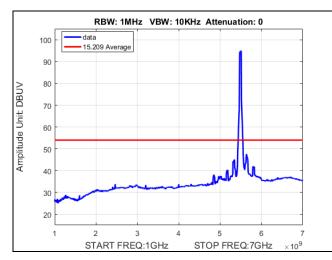
Plot 793. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 20M, 5600M



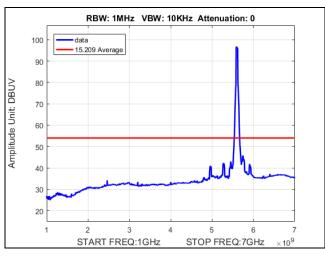
Plot 794. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 20M, 5715M



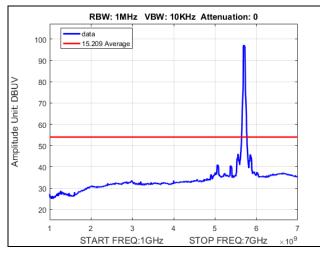
Plot 795. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 30M, 5485M



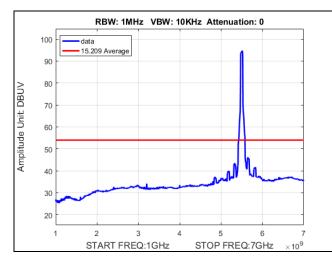
Plot 796. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 30M, 5600M



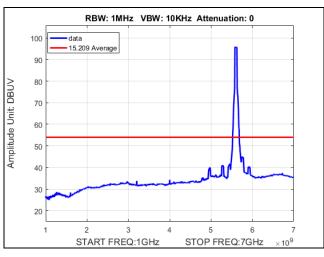
Plot 797. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 30M, 5710M



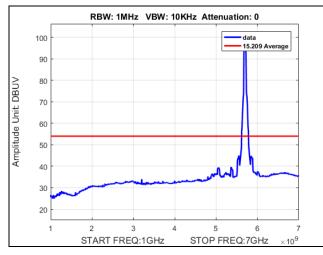
Plot 798. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 40M, 5490M



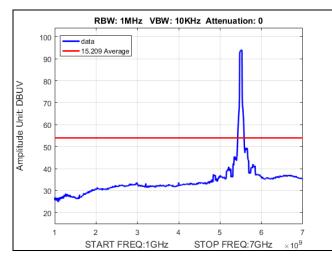
Plot 7990. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 40M, 5600M



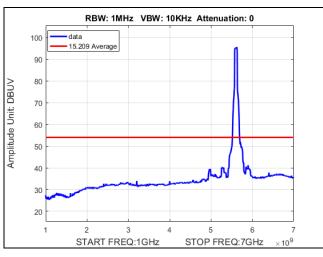
Plot 800. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 40M, 5705M



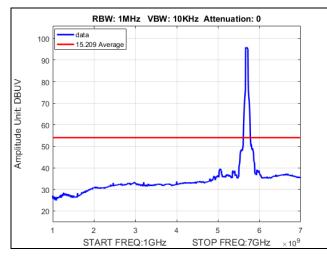
Plot 801. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 50M, 5495M



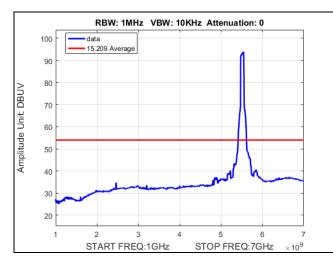
Plot 802. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 50M, 5600M



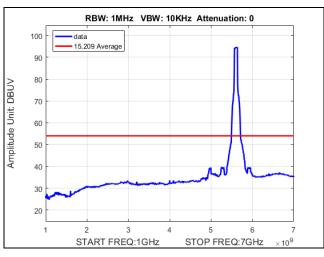
Plot 803. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 50M, 5700M



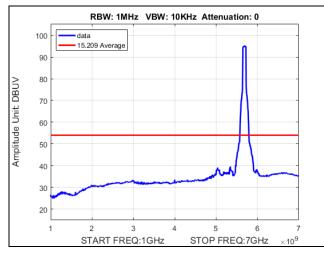
Plot 804. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 60M, 5500M



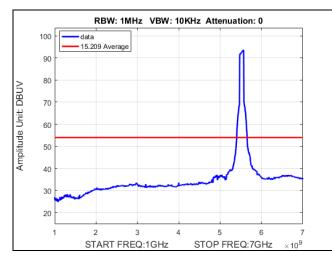
Plot 805. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 60M, 5600M



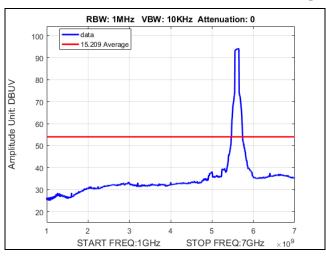
Plot 806. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 60M, 5695M



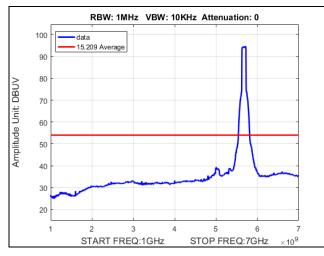
Plot 807. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 80M, 5510M



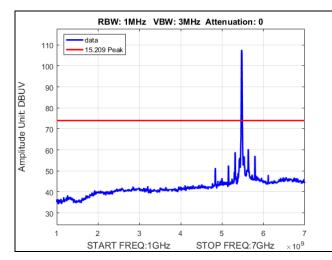
Plot 808. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 80M, 5600M



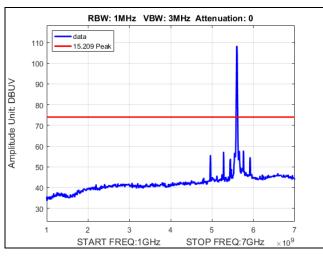
Plot 809. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 80M, 5685M



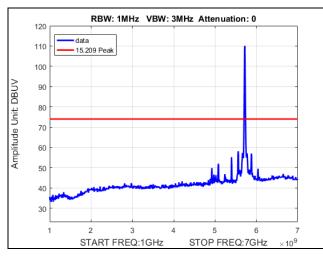
Plot 810. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 100M, 5520M



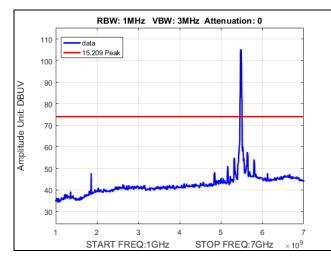
Plot 811. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 100M, 5600M



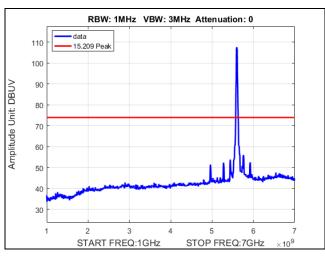
Plot 812. Undesirable Emissions, UNII 2C, AVG, 13dBi, omni, radiated spurious, 100M, 5675M



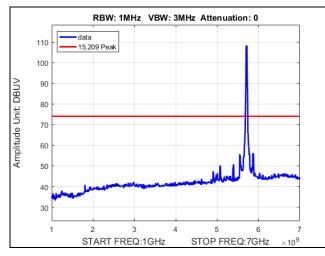
Plot 813. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 10M, 5475M



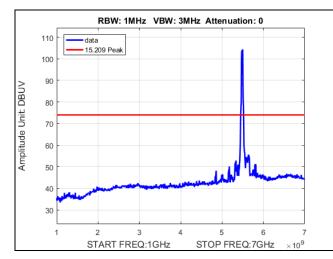
Plot 814. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 10M, 5600M



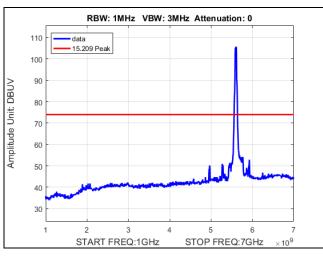
Plot 815. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 10M, 5720M



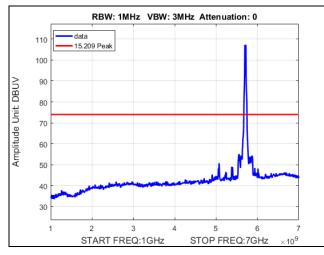
Plot 816. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 20M, 5480M



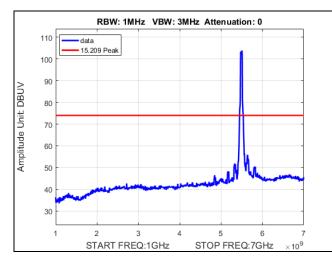
Plot 817. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 20M, 5600M



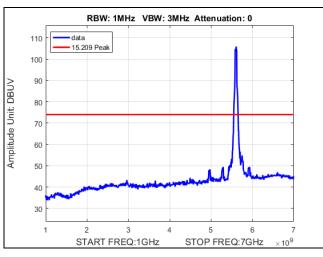
Plot 818. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 20M, 5715M



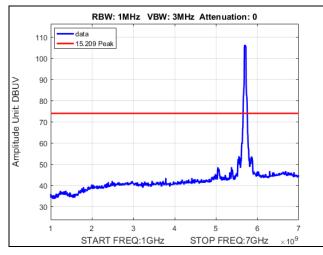
Plot 819. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 30M, 5485M



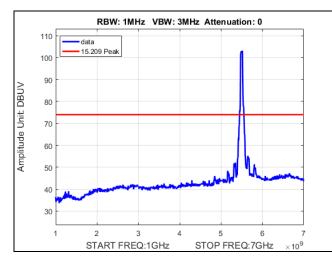
Plot 820. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 30M, 5600M



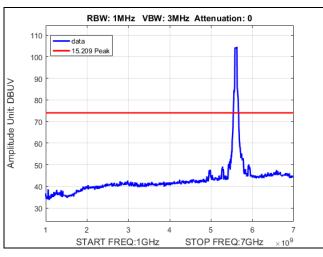
Plot 821. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 30M, 5710M



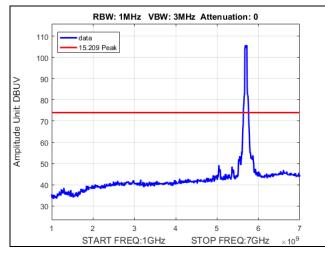
Plot 822. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 40M, 5490M



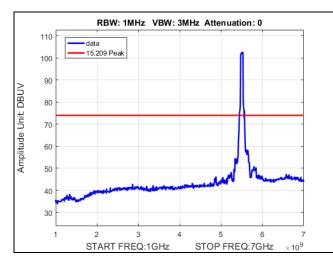
Plot 823. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 40M, 5600M



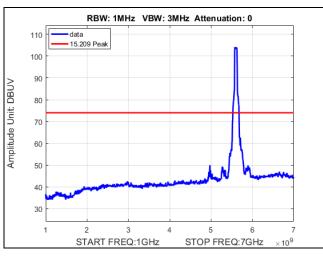
Plot 824. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 40M, 5705M



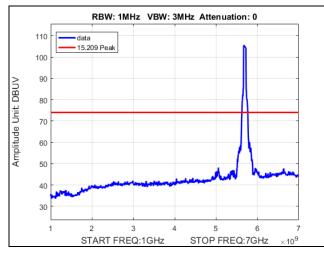
Plot 825. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 50M, 5495M



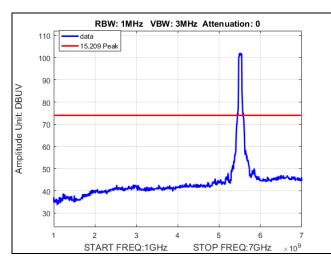
Plot 826. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 50M, 5600M



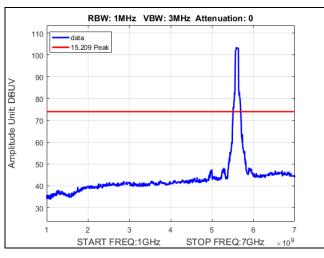
Plot 827. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 50M, 5700M



