

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: AF24

IC CERTIFICATION #: FCC ID:	6545A-AF24 SWX-AF24
APPLICANT:	Ubiquiti Networks 91 E. Tasman Drive San Jose, CA 95134
TEST SITE(S):	Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-4, 2845B-5, 2845B-7
REPORT DATE:	April 30, 2012
FINAL TEST DATES:	April 12, 16, 17 and 24, 2012
TOTAL NUMBER OF PAGES:	42

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

PROGRAM MGR /

David W. Bare

Chief Engineer

TECHNICAL REVIEWER:

Elliott Laboratories is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	4-30-2012	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DEVICES OPERATING IN THE 24 GHZ BANDS	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	8
EUT INTERFACE PORTS	8
TEST SITE	
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	11
INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	12
RADIATED EMISSIONS	13
BANDWIDTH MEASUREMENTS	15
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS RADIATEDFUNDAMENTAL & SPURIOUS EMISSIONS SPECIFICATION LIMITS – 15,249 AND RS	
A12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	10 18
SAMILE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	

SCOPE

An electromagnetic emissions test has been performed on the Ubiquiti Networks model AF24, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Ubiquiti Networks model AF24 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Ubiquiti Networks model AF24 and therefore apply only to the tested sample. The sample was selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DEVICES OPERATING IN THE 24 GHz BANDS

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.249(b)(1)	RSS 210 A12 (a)	Fundamental Signal Strength	127.0dBµV/m @ 24137.0MHz (-1.0dB)	FCC: 2500mV/m @ 3m IC: 25000mV/m @ 3m	Complies
15.249 (a) / 15.209	RSS 210 A12 (d) & Table 2	Radiated Spurious Emissions, 40 - 100 GHz	36.3 dBµV/m @ 48200.0 MHz (-17.7 dB)	Harmonics 2500uV/m @ 3m, 50dBc or general limits (see page 17)	Complies
15.249(b)(2)	RSS 210 A12 (b)	Frequency Stability	0.001% (9.9 ppm)	0.001% (10 ppm)	Complies
15.249(b)(3)	RSS 210 A12 (c)	Antenna Gain	33dBi stated	At least 33 dBi	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral antenna	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	54.4 dBµV @ 23.129 MHz (-5.6 dB)	Refer to page 16	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations and RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	See manual exhibit	Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Integral antenna – no statement required	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	96.64 MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ubiquiti Networks model AF24 is a 24GHz point to point radio supporting 2x2 MIMO. Since the EUT would be pole or wall-mounted, the EUT was mounted to a non-conductive tripod during testing. The EUT is powered by a 50V/1.2A POE power supply.

The sample was received on March 28, 2012 and tested on April 12, 16, 17 and 24, 2012. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ubiquiti Networks	AF24	Wireless backhaul radio	Pre-production	SWX-AF24

ANTENNA SYSTEM

The antenna system consists of integral 33dBi antennas for Tx and Rx.

ENCLOSURE

The EUT enclosure is primarily constructed of metal. It measures approximately 42.6 cm wide by 30.3 cm deep by 64.9 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Vostro	Laptop Computer	60YDSN1	DoC

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	ted Cable(s)		
Folt	То	Description	Shielded or Unshielded	Length(m)
Data	POE Adapter	Ethernet	Shielded	10.0
POE Power	AC Mains	Three wire	Unshielded	1.0
Configuration	Remote	Ethernet	Shielded	10.0
_	Computer			

The Auxiliary port was not connected during testing. Ubiquiti stated that this is for alignment purposes and therefore would not normally be connected.

EUT OPERATION

During testing, the EUT was set to transmit a continuous modulated signal at the desired channel.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont,
Chamber 7	A2LA accreditation	2845B-7	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

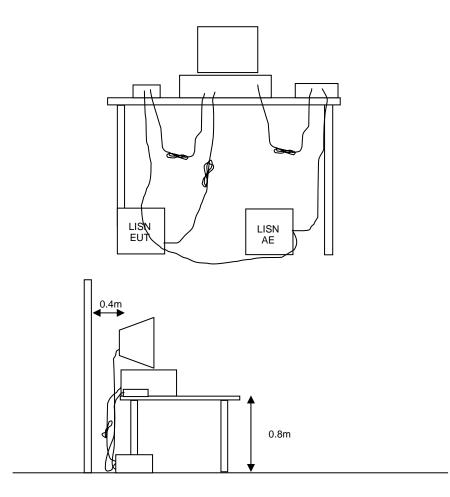
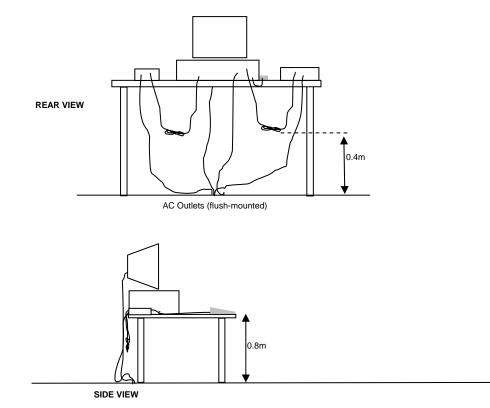
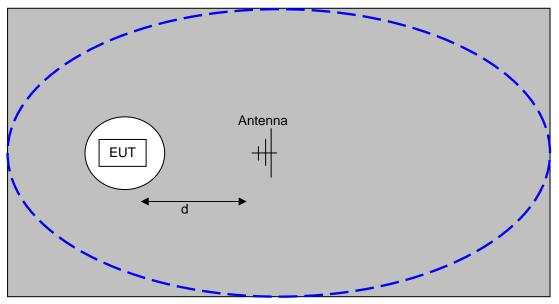


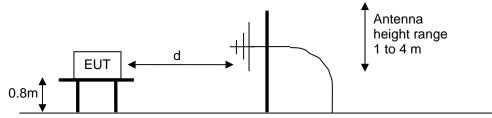
Figure 1 Typical Conducted Emissions Test Configuration

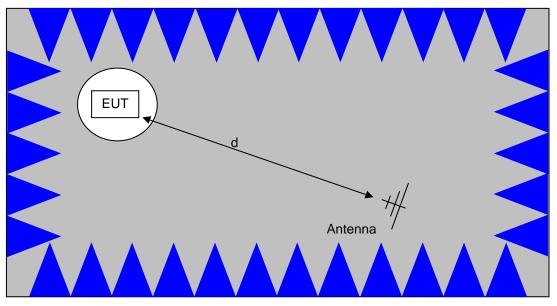

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

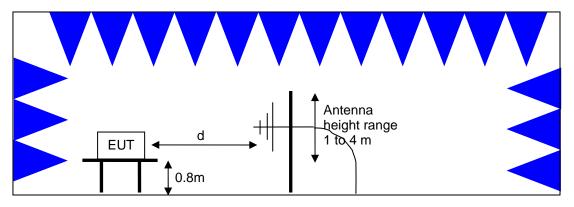

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

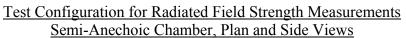
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.




<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RADIATEDFUNDAMENTAL & SPURIOUS EMISSIONS SPECIFICATION LIMITS – 15.249 and RSS 210 A12

The table below shows the limits for the fundamental emission and for its harmonics. Harmonics that that fall in restricted bands² and all other spurious emissions are subject to the general limits of RSS 210 and FCC Part 15 Subpart C.

