

FCC Test Report

APPLICANT	:	Ubiquiti Networks, Inc.
EQUIPMENT	:	airCube ISP
BRAND NAME	:	UBIQUITI
MODEL NAME	:	ACB-ISP
FCC ID	:	SWX-ACBISP
STANDARD	:	FCC 47 CFR FCC Part 15 Subpart B
CLASSIFICATION	:	Certification

The product was received on Sep. 05, 2017 and testing was completed on Sep. 27, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : SWX-ACBISP Page Number: 1 of 19Report Issued Date: Oct. 17, 2017Report Version: Rev. 01Report Template No.: BU5-FD15B Version 2.0

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1.	GENE	RAL DESCRIPTION	5
	1.1. 1.2.	Applicant	
	1.3. 1.4.	Product Feature of Equipment Under Test	
	1.5.	Test Location	5
2.	1.6. TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1. 2.2. 2.3. 2.4.	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	7 8 9
3.		RESULT	
	3.1. 3.2.	Test of AC Conducted Emission Measurement 10 Test of Radiated Emission Measurement 14	
4.	LIST	OF MEASURING EQUIPMENT1	8
5.	UNCE	RTAINTY OF EVALUATION	9

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC741927-01	Rev. 01	Initial issue of report	Oct. 17, 2017

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
					Under limit
3.1	3.1 15.107	AC Conducted Emission	< 15.107 limits	PASS	10.60 dB at
					0.566 MHz
		15.109 Radiated Emission		PASS	Under limit
3.2	15.109		< 15.109 limits		3.49 dB at
3.2			< 13.109 mmits	1 700	106.680 MHz
					For Quasi-Peak

1. General Description

1.1.Applicant

Ubiquiti Networks, Inc.

685 Third Avenue, 27th Floor New York, New York 10017 USA

1.2.Manufacturer

Ubiquiti Networks, Inc.

685 Third Avenue, 27th Floor New York, New York 10017 USA

1.3.Product Feature of Equipment Under Test

Wi-Fi 2.4GHz	802 11b/a/n
VVI-I 1 2.40112	002.110/9/11

Product Specification subjective to this standard			
Antenna Type WLAN: Internal Antenna			

1.4. Modification of EUT

No modifications are made to the EUT during all test items.

1.5.Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW 1093 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Teo	chnology Park,			
Test Site Leastion	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.				
Test Site Location	TEL: +886-3-327-3456				
	FAX: +886-3-328-4978				
Test Site No	Sporton Site No.				
Test Site No.	CO05-HY	03CH06-HY			

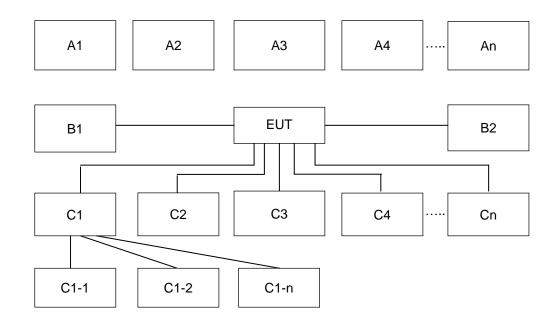
1.6. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test


2.1.Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type				
AC Conducted Emission	Mode 1:WLAN (2.4GHz) Idle + WAN Link + LAN Link + Charging from NotebookMode 2:WLAN (2.4GHz) Idle + WAN Link + LAN Link + PoE				
Radiated Emissions	Mode 1:WLAN (2.4GHz) Idle + WAN Link + LAN Link + Charging from NotebookMode 2:WLAN (2.4GHz) Idle + WAN Link + LAN Link + PoE				
Remark:					
1. The wo	st case of AC is mode 2; only the test data of this mode was reported.				
2. The wo	rst case of RE is mode 2; only the test data of this mode was reported.				