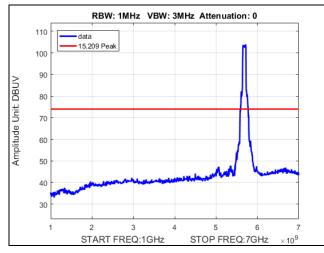
Plot 828. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 60M, 5500M



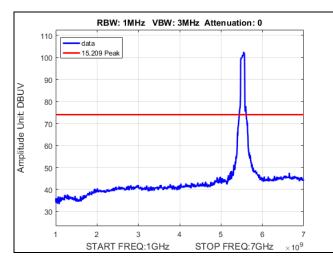
Plot 829. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 60M, 5600M



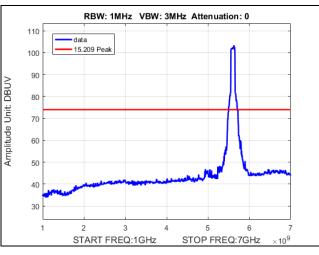
Plot 830. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 60M, 5695M



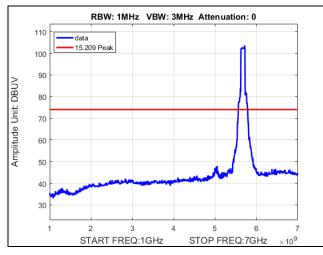
Plot 831. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 80M, 5510M



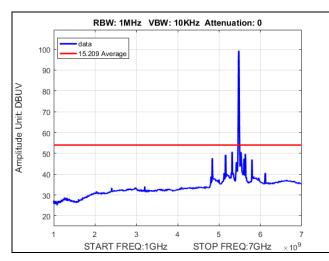
Plot 832. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 80M, 5600M



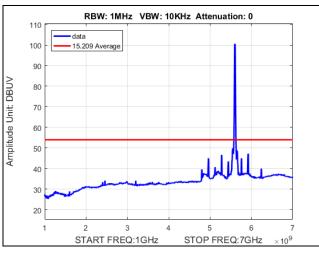
Plot 833. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 80M, 5685M



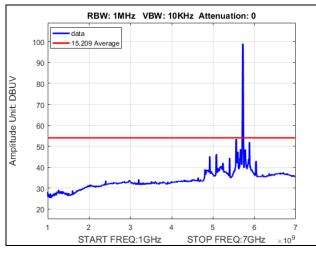
Plot 834. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 100M, 5520M



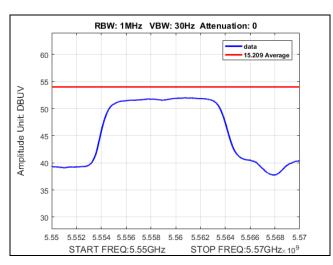
Plot 835. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 100M, 5600M



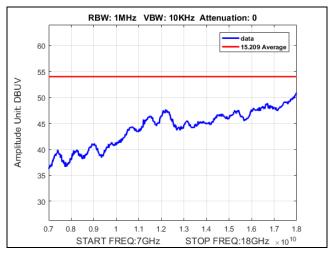
Plot 836. Undesirable Emissions, UNII 2C, PK, 13dBi, omni, radiated spurious, 100M, 5675M



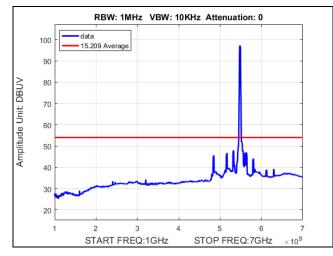
Plot 837. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 10M, 5475M, 1-7GHz



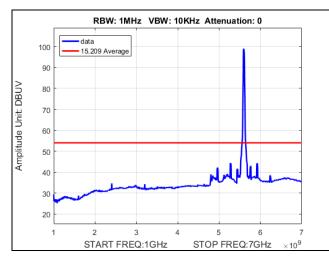
Plot 838. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 10M, 5600M, 1-7GHz



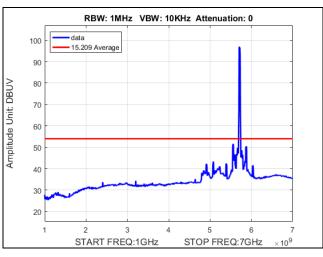
Plot 839. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 10M, 5720M, 1-7GHz



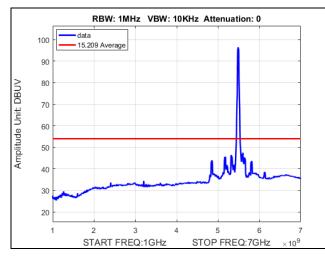
Plot 840. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 10M, 5720M, 1-7GHz, zoomed in 5560 spur



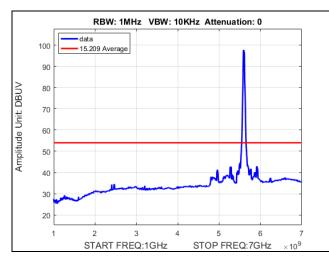
Plot 841. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, worst case, 7-18GHz



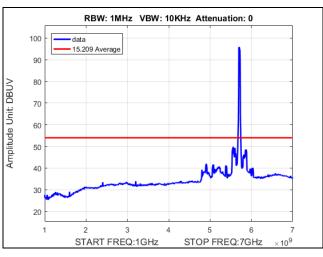
Plot 842. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 20M, 5480M, 1-7GHz



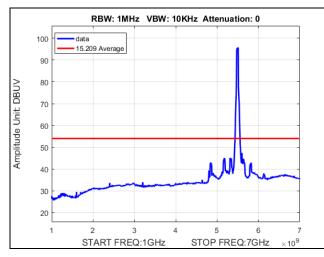
Plot 843. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 20M, 5600M, 1-7GHz



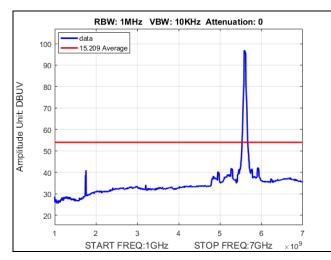
Plot 844. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 20M, 5715M, 1-7GHz



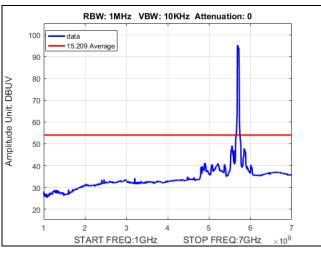
Plot 845. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 30M, 5485M, 1-7GHz



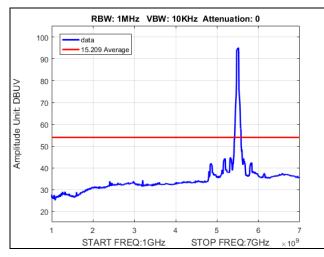
Plot 846. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 30M, 5600M, 1-7GHz



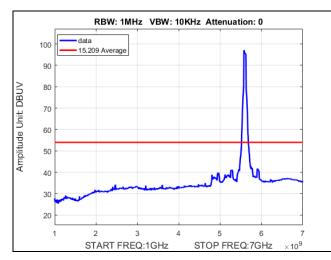
Plot 847. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 30M, 5710M, 1-7GHz



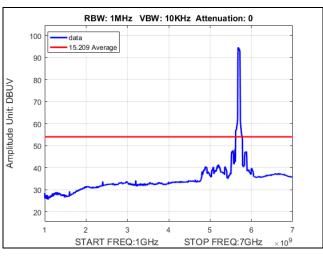
Plot 848. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 40M, 5490M, 1-7GHz



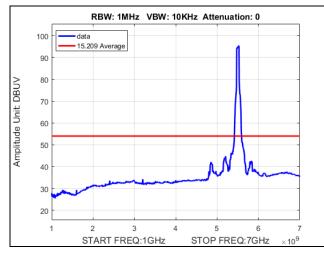
Plot 849. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 40M, 5600M, 1-7GHz



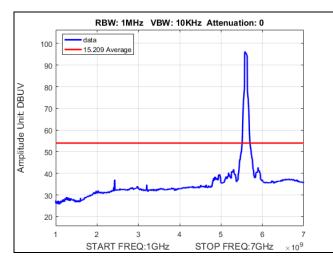
Plot 850. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 40M, 5705M, 1-7GHz



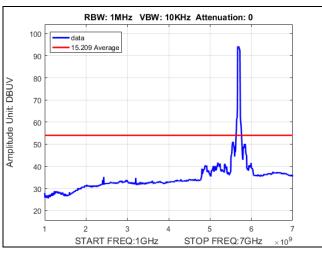
Plot 851. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 50M, 5495M, 1-7GHz



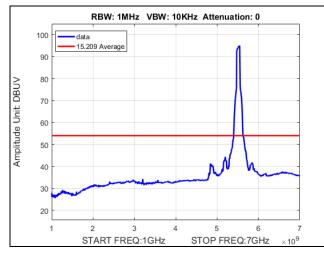
Plot 852. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 50M, 5600M, 1-7GHz



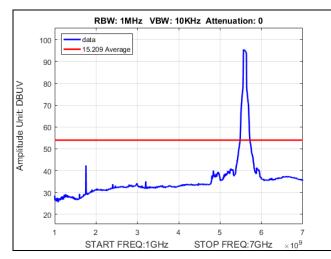
Plot 853. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 50M, 5700M, 1-7GHz



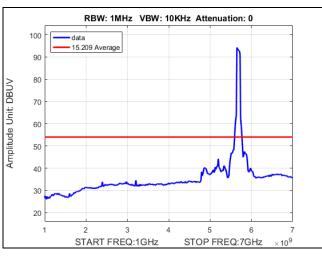
Plot 854. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 60M, 5500M, 1-7GHz



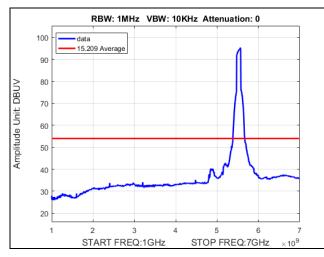
Plot 855. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 60M, 5600M, 1-7GHz



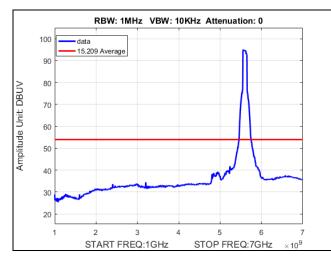
Plot 856. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 60M, 5695M, 1-7GHz



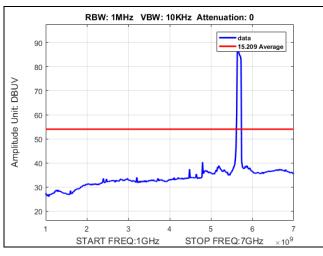
Plot 857. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 80M, 5510M, 1-7GHz



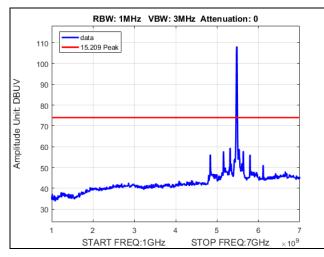
Plot 858. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 80M, 5600M, 1-7GHz



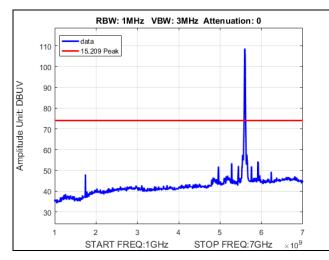
Plot 859. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 80M, 5685M, 1-7GHz



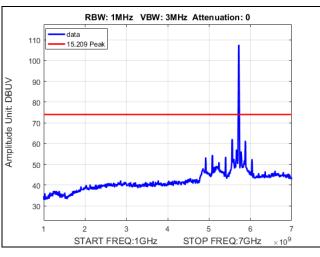
Plot 860. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 100M, 5520M, 1-7GHz



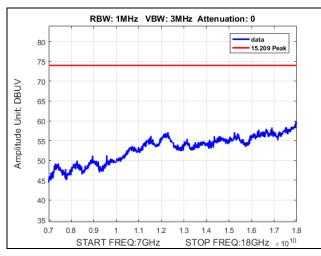
Plot 861. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 100M, 5600M, 1-7GHz