Frequency Range (MHz)	Limit for Fundamental @ 3m	Limit for Harmonics @ 3m
24000 - 24250	2,500,000 uV/m 128dBuV/m	2500 uV/m 68dBuV/m

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

² The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = 1000000 \sqrt{30 P}$ microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Emissions, 30 - 40,000 MHz, 12-Apr-12

Manufacturer Sunol Sciences Rohde & Schwarz Hewlett Packard	Description Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz Head (Inc W1-W4, 1742, 1743) Blue	<u>Model</u> JB3 ESIB7 84125C	<u>Asset #</u> 1549 1756 1772	<u>Cal Due</u> 5/25/2013 5/25/2012 5/9/2012
Hewlett Packard A.H. Systems Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz Spare System Horn, 18-40GHz Microwave Preamplifier, 1- 26.5GHz	8447D OPT 010 SAS-574, p/n: 2581 8449B	1826 2162 2199	5/17/2012 5/3/2012 2/23/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Frequency Stability, 1 <u>Manufacturer</u> Agilent	6-Apr-12 <u>Description</u> PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	<u>Model</u> E4446A	<u>Asset #</u> 2139	<u>Cal Due</u> 2/23/2013
Radiated Emissions, 4 <u>Manufacturer</u> Hewlett Packard	40 - 100 GHz, 17-Apr-12 <u>Description</u> SpecAn 9 KHz-26.5 GHz, Non- Program	<u>Model</u> 8563E	<u>Asset #</u> 284	<u>Cal Due</u> 1/16/2013
Conducted Emissions <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz Fischer Custom Comm.	S - AC Power Ports, 24-Apr-12 <u>Description</u> Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz LISN, 50uH, 25 Amps, Dual Line	<u>Model</u> ESH3 Z2 ESIB7 FCC-LISN-50/250- 25-2-01	<u>Asset #</u> 1398 1538 1575	<u>Cal Due</u> 1/26/2013 12/6/2012 2/16/2013

Appendix B Test Data

T86927 Pages 23 - 41

EMC Test Data

An DCLE	5 company		
Client:	Ubiquiti Networks	Job Number:	J86893
Model:	AirFiber (24GHz)	T-Log Number:	T86927
		Account Manager:	Michelle Kim
Contact:	Jennifer Sanchez		-
Emissions Standard(s):	FCC 15.249, EN 300 440	Class:	A
Immunity Standard(s):	EN 301 489-1/-3	Environment:	-

EMC Test Data

For The

Ubiquiti Networks

Model

AirFiber (24GHz)

Date of Last Test: 4/24/2012

EMC Test Data

	An 2225 company		
Client:	Ubiquiti Networks	Job Number:	J86893
Madalı	AirFiber (24GHz)	T-Log Number:	T86927
wouer.		Account Manager:	Michelle Kim
Contact:	Jennifer Sanchez		
Standard:	FCC 15.249, EN 300 440	Class:	А

Radiated Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. The EUT was tested in all three orthogonal orientations.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

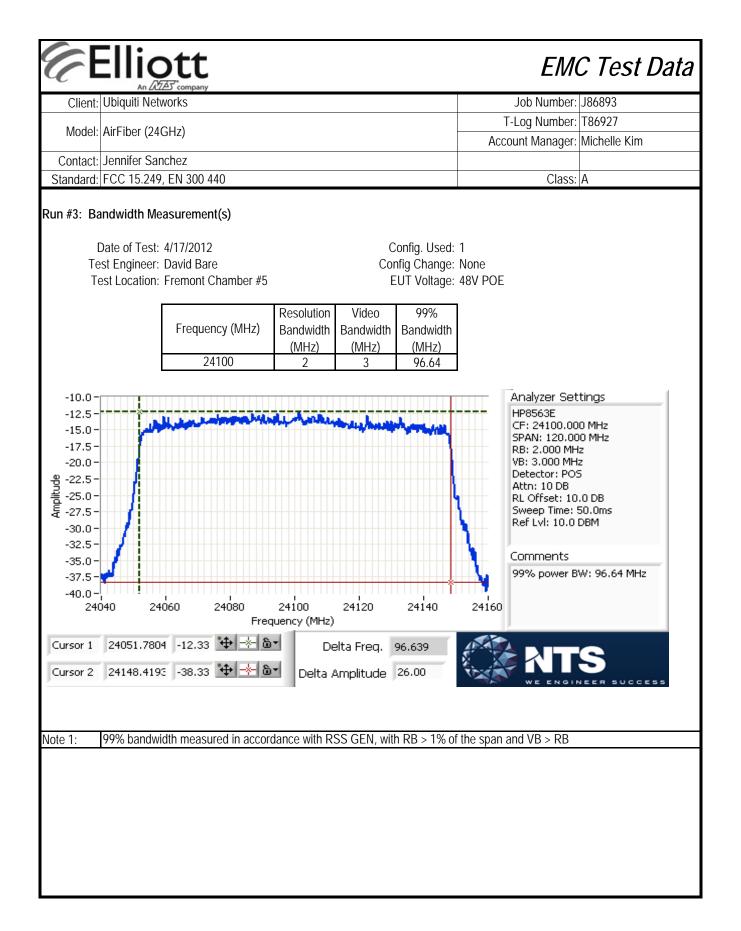
Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	21 °C
	Rel. Humidity:	39 %

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1	Transmitter Radiated Spurious	FCC 15.209 & 15.249	Pass	36.3 dBµV/m @ 48200.0 MHz
Ι	Emissions, 40 - 100 GHz	RSS 210/RSS GEN	Pass	(-17.7 dB)
2	Fundamental Signal Field Strength	FCC 15.49	Pass	127.0dBµV/m @ 24137.0MHz
Z	Fundamental Signal Field Strength	RSS 210 Annex A12	Pass	(-1.0dB)
3	99% Bandwidth (center channel)	RSS-GEN	N/A	96.64 MHz
5		N35-GEN	N/A	70.04 10112

