EMC TEST REPORT

KOSTEC CO., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si, Gyeonggi-do, Korea Tel:031-222-4251, Fax:031-222-4252

Report No.: KST-FCC-220005

1. Applicant

• Name :

Dogtra Co., Ltd.

· Address :

35, Namdongdong-ro 33beon-gil, Namdong-gu, Incheon 21694 Rep. of KOREA

2. Test Item

Product Name :

DOG TRAINING DEVICE

Model Name :

iQ Plus Rx

• FCC ID:

SWN-TD10UR

3. Manufacturer

• Name :

Dogtra Co., Ltd.

· Address:

35, Namdongdong-ro 33beon-gil, Namdong-gu, Incheon 21694 Rep. of KOREA

4. Date of Test:

Mar. 06, 2022 to Mar. 07, 2022

5. Test Method Used:

ANSI C63.4:2014

47 CFR Part 15 Subpart B Class B

6. Test Result:

Pass

7. Note:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

Affirmation

Tested by

Name: Young-Seok, Shin (Signature)

Technical Manager

Name: Chang-Ho, Lee (Signature)

2022.03.08.

KOSTEC Co., Ltd.

Revision History of Test Report

Rev.	Revisions	Effect page	Reviewed	Date
-	Initial issue	All	Chang-Ho, Lee	Mar. 08, 2022

KST-FCC-EMC-Rev.0.7 Page: 2 / 29

Contents

1.		General Information · · · · · · · · · · · · · · · · · · ·
	1.1	Information of EUT
	1.2	Applicants Information
2.		Information of Testing Laboratory
3.		Test System Configuration
	3.1	Operation Environment ······
	3.2	Measurement Uncertainty
	3.3	Sample calculation
4.		Condition and Procedure for Test activities
	4.1	Configuration of EUT
	4.2	Used Peripherals
	4.3	Used cables
	4.4	EUT Test Configuration
	4.5	Operating conditions
5.		Summary of Test Results 10
	5.1	Modification to the EUT
	5.2	Summary of Test Results 10
6.	Te	est Results······1
	6.1	Conducted Emission1
	6.2	Radiated Emission 15
7.		Test Setup and EUT Photographs

1. General Information

1.1 Information of EUT

Product Name	DOG TRAINING DEVICE		
Model Name	iQ Plus Rx		
Serial No.	None		
Type of Sample Tested	Pre-production		
Supplied Power for Test	AC 120 V, 60 Hz, (Battery) DC 3.7 V, 330 mAh, 1.22 Wh		
AC/DC Adapter (for EUT)	M/N: MKC-0501000S Manufacturer: Dogtra Input: AC 100 - 240 V, 50/60 Hz, 0.4 A Output: DC 5 V, 1000 mA		
Port	DC In		
Whether or not ground	Without-ground		

This information was provided by the applicants

Clock used	4 MHz				
High Frequency Used 27.195 ₩z					
Operating Frequency	(Rx) 27.195 MHz				
Hardware Version RevNTC					
Software Version	SSR-rev500				
Model differences					
Model name Difference To (ch					
-	-	-			

1.2 Applicants Information

Applicant	Dogtra Co., Ltd.
Address	35, Namdongdong-ro 33beon-gil, Namdong-gu, Incheon 21694 Rep. of KOREA
Telephone No.	+82-32-812-2445
Facsimile No.	+82-32-812-2449
Contact person	Park In jun (paul@dogtra.com)

KST-FCC-EMC-Rev.0.7 Page: 4 / 29

2. Information of Testing Laboratory

Test laboratory and address

KOSTEC Co., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

Telephone Number: 82-31-222-4251 Facsimile Number: 82-31-222-4252

Registration information

KOLAS No.: KT232

RRA(National Radio Research Agency): KR0041

FCC Designation No.: KR0041 IC Designation No.: KR0041 VCCI Membership No.: 2005

VCCI Registration No. of EMI site: R-14202 / C-14685 / G-10834 / T-12225

Route Map of Measurement Facility

KST-FCC-EMC-Rev.0.7 Page: 5 / 29

3. Test System Configuration

3.1 Operation Environment

Test Items	Test date	Temp (℃)	Humidity (%R.H.)
Conducted Emissions	Mar. 07	20	41
Radiated Emission (Below 1 ଔz)	Mar. 06	18	40
Radiated Emission (Above 1 ઊંટ)	Mar. 06	18	40

3.2 Measurement Uncertainty

Test Items	k p	Expanded Uncertainty	Note
Conducted Emissions	2	±3.62 dB	-
Radiated Emission (Below 1 ଔz)	2	±4.26 dB	-
Radiated Emission (Above 1 @z)	2	±3.68 dB	-

3.3 Sample calculation

Conducted Emission

The field strength is calculated by adding the LISN factor, cable loss from the measured reading. The sample calculation is as follows:

FS = MR + Factor MR = Meter Reading Factor = Ant. Factor, Cable Loss, etc

If MR is 30 dB, LISN Factor 1 dB, CL 1 dB The result (MR) is 30 + 1 + 1 = 32 dB μ V

