

ANNEX C: Calibration Reports

3223-EPGO-422	Probe	Calibration	Report

SN 41/18 EPGO330 Probe Calibration Report

SID2450 Dipole Calibration Report

SID5G Dipole Calibration Report

EPGO 422 Probe Calibration Report

COMOSAR E-Field Probe Calibration Report

Ref: ACR.240.2.23.BES.A

CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 3223-EPGO-422

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 08/28/2023

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

Ref: ACR: 240 1 23 BES A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	8/28/2023	J85
Checked & approved by:	Jérôme Luc	Technical Manager	8/28/2023	JE5
Authorized by:	Yann Toutain	Laboratory Director	8/28/2023	Jan 100001

Yann Signature numérique de Yann Toutain ID Date: 2073.08.28 14:57:56+02'00'

	Customer Name
Distribution:	CCIC SOUTHERN TESTING CO., LTD

Issue	Name	Date	Modifications
A	Jérôme Luc	8/28/2023	Initial release
1			
- 7			

Page: 2/10

Template ACR, DDD. N. YY, MV GB. ISSUE_COMOS.AR Probe vt.

This document shall not be reproduced, except in fidi or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Ref: ACR: 240 1 23 BES A

TABLE OF CONTENTS

1	Dev	nce Under Test4	
2	Pro	duct Description	
	2.1	General Information	
3	Mea	asurement Method4	
	3.1	Sensitivity	
	3.2	Linearity	4
	3.3	Isotropy	
	3.4	Boundary Effect	5
4	Mea	asurement Uncertainty6	
5	Cal	ibration Results	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	8
6	Ver	ification Results	
7	List	of Equipment9	

Page: 3/10

Template ACR, DDD. N. YY, MV GB. ISSUE_COMOS.AR Probe vt.

This document shall not be reproduced, except in fidi or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Ref: ACR: 240 1 23 BES A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	3223-EPGO-422		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.221 MΩ		
	Dipole 2: R2=0.201 MΩ		
	Dipole 3: R3=0.221 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/10

Temptate_ACR.DDD.N.YY.MVGBJSSUE_COMOSAR Probe vt.

Ref: ACR: 240 1 23 BES A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{ste} along lines that are approximately normal to the surface:

SAR uncertainty [%] =
$$\delta$$
SAR. be $\frac{\left(d_{be} + d_{step}\right)^2}{2d_{other}} \frac{\left(e^{-d_{ex}(\delta \beta)}\right)}{\delta/2}$ for $\left(d_{be} + d_{step}\right) < 10 \text{ mm}$

where

SARuncertainty is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

Δstep is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., 8≈ 14 mm at 3 GHz;

\(\Delta SAR_{be} \) in percent of SAR is the deviation between the measured SAR value, at the

distance dbe from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%).

Page: 5/10

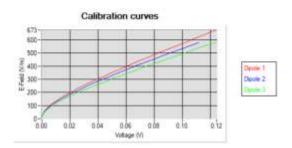
Temptate ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vl.

Ref: ACR: 240 1 23 BES A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition		
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe

Normi=dipole sensitivity given below for the 3 channels of the probe

Page: 6/10

Temptate_ACR.DDD.N.YY.MVGB.ISSUE_COMOS.AR Probe vI.

Ref: ACR 240 1 23 BES A

Normx dipole	Normy dipole	Normz dipole
1 (μV/(V/m) ²)	2 (μV/(V/m) ²)	3 (μV/(V/m) ²)
0.60	0.68	0.81

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
104	107	102

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho \, SAR}{\sigma}$$

where

σ=the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid

dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

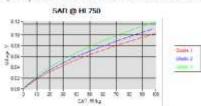
$$SAR = \frac{4P_W}{ab\delta}e^{\frac{-2S}{\delta}}$$

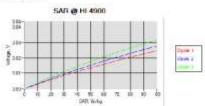
where

a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ=the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid

Page: 7/10

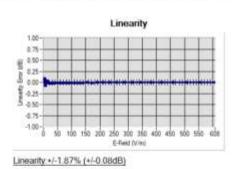
Template ACR, DDD, N. YY, MV GBJSSUE COMOSAR Probe vI.

