FCC TEST REPORT

Handheld Data Terminal

Model Number: i6200S

FCC ID: SWSI6200S

Report Number : WT 168002729

Test Laboratory	:	Shenzhen Academy of Metrology and Quality Inspection
		National Digital Electronic Product Testing Center
Site Location	:	NETC Building, No.4 Tongfa Rd., Xili, Nanshan,
		Shenzhen, China
Tel	:	0086-755-86928965
Fax	:	0086-755-86009898-31396
Web	:	www.smq.com.cn
E-mail	:	emcrf@smq.com.cn

Test report declaration

Applicant	:	Shenzhen Urovo Technology Co., Ltd
Address	:	7/F, Zondy Cyber Building, Keyuan South Road, Nanshan Direct, Shenzhen City, China
Manufacturer	:	Shenzhen Urovo Technology Co., Ltd
Address	:	7/F, Zondy Cyber Building, Keyuan South Road, Nanshan Direct, Shenzhen City, China
EUT Description	:	Handheld Data Terminal
Model No	:	i6200S
Trade mark	:	UROVO
Serial Number	:	/
FCC ID	:	SWSI6200S

Test Standards:

FCC Part 15 15.207, 15.209, 15.247(2015)

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.207, 15.209 and 15.247.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Project Engineer:	TROAL	Date:	May.20, 2016
	(Chen Silin 陈司林)		
Checked by:	林主钢	Date:	May.20, 2016
	(Lin Yixiang 林奕翔)		
Approved by:	FRAN	Date:	May.20, 2016
	(Lin Bin 林斌)		

TABLE OF CONTENTS

TEST	REPO	RT DECLARATION	2
1.	TEST	RESULTS SUMMARY	5
2.	GENE	RAL INFORMATION	6
	2.1.	Report information	6
	2.2.	Laboratory Accreditation and Relationship to Customer	6
	2.3.	Measurement Uncertainty	7
3.	PROD	UCT DESCRIPTION	8
	3.1.	EUT Description	8
	3.2.	Related Submittal(s) / Grant (s)	8
	3.3.	Block Diagram of EUT Configuration	8
	3.4.	Operating Condition of EUT	9
	3.5.	Directional Antenna Gain	9
	3.6.	Support Equipment List	9
	3.7.	Test Conditions	9
	3.8.	Special Accessories	9
	3.9.	Equipment Modifications	9
4.	TEST	EQUIPMENT USED	10
5.	6DB E	ANDWIDTH MEASUREMENT	11
	5.1.	LIMITS OF 6dB BANDWIDTH MEASUREMENT	11
	5.2.	TEST PROCEDURE	11
	5.3.	TEST SETUP	11
	5.4.	Test Data	12
6.	MAXI	MUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT	13
	6.1.	LIMITS OF Maximum Peak Conducted Output Power Measurement	13
	6.2.	TEST PROCEDURE	13
	6.3.	TEST DATA	13
7.	MAXI	MUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT	15
	7.1.	LIMITS OF Maximum Power Spectral Density Level Measurement	15
	7.2.	TEST PROCEDURE	15
	7.3.	TEST DATA	15

8.	CON	DUCTED BANDEDGE AND SPURIOUS MEASURMENT	17
	8.1.	LIMITS OF Conducted Bandedge and Spurious Measurement	17
	8.2.	TEST PROCEDURE	17
9.	RADI	ATED BANDEDGE AND SPURIOUS MEASUREMENT	21
	9.1.	LIMITS OF Radiated Bandedge and Spurious Measurement	21
	9.2.	TEST PROCEDURE	21
	9.3.	TEST DATA	21
10.	CON	DUCTED EMISSION TEST FOR AC POWER PORT MEASUREMENT	
	10.1.	Test Standard and Limit	46
	10.2.	Test Procedure	46
	10.3.	Test Arrangement	46
	10.4.	Test Data	46
11.	ANTE	ENNA REQUIREMENTS	53
	11.1.	Applicable requirements	53
	11.2.	Antenna Connector	53
	11.3.	Antenna Gain	53