Modifications Made During Testing


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Ubiquiti Netw	vorks						Job Number:	J86893
Model	AirFiber (240	2117)					T-	Log Number:	T86927
	-	-					Acco	unt Manager:	Michelle Kim
	Jennifer Sar								
Standard:	FCC 15.249	, EN 300 4	140					Class:	А
Run #1: Ma	aximized Rad	diated Em	nissions, 40-	100 GHz, Tra	ansmitter Sr	ourious Emis	ssions		
				,					
	Date of Test:					onfig. Used:			
	st Engineer: est Location:					nfig Change: UT Voltage:			
It		FIEIHOIIL			E	or vollage.	40V PUE		
	Free	quency Ra	ange	Test D	istance	Limit D	istance	Extrapola	tion Factor
	4	0 - 100 Gł	Ηz	0.	05		3	-3	5.6
1.1.	The Party 1. 1	E 0.40 (- La Sana a La Sana da			2500	(100.0.10.1	
Note:				0				•	//m), harmonics are
	limited to 2500uV/m (68dBuV/m) and all other spurious are required to meet 15.209 limits. The field strength of any spurious emissions may not exceed the field strength of the fundamental signal.								
Vote [.]									signal
	The field stre	ength of a	ny spurious e	missions ma	y not exceed	the field stre	ength of the	fundamental	
Note:	The field stre The field stre restricted ba	ength of ai ength of ai	ny spurious e ny spurious e	missions ma missions ma	y not exceed y not exceed	the field stre the 15.209 l	ength of the imit when th	fundamental s le spurious er	signal. nission falls in a 5.209 limit is higher
Note: Low Chann Frequency	The field stre The field stre restricted ba el Level	ength of an ength of an nd. Additi Pol	ny spurious e ny spurious e onally the sp RSS 210 / I	missions ma missions ma urious emiss FCC 15.249	y not exceed y not exceed ions can exce Detector	the field stre the 15.209 l eed the limit Azimuth	ength of the imit when th calculated a Height	fundamental s le spurious er	nission falls in a
Note: Low Chann Frequency MHz	The field stre The field stre restricted ba el Level dBµV/m	ength of an ength of an nd. Additi Pol v/h	ny spurious e ny spurious e ionally the sp RSS 210 / I Limit	missions ma missions ma urious emiss FCC 15.249 Margin	y not exceed y not exceed ions can exc Detector Pk/QP/Avg	the field stre the 15.209 l eed the limit Azimuth degrees	ength of the imit when th calculated a Height meters	fundamental le spurious er lbove if the 15	nission falls in a
Note: Low Chann Frequency MHz 48200.000	The field stre The field stre restricted ba el Level dBµV/m 36.3	ength of an ength of an nd. Additi Pol V/h V	ny spurious e ny spurious e ionally the sp RSS 210 / 1 Limit 54.0	missions ma missions ma urious emiss -CC 15.249 Margin -17.7	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg	the field stre the 15.209 l eed the limit Azimuth degrees 0	ength of the imit when th calculated a Height meters 1.0	fundamental le spurious er lbove if the 15	nission falls in a
Note: Low Chann Frequency MHz	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0	ength of an ength of an nd. Additi Pol v/h	ny spurious e ny spurious e ionally the sp RSS 210 / I Limit	missions ma missions ma urious emiss FCC 15.249 Margin	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg	the field stre the 15.209 l eed the limit Azimuth degrees	ength of the imit when th calculated a Height meters	fundamental le spurious er lbove if the 15	nission falls in a
Note: Low Chann Frequency MHz 48200.000 72300.000 96400.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0	ength of an ength of an nd. Additi Pol V/h V V V V	ry spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 54.0	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg	the field stre the 15.209 l eed the limit Azimuth degrees 0 0 0	Height Height Meters 1.0 1.0 1.0	fundamental : e spurious er bove if the 15 Comments	nission falls in a
Note: <u> -ow Chann</u> Frequency MHz 48200.000 72300.000 96400.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0	ength of an ength of an nd. Additi Pol V/h V V V V	ry spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 54.0	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg	the field stre the 15.209 l eed the limit Azimuth degrees 0 0 0	Height Height Meters 1.0 1.0 1.0	fundamental : e spurious er bove if the 15 Comments	nission falls in a
Note: Note: Frequency MHz 48200.000 72300.000 96400.000 Note 1:	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison	ength of an ength of an nd. Additi Pol V/h V V V V	ry spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 54.0	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg	the field stre the 15.209 l eed the limit Azimuth degrees 0 0 0	Height Height Meters 1.0 1.0 1.0	fundamental : e spurious er bove if the 15 Comments	nission falls in a
Note: -ow Chann Frequency MHz 48200.000 72300.000 96400.000 Note 1: High Chanr	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison	Pol V/h V s above 4	ny spurious e ny spurious e ionally the sp RSS 210 / I Limit 54.0 54.0 54.0 0 GHz were o	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg ve the noise	the field stre the 15.209 l eed the limit Azimuth degrees 0 0 0 0	Height Height Height Meters 1.0 1.0 1.0 heasuremen	fundamental size spurious er bove if the 15 Comments	nission falls in a
Note: -ow Chann Frequency MHz 48200.000 72300.000 96400.000 Note 1: High Chanr	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison	ength of an ength of an nd. Additi Pol V/h V V V V	ny spurious e ny spurious e ionally the sp RSS 210 / I Limit 54.0 54.0 54.0 0 GHz were o	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg	the field stre the 15.209 l eed the limit Azimuth degrees 0 0 0	Height Height Meters 1.0 1.0 1.0	fundamental : e spurious er bove if the 15 Comments	nission falls in a
Low Chann Frequency MHz 48200.000 72300.000 96400.000 Note 1: High Chanr Frequency	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison hel Level	Pol V v/h v s above 4 Pol v/h V V V V V V V	ny spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 0 GHz were o RSS 210 / 1	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg ve the noise Detector	the field stre the 15.209 l eed the limit Azimuth degrees 0 0 0 floor of the m Azimuth	Height Height Height 1.0 1.0 1.0 Heasuremen	fundamental size spurious er bove if the 15 Comments	nission falls in a
Jote: _ow Chann Frequency MHz 48200.000 72300.000 96400.000 Note 1: High Chanr Frequency MHz 48400.000 72600.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison nel Level dBµV/m 36.3 50.0 51.0	Pol V/h V V V V V V V V V V V V V V V V V V	ry spurious e ny spurious e onally the sp RSS 210 / I Limit 54.0 54.0 0 GHz were o RSS 210 / I Limit 54.0 54.0 54.0 0 GHz were o	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo FCC 15.249 Margin -17.7 -4.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg ve the noise Detector Pk/QP/Avg	Azimuth degrees 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Height Height Height Height 1.0 1.0 1.0 Heasuremen Height meters 1.0 1.0	fundamental size spurious er bove if the 15 Comments	nission falls in a
Jote: _ow Chann Frequency MHz 48200.000 72300.000 96400.000 Note 1: High Chanr Frequency MHz 48400.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison nel Level dBµV/m 36.3 50.0 51.0	Pol V v/h v s above 4 Pol v/h V V V V V V V	RSS 210 / I Limit 54.0 0 GHz were o RSS 210 / I Limit 54.0 0 GHz were o	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo FCC 15.249 Margin -17.7	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg Avg ve the noise Detector Pk/QP/Avg Avg	Azimuth degrees 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Height Height Height Height 1.0 1.0 1.0 Heasuremen Height meters 1.0	fundamental size spurious er bove if the 15 Comments	nission falls in a
Jote: _ow Chann Frequency MHz 48200.000 72300.000 96400.000 Note 1: High Chanr Frequency MHz 48400.000 72600.000 94800.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison hel Level dBµV/m 36.3 50.0 51.0	ength of an ength of an nd. Additi Pol v/h V V V V s above 4 Pol v/h V V V V	ry spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 0 GHz were o RSS 210 / 1 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg ve the noise Detector Pk/QP/Avg Avg Avg Avg Avg Avg	the field stree the 15.209 I eed the limit Azimuth degrees 0 0 0 floor of the m Azimuth degrees 0 0 0 0	Height Height Height 1.0 1.0 1.0 1.0 Height Meters 1.0 1.0 1.0 1.0 1.0 1.0	fundamental : ie spurious er ibove if the 15 Comments t system. Comments	nission falls in a
Low Chann Frequency MHz 48200.000 72300.000 96400.000 96400.000 Note 1: High Chanr Frequency MHz 48400.000 72600.000 94800.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison nel Level dBµV/m 36.3 50.0	ength of an ength of an nd. Additi Pol v/h V V V V s above 4 Pol v/h V V V V	ry spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 0 GHz were o RSS 210 / 1 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg ve the noise Detector Pk/QP/Avg Avg Avg Avg Avg Avg	the field stree the 15.209 I eed the limit Azimuth degrees 0 0 0 floor of the m Azimuth degrees 0 0 0 0	Height Height Height 1.0 1.0 1.0 1.0 Height Meters 1.0 1.0 1.0 1.0 1.0 1.0	fundamental : ie spurious er ibove if the 15 Comments t system. Comments	nission falls in a
Note: Low Chann Frequency MHz 48200.000 72300.000 96400.000 96400.000 Note 1: High Chanr Frequency MHz 48400.000 72600.000 94800.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison hel Level dBµV/m 36.3 50.0 51.0	ength of an ength of an nd. Additi Pol v/h V V V V s above 4 Pol v/h V V V V	ry spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 0 GHz were o RSS 210 / 1 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg ve the noise Detector Pk/QP/Avg Avg Avg Avg Avg Avg	the field stree the 15.209 l eed the limit Azimuth degrees 0 0 0 floor of the m Azimuth degrees 0 0 0 0	Height Height Height 1.0 1.0 1.0 1.0 Height Meters 1.0 1.0 1.0 1.0 1.0 1.0	fundamental : ie spurious er ibove if the 15 Comments t system. Comments	nission falls in a
Note: Low Chann Frequency MHz 48200.000 72300.000 96400.000 96400.000 Note 1: High Chanr Frequency MHz 48400.000 72600.000 94800.000	The field stre The field stre restricted ba el Level dBµV/m 36.3 50.0 51.0 No emisison hel Level dBµV/m 36.3 50.0 51.0	ength of an ength of an nd. Additi Pol v/h V V V V s above 4 Pol v/h V V V V	ry spurious e ny spurious e onally the sp RSS 210 / 1 Limit 54.0 54.0 0 GHz were o RSS 210 / 1 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	missions ma missions ma urious emiss FCC 15.249 Margin -17.7 -4.0 -3.0 detected abo FCC 15.249 Margin -17.7 -4.0 -3.0	y not exceed y not exceed ions can exce Detector Pk/QP/Avg Avg Avg ve the noise Detector Pk/QP/Avg Avg Avg Avg Avg Avg	the field stree the 15.209 l eed the limit Azimuth degrees 0 0 0 floor of the m Azimuth degrees 0 0 0 0	Height Height Height 1.0 1.0 1.0 1.0 Height Meters 1.0 1.0 1.0 1.0 1.0 1.0	fundamental : ie spurious er ibove if the 15 Comments t system. Comments	nission falls in a