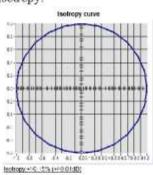



Ref: ACR: 240 1 23 BES A

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

Liquid	Frequency (MHz*)	ConvF
HL750	750	2.74
HL850	835	2.69
HL1800	1800	2.71
HL1900	1900	2.99
HL2000	2000	3.11
HL2300	2300	3.12
HL2450	2450	3.00
HL2600	2600	2.81
HL3300	3300	2.23
HL3500	3500	2.17
HL3700	3700	2.18
HL4200	4200	2.36
HL4900	4900	2.30


(*) Frequency validity is +4-50MHz below 600MHz, +4-100MHz from 600MHz to EGHz and +4-700MHz above 6GHz



6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Page: 8/10

Temptate_ACR.DDD.N.YY.MVGBJSSUE_COMOSAR Probe vt.

Ref: ACR: 240 1 23 BES A

7 LIST OF EQUIPMENT

Equipment Manufacturer / Landen Was Cur				Next Calibration
Description	Model	Identification No.	Calibration Date	Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated, No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG2_1	Validated, Nocal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated, No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated, No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated, Nocal required.

Page: 9/10

Template ACR, DDD. N. YY, MV GB. ISSUE_COMOS.AR Probe vt.

This document shall not be reproduced, except in fidi or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Ref: ACR: 240 1 23 BES A

Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated, No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated, No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
emperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 10/10

Template ACR, DDD. N. YY, MV GB. ISSUE_COMOS.AR Probe vt.

This document shall not be reproduced, except in fidi or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

EPGO 330 Probe Calibration Report

COMOSAR E-Field Probe Calibration Report

Ref: ACR.24.4.24.BES.A

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 41/18 EPGO330

Calibrated at MVG Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 01/24/2024

Accreditations #2-6789 Scope available on www.cofrac fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

Ref. ACR.24.4.24.BES.A

6	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	1/24/2024	-M
Checked by :	Jérôme Luc	Technical Manager	1/24/2024	JES
Approved by :	Yann Toutain	Laboratory Director	1/25/2024	Yann TOUTANN

2024.01.25 11:52:42 +01'00'

	Customer Name
Distribution:	

Issue	Name	Date	Modifications
A	Jérôme Luc	1/24/2024	Initial release
		T.	7
			_
		1	

Page: 2/11

Ref. ACR 24.4.24 BES.A.

TABLE OF CONTENTS

1	Dev	rice Under Test	
2	Pro	duct Description4	
	2,1	General Information	24
3	Me	asurement Method4	
	3.1	Linearity	
	3.2	Sensitivity	8
	3.3	Lower Detection Limit	
	3.4	Isotropy	
	3.1	Boundary Effect	3
4	Me	asurement Uncertainty6	
5	Cal	ibration Measurement Results	
	5.1	Sensitivity in air	- 3
	5.2	Linearity	3
	5.3	Sensitivity in liquid	
	5.4	Isotropy	- 29
6	Lis	of Equipment	

Page: 3/11

Template ACR. DDD.N. YY. SIV GU. ISSUE COMOSAR Probe vil.

This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used ordy for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 24.4.24 BES A

DEVICE UNDER TEST

Device	e Under Test
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE2
Serial Number	SN 41/18 EPGO330
Product Condition (new / used)	Used
Frequency Range of Probe	0.15 GHz-6GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.186 MΩ
	Dipole 2: R2=0.192 MΩ
	Dipole 3: R3=0.201 MΩ

PRODUCT DESCRIPTION 2

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Ref ACR 24 4 24 BES A

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and db. + d_{sten} along lines that are approximately normal to the surface:

SAR uncertainty [%] =
$$\delta$$
SAR be $\frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{(e^{-d_{be}/(\delta \rho)})}{\delta/2}$ for $(d_{be} + d_{step}) < 10 \text{ mm}$

where

SARuncertainty is the uncertainty in percent of the probe boundary effect

 d_{be} is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

is the separation distance between the first and second measurement points that Δ_{step}

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

8 is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz,

in percent of SAR is the deviation between the measured SAR value, at the **∆**SAR_{be}

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N.YEMVGH.ISSUE_COMOSAR Probe vk

Ref. ACR 24.4.24 BES.A.

MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe of	alibration in wave	guide	,		100
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

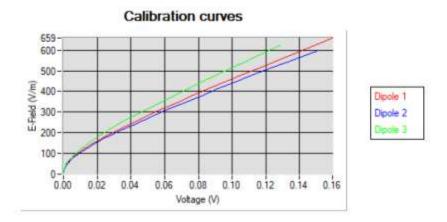
	Calibration Parameters	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 SENSITIVITY IN AIR

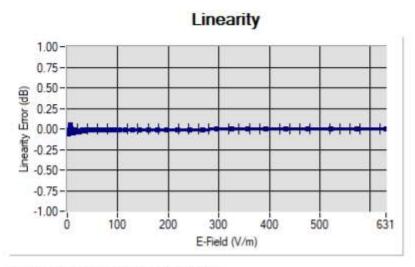
	Normy dipole 2 (μV/(V/m) ²)	
0.93	1.01	0.74

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
108	110	107

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:


$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/11



Ref ACR 24.4.24 BES A

5.2 LINEARITY

Linearity:+/-1.31% (+/-0.06dB)

Page: 7/11

Ref ACR 24 4 24 BES A

5.3 SENSITIVITY IN LIQUID

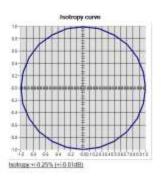
<u>Liquid</u>	Frequency (MHz +/- 100MHz)	ConvF
HL600	600	1.24
HL750	750	1.28
HL850	835	1.43
HL900	900	1.42
HL1500	1500	1.55
HL1750	1750	1.67
HL1800	1800	1.65
HL1900	1900	1.72
HL2000	2000	1.73
HL2300	2300	1.86
HL2450	2450	1.84
HL2600	2600	1.81
HL3300	3300	1.75
HL3500	3500	1.58
HL3700	3700	1.56
HL3900	3900	2.10
HL4200	4200	1.79
HL4600	4600	1.79
HL4900	4900	1.86
HL5200	5200	1.59
HL5400	5400	1.60
HL5600	5600	1.63
HL5800	5800	1.63

LOWER DETECTION LIMIT: 7mW/kg

Page: 8/11

Template ACR. DDD.N. YY. SIV GU. ISSUE COMOSAR Probe vil.

This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used ordy for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



Ref: ACR:24.4.24.BES.A

5.4 ISOTROPY

HL1800 MHz

Page: 9/11

Ref ACR 24.4.24 BES A

6 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025			
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027			
Multimeter	Keithley 2000	1160271	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior t test. No cal required			
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.			
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.			
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.			
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.			
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.			
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.			
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.			
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.			
Liquid transition	MVG	SN 32/16 WGLIQ 3G500 1	Validated. No cal required.	Validated. No cal required.			

Page: 10/11

Template ACR. DDD.N. YE. SIV GIL. ISSUE COMOSAR Probe vil.

This document shall not be reproduced, except in full or in part, without the ventten approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 24 4 24 BES A

Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated, No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 11/11

The state of the s

SID2450 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref: ACR.144.13.23.BES.A

CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ SERIAL NO.: SN 09/13 DIP2G450-220

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 05/24/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

Ref ACR 144 13 23 BES A

	Name	Function	Date	Signature
Prepared by:	Jérôme Luc	Technical Manager	5/24/2023	JE
Checked & approved by:	Jérôme Luc	Technical Manager	5/24/2023	JES
Authorized by:	Yann Toutain	Laboratory Director	5/24/2023	Gana TOUTHORD

