

30 MHz CHANNEL BANDWIDTH DFS PORTION of FCC 47 CFR PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

POINT TO POINT DIGITAL TRANSMISSION SYSTEM

MODEL NUMBER: AF5 (AirFiber 5 GHz)

FCC ID: SWX-AF5 IC: 6545A-AF5

REPORT NUMBER: 14N17941-1

ISSUE DATE: JUNE 09, 2014

Prepared for

UBIQUITI NETWORKS 12F, No105, Song Ren Rd., SinYi District, Taipei, Taiwan.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP®

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	06/09/14	Initial Issue	T. Lee

TABLE OF CONTENTS

1.	AΤ٦	ESTATION OF TEST RESULTS 4	ļ
2.	TES	ST METHODOLOGY 5	5
3.	FAC	CILITIES AND ACCREDITATION 5	5
4.	CAI	IBRATION AND UNCERTAINTY 5	5
	4.1.	MEASURING INSTRUMENT CALIBRATION5	5
	4.2.	SAMPLE CALCULATION5	5
	4.3.	MEASUREMENT UNCERTAINTY	5
5.	REF	FERENCE TO APPLICABLE PREVIOUS TEST REPORTS 6	5
6.	DY	NAMIC FREQUENCY SELECTION7	7
(6.1.	OVERVIEW 7	7
	6.1.		
	6.1.		
	6.1. 6.1.		3 1
	_	RESULTS FOR 30 MHz BANDWIDTH	
	0.∠. 6.2.		
	6.2.		5
	6.2.		
	6.2.		
	6.2.		
	6.2.		
	6.2.		
	6.2.	3. IN-SERVICE MONITORING35	5
7.	SET	TUP PHOTOS42	2

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: UBIQUITI NETWORKS

12F, No105, Song Ren Rd.,

SinYi District, Taipei, Taiwan.

EUT DESCRIPTION: POINT TO POINT DIGITAL TRANSMISSION SYSTEM

MODEL: AF5 (AirFiber 5 GHz)

SERIAL NUMBER: 24 A4 3C 38 00 2A

DATE TESTED: JUNE 03, 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DFS Portion of CFR 47 Part 15 Subpart E Pass
INDUSTRY CANADA RSS-GEN Issue 8 Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By: Tested By:

TIM LEE DOUG ANDERSON PROGRAM MANAGER EMC ENGINEER

UL Verification Services Inc.

UL Verification Services Inc.

Douglas Combuser

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009, RSS-GEN Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB
Radiated Disturbance, 30 to 1000 MHz	±4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

REPORT NO: 14N17941-1 FCC ID: SWX-AF5

5. REFERENCE TO APPLICABLE PREVIOUS TEST REPORTS

Per the manufacturer's request, the scope and contents of this report cover 30 MHz channel bandwidth DFS testing for a Master Device. It is an addition to previous 10 MHz, 20 MHz, 40 MHz and 50 MHz DFS Master Device testing that was performed at another facility. Upon completion it was then submitted to and accepted by the FCC and Industry Canada.

DATE: JUNE 9, 2014

IC: 6545A-AF5

DISCLAIMER STATEMENT HERE

All indications of Pass/Fail in the previous test report referenced below are statements expressed by the original issuer. UL Verification Services Inc. makes no specific claims or opinions on its' validity and is not responsible for the contents therein. The reference of the following document within this report is solely to provide traceability to the original submittal.

Prior testing was performed by:

National Technical Systems – Silicon Valley (a.k.a. NTS Silicon Valley) 41089 Boyce Road Fremont, Ca. 94538

File Number: R93490

Final Test Date: September 18 to October 29, 2013

Report Date: December 19, 2013

REPORT NO: 14N17941-1 FCC ID: SWX-AF5

6. DYNAMIC FREQUENCY SELECTION

6.1. OVERVIEW

6.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

DATE: JUNE 9, 2014

IC: 6545A-AF5

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode		
	Master	Client (without radar detection)	Client (with radar detection)
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
Uniform Spreading	Yes	Not required	Not required