1. TEST RESULTS SUMMARY

Test Items	FCC Rules	IC Rules	Test Results
6dB DTS bandwidth measurement	15.247 (a) (2)	RSS-247 Clause 5.2(1)	Pass
Maximum Peak Conducted Power	15.247 (b) (3)	RSS-247 Clause 5.4(4)	Pass
Maximum Power Spectral Density Level	15.247 (3)	RSS-247 Clause 5.2(2)	Pass
Conducted Bandedge and Spurious	15.247 (d)	RSS-247 Clause 5.5	Pass
Radiated Bandedge and Spurious	15.247 (d) 15.209 15.205	RSS-247 Clause 5.5	Pass
Conducted emission test for AC power port	15.207	RSS-Gen Section8.8	Pass
Antenna Requirment	15.203	RSS-Gen Section8.1.3	Pass

Remark: "N/A" means "Not applicable."

2. GENERAL INFORMATION

2.1. Report information

- 2.1.1.This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2. The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2.Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at Bldg. of Metrology & Quality Inspection, Longzhu Road, Nanshan District, Shenzhen, Guangdong, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 446246 806614 994606(semi anechoic chamber).

The Laboratory is listed in Voluntary Control Council for Interference by Information Technology Equipment (VCCI), and the registration number are R-1974(open area test site), R-1966(semi anechoic chamber),C-2117(mains ports conducted interference measurement) and T-180(telecommunication ports conducted interference measurement).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is 11177A-1 11177A-2.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is E2024086Z02.

2.3. Measurement Uncertainty

For a 95% confidence level (k = 2), the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following: Conducted Emission 9kHz~30MHz 3.5dB

Radiated Emission 30MHz~1000MHz 4.5dB 1GHz~26.5GHz 4.6dB

3. PRODUCT DESCRIPTION

3.1.EUT Description

Description	[:] Handheld Data Terminal
Manufacturer	[:] Shenzhen Urovo Technology Co., Ltd
Model Number	[:] i6200S
Operate Frequency	[:] 2.402GHz~2.480GHz
Antenna Designation	: Wi-Fi: PCB Antenna 2.1dBi BT: PCB Antenna 2.0dBi
Remark: /	

Bluetooth Low Energy :

Tabla	S	Working	Eroo	ulono	/ Lict
able	2	VVOIKING	гіес	uency	LISU

Regulatory Range	RF Channels
2.400-2.4835 GHz	f=2402+k*2 MHz, k=0, … ,39

3.2.Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **SWSI6200S**, filing to comply with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

3.3. Block Diagram of EUT Configuration

rigule i EUI selup	Figure	1	EU	T setu	р
--------------------	--------	---	----	--------	---

3.4. Operating Condition of EUT

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power. Worst-case data rates as provided by the client were: Bluetooth low energy Test mode is configured to be with duty cycle >98%

3.5. Directional Antenna Gain

The EUT does NOT support a MIMO function. Directional gain need NOT to be considered.

3.6. Support Equipment List

Name	Model No	S/N	Manufacturer			
Adaptor for EUT	7411 40502604 04		Shenzhen Zhongling Electronics			
Adaptor for EUT	ZAU-A050200A-04		Technology Co.,Ltd			
Adaptor for EUT			Shenzhen Zhongling Electronics			
Adaptor for EUT	ZAU-A050150A-02		Technology Co.,Ltd			

Table 3 Support Equipment List

3.7.Test Conditions

Date of test : May.19,2016- May.20, 2016 Date of EUT Receive : Mar.31,2016 Temperature: -30-50 °C Relative Humidity:48-56%

3.8. Special Accessories

Not available for this EUT intended for grant.

3.9. Equipment Modifications

Not available for this EUT intended for grant.