Signature numérique de Yann Toutain ID Yann Toutain ID Date: 2023.05.24

	Customer Name
Distribution:	CCIC SOUTHERN TESTING CO., LTD

Issue	Name	Date	Modifications
A	Jérôme Luc	5/24/2023	Initial release
		1.112-2.2-10.0-10.1	

Page: 2/8

Ref. ACR 144 13 23 BES. A

TABLE OF CONTENTS

1	Inti	oduction4	
2	De	vice Under Test4	
3		duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	ibration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment8	

Ref. ACR 144 13.23 BES A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE				
Manufacturer MVG					
Model SID2450					
Serial Number SN 09/13 DIP2G450-220					
Product Condition (new / used)	Used				

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/8

Ref ACR 144 13 23 BES A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 <u>SAR</u>

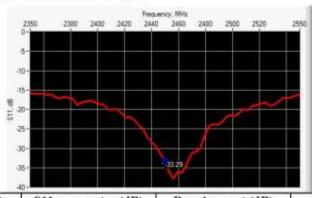
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Template ACR.DDD,N.YY.MVGB.ISSUE SAR Reference Dipole vI.

Ref ACR 144 13 23 BES A


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L	mm	h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
-	51.50 +/- 2%	-	30.40 +/- 2%	-	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2450	-33.29	-20	$52.1\Omega + 0.8j\Omega$

6.3 SAR

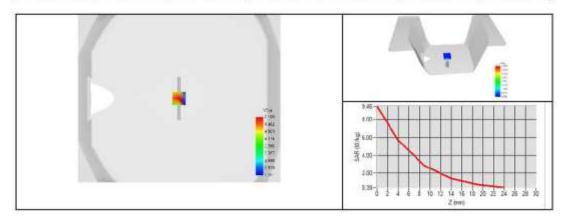
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 6/8

Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vL



Ref. ACR 144 13 23 BES. A

Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Head Liquid Values: eps': 40.7 sigma: 1.94	
Distance between dipole center and liquid	10.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

Frequency		1g SAR (W/kg	0	1	10g SAR (W/kg)	
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2450 MHz	5.17	51.74	52.40	2.38	23.75	24.00

Page: 7/8

Ref. ACR 144 13 23 BES. A

7 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	SN 41/18 EPGO333	09/2022	09/2023			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to			
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

Page: 8/8

SID5G Dipole Calibration Report

SAR Reference Waveguide Calibration Report

Ref: ACR.145.20.23.BES.A

CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICTSHENZHEN, GUANGDONG, CHINAMVG COMOSAR REFERENCE WAVEGUIDE

FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 15/15 WGA39

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 05/25/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/9

Ref. ACR 145 20 23 BES. A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	5/25/2023	75
Checked & approved by:	Jérôme Luc	Technical Manager	5/25/2023	75
Authorized by:	Yann Toutain	Laboratory Director	5/25/2023	efann 504526.ks

Yann Toutain Signature numérique de Yann Toutain ID Date: 2023.05.25 16:30:59 +02'00'

	Customer Name
D	CCIC SOUTHERN
Distribution:	TESTING CO.,
	LTD

Issue	Name	Date	Modifications
A	Jérôme Luc	5/25/2023	Initial release
0			ľ

Page: 2/9

Testero des estimos

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref. ACR 145 20 23 BES. A

TABLE OF CONTENTS

1	11111	ouccion	
2	De	vice Under Test4	
3		educt Description4	
	3.1	General Information	4
4	Me	asurement Method4	
	4.1	Mechanical Requirements	4
	4.2	S11 parameter Requirements	4
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	libration Results 5	
	6.1	Mechanical Dimensions	5
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment9	

Page: 3/9

Ref ACR 145 20 23 BES A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 15/15 WGA39
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -8 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

Page: 4/9

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vL

Ref ACR 145 20 23 BES A

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

The estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/0.20 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

Frequency	L 0	mm)	W (mm)		Lr(mm)		Wr (mm)	
(MHz)	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	40.39 ± 0.13		20.19 ± 0.13	148	81.03 ± 0.13	¥ .	61.98 ± 0.13	14