2.2.Connection Diagram of Test System

	Conduction Test Setup								
No	No. Wireless Station Connection Type				Test Mode				
NO.	Wireless Station	Connection Type	1	2	-	-	-	-	-
A1	Notebook	WiFi	Х	Х					
No.	Power Source	Connection Type	1	2	-	-	-	-	-
B1	AC : 120V/60Hz	RJ 45Cable From POE Adapter		x					
No.	Setup Peripherals	Connection Type	1	2	-	-	-	-	-
C1	Switch	RJ-45 Cable	Х	Х					
C1-1	AP router	RJ-45 Cable	Х	Х					
C1-2	Notebook	RJ-45 Cable	Х	X X					
C2	Notebook	RJ-45 Cable	Х	Х					
C2-1	Ipod	USB Cable	Х						
C2-2	AP router	RJ-45 Cable to C2	Х						

	Radiation Test Setup								
No.	Wireless Station	Connection Ture	Test Mode						
NO.	wireless Station	Connection Type	1	2	-	-	-	-	-
A1	Notebook	WiFi	Х	Х					
No.	Power Source	Connection Type	1	2	-	-	-	-	-
B1	AC : 120V/60Hz	RJ 45Cable From POE Adapter		х					
No.	Setup Peripherals	Connection Type	1	2	-	-	-	-	-
C1	Switch	RJ-45 Cable	Х	Х					
C1-1	Notebook	RJ-45 Cable	Х	Х					
C2	Notebook	RJ-45 Cable	Х	Х					
C2-1	iPod	USB Cable	Х	Х					
C2-2	Monitor	HDMI Cable	Х	Х					

2.3. Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
2.	iPod	Apple	A1285	DoC	Shielded, 1.0m	N/A
3.	Notebook	DELL	P20G	FCC DoC/ Contains FCC ID: QDS-BRCM1051	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Notebook	DELL	Latitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
6.	Switch Hub	Ubiquiti	US-8-60W	N/A	N/A	N/A

2.4.EUT Operation Test Setup

The EUT was attached to the WLAN AP, and execute ping.

3. Test Result

3.1.Test of AC Conducted Emission Measurement

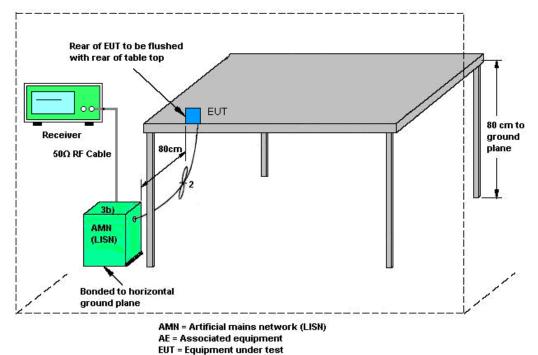
3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted limit (dBuV)			
(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

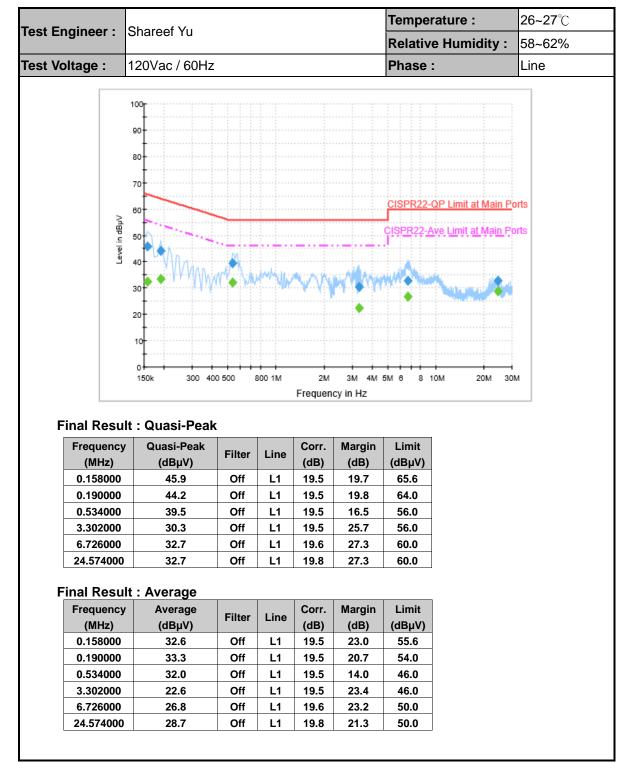
*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments

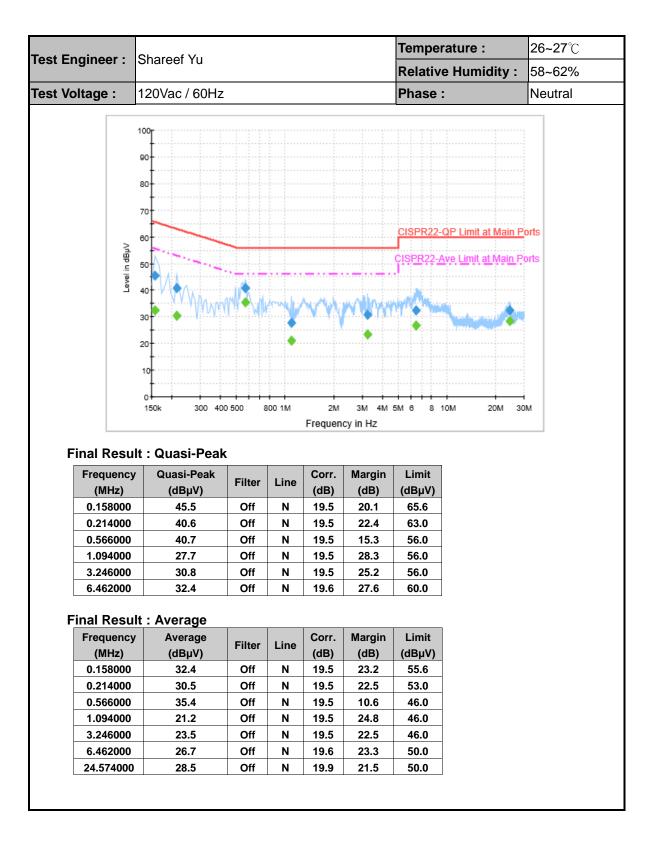

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



3.1.4 Test Setup


ISN = Impedance stabilization network

3.1.5 Test Result of AC Conducted Emission

3.2.Test of Radiated Emission Measurement

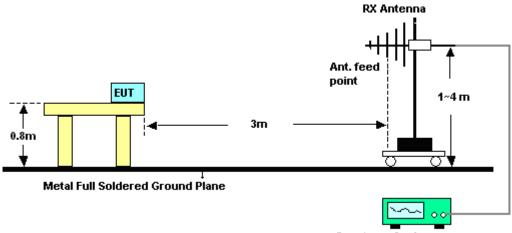
3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

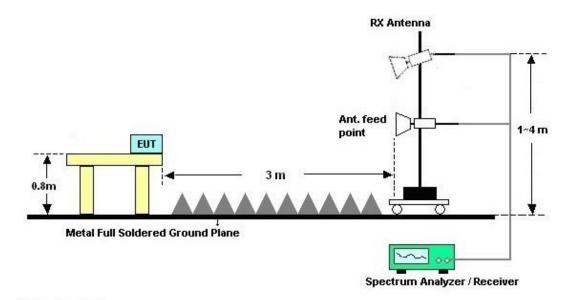
Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
30 - 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3. Test Procedures