4. TEST EQUIPMENT USED

Table 4	Test	Equipment

No.	Equipment	Manufacturer	Model No.	Last Cal.	Cal.
0.00000		Dahda 0. Oakuura	F00000	Dec 40, 0045	
SB2603	EIVII Test Receiver	Ronde & Schwarz	ESC230	Dec.18, 2015	1 Year
SB3321	AMN	Rohde & Schwarz	ESH2-Z5	Jan.17, 2016	1 Year
SB2604	AMN	Rohde & Schwarz	ESH3-Z5	Nov.18, 2015	1 Year
SB8501/09	EMI Test Receiver	Rohde & Schwarz	ESU40	Mar.18, 2016	1 Year
SB8501/04	Bilog Antenna	Schwarzbeck	VULB9163	Mar.18, 2016	1 Year
SB5472/02	Trilog Broadband Antenna(30M-3GHz)	Schwarzbeck	VULB9163	2016, Jan.07	1 Year
SB3435	Horn Antenna	Rohde & Schwarz	HF906	Jan.18, 2016	1 Year
SB8501/01	Double-Ridged Waveguide Horn Antenna(1G~18GHz)	Rohde & Schwarz	HF907	Mar.21, 2016	1 Year
SB3345	Loop Antenna	Schwarzbeck	FMZB1516	Jan.20, 2015	2 Years
SB8501/17	Preamplifier	Rohde & Schwarz	SCU-18	Mar.26, 2016	1 Year
SB8501/16	Preamplifier	Rohde & Schwarz	SCU-26	Mar.26, 2016	1 Year
SB8501/11	Horn Antenna	ETS-Lindgren	3160-09	Mar.28,2016	1 Year
SB9721/05	Power Meter	Agilent	N1913A	Dec.28, 2015	1 Year
SB9721/06	Power Sensor	Agilent	E9304A	Dec.28, 2015	1 Year
SB9060	Signal Analyzer	Rohde & Schwarz	FSQ	Apr.25,2016	1 Year

5. 6DB BANDWIDTH MEASUREMENT

5.1.LIMITS OF 6dB BANDWIDTH MEASUREMENT

CFR 47 (FCC) part 15.247 (a) (2) and 558074 D01 DTS Meas Guidance v03r05

5.2.TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer.

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \geq 3 RBW.

c)Detector = Peak.

d)Trace mode = max hold.

e)Sweep = auto couple.

f)Allow the trace to stabilize.

g)Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.TEST SETUP

5.4. Test Data

Table 5 6dB Bandwidth Test Data BLE

CHANNEL FREQUENCY	6dB BANDWIDTH	results
(MHz)	(MHz)	
2402	0.6765	Pass
2440	0.6713	Pass
2480	0.6704	Pass

6. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

6.1.LIMITS OF Maximum Peak Conducted Output Power Measurement

CFR 47 (FCC) part 15.247 (b) (3) and 558074 D01 DTS Meas Guidance v03r05

6.2.TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer. a)Set the RBW \geq DTS bandwidth. b)Set VBW \geq 3 x RBW. c)Set span \geq 3 x RBW d)Sweep time = auto couple. e)Detector = peak. f)Trace mode = max hold. g)Allow trace to fully stabilize. h)Use peak marker function to determine the peak amplitude level.

6.3. TEST DATA

Center Freq.[MHz]	Meas. Level (Cond.) [dBm]	Limit [dBm]	Result
2402	-0.808	< 30	Pass
2440	0.003	< 30	Pass
2480	0.759	< 30	Pass

Table 6 Maximum Peak Conducted Output Power Test Data BLE

Agilent Spectrum Analyzer - Swept SA				
Center Freq 2.48000000	0 GHz	ALIGNAUTO Avg Type: Log-Pwr	06:25:38 PM May 20, 2016 TRACE 2 8 4 5 6	Frequency
Ref Offset 1 dB 10 dB/div Ref 20.00 dBm	PNO: Fast Low #Atten: 30 d	B Mkr1	2.479 790 GHz 0.759 dBm	Auto Tune
10.0	▲ ¹			Center Freq 2.480000000 GHz
-10.0				Start Freq 2.478500000 GHz
-20.0				Stop Freq 2.481500000 GHz
-40.0				CF Step 300.000 kHz Auto Man
-60.0				Freq Offset 0 Hz
Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 3.0 MHz	Sweep	Span 3.000 MHz 1.00 ms (1001 pts)	

7. MAXIMUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT

7.1.LIMITS OF Maximum Power Spectral Density Level Measurement

CFR 47 (FCC) part 15.247 (e) and 558074 D01 DTS Meas Guidance v03r05

7.2.TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer. a)Set analyzer center frequency to DTS channel center frequency. b)Set the span to 1.5 times the DTS bandwidth. c)Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. d)Set the VBW ≥ 3 RBW. e)Detector = peak. f)Sweep time = auto couple. g)Trace mode = max hold. h)Allow trace to fully stabilize. i)Use the peak marker function to determine the maximum amplitude level within the RBW.

j)If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3.TEST DATA

Center Freq.[MHz]	PSD [dBm]	Limit [dBm]	Result
2402	-1.135	8	Pass
2440	-0.294	8	Pass
2480	0.419	8	Pass

Table 7 Maximum Power Spectral Density Level Test Data BLE

Agilent Spect	rum Analyzer - Swept SA							
Cantas 5	RF 50 Q AC	CH-	SENSE	:INT	ALIGNAUTO	06:32:54 PI	4 May 20, 2016	Frequency
Center F	req 2.44000000	PNO: Far IFGain:Low	Trig: Free R #Atten: 30 di	un Avg B	g Hold>100/100	TVF		
10 dB/div	Ref Offset 1 dB Ref 20.00 dBm				Mkr1 2	.440 008 -0.2	50 GHz 94 dBm	Auto Tune
10.0			1					Center Freq 2.440000000 GHz
-10.0								Start Freq 2.439496525 GHz
-20.0								Stop Freq 2.440503475 GHz
-40.0								CF Step 100.695 kHz Auto Man
-60.0								Freq Offset 0 Hz
-70.0						On an 1	007 8411	
#Res BW	4400000 GHz 100 kHz	#VBW	300 kHz		Sweep	Span 1. 1.00 ms (1007 MHz	
MSG					STATU	1		

Agilent Spect	rum Analyzer - Swept SA							
Center F	reg 2.48000000) GHz	SENSE	Avg T	ALIGNAUTO ype: Log-Pwr	06:33:49 F	M May 20, 2016	Frequency
10 dB/div	Ref Offset 1 dB Ref 20.00 dBm	PNO: Far G IFGain:Low	#Atten: 30 dE	in Avg Hi 3	Mkr1 2	.480 00 0.4	6 0 GHz 19 dBm	Auto Tune
10.0			1					Center Freq 2.480000000 GHz
0.00 -10.0								Start Freq 2.479497200 GHz
-20.0								Stop Freq 2.480502800 GHz
-40.0								CF Step 100.560 kHz Auto Man
-60.0								Freq Offset 0 Hz
Center 2.	4800000 GHz	#\/ 2\4	200 642		Swaan	Span 1	.006 MHz	
write's DW	100 KH2	#VDV	300 KHZ		aweep	1.00 ms	(1001 pts)	

8. CONDUCTED BANDEDGE AND SPURIOUS MEASURMENT

8.1.LIMITS OF Conducted Bandedge and Spurious Measurement

CFR 47 (FCC) part 15.247 (d) and 558074 D01 DTS Meas Guidance v03r05

8.2.TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer. Establish a reference level by using the following procedure: a)Set instrument center frequency to DTS channel center frequency. b)Set the span to \geq 1.5 times the DTS bandwidth. c)Set the RBW = 100 kHz. d)Set the VBW \geq 3 x RBW. e)Detector = peak.f)Sweep time = auto couple. q)Trace mode = max hold. h)Allow trace to fully stabilize. i)Use the peak marker function to determine the maximum PSD level. **Emission level measurement** a)Set the center frequency and span to encompass frequency range to be measured. b)Set the RBW = 100 kHz. c)Set the VBW \geq 3 x RBW. d)Detector = peak.e)Ensure that the number of measurement points \geq span/RBW f)Sweep time = auto couple.

g)Trace mode = max hold.

h)Allow trace to fully stabilize.

i)Use the peak marker function to determine the maximum amplitude level.