Table 2: Applicability of DFS requirements during normal operation

Table 21 / applicability of 21 of requirem	rabio 21 Applicability of Dr o requirements during normal operation							
Requirement	Operationa	Operational Mode						
	Master Client		Client					
		(without DFS)	(with DFS)					
DFS Detection Threshold	Yes	Not required	Yes					
Channel Closing Transmission Time	Yes	Yes	Yes					
Channel Move Time	Yes	Yes	Yes					

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

- <u></u>	
Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12-second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10-second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials
				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4) 80% 120					120

Table 6 - Long Pulse Radar Test Signal

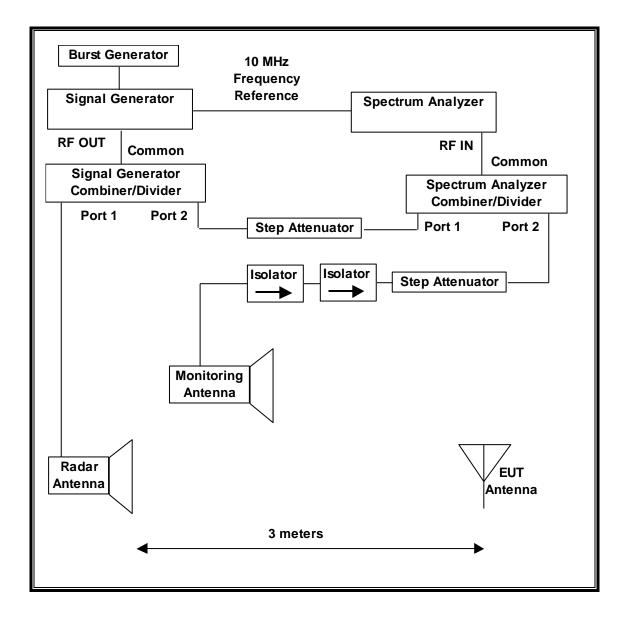

	.9						
Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
				-		Detection	
6	1	333	300	9	.333	70%	30

6.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

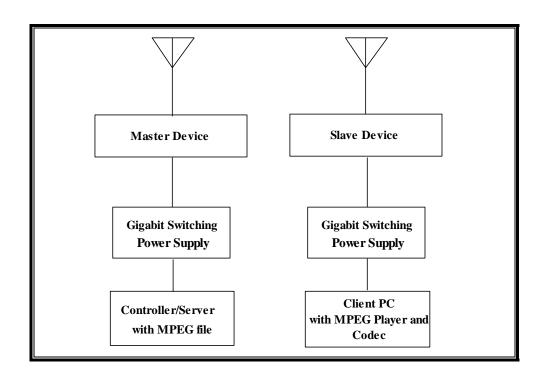
A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST							
Description Manufacturer Model Asset Number Cal Due							
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/10/14			
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	09/12/14			
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	09/10/14			

6.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST									
Description	Manufacturer	Model	Serial Number	FCC ID					
Switching Gigabit Power	Ubiquity Networks	GP-C500-120G	1249-0001485	DoC					
Supply									
Notebook PC	Acer	BA50	NXV6ZAA010324019547200	DoC					
(Controller/Server)									
AC Adapter	Lite On	PA-1650-86	AP0650303131812A	DoC					
(Controller/Server PC)	Technology								
Notebook PC (Client)	Acer	BA50	NXV6ZAA010324019817200	DoC					
Point to Point Digital	Ubiquity Networks	AF5	24 A4 3C 38 00 51	SWX-AF5					
Transmission									
Transceiver(Slave Radio)									
Switching Gigabit Power	Phihong	PSA60M-500(G)-R	None (Engineering Sample)	DoC					
Supply									

6.1.4. DESCRIPTION OF EUT

The EUT operates over the 5470-5725 MHz range excluding the 5600-5650 MHz range.

The EUT is a Master Device.

The Slave device associated with the EUT during these tests has radar detection capability.

The highest power level is 30 dBm EIRP in the 5470-5725 MHz range.

The only antenna assembly utilized with the EUT has a gain of 23 dBi.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using VLC version 1.1.10 media player.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The EUT is a Frame-based system. The Frame timing is set to a listen / talk ratio of 100%.