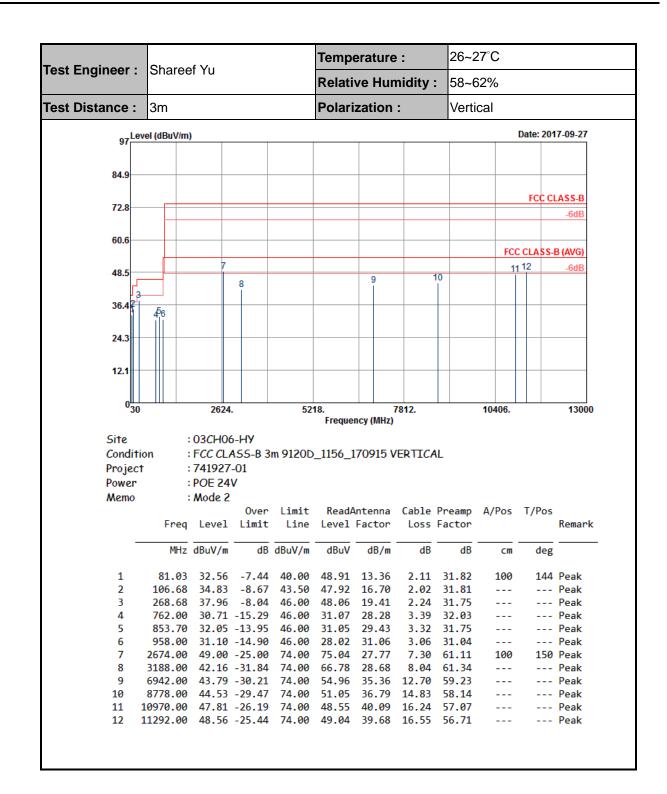
- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level