		works	Job Number: J86893					
								Log Number: T86927
Contact	Model: AirFiber (24GHz)							unt Manager: Michelle Kim
Contact: Jennifer Sanchez								
Standard: F	FCC 15.249	, EN 300 4	140					Class: A
ow Channe		Ū	undamental	Emission				
requency	Level	Pol	RSS 210 / I	FCC 15.249	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4101.750	115.4	V	128.0	-12.6	AVG	0	1.0	RB 1 MHz;VB 10 Hz;Pk
4057.500	125.6	V	128.0	-2.4	PK	0	1.0	RB 1 MHz;VB 3 MHz;Pk
4089.000	116.0	Н	128.0	-12.0	AVG	0	1.0	RB 1 MHz;VB 10 Hz;Pk
4137.000	127.0	Н	128.0	-1.0	PK	0	1.0	RB 1 MHz;VB 3 MHz;Pk
undamenta	al Field Stre							
ligh Channe undamenta requency MHz		e ngth Pol v/h	RSS 210 / I Limit	FCC 15.249 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
undamenta requency MHz 4188.130	al Field Stre Level dBµV/m 115.3	Pol v/h V	Limit 128.0	Margin -12.7	Pk/QP/Avg AVG		meters 1.0	RB 1 MHz;VB 10 Hz;Peak
undamenta requency MHz 4188.130 4191.330	al Field Stre Level dBµV/m 115.3 126.4	Pol v/h V V	Limit 128.0 128.0	Margin -12.7 -1.6	Pk/QP/Avg AVG PK	degrees 0 0	meters 1.0 1.0	RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
undamenta requency MHz 4188.130	al Field Stre Level dBµV/m 115.3	Pol v/h V	Limit 128.0	Margin -12.7	Pk/QP/Avg AVG	degrees 0	meters 1.0	RB 1 MHz;VB 10 Hz;Peak

EMC Test Data

	An Black Company		
Client:	Ubiquiti Networks	Job Number:	J86893
Madal	AirFiber (24GHz)	T-Log Number:	T86927
MUUUEI.		Account Manager:	Michelle Kim
Contact:	Jennifer Sanchez		
Standard:	FCC 15.249, EN 300 440	Class:	А

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/12/2012 Test Engineer: Rafael Varelas Test Location: Fremont Chamber #7 Config. Used: 1 Config Change: None EUT Voltage: 48 V POE

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

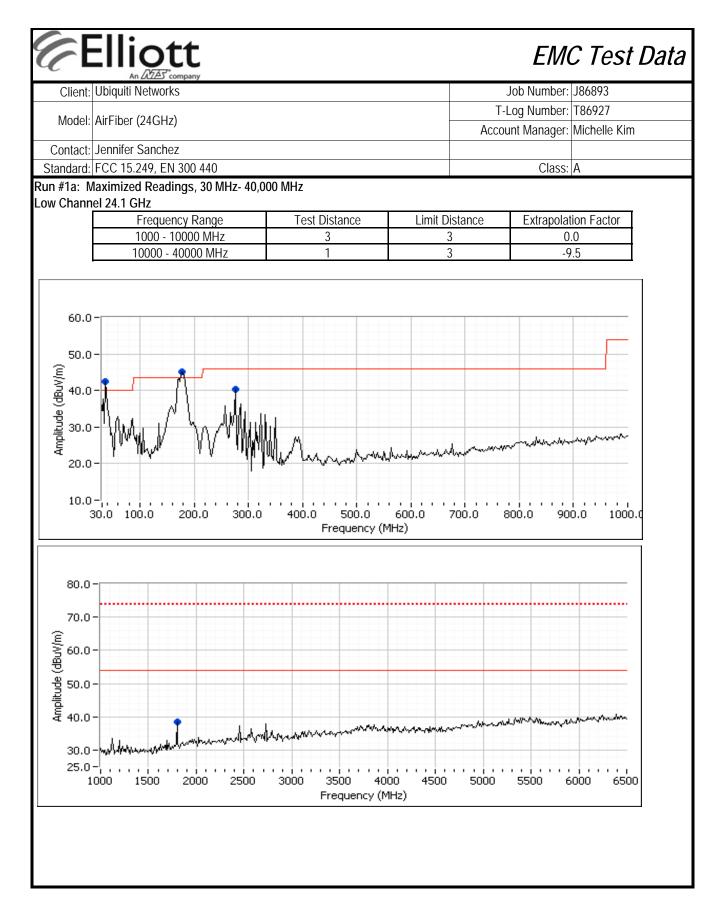
The test distance and extrapolation factor (if applicable) are detailed under each run description.