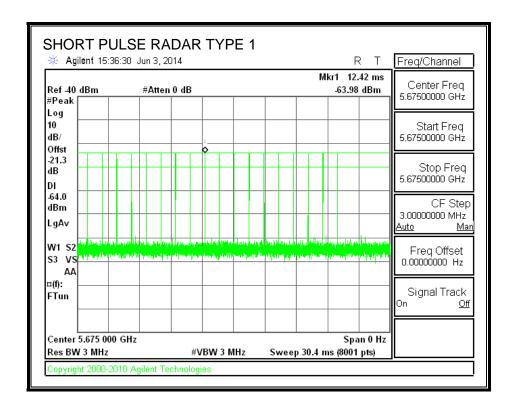
Five nominal channel bandwidths are implemented: 10 MHz, 20 MHz, 30 MHz, 40 MHz and 50 MHz.

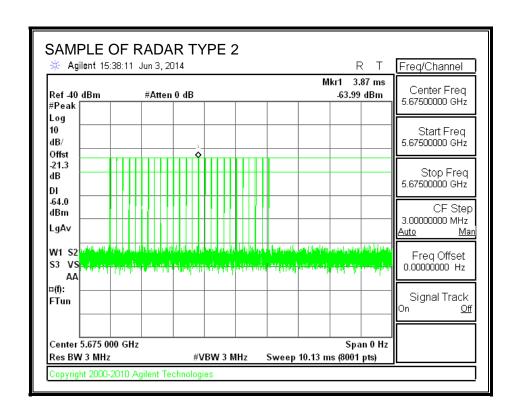
30 MHz channel bandwidth was the only operational bandwidth tested since the other four channel bandwidths had been previously tested and approved at another test facility.

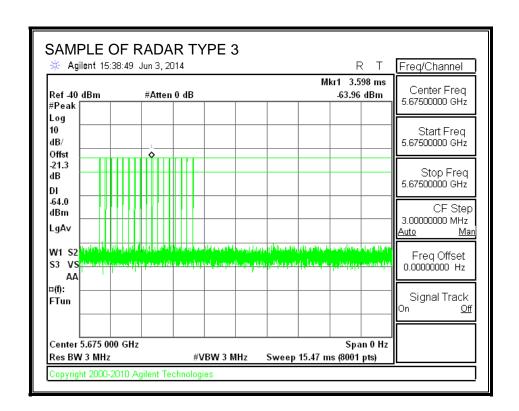
The software installed in the master device is revision v2.1.

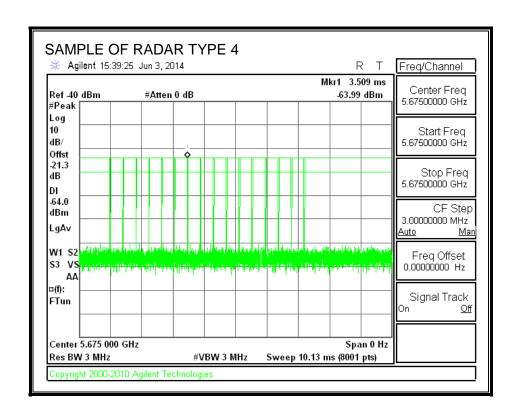
UNIFORM CHANNEL SPREADING

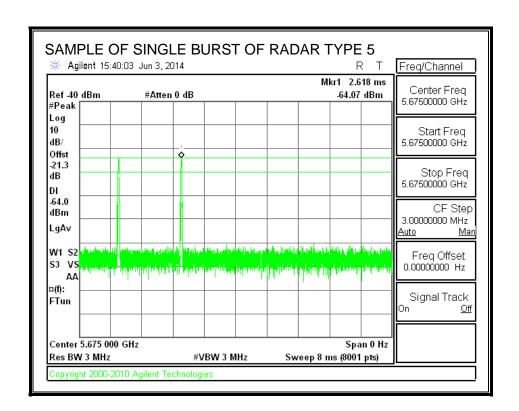
See Manufacturer's Attestation.