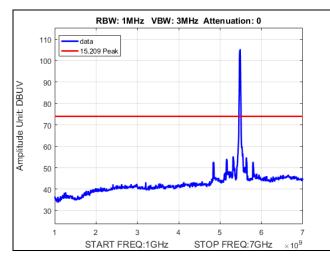
Plot 862. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 22dBi sector, 100M, 5675M, 1-7GHz



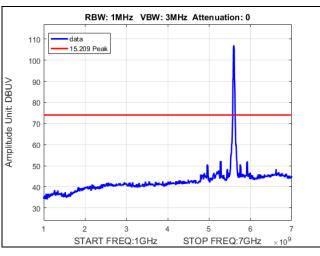
Plot 863. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 10M, 5475M, 1-7GHz



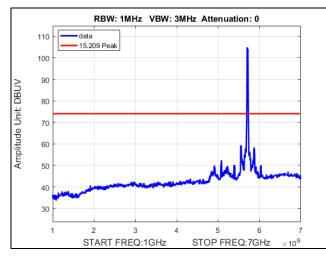
Plot 864. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 10M, 5600M, 1-7GHz



Plot 865. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 10M, 5720M, 1-7GHz

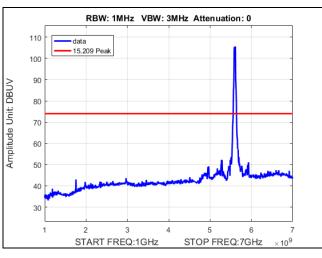


Plot 866. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, worst case, 7-18GHz

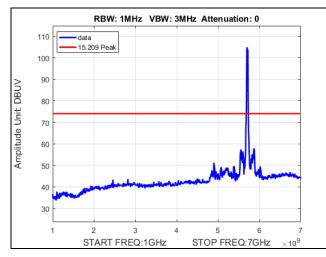


Plot 867. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 20M, 5480M, 1-7GHz

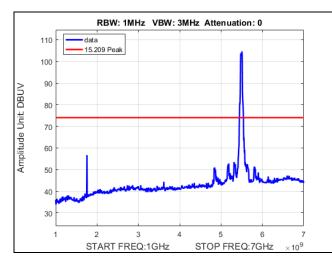
Plot 868. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 20M, 5600M, 1-7GHz



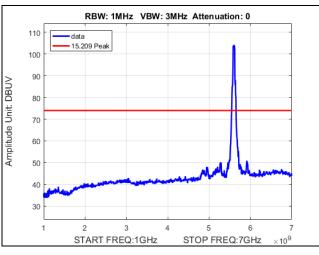
Plot 869. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 20M, 5715M, 1-7GHz



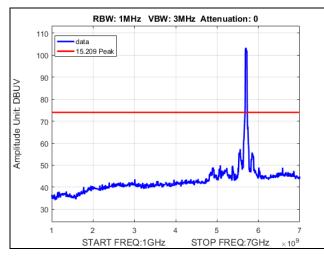
Plot 870. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 30M, 5485M, 1-7GHz



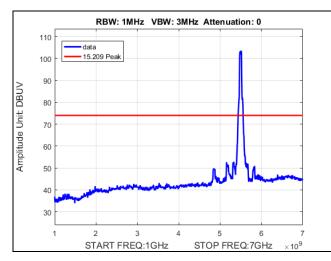
Plot 871. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 30M, 5600M, 1-7GHz



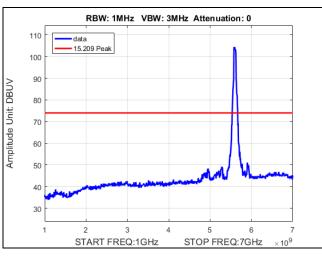
Plot 872. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 30M, 5710M, 1-7GHz



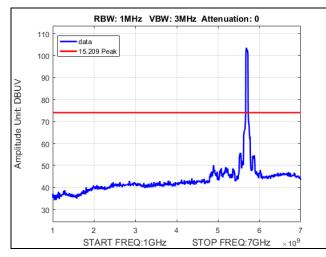
Plot 873. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 40M, 5490M, 1-7GHz



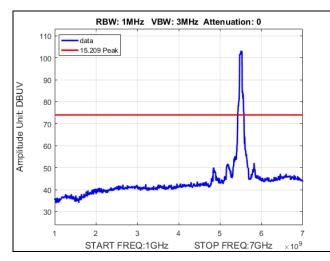
Plot 874. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 40M, 5600M, 1-7GHz



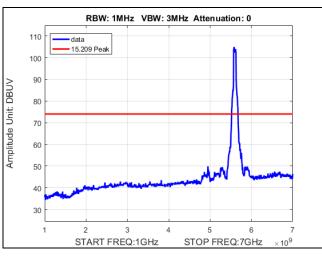
Plot 875. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 40M, 5705M, 1-7GHz



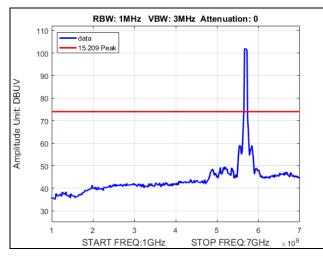
Plot 876. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 50M, 5495M, 1-7GHz



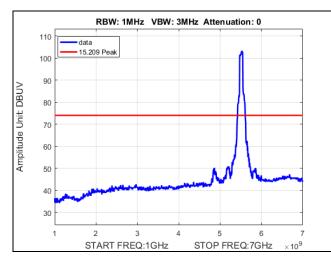
Plot 877. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 50M, 5600M, 1-7GHz



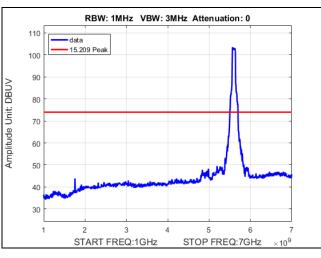
Plot 878. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 50M, 5700M, 1-7GHz



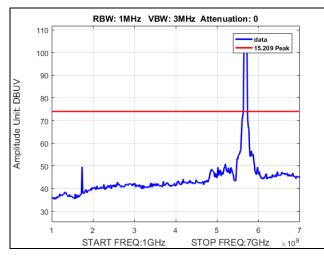
Plot 879. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 60M, 5500M, 1-7GHz



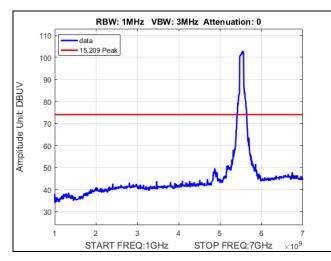
Plot 880. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 60M, 5600M, 1-7GHz



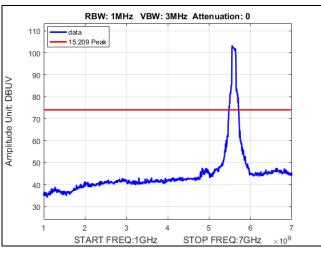
Plot 881. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 60M, 5695M, 1-7GHz



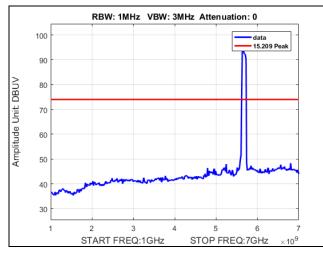
Plot 882. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 80M, 5510M, 1-7GHz



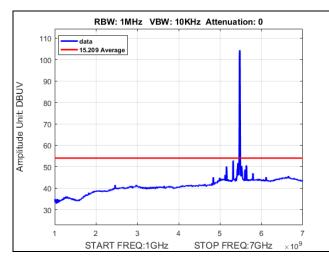
Plot 883. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 80M, 5600M, 1-7GHz



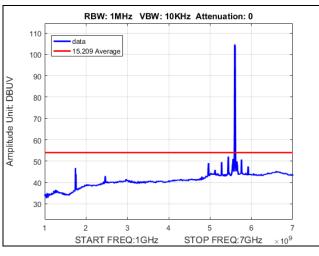
Plot 884. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 80M, 5685M, 1-7GHz



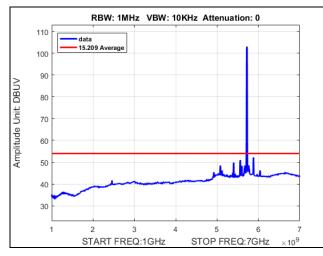
Plot 885. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 100M, 5520M, 1-7GHz



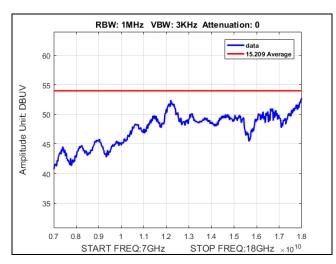
Plot 886. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 100M, 5600M, 1-7GHz



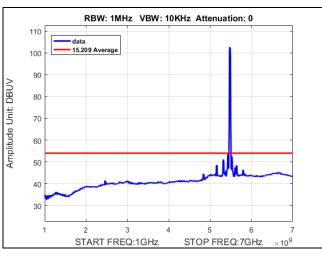
Plot 887. Undesirable Emissions, UNII 2C, PK, radiated spurious, 22dBi sector, 100M, 5675M, 1-7GHz



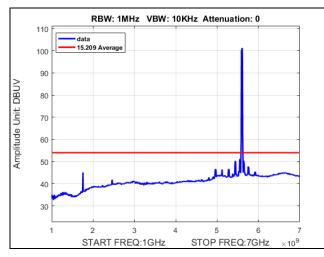
Plot 888. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 10M, 5475M, 1-7GHz



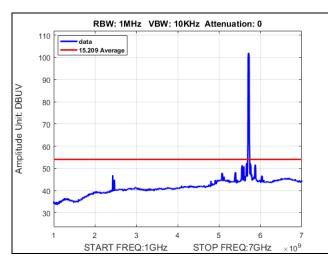
Plot 889. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 10M, 5600M, 1-7GHz



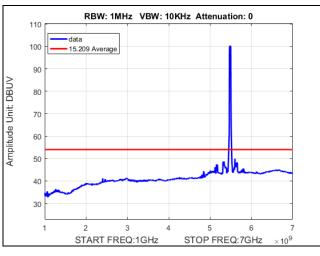
Plot 890. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 10M, 5720M, 1-7GHz



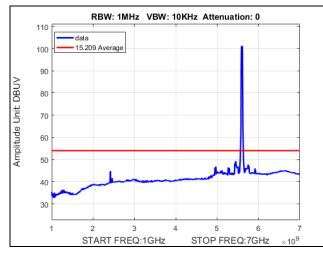
Plot 891. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, worst case, 7-18GHz



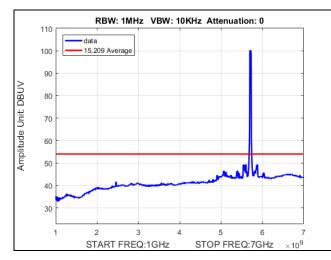
Plot 892. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 20M, 5480M, 1-7GHz



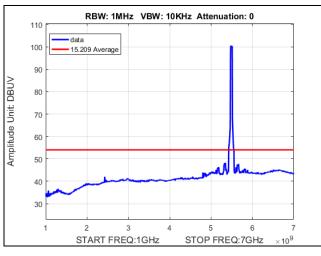
Plot 893. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 20M, 5600M, 1-7GHz



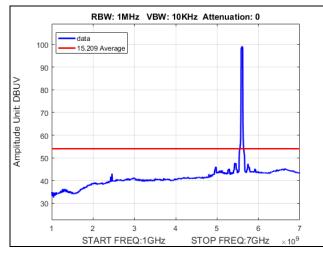
Plot 894. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 20M, 5715M, 1-7GHz



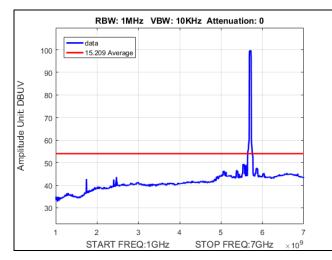
Plot 895. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 30M, 5485M, 1-7GHz