TEST DATA

BLE CH0

BLE CH20

BLE CH39

9. RADIATED BANDEDGE AND SPURIOUS MEASUREMENT

9.1.LIMITS OF Radiated Bandedge and Spurious Measurement

CFR 47 (FCC) part 15.247 (d) and 558074 D01 DTS Meas Guidance v03r05

9.2.TEST PROCEDURE

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

3. For measurement below 1GHz, the EUT was placed on a turntable with 0.8 meter, above ground. For measurement above 1 GHz, test at FAR, the EUT is placed on a non-conductive table, which is 1.5 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. Use the following spectrum analyzer settings:

(1) Span shall wide enough to fully capture the emission being measured;

(2) Set RBW=100 kHz for f < 1 GHz; VBW >= RBW; Sweep = auto; Detector function = peak; Trace = max hold;

(3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement.

Set RBW = 1 MHz, and 1/T (on time) for average measurement.

9.3.TEST DATA

9kHz-30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

						```		,	
Frequency MHz	Cable Loss (dB)	Antenna Factor (dB)	Readings (dBµV/m)	Level (dBµV/m)	Polarity (H/V)	Turntable Angle (deg)	Antenna Height (m)	Limits (dBµV/m)	Margin (dB)

Table 8 Radiated Emission Test Data 9k Hz-30MHz(worst case)

#### 30MHz-1GHz

Worst case is shown below for 30MHz-1GHz only.

The emissions don't show in following result tables are more than 20dB below the limits.

Table 9 Radiated Emission Test Data 30MHz-1GHz(Adapter Model:ZAU-A050260A-04)

Frequency MHz	Cable Loss (dB)	Antenna Factor (dB)	Readings (dBµV/m)	Level (dBµV/m)	Polarity (H/V)	Turntable Angle (deg)	Antenna Height (m)	Limits (dBµV/m)	Margin (dB)
55.270	0.8	13.0	16.3	30.1	V	20	1.0	40.0	9.9
62.730	0.9	12.7	14.3	27.9	V	0	1.0	40.0	12.1
171.935	1.5	9.0	20.1	30.6	V	0	1.0	43.5	12.9
210.296	1.7	10.6	14.2	26.5	V	70	1.0	43.5	17.0
253.547	1.9	12.1	13.1	27.1	V	50	1.0	46.0	18.9
310.270	2.1	13.1	11.7	26.9	V	60	1.0	46.0	19.1
55.260	0.8	13.0	17.8	31.6	Н	70	3.0	40.0	8.4
69.701	0.9	10.7	18.4	30.0	Н	160	3.0	40.0	10.0
90.260	1.1	11.9	12.1	25.1	Н	120	2.0	43.5	18.4
170.260	1.5	9.0	11.1	21.6	Н	0	2.0	43.5	21.9
186.270	1.5	9.7	9.5	20.7	Н	20	2.0	43.5	22.8
246.76	1.8	12.1	17.8	31.7	Н	100	2.0	46.0	14.3

### 30MHz-1GHz

Worst case is shown below for 30MHz-1GHz only.

The emissions don't show in following result tables are more than 20dB below the limits.

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB)	Readings (dBµV/m)	Level (dBµV/m)	Polarity (H/V)	Turntable Angle(deg)	Antenna Height(m)	Limits (dBµV/m)	Margin (dB)
38.764	0.7	12.3	18.2	31.2	V	340	1.0	40.0	8.8
44.606	0.7	13.6	7.3	21.6	V	310	1.0	40.0	18.4
55.295	0.8	13.0	17.9	31.7	V	90	1.0	40.0	8.3
64.156	0.9	12.7	9.2	22.8	V	170	1.0	40.0	17.2
79.597	1.0	7.8	19.6	28.4	V	60	1.0	40.0	11.6
85.868	1.0	10.3	11.9	23.2	V	310	1.0	40.0	16.8
41.663	0.7	13.6	2.5	16.8	Н	30	2.0	40.0	23.2
55.811	0.9	13.0	10.8	24.7	Н	310	2.0	40.0	15.3
69.796	0.9	10.7	6.3	17.9	Н	60	2.0	40.0	22.1
77.783	1.0	7.8	18.9	27.7	Н	320	2.0	40.0	12.3
82.486	1.0	8.5	14.9	24.4	Н	0	2.0	40.0	15.6
103.867	1.3	13.2	2.4	16.9	Н	350	2.0	43.5	26.6