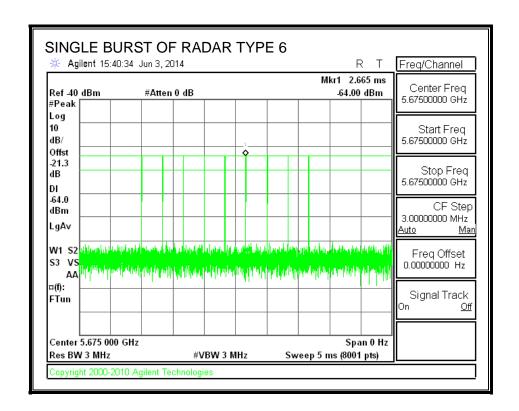

6.2. RESULTS FOR 30 MHz BANDWIDTH

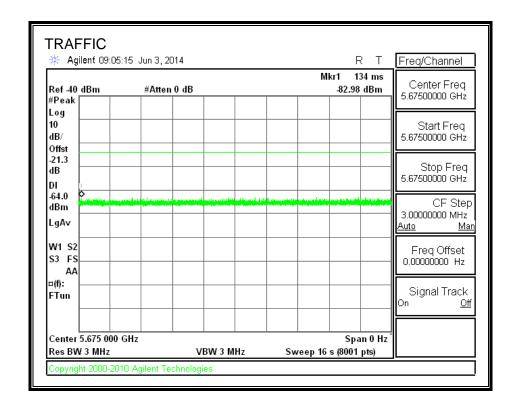

6.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5675 MHz.


6.2.2. RADAR WAVEFORMS AND TRAFFIC


RADAR WAVEFORMS





REPORT NO: 14N17941-1 FCC ID: SWX-AF5

TRAFFIC

6.2.1. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

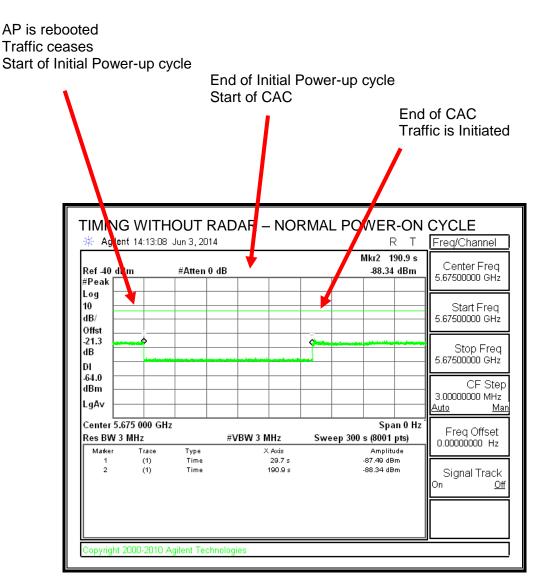
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
29.7	190.9	161.2	101.2

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.81	133.8	104.0	2.8


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.3	189.2	158.9	57.7

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RADAR NEAR BEGINNING OF CAC A ilent 14:19:58 Jun 3, 2014 Freq/Channel Mkr2 133.8 s Center Freq Ref 40 Bm #Atten 0 dB -64.51 dBm 5.67500000 GHz #Peak Log 10 Start Freq dB/ 5.67500000 GHz Offst -21.3 Stop Frea dΒ 5.67500000 GHz DΙ 64.0 CF Step dBm 3.00000000 MHz LgAv <u>Auto</u> Man Center 5.675 000 GHz Span 0 Hz Freq Offset Res BW 3 MHz #VBW 3 MHz Sweep 300 s (8001 pts) 0.00000000 Hz Marker X Axis Amplitude Trace Type 29.81 s -87.92 dBm (1) Time 133.8 s -64.51 dBm Signal Track Copyright 2000-2010 Agilent Technologies

No EUT transmissions were observed after the radar signal.

TIMING WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RADAR NEAR END OF CAC * Agent 14:36:52 Jun 3, 2014 R T Freq/Channel Mkr2 189.2 s Center Freq Ref 40 dim #Atten 0 dB -64.42 dBm 5.67500000 GHz #Peak Log 10 Start Freq dB/5.67500000 GHz Offst -21.3 Stop Frea dΒ 5.67500000 GHz DΙ 64.0 CF Step dBm 3.00000000 MHz LgAv <u>Auto</u> Man Center 5.675 000 GHz Span 0 Hz Freq Offset Res BW 3 MHz #VBW 3 MHz Sweep 300 s (8001 pts) 0.00000000 Hz Marker X Axis Amplitude Trace Type 30.3 s -86.46 dBm (1) Time 189.2 s -64.42 dBm Signal Track Copyright 2000-2010 Agilent Technologies

No EUT transmissions were observed after the radar signal.