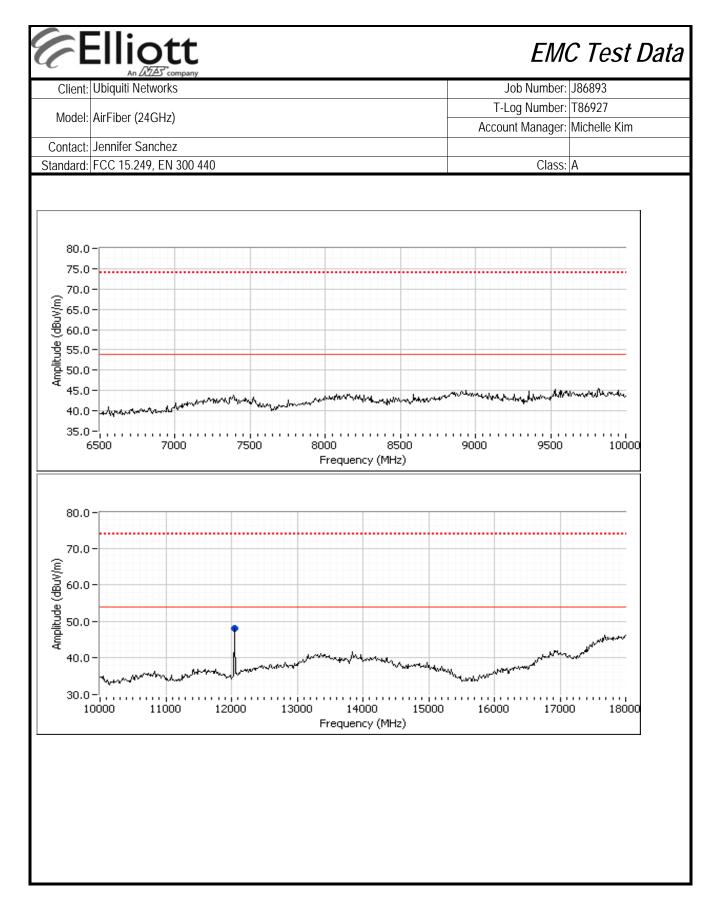
Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

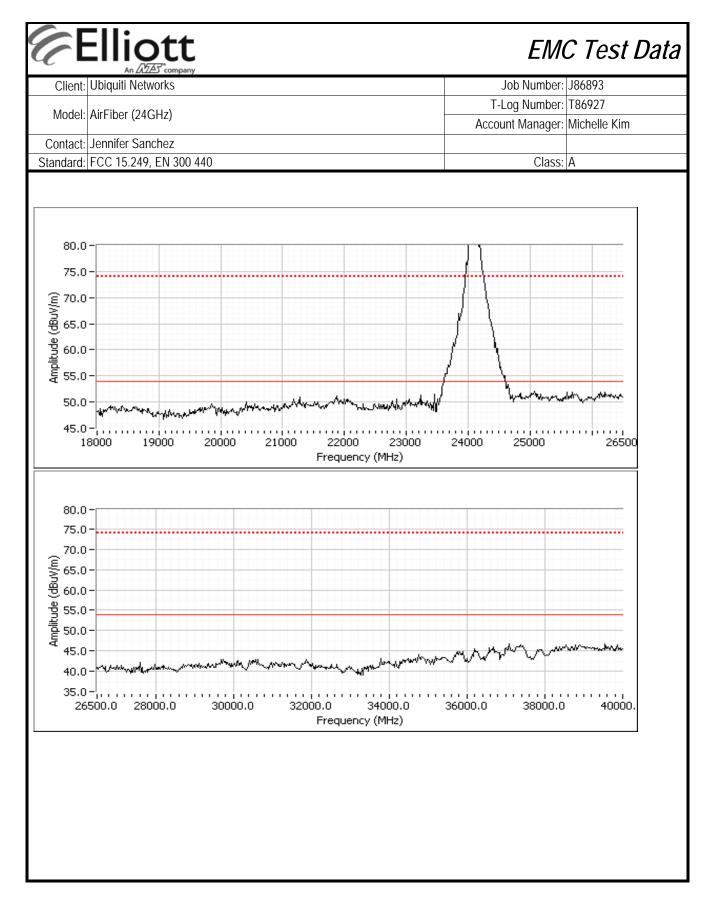
Ambient Conditions:

Temperature:	20.6 °C
Rel. Humidity:	34 %

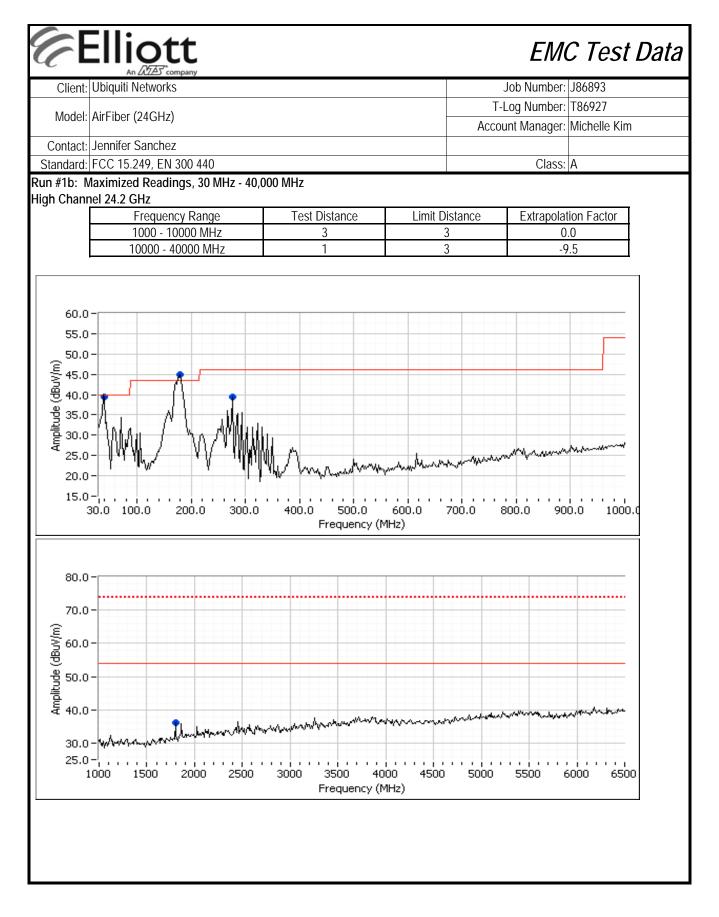
Summary of Results

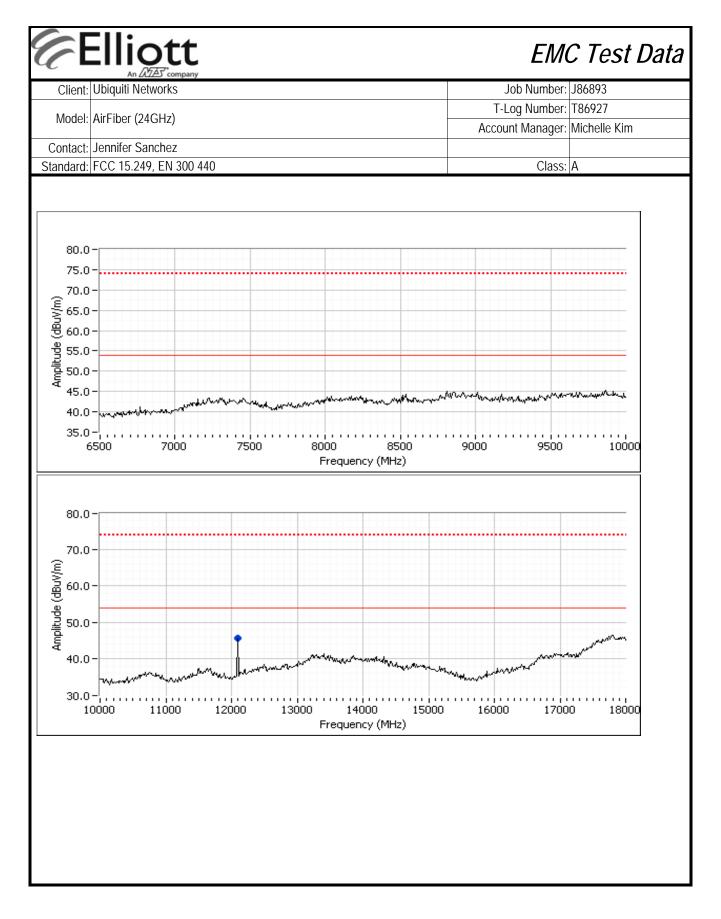

	Run #	Test Performed	Limit	Result	Margin
1a (Low Channel)	Transmitter Radiated Emissions	FCC 15.249	Pass	43.1 dBµV/m @ 176.85 MHz	
		30 MHz - 40 GHz Maximized	RSS-210, A12	F 855	(-0.4 dB)
	1b (High Channel)	Transmitter Radiated Emissions	FCC 15.249	Pass	43.4 dBµV/m @ 179.37 MHz
	in (Fight Charmer)	30 MHz - 40 GHz Maximized	RSS-210, A12	г d55	(-0.1 dB)

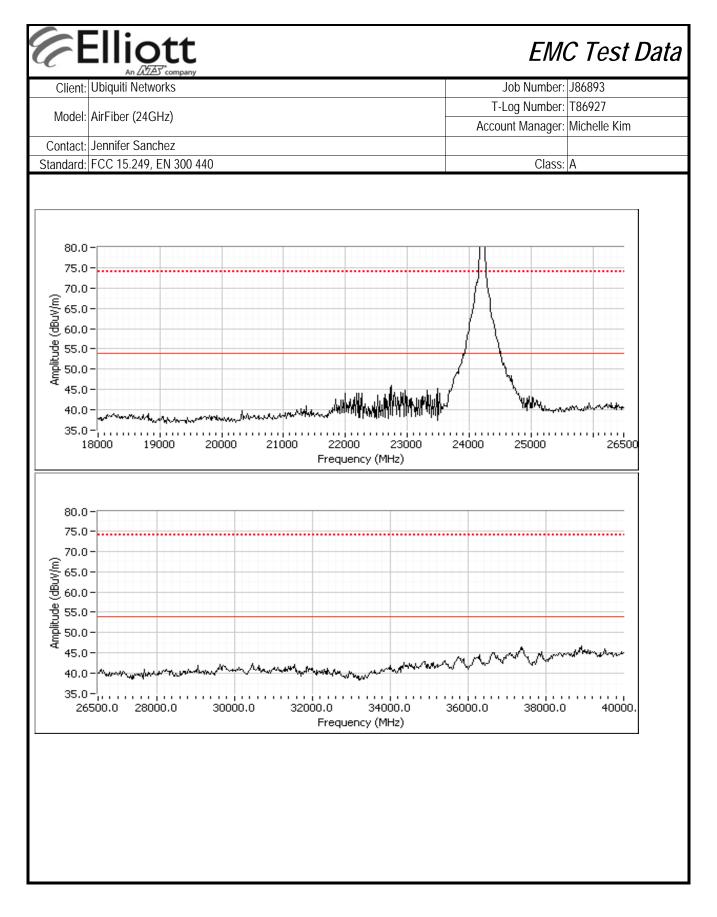

Modifications Made During Testing


No modifications were made to the EUT during testing

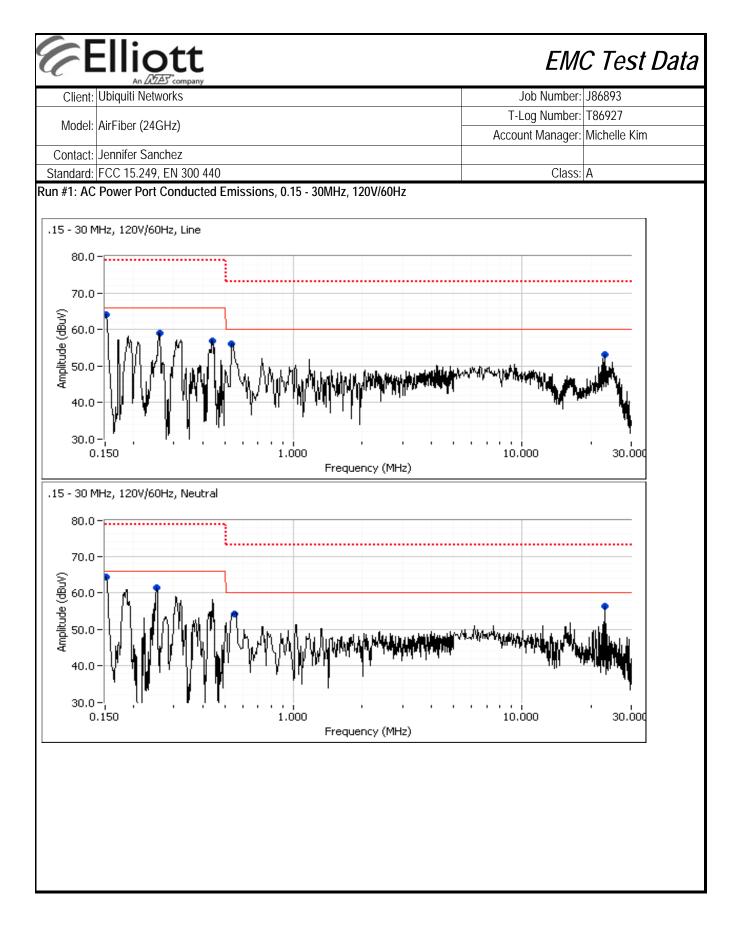
Deviations From The Standard


No deviations were made from the requirements of the standard.





Client.		∠) company N∩rks						Job Number:	186893
							T-Log Number: T86927		
Model:	AirFiber (24	GHz)					Account Manager: Michelle Kim		
Contact:	Jennifer Sar	nchez			5				
Standard:	FCC 15.249	, EN 300 4	40					Class:	A
reliminary	peak readir	ngs captu	red during p	re-scan (pe	ak readings v	vs. average	limit)		
Frequency	Level	Pol		-CC 15.209		Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
37.361	42.4	V	40.0	2.4	Peak	238	2.0		
176.849	45.0	Н	43.5	1.5	Peak	9	1.0		
276.605	40.4	V	46.0	-5.6	Peak	44	2.0		
1797.500	38.5	V	54.0	-15.5	Peak	172	1.0		
2040.000	48.0	V	54.0	-6.0	Peak	184	1.3		
l	F~ -		200	Terip	istance	l localit P	latanaa	Esternal -	ion Footor
		quency Ra			istance	Limit D			ion Factor
	100	0 - 40000	WHZ		3		3	0	.0
inal noak i	and average	roadings							
requency	Level	Pol		-CC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
176.849	43.1	H	43.5	-0.4	QP	9 9	1.2	QP (1.00s)	
276.605	39.1	V	46.0	-6.9	QP	44	2.0	QP (1.00s)	
37.361	32.1	V	40.0	-7.9	QP	238	1.0	QP (1.00s)	
2049.970	52.8	V	54.0	-1.2	AVG	184	1.4		'B 10 Hz;Peak
2049.890	56.9	V	74.0	-17.1	PK	184	1.4		'B 3 MHz;Peak
ote:	The limit in 7	15.249 for	a fundamenta	al signal in th	e 24.0-24.25	GHz band is	s 2500mV/m	n (128.0 dBuV	/m), harmonics are
		,	,		ourious are re				
ote:								fundamental s	signal.
ote:	Per 15.249(e), peak fie	eld strength a	long the ante	enna azimuth	is limited to	128 dBuV/n	1.	