Table 10 Radiated Emission Test Data 30MHz-1GHz(Adapter Model:ZAU-A050150A-02)

### **EUT Information**

EUT Model Name:	i6200S
Operation mode:	Changing
Test Voltage:	AC 120V/60Hz
Adapter Model:	Adapter Model:ZAU-A050260A-04

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal\ Vertical



### **EUT Information**

EUT Model Name:	i6200S
Operation mode:	Changing
Test Voltage:	AC 120V/60Hz
Adapter Model:	Adapter Model: ZAU-A050150A-02

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal\ Vertical



1GHz-18GHz BLE CH0

### **Radiated Emission**

### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal





### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical





### 18GHz-26.5GHz

### **Radiated Emission**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal

FCC Electric Field Strength 18-26.5GHz



### **EUT Information**

EUT Model Name:	
Operation mode:	
Test Voltage:	
Comment:	

I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

#### FCC Electric Field Strength 18-26.5GHz

Vertical



### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal





### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical

#### FCC Electric Field Strength 2.4GHz Bandedge-PK



### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal





### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH0

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical

#### FCC Electric Field Strength 2.4GHz Bandedge-AV



### BLE CH20

### **Radiated Emission**

### **EUT Information**

EUT Model Name:	
Operation mode:	
Test Voltage:	
Comment:	

I6200S BLE CH20

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal

#### FCC Electric Field Strength 1-18GHz operate on 2.4GHz



### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: I6200S BLE CH20

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical





### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: 16200S BLE CH20

### **Common Information**

Test Site: Environment Antenna Polarization: SMQ EMC Lab. Horizontal



21

23

24

25

22

Frequency in GHz

20

19

#### FCC Electric Field Strength 18-26.5GHz

40

30

18

### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: 16200S BLE CH20

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical

#### FCC Electric Field Strength 18-26.5GHz



### **EUT Information**

EUT Model Name:	
Operation mode:	
Test Voltage:	
Comment:	

16200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal



### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: 16200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical





### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: 16200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: SMQ EMC Lab.

Horizontal

FCC Electric Field Strength 18-26.5GHz



### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: 16200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

FCC Electric Field Strength 18-26.5GHz

Vertical



### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: 16200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal





### **EUT Information**

EUT Model Name:
Operation mode:
Test Voltage:
Comment:

16200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical



### **EUT Information**

EUT Model Name: Operation mode: Test Voltage: Comment: 16200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Horizontal





### **EUT Information**

EUT Model Name:
Operation mode:
Test Voltage:
Comment:

I6200S BLE CH39

### **Common Information**

Test Site: Environment Antenna Polarization: Operator Name: Comment: SMQ EMC Lab.

Vertical





### 10. CONDUCTED EMISSION TEST FOR AC POWER PORT MEASUREMENT

### 10.1.Test Standard and Limit

10.1.1.Test Standard

FCC Part 15 15.207

### 10.1.2.Test Limit

Table TT Conducted Disturbance Test Lini	Table 11	Conducted	Disturbance	Test	Limit
------------------------------------------	----------	-----------	-------------	------	-------

Fraguanav	Maximum RF Line Voltage (dBµV)				
Trequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

* Decreasing linearly with logarithm of the frequency

* The lower limit shall apply at the transition frequency.

#### 10.2.Test Procedure

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI test receiver (R&S Test Receiver ESCS30) is used to test the emissions form both sides of AC line. According to the requirements of ANSI

C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

The bandwidth of EMI test receiver is set at 9kHz.

#### 10.3.Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

### 10.4.Test Data

The emissions don't show in below are too low against the limits. Refer to the test curves.