6.2.2. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is pre-defined using a selection of three frequencies to ensure that the channels can't overlap.

6.2.3. MOVE AND CLOSING TIME

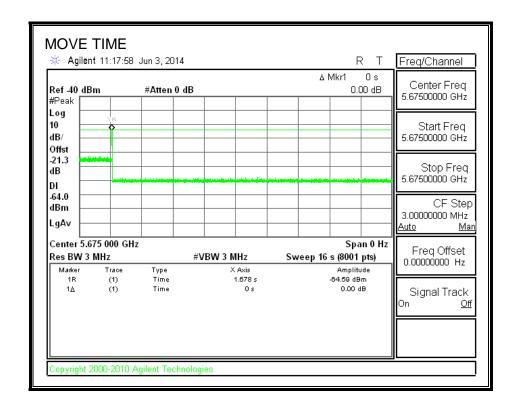
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

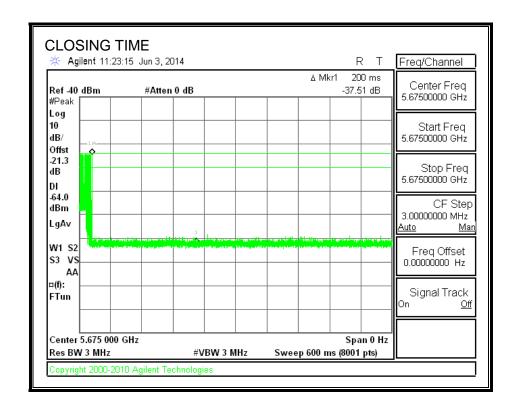
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

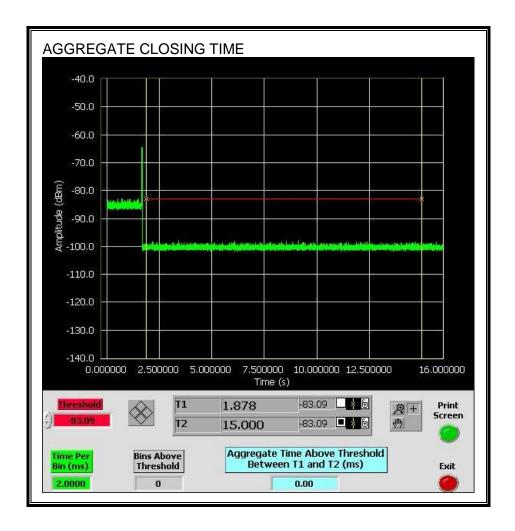

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

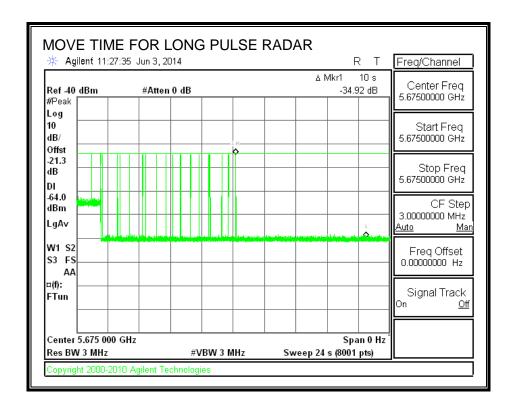

Channel Move Time	Limit
(sec)	(sec)
0.000	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