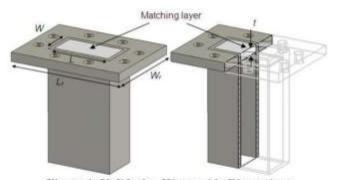
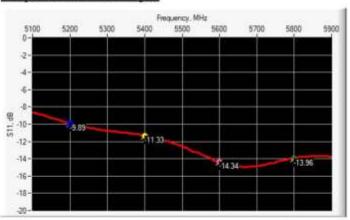


Figure 1: Validation Waveguide Dimensions

Page: 5/9

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vl.



Ref. ACR 145 20 23 BES A

6.2 S11 PARAMETER

6.2.1 S11 parameter In Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
5200	-9.89	-8	26.75 Ω - 8.37 jΩ
5400	-11.33	-8	58.18 Ω + 29.31 jΩ
5600	-14.34	-8	48.03 Ω - 19.07 jΩ
5800	-13.96	-8	37.90 Ω + 13.07 jΩ

6.3 <u>SAR</u>

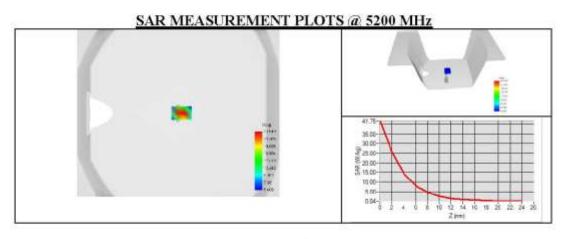
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

6.3.1 SAR With Head Liquid

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Page: 6/9

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vL



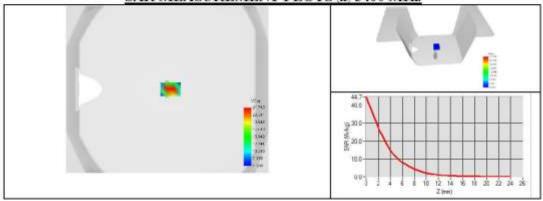
Ref. ACR 145 20 23 BES. A

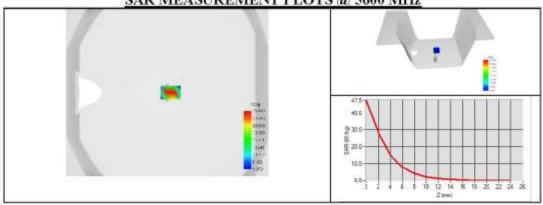
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values 5200 MHz: eps' :34.01 sigma : 4.86 Head Liquid Values 5400 MHz: eps' :33.40 sigma : 5.09 Head Liquid Values 5600 MHz: eps' :32.71 sigma : 5.32 Head Liquid Values 5800 MHz: eps' :32.12 sigma : 5.57
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency (MHz)	1 g SAR (W/kg)			10 g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
5200	15.30	152.95	159.00	5.37	53.70	56.90
5400	15.99	159.94	166.40	5.57	55.71	58.43
5600	16.66	166.59	173.80	5.77	57.66	59.97
5800	17.47	174.67	181.20	6.00	59.99	61.50

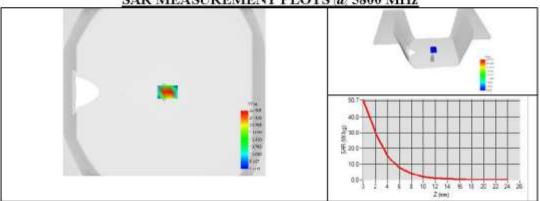
Page: 7/9

Template ACR.DDD,N, YY.MVGB, ISSUE SAR Reference Waveguide vL.


This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.



Ref. ACR 145 20 23 BES.A.



SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 8/9

Template ACR.DDD,N, YY.MVGB.ISSUE SAK Reference Waveguide vL.

This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Ref. ACR 145 20 23 BES A

7 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	SN 41/18 EPGO333	09/2022	09/2023			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

Page: 9/9