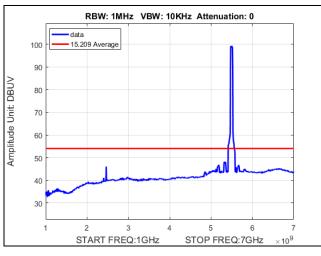
Plot 896. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 30M, 5600M, 1-7GHz



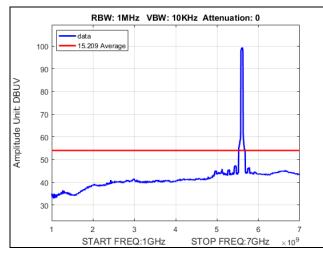
Plot 897. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 30M, 5710M, 1-7GHz



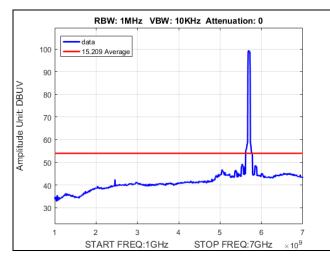
Plot 898. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 40M, 5490M, 1-7GHz



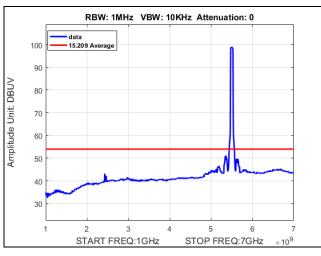
Plot 899. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 40M, 5600M, 1-7GHz



Plot 900. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 40M, 5705M, 1-7GHz



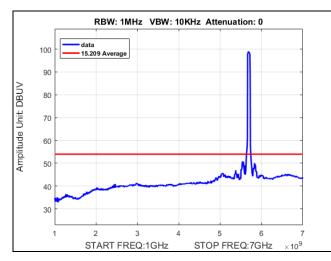
Plot 901. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 50M, 5495M, 1-7GHz



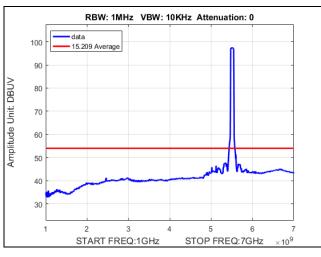
Plot 902. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 50M, 5600M, 1-7GHz



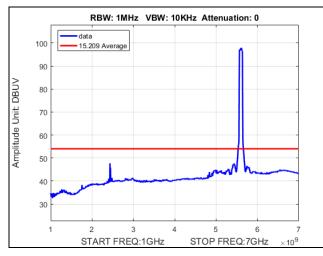
Plot 903. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 50M, 5700M, 1-7GHz



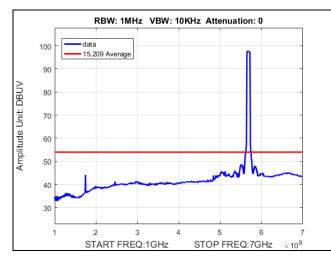
Plot 904. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 60M, 5500M, 1-7GHz



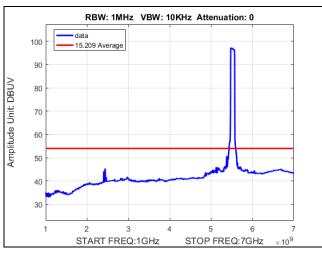
Plot 905. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 60M, 5600M, 1-7GHz



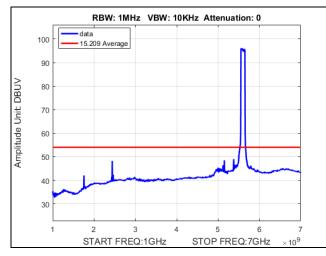
Plot 906. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 60M, 5695M, 1-7GHz



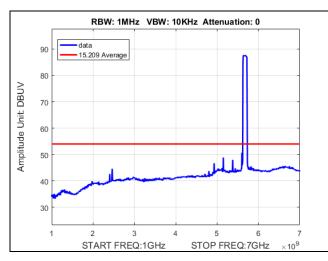
Plot 907. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 80M, 5510M, 1-7GHz



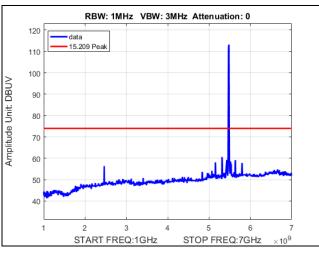
Plot 908. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 80M, 5600M, 1-7GHz



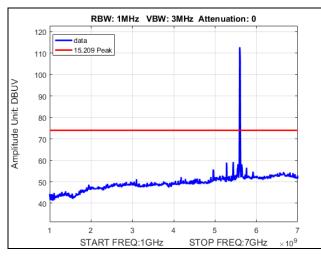
Plot 909. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 80M, 5685M, 1-7GHz



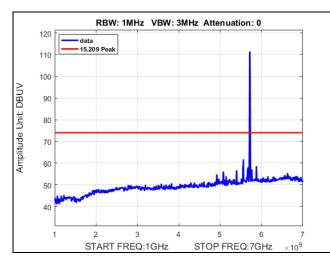
Plot 910. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 100M, 5520M, 1-7GHz



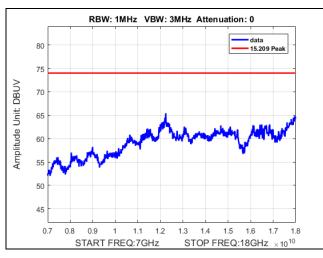
Plot 911. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 100M, 5600M, 1-7GHz



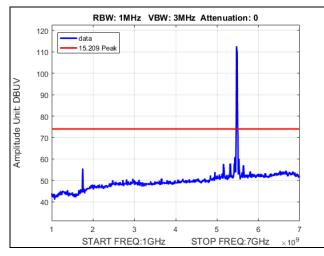
Plot 912. Undesirable Emissions, UNII 2C, AVG, radiated spurious, 34dBi dish, 100M, 5675M, 1-7GHz



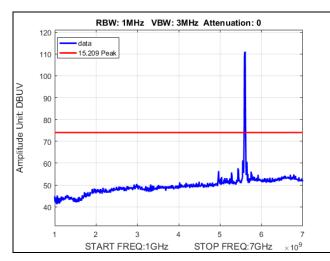
Plot 913. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 10M, 5475M, 1-7GHz



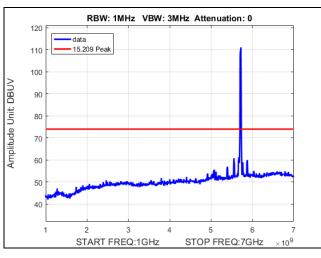
Plot 914. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 10M, 5600M, 1-7GHz



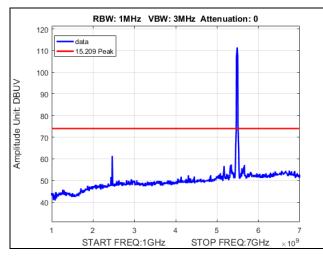
Plot 915. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 10M, 5720M, 1-7GHz



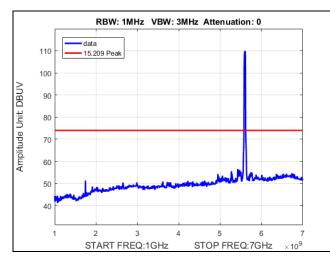
Plot 916. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, worst case, 7-18GHz



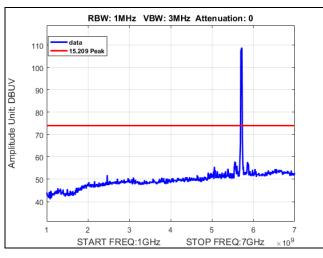
Plot 917. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 20M, 5480M, 1-7GHz



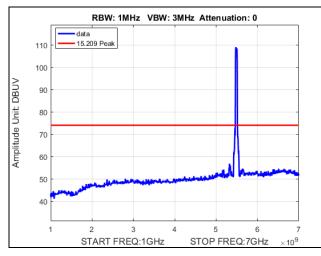
Plot 918. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 20M, 5600M, 1-7GHz



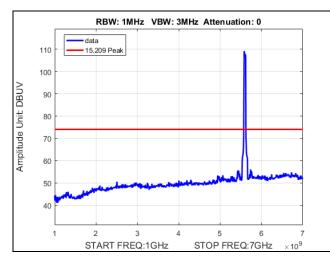
Plot 919. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 20M, 5715M, 1-7GHz



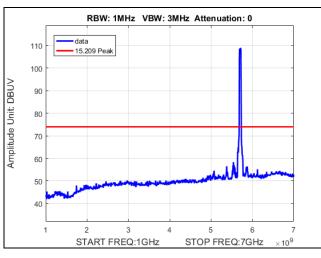
Plot 920. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 30M, 5485M, 1-7GHz



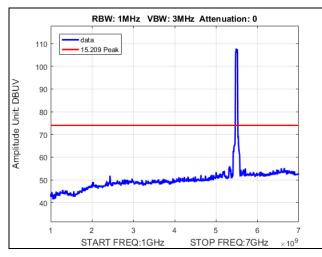
Plot 921. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 30M, 5600M, 1-7GHz



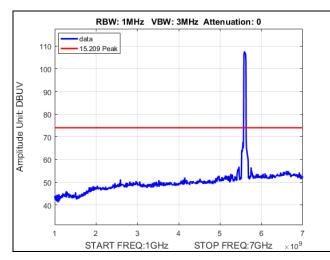
Plot 922. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 30M, 5710M, 1-7GHz



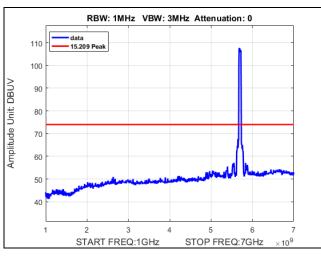
Plot 923. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 40M, 5490M, 1-7GHz



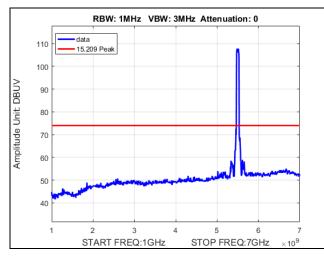
Plot 924. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 40M, 5600M, 1-7GHz



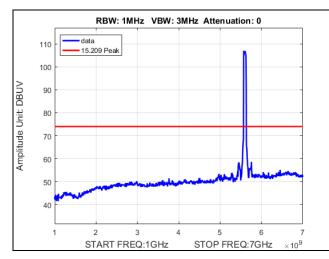
Plot 925. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 40M, 5705M, 1-7GHz



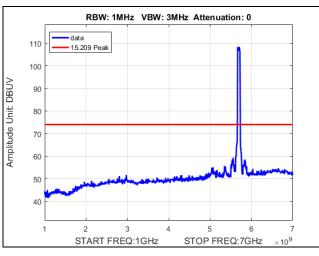
Plot 926. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 50M, 5495M, 1-7GHz



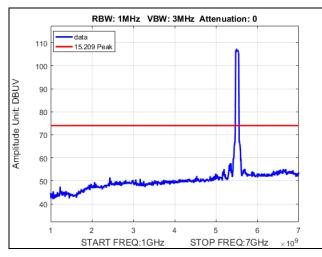
Plot 927. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 50M, 5600M, 1-7GHz



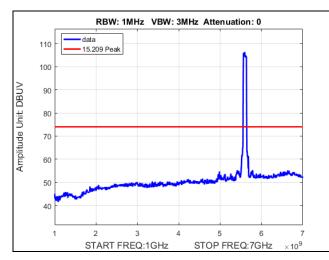
Plot 928. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 50M, 5700M, 1-7GHz



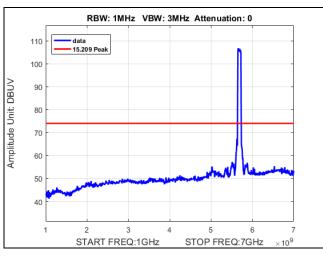
Plot 929. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 60M, 5500M, 1-7GHz