MOVE TIME

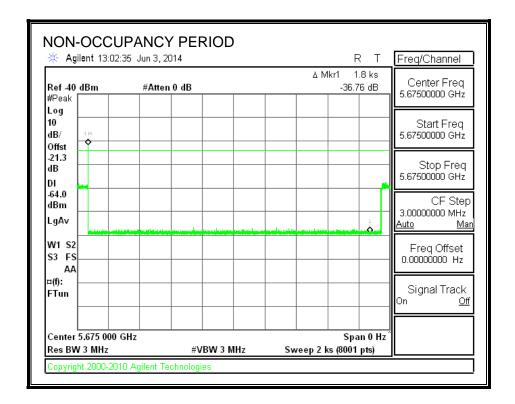


CHANNEL CLOSING TIME

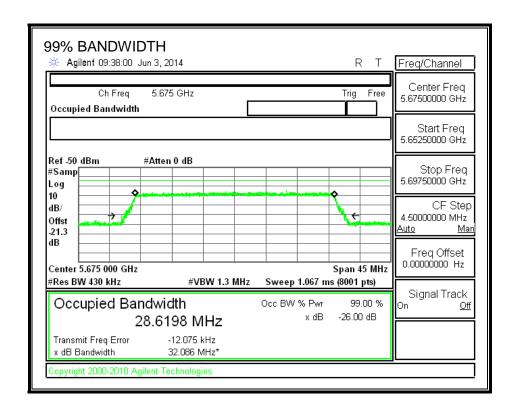

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

6.2.1. NON-OCCUPANCY PERIOD


RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time. After the 30-minute non-occupancy period the EUT performed a new CAC, then resumed transmissions upon detecting no radar during this CAC period.

6.2.2. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5661	5690	29	28.620	101.3	80

DETECTION BANDWIDTH PROBABILITY

ETECTION BAN	IDWIDTH PROBAB	ILITY RESULTS		
Detection Band	width Test Results			
FCC Type 0 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5661	10	9	90	FL
5662	10	10	100	
5663	10	10	100	
5664	10	10	100	
5665	10	9	90	
5666	10	10	100	
5667	10	10	100	
5668	10	10	100	
5669	10	10	100	
5670	10	10	100	
5671	10	10	100	
5672	10	10	100	
5673	10	10	100	
5674	10	10	100	
5675	10	10	100	
5676	10	10	100	
5677	10	10	100	
5678	10	10	100	
5679	10	10	100	
5680	10	10	100	
5681	10	10	100	
5682	10	10	100	
5683	10	10	100	
5684	10	10	100	
5685	10	10	100	
5686	10	10	100	
5687	10	9	90	
5688	10	10	100	
5689	10	10	100	
5690	10	9	90	FH

6.2.3. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ				
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	86.67	60	Pass
FCC Short Pulse Type 4	30	80.00	60	Pass
Aggregate		91.67	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	30	96.67	70	Pass

TYPE 1 DETECTION PROBABILITY

ata Sheet for FCC Short Pulse Radar Type 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst		
Trial	Successful Detection (Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	4.5	205.00	26	Yes
2002	3.8	178.00	26	Yes
2003	3.1	228.00	28	Yes
2004	1.4	152.00	26	Yes
2005	2.8	191.00	24	Yes
2006	1	211.00	24	Yes
2007	3.3	209.00	24	Yes
2008	1.1	187.00	27	Yes
2009	3.8	183.00	28	Yes
2010	1.1	155.00	26	Yes
2011	3.3	187.00	28	Yes
2012	2.2	227.00	26	Yes
2013	4.3	188.00	27	Yes
2014	5	210.00	24	Yes
2015	4.2	209.00	25	Yes
2016	4.8	216.00	27	Yes
2017	3.5	160.00	27	Yes
2018	3.3	158.00	29	Yes
2019	4.3	179.00	28	Yes
2020	1.4	180.00	26	Yes
2021	2.4	171.00	23	Yes
2022	3.8	207.00	28	Yes
2023	1.4	214.00	28	Yes
2024	2.9	225.00	24	Yes
2025	2.8	182.00	25	Yes
2026	1.9	214.00	26	Yes
2027	1.5	199.00	24	Yes
2028	2.7	209.00	25	Yes
2029	2.6	213.00	25	Yes
2030	4.4	155.00	29	Yes