	Ubiquiti Net	Dette Company works						Job Number:	J86893
Model.	AirFiber (24	GHz)						Log Number:	
							Acco	unt Manager:	Michelle Kim
	Jennifer Sar		40					01	
Standard:	FCC 15.249	, EN 300 4	40					Class:	A
Preliminary	v peak readir	ngs captu	red during p	re-scan (pea	ak readings v	vs. average	limit)		
Frequency	Level	Pol		-CC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
38.502	39.4	V	40.0	-0.6	Peak	226	2.0		
179.371	45.0	Н	43.5	1.5	Peak	6	1.0		
276.559	39.4	V	46.0	-6.6	Peak	226	2.0		
12100.120	45.8	V	54.0	-8.2	Peak	223	1.0		
1797.500	36.0	V	54.0	-18.0	Peak	172	1.0		
	Fre	quency Ra	inge	Test D	istance	Limit D	istance	Extrapola	tion Factor
	100	0 - 40000	MHz		3		}	0	.0
	and average					A 1 11			
Frequency	Level	Pol		-CC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h H	Limit	Margin	Pk/QP/Avg	degrees	meters	$OD(1.00_{2})$	
179.371 38.502	43.4 25.8	н V	43.5 40.0	-0.1 -14.2	QP QP	10 226	<u>1.2</u> 1.0	QP (1.00s) QP (1.00s)	
276.559	39.4	V	40.0	-14.2	QP	220	1.0	QP (1.00s)	
	50.1	V	54.0	-3.9	AVG	216	1.0		/B 10 Hz;Peak
12099 950		V	74.0	-18.8	PK	216	1.0		/B 3 MHz;Peak
	55.Z								,
	55.2					<u></u>	2500m\//m	n (128.0 dBu∖	(m) harmonics are
	The limit in ?		a fundamenta	•					init), natmonics are
12100.070 Note:	The limit in 7 limited to 25	00uV/m (6	8dBuV/m) ar	nd all other sp	ourious are re	equired to me	et 15.209 li	mits.	
12100.070	The limit in 7 limited to 25 The field stre	00uV/m (6 ength of ar	8dBuV/m) ar	nd all other sp missions ma	ourious are re	equired to me the field stre	et 15.209 li ngth of the	mits. fundamental	

Æ		Dtt Ar company			Radi	o Test Data
Client:	Ubiquiti Netv	works			Job Number:	J86893
Model:	AirFiber (240	GHz)			Log Number:	
				Αссоι	unt Manager:	Michelle Kim
	Jennifer Sar				0	
Standard:	FCC 15.249	, EN 300 440)		Class:	N/A
			FCC Part 15 Frequency Sta			
Test Spec		The objectiv	e of this test session is to perform fina I listed above.	l qualification testing of th	ne EUT with i	respect to the
With the exc measuremen attenuation b chamber.	nt instrument between EUT	radiated spι t via an atten Γ and measu	urious emissions tests, all measureme uator or dc-block if necessary. All am ring instrument. For frequency stabilit	plitude measurements ar y measurements the EUT	e adjusted to F was place i	account for the nside an environmental
Radiated me	easurements	are made wi	ith the EUT located on a non-conduction	ve table, 3m from the me	asurement a	ntenna.
Ambient (Conditions	S:	Temperature:23Rel. Humidity:40			
Summary	of Result	S				
Run #	Spacing	Data Rate	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	-	Frequency Stability	FCC 15.249(b)(2)	Pass	Pass
No modificat Deviation	s From Th	ade to the El	UT during testing			

inal Frequency: Over Temperature	re for a minimum of 30 ire.	Limit (0.001% of N	T-Lo Accoun ion: FT Lab#6 Nominal) (MHz): 10 ppm	Class: 0.241	T86927 Michelle Kim
Sanchez 249, EN 300 440 Stability 12 En inal Frequency: Over Temperature at each temperature at each temperature at each temperatu	24100 MHz e re for a minimum of 30 ire.	Limit (0.001% of N) minutes prior to mak	Accoun ion: FT Lab#6 Nominal) (MHz): 10 ppm	Class: Class: 0.241	Michelle Kim
Sanchez 249, EN 300 440 Stability 12 En inal Frequency: Over Temperature at each temperature at each temperature at each temperatu	24100 MHz e re for a minimum of 30 ire.	Limit (0.001% of N) minutes prior to mak	Accoun ion: FT Lab#6 Nominal) (MHz): 10 ppm	Class: Class: 0.241	Michelle Kim
249, EN 300 440 Stability 12 En inal Frequency: Over Temperature at each temperature ad at that temperature ncy Measured	24100 MHz e re for a minimum of 30 ire.	Limit (0.001% of N) minutes prior to mak	Nominal) (MHz): 10 ppm	0.241	N/A
Stability 12 En inal Frequency: Over Temperature at each temperatu ed at that temperatu	24100 MHz e re for a minimum of 30 ire.	Limit (0.001% of N) minutes prior to mak	Nominal) (MHz): 10 ppm	0.241	N/A
12 En inal Frequency: Over Temperature at each temperature ad at that temperatu	24100 MHz e re for a minimum of 30 ire.	Limit (0.001% of N) minutes prior to mak	Nominal) (MHz): 10 ppm		
12 En inal Frequency: Over Temperature at each temperature ad at that temperatu	24100 MHz e re for a minimum of 30 ire.	Limit (0.001% of N) minutes prior to mak	Nominal) (MHz): 10 ppm		
Over Temperature at each temperatu ed at that temperatu	e re for a minimum of 30 ıre.) minutes prior to mak	10 ppm		
at each temperatu d at that temperatu ncy Measured	re for a minimum of 30 ire.				
at each temperatu d at that temperatu ncy Measured	re for a minimum of 30 ire.		ing the measurem		
ncy Measured		Drift		nents to ens	sure the EUT and
		Drift			
		DHIL			
\ /	(Hz)	(ppm)			
4100.24	239750	9.9	0.0010%		
4100.23	229750	9.5	0.0010%		
4100.22	224750	9.3	0.0009%		
4100.18	183150	7.6	0.0008%		
4100.09	91550	3.8	0.0004%		
4099.76	-235850	-9.8	-0.0010%		
4099.83	-171700	-7.1	-0.0007%		
4099.91	-85850	-3.6	-0.0004%		
Worst case:	239750	9.9	0.0010%		
Over Input Voltag 20Vdc.	e				
	(⊔ ₇)				
			0.0006%		
1 2 nc (N	ver Input Voltag	over Input Voltage 0Vdc. cy Measured //Hz) (Hz) 100.14 142720 100.10 101550	OVdc. Drift vy Measured Drift MHz) (Hz) (ppm) 100.14 142720 5.9 100.10 101550 4.2	OVdc. Drift MHz) (Hz) (ppm) 100.14 142720 5.9 0.0006% 100.10 101550 4.2 0.0004%	OVdc. Drift vy Measured Drift MHz) (Hz) 100.14 142720 100.10 101550 4.2 0.0004%