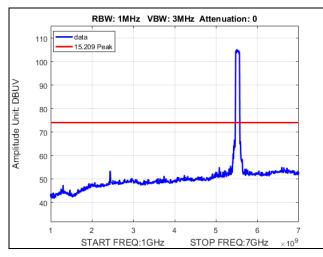
Plot 930. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 60M, 5600M, 1-7GHz



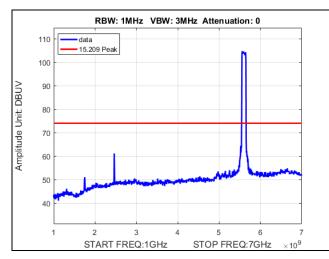
Plot 931. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 60M, 5695M, 1-7GHz



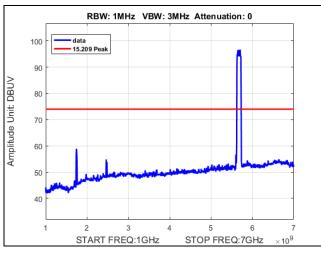
Plot 932. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 80M, 5510M, 1-7GHz



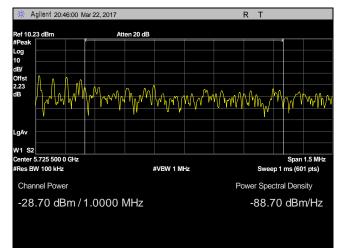
Plot 933. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 80M, 5600M, 1-7GHz



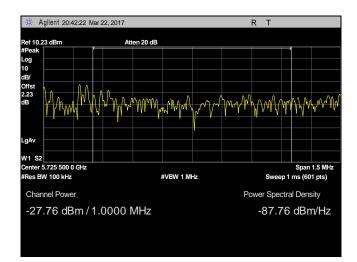
Plot 934. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 80M, 5685M, 1-7GHz



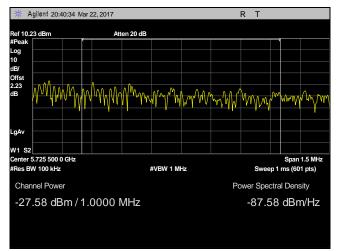
Plot 935. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 100M, 5520M, 1-7GHz



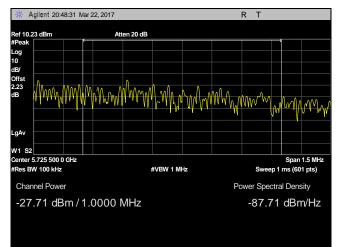
Plot 936. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 100M, 5600M, 1-7GHz



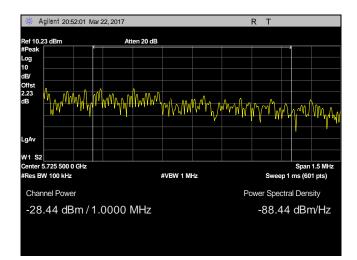
Plot 937. Undesirable Emissions, UNII 2C, PK, radiated spurious, 34dBi dish, 100M, 5675M, 1-7GHz



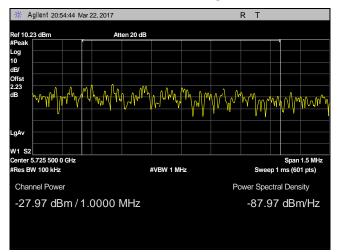
Plot 938. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 10M, 5720M, pwr integration



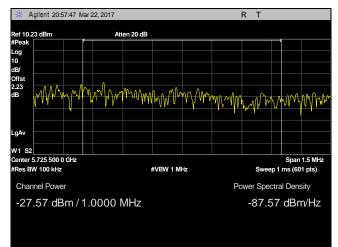
Plot 939. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 20M, 5715M, pwr integration



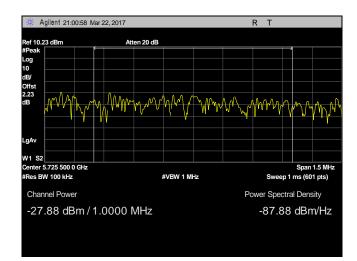
Plot 940. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 30M, 5710M, pwr integration



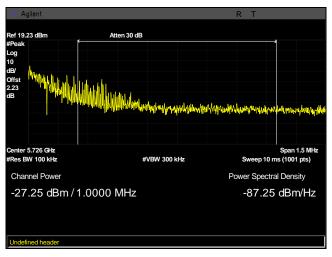
Plot 941. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 40M, 5705M, pwr integration



Plot 942. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 50M, 5700M, pwr integration



Plot 943. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 60M, 5695M, pwr integration



Plot 944. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 80M, 5685M, pwr integration

Plot 945. Undesirable Emissions, UNII 2C, -27dBM, , bandedge 5725, 13dBi, 100M, 5675M, pwr integration

Plot 946. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 10M, 5720M, pwr integration

₩ Agilent		RT
Ref 19.23 dBm #Peak	Atten 30 dB	
Log 10 dB/		
Offst 2.23 dB	aliyaliyaliya yurku yurku yuraa	fortungetungeneran pupanentanasia
Center 5.726 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 1.5 MHz Sweep 10 ms (1001 pts)
Channel Power		Power Spectral Density
-27.66 dBm/	1.0000 MHz	-87.66 dBm/Hz
Undefined header		

Plot 947. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 20M, 5715M, pwr integration

🔆 Agilent		R T
Ref 19.23 dBm	Atten 30 dB	
#Peak		1
Log 10		
dB/		
Offst		
2.23 dB	And a latence will be latence there are the component	uphallilitrationantical-operationalises
and the stand stand stands and stand	, And In Studies, A strain a divident full and strain	handalalaha ang manana atawa na tao atawa atawa
· · ·	the the second second second	administration of the second constraint of the second second second second second second second second second s
Center 5.726 GHz		Span 1.5 MHz
#Res BW 100 kHz	#VBW 300 kHz	Sweep 10 ms (1001 pts)
Channel Power		Power Spectral Density
-27.17 dBm/1.0	0000 MHz	-87.17 dBm/Hz
Undefined header		

Plot 948. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 30M, 5710M, pwr integration

🔆 Ag	gilent										R	Т			
Ref 19.2 #Peak	23 dBm		<i></i>	Atte	en 30 d	в							-		
Log 10 dB/ Offst															
2.23 dB	"Andred Andred	M/M	WNN N	"\W	WW	MM	nh/r	H4,84	₩₩	/hvspnlu	NH 9 M	Mpw	wW	4W/16/	puppinghaber
Center	5.726 GHz													Snan	1.5 MHz
	W 100 kHz					#VE	SW 300	kHz			s	weep			
Chan	nel Powe	er								F	Powe	r Spe	ctral	Dens	ity
-27	.14 dE	3m / ′	1.00	00 N	ЛНz						-	87.	14 (dBn	γHz
Undefi	ned heade	r													

Plot 949. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 40M, 5705M, pwr integration

🔆 Agilent							R	Т		
Ref 19.23 dBm #Peak			Atten 30 dB						*	
#Peak Log 10										
dB/ Offst										
	WWWW	Wheels Lake	numahtunhunhu	all all adapt	it and t tiles are	مريور ارتا	ار مالا	la n.		
	تطنيك	T II I T	a sala dhala	MW and al	Man and a	un hande	M	M,MM	er <mark>hi</mark> ller h	Martin June
Center 5.726 0 #Res BW 100				#VBW 300			0.1	10		1.5 MHz
				#VBW 300 P	KHZ	D			ms (100	
Channel P	ower					PC	ower	Specu	ral Den	Sity
-27.12	dBm /	1.000	0 MHz				-8	37.12	2 dBr	n/Hz
Undefined he	ader									

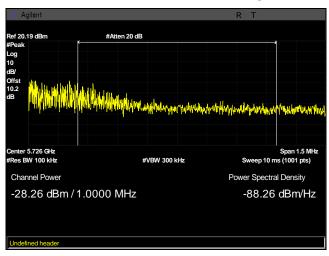
Plot 950. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 50M, 5700M, pwr integration

🔆 Agilent		RT	
Ref 19.23 dBm	Atten 30 dB		
#Peak			
Log 10			
dB/			
Offst			
2.23 dB with the literation	International Action of the state		
as www.www.	ydaradariwaaliyaddynaatidrijadadda	WWWWWWWWWWWWWWWWWWWWW	hill ta hill Ala
	i i i here i e m	Leader a terraria a litta a taliha ka sa ak	ile. Indese date and
Center 5.726 GHz		St	oan 1.5 MHz
#Res BW 100 kHz	#VBW 300 kHz		
Channel Power		Power Spectral D	ensity
-27.84 dBm/	1 0000 MHz	-87.84 d	Rm/Hz
27.04 ubm/		07.04 0	
Undefined header			

Plot 951. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 60M, 5695M, pwr integration

* A	gilent													R	Т				
Ref 19.2	23 dBm				A++-	en 30	dB												
#Peak	25 0611		K		Alle	811 30	uр										1		
Log																			
10																			
dB/																			
Offst																			
2.23 dB	a ababa a s	Marth A.M.	دارم و	udd a	store 1	Land	l. N. a	dise. I				41							
ab a	ngerningenis	Unal Ukun	W.r.	M.A.	₩Vγ	MW	myy	n ha	himan	4m	WW	Why	M	1/m	Min	M	WMM N	YWW 4	MAM
Center	5.726 GHz																Spa	an 1.5	MHz
#Res B	W 100 kHz						#	VBW :	300 k	Hz				Sv	veep	10 n	ns (10	001 pt	:s)
Char	nel Powe	er											P	ower	Spe	ectra	al De	nsity	
-27	.73 dE	3m / ′	1.0	000) N	ЛНz	2							-8	37.	73	dB	3m/l	Hz
Undefi	ned heade	r																	

Plot 952. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 80M, 5685M, pwr integration


迷 Ag	gilent			R	Т	
Ref 19.2 #Peak	23 dBm	Atten 30 dB				1
Log 10 dB/ Offst 2.23						
dB	ultylarlykalutytyna	aralyanaryayana ana ana ana ana ana ana ana ana a	pharellin in the second	mally front half have for for for for for	w.nj.miju	nthilley March Williem Hill
Center f	5.726 GHz					Span 1.5 MHz
	W 100 kHz		#VBW 300 kHz	S	weep 10 n	ns (1001 pts)
Chan	nnel Power			Powe	er Spectra	al Density
-27.	.72 dBm/′	1.0000 MHz			87.72	dBm/Hz
Undefit	ned header					

Plot 953. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 22dBiM, 100M, 5675M, pwr integration

🔆 Agilent		R	хт	
Ref 20.19 dBm	#Atten 20 dB			
#Peak				
10 dB/				
Offst 10.2				
dB	httlift half of the state of th	anatolistanii talita aalita a	had starts take	an and a surface
	a second what we have a shifter out	Adam and the Al Landard of Ada	an hour dhad	hillel alkikennetki.
Center 5.726 GHz				Span 1.5 MHz
#Res BW 100 kHz	#VBW 300 F	(Hz	Sweep 10 m	s (1001 pts)
Channel Power		Pov	ver Spectra	Density
-27.29 dBm/1	.0000 MHz		-87.29	dBm/Hz
Undefined header				

Plot 954. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 10M, 5720M

Plot 955. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 20M, 5715M

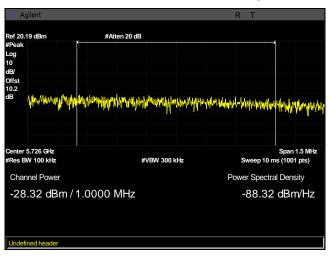

·张 A	gilent		RT	
Ref 20.1	19 dBm	#Atten 20 dB		
#Peak Log 10 dB/ Offst				
10.2 dB	htty man and the state of the s	opi, Milipido Athicide in Milini, popu	letthethMartivenaurtivenaurteraution	hypericlicity teelphility. N
	5.726 GHz W 100 kHz	#VBW 300 kł	Hz Sweep 10 m	Span 1.5 MHz ns (1001 pts)
Char	nnel Power		Power Spectra	al Density
-27	.58 dBm / 1	1.0000 MHz	-87.58	dBm/Hz
Undefi	ined header			