3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz



	Charren	Shareef Yu			Temperature : Relative Humidity :			26~2	26~27°C		
est Engineer :	Snaree							: 58~6	58~62%		
est Distance :	3m				Polarization :			Horiz	Horizontal		
ozLev	el (dBuV/m))								Date: 20	17-09-27
51											
84.9											
										FCC C	LASS-B
72.8											-6dB
60.6											
										C CLASS	B (AVG)
48.5		7				0		10	1	112	-6dB
2 ³		í E		8		9		ĩ			
36.4				ĭ							
	49										
24.2											
24.3											
12.1											
0 <mark>30</mark>		2624		52	18.		7812.		10406.		13000
		2021				ncy (MHz)					
Site	:	03CH06	5-HY								
				m 0120b	1154 1						
Conditio	on :	FCC CL/	ASS-B 3	111 71200	1100 1	70915 -	HORIZO	NTAL			
		FCC CL/ 741927		11 71200	_1150_1	70915 F	IORIZO	NTAL			
Conditio Project Power	:		-01	11 91200	_1150_1	70915 F	IORIZO	NTAL			
Project	:	741927	-01 V	M 91200	_1150_1	70915 F	IORIZO	NTAL			
Project Power	:	741927 POE 24 Mode 2	-01 V Over	Limit	ReadA	ntenna	Cable	Preamp	A/Pos	T/Pos	
Project Power	:	741927 POE 24	-01 V Over	Limit		ntenna	Cable	Preamp	A/Pos	T/Pos	Remark
Project Power	: : Freq	741927 POE 24 Mode 2	-01 V Over Limit	Limit	ReadA	ntenna	Cable	Preamp	A/Pos cm	T/Pos 	Remark
Project Power Memo —	: : Freq MHz	741927 POE 24 Mode 2 Level dBuV/m	-01 V Over Limit dB	Limit Line dBuV/m	ReadA Level 	ntenna Factor dB/m	Cable Loss ——————————————————————————————————	Preamp Factor dB		deg	Remark
Project Power Memo 1	: : Freq MHz 81.03	741927 POE 24 Mode 2 Level dBuV/m 32.37	-01 V Over Limit dB -7.63	Limit Line dBuV/m 40.00	ReadA Level dBuV 48.72	ntenna Factor dB/m 13.36	Cable Loss dB 2.11	Preamp Factor dB 31.82	cm	deg	Remark Peak
Project Power Memo 1 2	: : Freq MHz 81.03 106.68	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01	-01 V Limit -7.63 -3.49	Limit Line dBuV/m 40.00 43.50	ReadA Level dBuV 48.72 53.10	ntenna Factor dB/m 13.36 16.70	Cable Loss dB 2.11 2.02	Preamp Factor dB 31.82 31.81	cm 286	deg 75	Remark Peak QP
Project Power Memo 1 2 3	: : Freq MHz 81.03 106.68 268.95	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69	-01 V Over Limit dB -7.63 -3.49 -4.31	Limit Line dBuV/m 40.00 43.50 46.00	ReadA Level dBuV 48.72 53.10 51.79	ntenna Factor dB/m 13.36 16.70 19.41	Cable Loss dB 2.11 2.02 2.24	Preamp Factor dB 31.82 31.81 31.75	cm 286 	deg 75 	Remark Peak QP Peak
Project Power Memo 1 2 3 4	: : Freq MHz 81.03 106.68 268.95 782.30	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69 31.26	-01 V Uver Limit -7.63 -3.49 -4.31 -14.74	Limit Line dBuV/m 40.00 43.50 46.00 46.00	ReadA Level dBuV 48.72 53.10 51.79 31.67	ntenna Factor dB/m 13.36 16.70 19.41 28.22	Cable Loss dB 2.11 2.02 2.24 3.37	Preamp Factor dB 31.82 31.81 31.75 32.00	cm 286 	deg 75 	Remark Peak QP Peak Peak
Project Power Memo 1 2 3 4 5	: : : : : : : : : : : : : : : : : : :	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69 31.26 31.32	-01 V Uver Limit -7.63 -3.49 -4.31 -14.74 -14.68	Limit Line dBuV/m 40.00 43.50 46.00 46.00	ReadA Level dBuV 48.72 53.10 51.79 31.67 29.06	ntenna Factor dB/m 13.36 16.70 19.41 28.22 30.37	Cable Loss dB 2.11 2.02 2.24 3.37 3.21	Preamp Factor dB 31.82 31.81 31.75 32.00 31.32	cm 286 	deg 75 	Remark Peak QP Peak Peak Peak Peak
Project Power Memo 1 2 3 4	: : Freq MHz 81.03 106.68 268.95 782.30	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69 31.26 31.32 31.81	-01 V Uver Limit -7.63 -3.49 -4.31 -14.74 -14.68 -14.19	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	ReadA Level dBuV 48.72 53.10 51.79 31.67 29.06 29.07	ntenna Factor dB/m 13.36 16.70 19.41 28.22 30.37 30.81	Cable Loss dB 2.11 2.02 2.24 3.37 3.21 3.09	Preamp Factor dB 31.82 31.81 31.75 32.00 31.32 31.16	cm 286 	deg 75 	Remark Peak QP Peak Peak
Project Power Memo 1 2 3 4 5 6 7	: : : : : : : : : : : : : : : : : : :	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69 31.26 31.32 31.81 44.68	-01 V Uver Limit -7.63 -3.49 -4.31 -14.74 -14.68 -14.19	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00	ReadA Level dBuV 48.72 53.10 51.79 31.67 29.06 29.07	ntenna Factor dB/m 13.36 16.70 19.41 28.22 30.37 30.81	Cable Loss dB 2.11 2.02 2.24 3.37 3.21 3.09 6.55	Preamp Factor dB 31.82 31.81 31.75 32.00 31.32	cm 286 	deg 75 	Remark Peak QP Peak Peak Peak Peak Peak
Project Power Memo 1 2 3 4 5 6 7	: : : : : : : : : : : : : : : : : : :	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69 31.26 31.32 31.81 44.68 39.30	-01 V Over Limit -7.63 -3.49 -4.31 -14.74 -14.68 -14.19 -29.32 -34.70	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00	ReadA Level dBuV 48.72 53.10 51.79 31.67 29.06 29.07 72.92	ntenna Factor dB/m 13.36 16.70 19.41 28.22 30.37 30.81 26.21	Cable Loss dB 2.11 2.02 2.24 3.37 3.21 3.09 6.55 10.30	Preamp Factor dB 31.82 31.81 31.75 32.00 31.32 31.16 61.00	cm 286 	deg 75 	Remark Peak QP Peak Peak Peak Peak Peak Peak
Project Power Memo 1 2 3 4 5 6 7 8 9	: : : : : : : : : : : : : : : : : : :	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69 31.26 31.32 31.81 44.68 39.30 43.88	-01 V Over Limit -7.63 -3.49 -4.31 -14.74 -14.68 -14.19 -29.32 -34.70 -30.12	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00 74.00	ReadA Level dBuV 48.72 53.10 51.79 31.67 29.06 29.07 72.92 58.03 55.09 51.56	ntenna Factor dB/m 13.36 16.70 19.41 28.22 30.37 30.81 26.21 30.86 35.32 36.90	Cable Loss dB 2.11 2.02 2.24 3.37 3.21 3.09 6.55 10.30 12.70 14.80	Preamp Factor dB 31.82 31.81 31.75 32.00 31.32 31.16 61.00 59.89 59.23 58.35	cm 286 	deg 75 	Peak QP Peak Peak Peak Peak Peak Peak Peak
Project Power Memo 1 2 3 4 5 6 7 8 9 10 11	: : : : : : : : : : : : : : : : : : :	741927 POE 24 Mode 2 Level dBuV/m 32.37 40.01 41.69 31.26 31.32 31.81 44.68 39.30 43.88 44.91 47.74	-01 V Over Limit -7.63 -3.49 -4.31 -14.74 -14.68 -14.19 -29.32 -34.70 -30.12 -29.09 -26.26	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00 74.00 74.00	ReadA Level dBuV 48.72 53.10 51.79 31.67 29.06 29.07 72.92 58.03 55.09 51.56 48.35	ntenna Factor dB/m 13.36 16.70 19.41 28.22 30.37 30.81 26.21 30.86 35.32 36.90 40.13	Cable Loss dB 2.11 2.02 2.24 3.37 3.21 3.09 6.55 10.30 12.70 14.80 16.26	Preamp Factor dB 31.82 31.81 31.75 32.00 31.32 31.16 61.00 59.89 59.23 58.35 57.00	cm 286 	deg 75 	Remark Peak QP Peak Peak Peak Peak Peak Peak Peak