Elliott EMC Test Data Client: Ubiquiti Networks Job Number: J86893 T-Log Number: T86927 Model: AirFiber (24GHz) Account Manager: Michelle Kim Contact: Jennifer Sanchez Standard: FCC 15.249, EN 300 440 Class: A Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 4/24/2012 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #4 EUT Voltage: 120V/60Hz General Test Configuration For floor-standing equipment, the EUT was located above a ground plane inside the semi-anechoic chamber, 80 cm from the LISN. A second LISN was used for any local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20.3 °C 35 % Rel. Humidity: Summary of Results Run # Test Performed Limit Result Margin 54.4 dBµV @ 23.129 MHz 1 CE, AC Power, 120V/60Hz Class A Pass (-5.6 dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard.

	company					Job Number:	106002
Ubiquiti Net	WUIKS						
AirFiber (24	GHz)					T-Log Number: Account Manager:	
Jennifer Sa	nchez					Account Manager.	
)				Class.	Α
	1211000110	·				0.0001	
peak readi	ngs captured	during pre	-scan (peak	readings v	s. average limit)	
Level	AC			Detector	Comments	·	
dBµV	Line	Limit	Margin	QP/Ave			
64.0	Line 1	66.0	-2.0	Peak			
58.9	Line 1	66.0	-7.1	Peak			
56.9	Line 1	66.0	-9.1	Peak			
56.0	Line 1	60.0	-4.0	Peak			
53.1	Line 1	60.0	-6.9	Peak			
64.4	Neutral	66.0	-1.6	Peak			
61.3	Neutral	66.0	-4.7	Peak			
54.1	Neutral	60.0	-5.9	Peak			
56.3	Neutral	60.0	-3.7	Peak			
Level	AC			Detector	Comments		
					$A \setminus (C \setminus (0, 10z))$		
49.1 56.0	Neutral	73.0	-10.9	QP	QP (1.00s)		
	Neutral	73.0	-17.6	QP	QP (1.00s) QP (1.00s)		
	neullai		-17.0	AVG	AVG (0.10s)		
55.4		66.0	-1/./	AVG			
48.3	Line 1	66.0					
48.3 42.1	Line 1 Neutral	60.0	-17.9	AVG	AVG (0.10s)		
48.3 42.1 41.8	Line 1 Neutral Line 1	60.0 60.0	-17.9 -18.2	AVG AVG	AVG (0.10s) AVG (0.10s)		
48.3 42.1 41.8 54.6	Line 1 Neutral Line 1 Line 1	60.0 60.0 73.0	-17.9 -18.2 -18.4	AVG AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s)		
48.3 42.1 41.8 54.6 54.6	Line 1 Neutral Line 1 Line 1 Line 1	60.0 60.0 73.0 73.0	-17.9 -18.2 -18.4 -18.4	AVG AVG QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
48.3 42.1 41.8 54.6 54.6 60.5	Line 1 Neutral Line 1 Line 1 Line 1 Neutral	60.0 60.0 73.0 73.0 79.0	-17.9 -18.2 -18.4 -18.4 -18.5	AVG AVG QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
48.3 42.1 41.8 54.6 54.6	Line 1 Neutral Line 1 Line 1 Line 1	60.0 60.0 73.0 73.0	-17.9 -18.2 -18.4 -18.4	AVG AVG QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
	FCC 15.249 peak readi Level dBμV 64.0 58.9 56.9 56.0 53.1 64.4 61.3 54.1 56.3 -peak and a Level dBμV 54.4 52.8 49.1	peak readings capturedLevelACdBµVLine64.0Line 158.9Line 156.9Line 156.0Line 153.1Line 164.4Neutral61.3Neutral54.1Neutral56.3Neutral56.3Neutral54.4Neutral52.8Line 149.1Neutral	FCC 15.249, EN 300 440 Peak readings captured during preduce Level AC Classing dBμV Line Limit 64.0 Line 1 66.0 58.9 Line 1 66.0 56.9 Line 1 60.0 53.1 Line 1 60.0 64.4 Neutral 66.0 63.1 Line 1 60.0 54.1 Neutral 60.0 56.3 Neutral 60.0 56.3 Neutral 60.0 54.1 Neutral 60.0 56.3 Neutral 60.0 54.4 Neutral 60.0 52.8 Line 1 60.0 52.8 Line 1 60.0 49.1 Neutral 66.0	FCC 15.249, EN 300 440 Peak readings captured during pre-scan (peak Level AC Class A dB μ V Line Limit Margin 64.0 Line 1 66.0 -2.0 58.9 Line 1 66.0 -7.1 56.9 Line 1 66.0 -9.1 56.0 Line 1 60.0 -4.0 53.1 Line 1 60.0 -4.0 53.1 Line 1 60.0 -4.7 54.1 Neutral 66.0 -4.7 54.1 Neutral 60.0 -5.9 56.3 Neutral 60.0 -3.7 epak and average readings Level AC Class A dB μ V Line Limit Margin 54.4 Neutral 60.0 -5.6 52.8 Line 1 60.0 -7.2 49.1 Neutral 66.0 -16.9	FCC 15.249, EN 300 440Peak readings captured during pre-scan (peak readings v Level AC Class A Detector dB μ V Line Limit Margin QP/Ave64.0Line 166.0-2.0Peak58.9Line 166.0-7.1Peak56.9Line 166.0-9.1Peak56.0Line 160.0-4.0Peak53.1Line 160.0-4.0Peak64.4Neutral66.0-1.6Peak61.3Neutral66.0-4.7Peak54.1Neutral60.0-5.9Peak56.3Neutral60.0-3.7Peak54.4Neutral60.0-5.6AVG52.8Line 160.0-7.2AVG49.1Neutral66.0-16.9AVG	FCC 15.249, EN 300 440Peak readings captured during pre-scan (peak readings vs. average limitLevelACClass ADetectorCommentsdB μ VLineLimitMarginQP/Ave64.0Line 166.0-2.0Peak58.9Line 166.0-7.1Peak56.9Line 160.0-9.1Peak56.0Line 160.0-4.0Peak53.1Line 160.0-6.9Peak64.4Neutral66.0-1.6Peak61.3Neutral66.0-4.7Peak54.1Neutral60.0-5.9Peak56.3Neutral60.0-3.7Peak	Jennifer SanchezFCC 15.249, EN 300 440Class:reak readings captured during pre-scan (peak readings vs. average limit)LevelACClass ADetectorCommentsdB μ VLineLimitMarginQP/AveClass A64.0Line 166.0-2.0Peak58.9Line 166.0-7.1Peak56.9Line 166.0-9.1Peak56.0Line 160.0-4.0Peak53.1Line 160.0-6.9Peak64.4Neutral66.0-1.6Peak61.3Neutral66.0-3.7Peak54.1Neutral60.0-5.9Peak56.3Neutral60.0-3.7Peak

End of Report

This page is intentionally blank and marks the last page of this test report.