Test mode: Charging and transmitter								
	Frequency Correction Quasi-Peak Average							
	(MHz)	Factor (dB)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBµV)	Reading (dBμV)	Emission Level (dBµV)	Limits (dBµV)
	0.178	9.7	43.3	53.0	64.6	32.8	42.5	54.6
	0.242	9.7	40.6	50.3	62.0	32.0	41.7	52.0
Line	0.542	9.8	29.9	39.7	56.0	25.4	35.2	46.0
	0.682	9.8	35.7	45.5	56.0	29.9	39.7	46.0
	0.746	9.8	35.7	45.5	56.0	30.2	40.0	46.0
	21.696	10.2	36.0	46.2	60.0	28.8	39.0	50.0
	0.1500	9.7	39.5	49.2	66.0	24.5	34.2	56.0
	0.198	9.7	37.6	47.3	63.7	24.1	33.8	53.7
Neutral	0.230	9.7	36.1	45.8	62.4	24.9	34.6	52.4
	0.598	9.8	34.0	43.8	56.0	28.3	38.1	46.0
	0.714	9.8	40.3	50.1	56.0	35.5	45.3	46.0
	1.062	9.8	29.4	39.2	56.0	24.6	34.4	46.0

## Table 12 Conducted Disturbance Test Data (Adapter Model:ZAU-A050260A-04) Model No.: i6200S Model No.: i6200S

REMARKS: 1. Emission level(dBuV)=Read Value(dBuV) + Correction Factor(dB)

2. Correction Factor(dB) =LISN Factor (dB) + Cable Factor (dB)+Limiter Factor(dB)

3. The other emission levels were very low against the limit.

Model No.: i6200S									
Test mode: Charging and transmitter									
	Frequency Correction Quasi-Peak Average								
	(MHz)	Factor (dB)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBµV)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBµV)	
	0.390	9.7	46.5	56.2	58.1	38.4	48.1	48.1	
	0.470	9.7	42.4	52.1	56.5	35.4	45.1	46.5	
Line	0.578	9.8	40.5	50.3	56.0	29.6	39.4	46.0	
Line	0.686	9.8	39.3	49.1	56.0	28.7	38.5	46.0	
	0.894	9.8	37.6	47.4	56.0	26.3	36.1	46.0	
	1.282	9.8	35.7	45.5	56.0	28.9	38.7	46.0	
	0.398	9.7	41.1	50.8	57.9	33.4	43.1	47.9	
Neutral	0.466	9.7	40.6	50.3	56.6	33.1	42.8	46.6	
	0.478	9.7	38.2	47.9	56.4	29.8	39.5	46.4	
	0.670	9.8	38.0	47.8	56.0	31.5	41.3	46.0	
	0.954	9.8	35.2	45.0	56.0	28.2	38.0	46.0	
	1.470	9.8	34.2	44.0	56.0	26.1	35.9	46.0	

### Table 13 Conducted Disturbance Test Data (Adapter Model:ZAU-A050150A-02)

REMARKS: 1. Emission level(dBuV)=Read Value(dBuV) + Correction Factor(dB)

2. Correction Factor(dB) =LISN Factor (dB) + Cable Factor (dB)+Limiter Factor(dB)

3. The other emission levels were very low against the limit.

EUT:i6200SOperating Condition:Charging and transmitterAdapter Model:ZAU-A050260A-04Test Specification:LComment:AC 120V/60Hz



EUT:i6200SOperating Condition:Charging and transmitterAdapter Model:ZAU-A050260A-04Test Specification:NComment:AC 120V/60Hz



EUT:i6200SOperating Condition:Charging and transmitterAdapter Model:ZAU-A050150A-02Test Specification:LComment:AC 120V/60Hz



EUT:i6200SOperating Condition:Charging and transmitterAdapter Model:ZAU-A050150A-02Test Specification:NComment:AC 120V/60Hz



### **11.ANTENNA REQUIREMENTS**

### 11.1.Applicable requirements

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

### 11.2.Antenna Connector

Antenna Connector is on the PCB within enclosure and not accessible to user.

#### 11.3.Antenna Gain

The antenna gain of EUT is less than 6 dBi.