3.2.5. Test Result of Radiated Emission

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 22, 2017	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Sep. 20, 2017	Sep. 22, 2017	Sep. 19, 2018	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	May 02, 2017	Sep. 22, 2017	May 01, 2018	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Sep. 22, 2017	Nov. 28, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 06, 2016	Sep. 22, 2017	Dec. 05, 2017	Conduction (CO05-HY)
Bilog Antenna	Schaffner	CBL6111C&N- 6-06	2725&AT-N06 01	30MHz~1GHz	Oct. 15, 2016	Sep. 27, 2017	Oct. 14, 2017	Radiation (03CH06-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100472	20Hz~26.5GHz	Dec. 29, 2016	Sep. 27, 2017	Dec. 28, 2017	Radiation (03CH06-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1156	1GHz~18GHz	Aug. 08, 2017	Sep. 27, 2017	Aug. 07, 2018	Radiation (03CH06-HY)
Preamplifier	SONOMA	310N	186713	9kHz~1GHz	Apr. 25, 2017	Sep. 27, 2017	Apr. 24, 2018	Radiation (03CH06-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1850117	1GHz ~ 18GHz	May 22, 2017	Sep. 27, 2017	May 21, 2018	Radiation (03CH06-HY)
Antenna Mast	MF	MF-7802	MF78020821 2	1m~4m	N/A	Sep. 27, 2017	N/A	Radiation (03CH06-HY)
Turn Table	INN-CO	DS2000	420/650/00	0-360 degree	N/A	Sep. 27, 2017	N/A	Radiation (03CH06-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	27
of 95% (U = 2Uc(y))	2.1

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	3.9

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.7
of 95% (U = 2Uc(y))	4.7