Plot 956. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 30M, 5710M

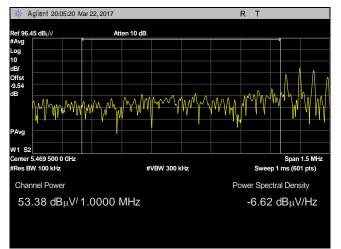
🔆 Agilent			RT	
	"Au 00 ID			
Ref 20.19 dBm	#Atten 20 dB			
Log				
10				
dB/				
Offst				
dB	harder set of a line of the line of the set of the set of the line of the line of the line of the set of the set			
	ALL AND AN	LIP MARKAN AND A LAND	hipata	
		a in it aller dile and	and the state of the	balling and the states of the
Center 5.726 GHz				Span 1.5 MHz
#Res BW 100 kHz	#VBW 30	00 kHz	Sweep 10 m	
Channel Power		-	Power Spectra	Donoity
		Г	-ower Specira	Density
-28.45 dBm / 1	.0000 MHz		-88.45	dBm/Hz
Undefined header				
ondonnou neadel				

Plot 957. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 40M, 5705M

Plot 958. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 50M, 5700M

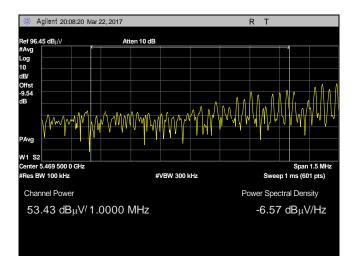

崇 Ag	gilent			RT	
Ref 20.1	19 dBm	#Atten 2	0 dB		
#Peak Log 10 dB/ Offst					
10.2 dB	ndanapalan Naparata	Mininghing ia-U	Arnala.vuojnyanava/hyv	ann dan kanal fan de	ikaliyiktimitmi.Wyatu
	5.726 GHz W 100 kHz		#VBW 300 kHz	Sweep 10 r	Span 1.5 MHz ms (1001 pts)
Chan	nnel Power			Power Spectra	al Density
-28	.90 dBm /	1.0000 MH	Z	-88.90) dBm/Hz
Undefi	ined header				

Plot 959. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 60M, 5695M

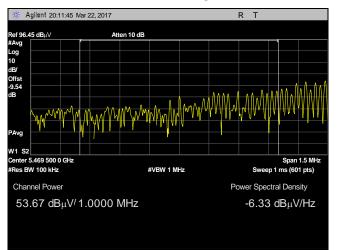


🔆 Agilent		R T
Ref 20.19 dBm	#Atten 20 dB	
#Peak		1
Log		
10 dB/		
Offst		
10.2		
dB Assald Male	duality of text of the second of the second second	a handa har a sa
Lake an Alash Abdah	Angender of the state of the st	er volk milit vik Provet mere vikil vete del sature i Almas, est ett.
		a second of all of the second firms to take the fact
Center 5.726 GHz		Span 1.5 MHz
#Res BW 100 kHz	#VBW 300 kHz	Sweep 10 ms (1001 pts)
Channel Power		Power Spectral Density
Channel Fower		Fower Opectial Density
-28.94 dBm/	1.0000 MHz	-88.94 dBm/Hz
Undefined header		

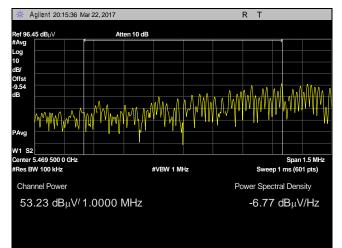
Plot 960. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 80M, 5685M



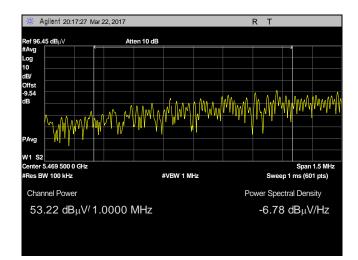
Plot 961. Undesirable Emissions, UNII 2C, -27dBm, bandedge 5725, 34dBi, 100M, 5675M



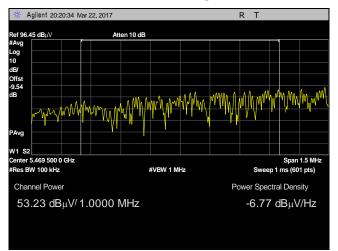
Plot 962. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 10M, 5475M, pwr integration



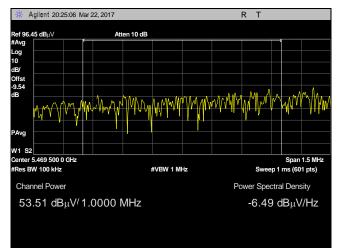
Plot 963. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 20M, 5480M, pwr integration



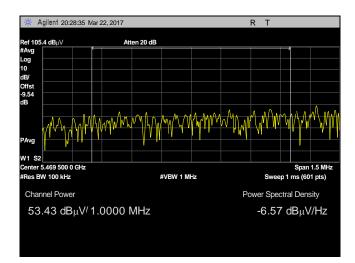
Plot 964. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 30M, 5485M, pwr integration



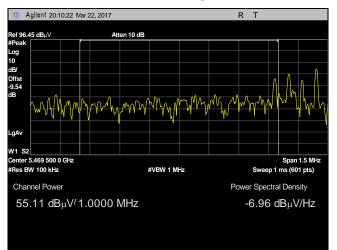
Plot 965. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 40M, 5490M, pwr integration



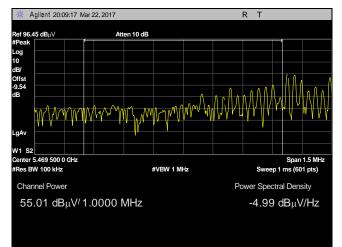
Plot 966. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 50M, 5495M, pwr integration



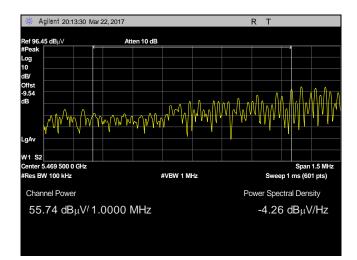
Plot 967. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 60M, 5500M, pwr integration



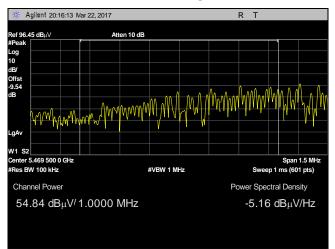
Plot 968. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 80M, 5510M, pwr integration



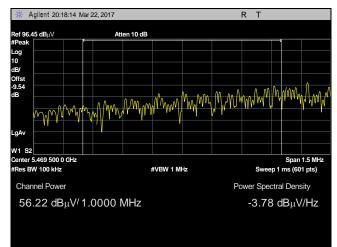
Plot 969. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 13dBi, 100M, 5520M, pwr integration



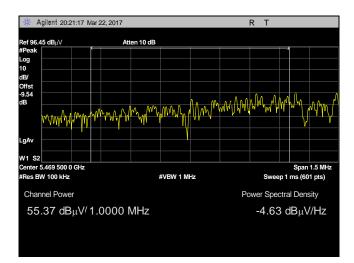
Plot 970. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 10M, 5475M, pwr integration



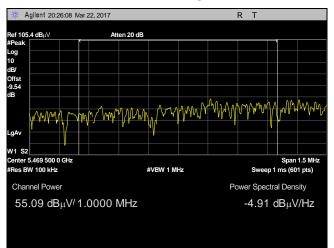
Plot 971. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 20M, 5480M, pwr integration



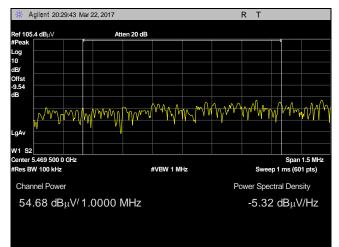
Plot 972. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 30M, 5485M, pwr integration



Plot 973. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 40M, 5490M, pwr integration



Plot 974. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 50M, 5495M, pwr integration



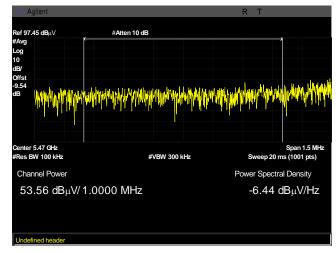
Plot 975. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 60M, 5500M, pwr integration

Plot 976. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 80M, 5510M, pwr integration

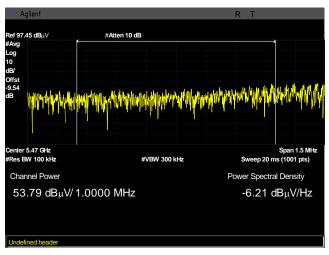
Plot 977. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 13dBi, 100M, 5520M, pwr integration

→ Agilent				R T					
	45 dB μV	#Atten 10 di	3						
#Avg									
Log									
10									
dB/									
Offst									
-9.54	الدالية من الما	المالية بجميعه المالي	h.d. alta	lable for the	بارايالا		in had	S. elit	أمالا والماري ال
dB	Made and the second second	un de participation de la compaction de la	www.www	K WAY VI	WWW	1. IVIII	WWW.	MW	WANK M
	The states of the	יד ייזאָעיןי ווון אין ד	W 1711 P	II. W		un pr	14	T III	
Center	5.47 GHz							Span	1.5 MHz
#Res BW 100 kHz		#VBW 300 k	Hz	Sweep 20 ms (1001 pts)					
Channel Power				Power Spectral Density					
53.91 dB _µ V/1.0000 MHz				-6.09 dBμV/Hz				//Hz	
Lindof	ined header								
onluci									

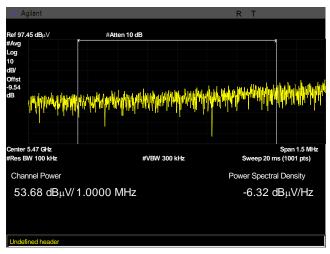
Plot 978. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 10M, 5475, pwr integration


Ref 97.45 dBµ∨ #Atten 10 dB #Avg Log 10 dB/ Offst				
#Avg				
·9.54 ^{ab} ^A	W			
Center 5.47 GHz Span 1.	5 MH 7			
#Res BW 100 kHz #VBW 300 kHz Sweep 20 ms (1001 µ				
Channel Power Spectral Densit	ty			
53.88 dBµV/1.0000 MHz -6.12 dBµV/	-6.12 dBµV/Hz			
Undefined header				

Plot 979. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 20M, 5480, pwr integration


🔆 Agilent			R T				
Ref 97.45 dB µV	#Atten 10 dB						
#Avg Log 10 dB/ Offst							
-9.54 dB	iden freedom opposite the state of the state	hidilikali i kulininini i	n _{e int} e hyprodyd	red <mark>let palente</mark> ret W			
Center 5.47 GHz				pan 1.5 MHz			
#Res BW 100 kHz	#VBW 300	(Hz	Sweep 20 ms (1001 pts)				
Channel Power		Po	Power Spectral Density				
53.63 dBμV	//1.0000 MHz		-6.37 dB	μV/Hz			
Undefined header				le la			

Plot 980. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 30M, 5485, pwr integration



Plot 981. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 40M, 5490, pwr integration

Plot 982. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 50M, 5495, pwr integration

Plot 983. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 60M, 5500, pwr integration

🔆 Agilent		RT	
Ref 97.45 dBμV	#Atten 10 dB		
#Avg			1
Log			
10 dB/			
dB/ Offst			
-9.54	a di sulta a di had	a shahata ana talaan	and have been a second
dB	ndronenpindinet indiatempinet		hu i kwala wi
	والمبطر والمراجع والمراجع والا		
Center 5.47 GHz			Span 1.5 MHz
#Res BW 100 kHz	#VBW 300 kHz	Sweep 20 m	ns (1001 pts)
Channel Power		Power Spectra	al Density
53.54 dBμV/1	.0000 MHz	-6.46 c	BµV/Hz
Undefined header			

Plot 984. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 80M, 5510, pwr integration