TYPE 3 DETECTION PROBABILITY

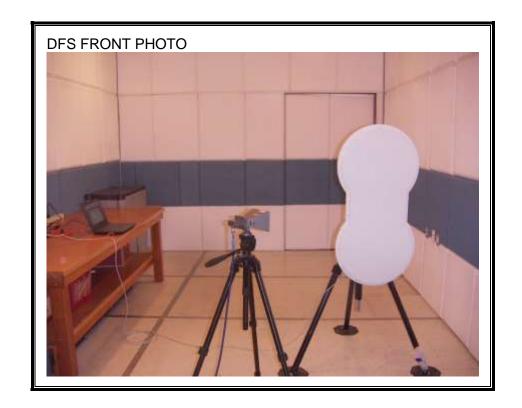
Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
3001	6	289.00	17	Yes
3002	6.5	381.00	18	Yes
3003	5	391.00	16	Yes
3004	9	431.00	17	Yes
3005	5.1	455.00	18	Yes
3006	6	416.00	17	Yes
3007	8.1	355.00	18	Yes
3008	6.5	394.00	18	Yes
3009	5.4	418.00	16	No
3010	8.5	376.00	18	Yes
3011	5.7	452.00	16	No
3012	6	455.00	17	Yes
3013	7.9	441.00	18	Yes
3014	9.5	280.00	16	Yes
3015	5	416.00	17	Yes
3016	7.7	335.00	16	Yes
3017	7.5	289.00	18	Yes
3018	9.4	435.00	17	Yes
3019	5.4	289.00	18	No
3020	8.2	470.00	16	Yes
3021	5.5	366.00	18	No
3022	6	436.00	16	Yes
3023	6	278.00	18	Yes
3024	9.5	500.00	16	Yes
3025	6.7	284.00	18	Yes
3026	8.5	495.00	16	Yes
3027	7.1	473.00	18	Yes
3028	6.3	324.00	17	Yes
3029	8	406	17	Yes
3030	9.8	268	17	Yes

TYPE 4 DETECTION PROBABILITY

Data Sheet f Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection (Yes/No)	
	(us)	(us)			
4001	14.3	418.00	16	Yes	
4002	12	370.00	16	Yes	
4003	15	436.00	12	Yes	
4004	15	440.00	15	Yes	
4005	13.4	331.00	15	Yes	
4006	17.3	484.00	14	Yes	
4007	18.4	461.00	13	Yes	
4008	15.1	339.00	16	Yes	
4009	16.9	292.00	13	No	
4010	12.7	500.00	12	Yes	
4011	18.3	291.00	14	Yes	
4012	12.1	325.00	15	Yes	
4013	10.7	352.00	15	No	
4014	11.1	405.00	14	Yes	
4015	10.4	335.00	15	No	
4016	13.8	422.00	13	Yes	
4017	17.9	422.00	14	Yes	
4018	17.8	323.00	16	Yes	
4019	17.2	413.00	14	Yes	
4020	18	465.00	16	Yes	
4021	14.1	492.00	12	Yes	
4022	14.3	268.00	12	No	
4023	12.8	422.00	12	Yes	
4024	14.8	258.00	12	No	
4025	10	461.00	14	Yes	
4026	15.3	298.00	12	No	
4027	19.1	410.00	12	Yes	
4028	19.2	322.00	16	Yes	
4029	13.1	316.00	12	Yes	
4030	19.6	313.00	15	Yes	

TYPE 5 DETECTION PROBABILITY

Trial	Long Pulse Radar Type 5 Successful Detection	
	(Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes Yes	
7		
8	Yes	
9	Yes Yes	
10		
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	


Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

	e Width, 333 us PRI, 5		1 Burst per Hop	•
Trial	ust 2005 Hopping Se Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	344	5661	5	Yes
2	819	5662	8	Yes
3	1294	5663	5	Yes
4	1769	5664	9	Yes
5	2244	5665	5	Yes
6	2719	5666	6	Yes
7	3194	5667	11	Yes
8	3669	5668	5	Yes
9	4144	5669	5	Yes
10	4619	5670	6	Yes
11	5094	5671	7	Yes
12	5569	5672	8	Yes
13	6044	5673	4	Yes
14	6519	5674	10	Yes
15	6994	5675	8	Yes
16	7469	5676	8	Yes
17	7944	5677	7	Yes
18	8419	5678	5	Yes
19	8894	5679	3	Yes
20	9369	5680	3	No
21	9844	5681	5	Yes
22	10319	5682	4	Yes
23	10794	5683	9	Yes
24	11269	5684	5	Yes
25	11744	5685	4	Yes
26	12219	5686	9	Yes
27	12694	5687	6	Yes
28	13169	5688	9	Yes
29	13644	5689	7	Yes

7. SETUP PHOTOS

DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP

END OF REPORT