KST-FCC-EMC-Rev.0.7 Page: 6 / 29

4. Condition and Procedure for Test activities

4.1 Configuration of EUT

Description	Model or Part No.	Serial No.	Manufacturer	
DOG TRAINING DEVICE	iQ Plus Rx	None	Dogtra Co., Ltd.	
AC/DC Adapter	MKC-0501000S	None	Dogtra	

4.2 Used Peripherals

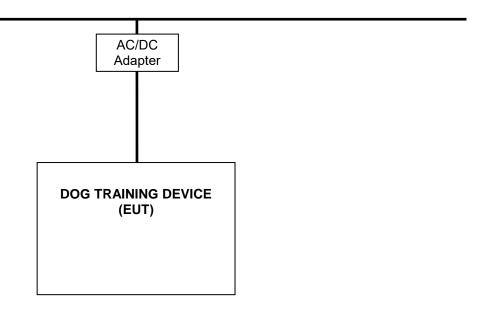
Description	Model or Part No.	Serial No.	Manufacturer
-	-	-	-

4.3 Used cables

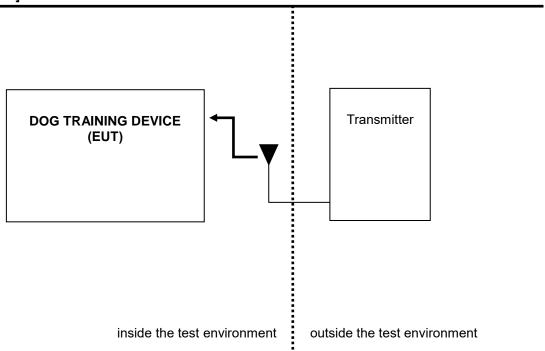
[Mode 11

Į	mode 1 j							
	Cable Type	Shield	Length (m)	Ferrite	Connector	Connection Point 1	Connection Point 2	
	DC In	No	1.5	No	Din	EUT	AC/DC Adapter	

[Mode 2, Mode 3]


Cable Type	Shield	Length (m)	Ferrite	Connector	Connection Point 1	Connection Point 2
-	-	-	-	-	-	

KST-FCC-EMC-Rev.0.7 Page: 7 / 29



4.4 EUT Test Configuration

[Mode 1]

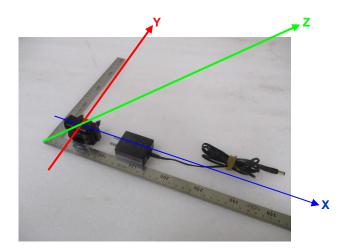
[Mode 2, Mode 3]

KST-FCC-EMC-Rev.0.7 Page: 8 / 29

4.5 Operating conditions

[Mode 1]

After setting, the DC In ports of EUT was connected to AC/DC Adapter. After that, the EUT was continuously charged.


[Mode 2, Mode 3]

After setup, the EUT was continuous operated with wireless communication.

***** Test Mode

Mode 1 : Charge ModeMode 2 : Vibration ModeMode 3 : Electric Mode

※ Worst case of 3 orientations : X axis

KST-FCC-EMC-Rev.0.7 Page: 9 / 29

5. Summary of Test Results

5.1 Modification to the EUT

-

5.2 Summary of Test Results

The following tests were performed on a sample submitted for evaluation of compliance with FCC Part 15 Subpart B

Clause	Test Requirement	Result
15.107	Conducted Emissions	Pass
15.109	Radiated Emission (Below 1 ଔz)	Pass
15.109	Radiated Emission (Above 1 ઊંટ)	Pass

Note 1) N/A mean is Not Applicable.

Note 2) Decision rule: The statement of conformity in this report was judged according to the specification limits of the standard without considering uncertainty.

Note 3) This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014

KST-FCC-EMC-Rev.0.7 Page: 10 / 29

6. Test Results

6.1 Conducted Emission

6.1.1 Measurement procedure

In the range of 0.15 Mb to 30 Mb, the conducted disturbance was measured and set-up was made accordance with ANSI C63.4.

If the EUT is table top equipment, it was placed on a wooden table with a height of 0.8 m above the reference ground plane and 0.4 m from the conducting wall of the shielded room. Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to 0.15 m above the reference ground plane.

Connect the EUT's power source lines to the appropriate power mains / peripherals through the LISN. All the other peripherals are connected to the 2nd LISN, if any.

Unused measuring port of the LISN was resistively terminated by 50 ohm terminator.

The measuring port of the LISN for EUT was connected to spectrum analyzer.

Using conducted emission test software, the emissions were scanned with peak detector mode. After scanning over the frequency range, suspected emissions were selected to perform final measurement. When performing final measurement, the receiver was used which has Quasi-Peak detector and Average detector.

By varying the configuration of the test sample and the cable routing it was attempted to maximize the emission.

For further description of the configuration refer to the picture of the test set-up.

6.1.2 Limit for conducted emission

(1) Conducted emission at mains ports.

F		Limits [dB(μV)]		
Frequency range [艦]	Quas	i-peak	Average		
[mw]	Class A	Class B	Class A	Class B	
0.15 to 0.50	79	66 to 56	66	56 to 46	
0.50 to 5	70	56	60	46	
5 to 30	73	60	00	50	

Note 1 The lower limit shall apply at the transition frequencies.