- 🔆 A	gilent													R	Т					
Pof 07	45 dB μV			#1	\ttop	10 dB	,													
#Avg Log 10 dB/ Offst	49 αθμιν			"	Allen	TO UE											*			
	4/m/h/	n an the second se	m 41	ritti			M	M	h	4# 4	H N	VIW	n ji vi	hill	h	Ŵ	M		i	AN A
	5.47 GHz W 100 kHz						#VE	BW 3	100 k	Hz				s	weej	o 20	ms	Spar s (100		MHz ts)
Char	nnel Powe	er											Ρ	owe	er Sp	ect	ral	Der	nsity	/
53	.46 dE	βμV/ [·]	1.0	000	M	Hz								_	6.5	54	d	Bμ	V/H	Ηz
Undefi	ined heade	r																		

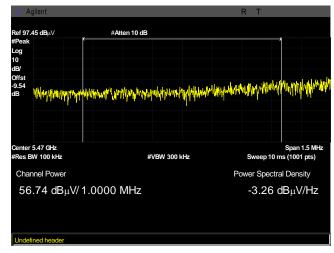
Plot 985. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 22dBi, sector, 100M, 5520, pwr integration

🔆 🔆 Agil	ent						R T	Г		
Ref 97.45	dBμV	#Att	en 10 dB							
#Peak		ř – – – – – – – – – – – – – – – – – – –							7	
Log										
10										
dB/										
Offst										
-9.54 dB	And the sound of the	Aurilian delibulut	All the set	AL ANIMAN	Mr. Ashada	an aballating	whethe	labala	umanlah	MANA ANY
ab <mark>4</mark>	Man Virmanian Marka	Laws Als & Li	the share	and distribution	utea edhade	Michalse	AD A W	M.		a chadlerad
			1							1
Center 5.	47 GHz								Span	1.5 MHz
#Res BW	100 kHz		#	VBW 300 H	Hz		Swe	ep 10	ms (100	1 pts)
Chann	el Power					Po	ower \$	Specti	al Den	sity
56.0)7 dBuV/ '	1.0000	MHz				-3	.93	dBu∖	//Hz
0010	on one period								one pr	
Undefine	ed header									

Plot 986. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 10M, 5475, pwr integration

- 梁 A	gilent														R	Т						
Ref 97.	45 dB μV			#A	tten	10 dB																
#Peak																		1				
Log																						
10 dB/																						
ab/ Offst																						
			an À.	المراجعة والمراجع	. M	In the state	JA.	h	aleA.	1 a M	an dai		d da		տև	ul.a	an a	uhl	h an	a.1.	uada	
dB	When the first	WYWW	Wh	WARKEN	ahu.A	4.44	W	141	WI.	WWW P	1	WW.	M	un v	17	Mun	r y i	ſ	1	WV	ny ny	Ÿ.
Contor	5.47 GHz																		C	. 1 4	5 MHz	
	5.47 GH2 W 100 kHz						#VE	3W 3	100 I	Hz					S	veep	010					
Char	nnel Powe	er												P	owe	r Sp	ectr	ral	Der	nsit	y	
56	.47 dE	3μV/ ′	1.0	000	M	Ηz									-	3.5	3	dE	3μ΄	V/I	Hz	
Undef	ined heade	r																				

Plot 987. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 20M, 5480, pwr integration


🔆 Agilent			RT	
Ref 97.45 dBµV	#Atten 10 dB			
#Peak Log 10 dB/ Offst				
-9.54 dB _М үүүмүМ _М А	althold futtion and a second second for	mopellikostatekentekentekentekentekentekentekentek	runinylinnihlineitiinyltylineiti	awayhayaayhadhaat
Center 5.47 GHz #Res BW 100 kHz	#VB	W 300 kHz	Sweep 10 r	Span 1.5 MHz ns (1001 pts)
Channel Power			Power Spectr	
56.81 dBμ\	// 1.0000 MHz		-3.19	dBμV/Hz
Undefined header				

Plot 988. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 30M, 5485, pwr integration

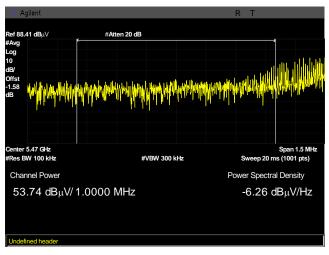
读 Agil	lent														R	Т					
Ref 97.45	5 dBuV			#A	tten 1	10 dB															
#Peak Log 10 dB/ Offst																		~			16 A.I
-9.54 dB 🎢	yddiwdynad	hill may h	∧/₩	nn ⁱ rui	/n.Lup	₩~ /₩	M	fyd.r	∧₩ ₩	ηM	rm	ł	Frid	n#W	6 414	h ann	11/4	ł	WANNY	Ŵ	nun l
Center 5.															_				Span		
#Res BW	/ 100 kHz						#VE	3W 3	300 k	Hz					S	weep	o 10	m	s (100	1 pts	5)
Chann	nel Power													Po	we	r Sp	ect	tra	l Den	sity	
56.0	62 dB⊧	ιV/ 1	.00	000	MF	Ηz									-	3.3	88	d	Bμ\	//H	Z
Undefine	ed header																				

Plot 989. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 40M, 5490, pwr integration

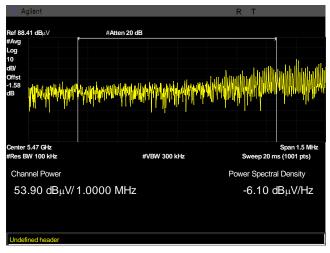
Plot 990. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 50M, 5495, pwr integration

A	jilent			RT	
Ref 97.4	45 dB μV	#Atten 10 dB			
#Peak Log 10 dB/ Offst					canture till dese door
-9.54 dB	npurtumpen/halppn/	wallandi pipinadany Kanadartana	percelercompropulation	yyani,viitayniitiya	Waliouna Ioni
	5.47 GHz W 100 kHz	#VBW 300	kHz	Sweep 10 m	Span 1.5 MHz is (1001 pts)
Chan	nel Power		l	Power Spectra	l Density
56	.76 dBμV/ ′	1.0000 MHz		-3.24 c	BμV/Hz
Undefi	ned header				

Plot 991. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 60M, 5500, pwr integration

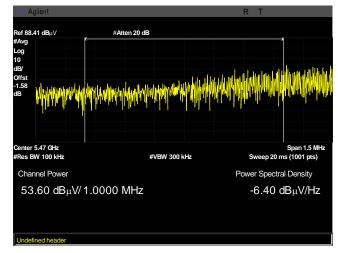

-) (本 Ag	gilent						R	Т			
-											
	45 dB μV	#Atte	en 10 dB								
#Peak									1		
Log											
10											
dB/											
Offst -9.54									n.	addi a	deal and t
-9.54 dB	1	ette part met historiet	AL MARKED	na kanaka	WWWWWWWWWWWWWWW	V NH YMM	M YM	1111	NY	nning	N. WILLIAM
alb ²	alimper of the state	T TY TY WAT THE	. 1. 11 1 1 1 1	A MALLA	1 Closeller	- P		,			11
	T to a set								_		
Center	5.47 GHz									Span	1.5 MHz
#Res B	W 100 kHz		#	VBW 300 H	Hz		Sv	veep 1	0 m	s (100 [.]	1 pts)
Char	nnel Power					P	owe	- Spe	ctral	Dens	sity
56	.79 dBµV/	1.0000 N	ЛНz				-(3.21	l d	Bμ∖	//Hz
Undefi	ined header										

Plot 992. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 80M, 5510, pwr integration



🔆 Agilent				RТ	
Ref 97.45 dBµV	#A	tten 10 dB			
#Peak					7
Log					
10					
dB/					
Offst					
-9.54 dB talka alah	nia da adale a casa Milita	ile als realized in the silver of the silver	dealer the and the start the second	WWWWWWW	www.www.www.water
	all have been a short of the second of the	ilen der verstellter refersten er frete	nol to to be see a	MARK A	a man di lan
Center 5.47 GHz					Span 1.5 MHz
#Res BW 100 kHz		#VBW 300 kH	z	Sweep 10	ms (1001 pts)
Channel Powe	er		Po	wer Spect	ral Density
56.38 dB	BμV/ 1.0000	MHz		-3.62	dBµV/Hz
Undefined heade	r				

Plot 993. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 22dBi, sector, 100M, 5520, pwr integration

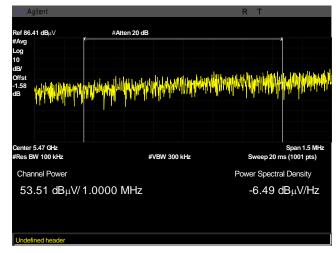


Plot 994. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 10M, 5475M, pwr integration

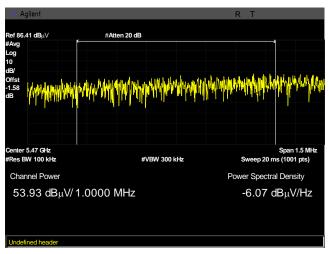


Plot 995. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 20M, 5480M, pwr integration

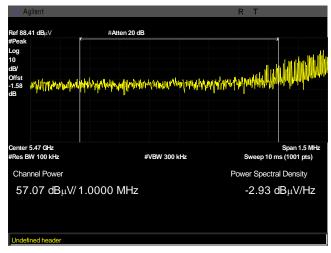
Plot 996. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 30M, 5485M, pwr integration



Plot 997. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 40M, 5490M, pwr integration


🔆 Agilent		R T
Ref 86.41 dBμV #Avg	#Atten 20 dB	
Log		
10		
dB/		
Offst	sector sector and all the de De de	化化乙酰胺 机成合物 机热动传播机 化化
-1.58	adar dhrabhail dhalan dhalan dhalan dhalan dha	MAN NAMI'NY ANA MINA MINA MINA MINA MINA MINA MINA
dB		
Center 5.47 GHz		Span 1.5 MHz
#Res BW 100 kHz	#VBW 300 kHz	Sweep 20 ms (1001 pts)
Channel Power		Power Spectral Density
53.45 dBμV/	1.0000 MHz	-6.55 dBμV/Hz
Undefined header		

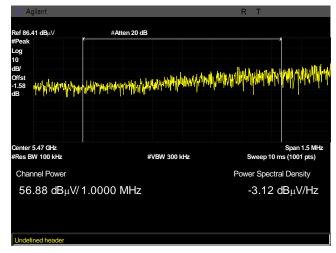
Plot 998. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 50M, 5495M, pwr integration


Plot 999. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 60M, 5500M, pwr integration

Plot 1000. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 80M, 5510M, pwr integration

🔆 Agilent		R	Т
Ref 86.41 dBµV	#Atten 20 dB		
#Avg Log 10			
Offst -1.58 dB	realition of Walking and a state of the second s	ul na air an bhail an air a	a publica a publication and a publication of the second statement of the
Center 5.47 GHz #Res BW 100 kHz	#VBW 300	۲	Span 1.5 MHz Sweep 20 ms (1001 pts)
Channel Power		Pow	ver Spectral Density
53.86 dBµV/	1.0000 MHz		-6.14 dBμV/Hz
Undefined header			

Plot 1001. Undesirable Emissions, UNII 2C, AVG, bandedge 5470, 34dBi, 100M, 5520M, pwr integration


Plot 1002. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 10M, 5475M, pwr integration

录 Ag	gilent									RΤ				
	41 dB μV			##	Atten 20	dB								
#Peak Log 10 dB/ Offst -1.58	onetherphyran	(Welland)	LÅdar	untip	handway	44	ala/hottle, hu	nulaimainu			, I	W		
dB	on of the states		γ γ γ .	14 " y	1.9 1 .11			dis la c lasta.	<u>т</u> , ћ	. 4		1		
	5.47 GHz W 100 kHz					#	VBW 300 I	(Hz		Sweep	10 m		1.5 MH 1 pts)	z
Chan	nnel Powe	er							P	ower Spe	ectra	l Dens	sity	
58	.05 dB	μV/	1.0	000	MHz	Z				-1.9	5 c	BμV	//Hz	
Undefi	ned heade	r												

Plot 1003. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 20M, 5480M, pwr integration

- 漢: At	jilent						RΤ			
Ref 88.4	41 dB μV	#Atte	n 20 dB							
#Peak Log 10 dB/ Offst					d at solution	a . calally	an Anna Mà	, .\.	whinth	n de la la
-1.58 dB	langenantensk	mallim and an allow	1441 production	vr klivin i fil li	ad the second	ula di	pp qy.	Чľ	. ada	i leur
	5.47 GHz W 100 kHz		#V	'BW 300 k	Hz		Sweep	10 m		1.5 MHz Ipts)
Chan	nel Power					Pc	wer Spe	ctra	l Dens	sity
57	.36 dBµV/	1.0000 N	1Hz				-2.6	4 c	BμV	//Hz
Undefi	ned header									

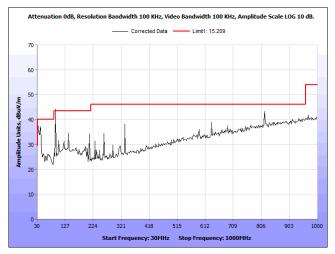
Plot 1004. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 30M, 5485M, pwr integration

Plot 1005. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 40M, 5490M, pwr integration

- 柴 A	₩ Agilent											R	Т				
Rof 86	41 dB u∀			#Δ 1	ten 20 d	нB											
#Peak Log	μι					uD								P,			
10																	
dB/ Offst -1.58 dB	hidharddd	WWW	mty"l	n iny with	hindapal	M	e Miller Mil	highly	r/M	n international	Wh	Minily	WW	Ŵ	M	in ye	i Vili
ulb ⁻																	
	5.47 GHz W 100 kHz					#	VBW 300	kHz				Sw	reep 1	10 m	Spar s (100	n 1.5 M)1 pts)	
Char	nnel Powe	er									Po	wer	Spe	ctra	l Den	sity	
57	.07 dE	3μV/ 1	1.00	000 I	MHz							-2	2.93	3 c	B μ\	//Hz	Z
Undef	ined heade	r															

Plot 1006. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 50M, 5495M, pwr integration

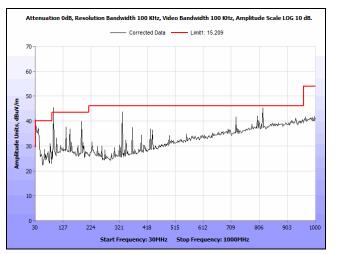
🔆 Agilen	it						RΤ			
D-600 44 -	B . V		en 20 dB							
Ref 86.41 d #Peak	Βμιν	#Att	en 20 aB							
Log 10										
							.			in kalenti
Offst -1.58 dB	nt water a state of the state o	hwyther war	an definited by	WY.Yupt Hadiy	and the second	ndr (frederiver)e	munitin	Y	wy wy	wild the state of
Center 5.47 #Res BW 1			#	VBW 300 F	(Hz		Sweep	10 m		1.5 MHz
				1011 3001			oncep	10	5 (1001	p(3)
Channel	Power					Po	ower Spe	ectra	l Dens	sity
57.2	1 dBμV/	1.0000	MHz				-2.7	9 d	BμV	//Hz
Undefined	header									


Plot 1007. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 60M, 5500M, pwr integration

🔆 Agil	ent			R T						
Ref 86.41	dBμV	#Att	en 20 dB							
#Peak		t in the second						_1		
Log 10										
dB/ Offst			k.		dine karaba	البمار الم	d . Head dh	-	hi.n	en mal titel
-1.58 / dB	and a for the state of the stat	All have and have been a	Northead	(ny jen any a	and Male	Y WWY	allin a Ald	ALC: NO	- Maria	11 ° ° ° 7 7 7 1
Center 5. #Res BW				VBW 300 k	,LJ=		Sweep			1.5 MHz
#Res BW	100 KHZ		"	VBW 300 P	(HZ		Sweep	TU ms	5 (100	i ptsj
Chann	el Power					Po	ower Spe	ectral	Dens	sity
56.8	81 dBμV/	1.0000	MHz				-3.1	9 d	BμV	//Hz
Undefine	ed header									

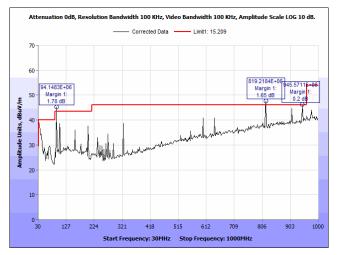
Plot 1008. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 80M, 5510M, pwr integration

⇒∰ A(gilent						RΤ		
Ref 86.4 #Peak Log	41 dB μV	#Atte	en 20 dB						
10 dB/ Offst -1.58 dB	manaduppedation	lalan kabunatara kura hilan kuran an				phanymilteep			
	5.47 GHz W 100 kHz		#	VBW 300 I	(Hz		Sweep	Spa 10 ms (10	an 1.5 MHz 001 pts)
Char	nnel Power					Po	ower Spe	ectral De	nsity
57	.04 dBµV/ ′	1.0000 N	ИНz				-2.9	6 dBµ	V/Hz
Undefi	ned header								


Plot 1009. Undesirable Emissions, UNII 2C, PK, bandedge 5470, 34dBi, 100M, 5520M, pwr integration

Plot 1010. Undesirable Emissions, UNII 2C, Radiated Emissions below 1GHz, 13dBi, worst case

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)	Cable Loss (dB) (+)	Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
95.12021	274	Н	3.476	23.31	9.44	1.07	0	33.82	43.5	-9.68
95.12021	190	V	1.0952	16.14	9.44	1.07	0	26.65	43.5	-16.85


Table 24. Radiated Emissions bellows 1GHz, 13dBi, worst case, Quasi-Peak measurements, points of interest.

Plot 1011. Undesirable Emissions, UNII 2C, Radiated Emissions below 1GHz, 22dBi, worst case

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)		Distance Correction Factor (dB) (-)	Amplitude	Limit (dBuV/m)	Margin (dB)
817.2745	345	Н	1.5447	16.03	22.35	4.28	0	42.66	46	-3.34
817.2745	335	V	1.6839	16.03	22.35	4.28	0	42.66	46	-3.34
95.12021	269	Η	3.476	23.71	9.44	1.07	0	34.22	43.5	-9.28
95.12021	187	V	1.0952	16.11	9.44	1.07	0	26.62	43.5	-16.88

Table 25. Radiated Emissions bellows 1GHz, 22dBi, worst case, Quasi-Peak measurements, points of interest.

Plot 1012. Undesirable Emissions, UNII 2C, Radiated Emissions below 1GHz, 34dBi, worst case

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)		Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
94.1483	249	Н	2.4534	8.75	9.14	1.52	0	19.41	43.5	-24.09
94.1483	336	V	3.3547	8.06	9.14	1.52	0	18.72	43.5	-24.78
819.2184	333	H	1.8517	6.03	22.38	4.29	0	32.7	46	-13.3
819.2184	27	V	1.5069	6.03	22.38	4.29	0	32.7	46	-13.3
945.5711	17	H	1.4408	6.9	23.4	4.63	0	34.93	46	-11.07
945.5711	340	V	2.0273	6.9	23.4	4.63	0	34.93	46	-11.07

Table 26. Radiated Emissions bellows 1GHz, 34dBi, worst case, Quasi-Peak measurements, points of interest.

Electromagnetic Compatibility Criteria for Intentional Radiators

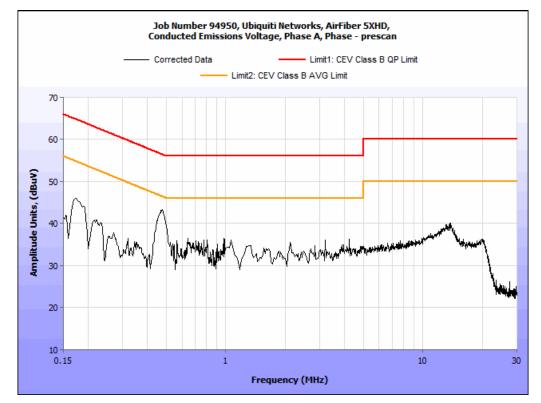
§ 15.407(b)(6) Conducted Emissions

Test Requirement(s): § 15.407 (b)(6): Any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

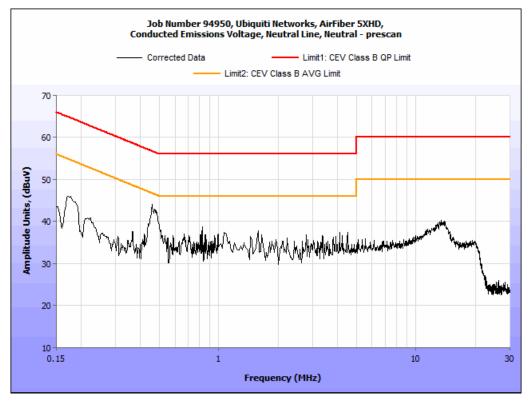
§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBµV)						
(MHz)	Quasi-Peak	Average					
* 0.15- 0.45	66 – 56	56 - 46					
0.45 - 0.5	56	46					
0.5 - 30	60	50					

 Table 27. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)


Test Procedure: The EUT was placed on a non-metallic table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 $\Omega/50 \mu$ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2014 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". Scans were performed with the transmitter on.

Test Results: The EUT was compliant with requirements of this section.


Test Engineer(s):Donald Salguero

Test Date(s): September 1, 2017

Plot 1013. Conducted Emissions, Phase Line

Plot 1014. Conducted Emissions, Neutral Line

Plot 1015. Conducted Emissions, Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(f)	Maximum Permissible Exposure					
Test Requirement(s):	\$15.407(f): U-NII devices are subject to the radio frequency radiation exposure requirements specified in \$1.1307(b), \$2.1091 and \$2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment.					
RF Exposure Requirements:	§1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.					
RF Radiation Exposure Limit:	§1.1310: As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.					
MPE Limit: EUT's operating frequencies @ <u>5250-5350 MHz and 5470 – 5725 MHz</u> ; Limit for Uncontrolled exposure: 1 mW/cm ² or 10 W/m ²						
Equation from p	page 18 of OET 65, Edition 97-01					

 $S = PG / 4\pi R^2$ or $R = \int (PG / 4\pi S)$

where, S = Power Density (mW/cm²) P = Power Input to antenna (mW)G = Antenna Gain (numeric value)

R = Distance (cm)

Test Results:

	FCC								
Frequency (MHz)	Con. Pwr. (dBm)	Con. Pwr. (mW)	Ant. Gain (dBi)	Ant. Gain numeric	Pwr. Density (mW/cm ²)	Limit (mW/cm²)	Margin	Distance (cm)	Result
5600	16.951	49.556	13	19.953	0.19671	1	0.80329	20	Pass
5600	-4.074	0.391	34	2511.886	0.19558	1	0.80442	20	Pass
5600	7.932	6.212	22	158.489	0.19585	1	0.80415	20	Pass

The safe distance where Power Density is less than the MPE Limit listed above was found to be 20 cm.

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(g)	Frequency Stability
Test Requirements:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
Test Results:	Data for frequency stability compliance is provided by the customer as a separate exhibit.

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

Asset	Equipment	Manufacturer	Model	Calibration Date	Calibration Due Date
1T4771	PSA Spectrum Analyzer	Agilent Technologies	E4446A	8/10/2016	2/10/2018
1T4409	EMI Receiver	Rohde & Schwarz	ESIB7	12/7/2016	12/7/2018
1T4483	Antenna; Horn	ETS-Lindgren	3117	4/19/2017	10/19/2018
1T4753	Antenna - Bilog	Sunol Sciences	JB6	10/24/2016	4/24/2018
1T4442	Pre-amplifier, Microwave	Miteq	AFS42- 01001800-30- 10P	See Note	
1T4612	Spectrum Analyzer	Agilent Technologies	E4407B	3/30/2017	9/30/2018
1T4565	LISN (24 AMP)	Solar Electronics Company	9252-50-R-24- BNC	8/15/2017	8/15/2018
1T4149	High-Frequency Anechoic Chamber	Ray Proof	81	Not Required	
1T4300	SEMI-ANECHOIC CHAMBER # 1 (NSA)	EMC TEST SYSTEMS	NONE	2/6/2015	2/6/2018

Table 28. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

L. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio- frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (*i*) *Compliance testing;*
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated.¹ *In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer*, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

(a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.

(1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.

- (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
- (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
- (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.