Note 2 The limit decreases linearly with the logarithm of the frequency in the range 0.15 Mb to 0.5 Mb.

Note) 1. Emission level = Reading value + Correction factor.

- 2. Correction factor = Cable loss + Insertion loss of LISN
- 3. Margin = Limit Emission level

KST-FCC-EMC-Rev.0.7 Page: 11 / 29

6.1.3 Used equipment

Equipment	Model No.	Serial No. Manufacturer		Next cal date	Used
Test Receiver	ESCS30	100111	Rohde & Schwarz	2023. 01. 17	•
EMI RECEIVER	ER-30	L0910A010	LIG	2022. 08. 30	-
Pulse Limiter	ESH3-Z2	100097	Rohde & Schwarz	2023. 01. 17	•
Pulse Limiter	ESH3-Z2	100022	Rohde & Schwarz	2023. 01. 17	-
LISN	ESH3-Z5	100147	Rohde & Schwarz	2023. 01. 17	•
LISN	ESH2-Z5	100044	Rohde & Schwarz	2023. 01. 18	-
LISN	ESH2-Z5	100060	Rohde & Schwarz	2023. 01. 18	-
LISN	3825/2	9402-2163	ETS-Lindgren	2023. 01. 18	-
Test Program	ESxS-K1 Ver2.2	None	Rohde & Schwarz	-	•
Test Program	ETS2008 Ver2.40	None	LIG	-	-

6.1.4 Test data

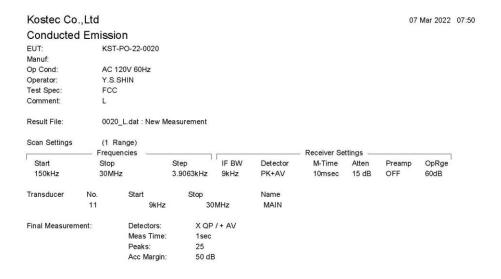
< Class B >

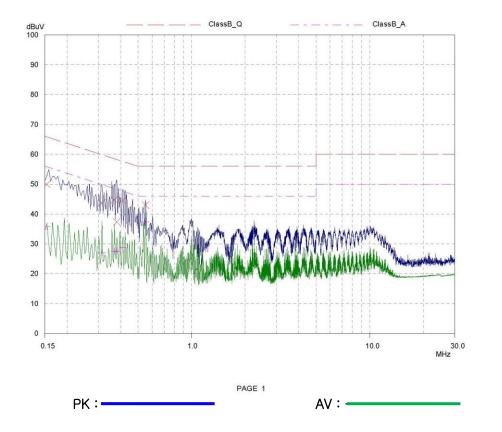
	Class D >										
Freq.	Fact	tor [dB]	· [dB] QP C			CISPE	R-AV				
[Mb] LISN CABLE +P/L	POL	Limit [dB(µV])	Reading [dB(µV)]	Result [dB(µV)]	Margin [dB]	Limit [dB(µV])	Reading [dB(µV)]	Result [dB(µV)]	Margin [dB]		
0.154	0.16	9.89	L	65.79	49.94	50.10	15.69	55.79	36.20	36.36	19.43
0.314	0.15	9.91	L	59.86	43.65	43.80	16.06	49.86	27.30	27.45	22.41
0.345	0.13	9.92	Ν	59.07	49.72	49.85	9.22	49.07	41.40	41.53	7.54
0.361	0.13	9.92	Ν	58.71	53.08	53.21	5.50	48.71	43.50	43.63	5.08
0.373	0.13	9.92	Ν	58.44	54.56	54.69	3.75	48.44	45.30	45.43	3.01
0.380	0.15	9.92	L	58.27	37.34	37.49	20.78	48.27	27.90	28.05	20.22
0.396	0.13	9.92	Ν	57.93	54.49	54.62	3.31	47.93	44.20	44.33	3.60
0.412	0.15	9.92	L	57.61	44.61	44.76	12.85	47.61	28.80	28.95	18.66
0.420	0.13	9.92	Ν	57.46	50.72	50.85	6.61	47.46	42.90	43.03	4.43
0.466	0.13	9.93	Ν	56.58	49.68	49.81	6.77	46.58	40.80	40.93	5.65
0.552	0.15	9.93	L	56.00	43.02	43.17	12.83	46.00	37.50	37.65	8.35

^{*} LISN: LISN insertion Loss, Cable: Cable Loss, P/L: pulse limiter factor

※ Tested Mode: Mode 1

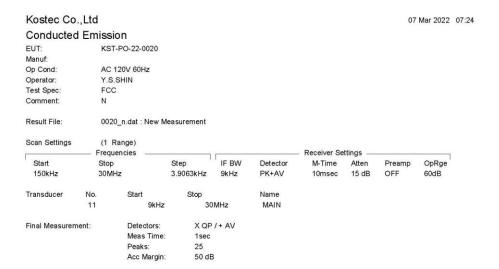
KST-FCC-EMC-Rev.0.7 Page: 12 / 29

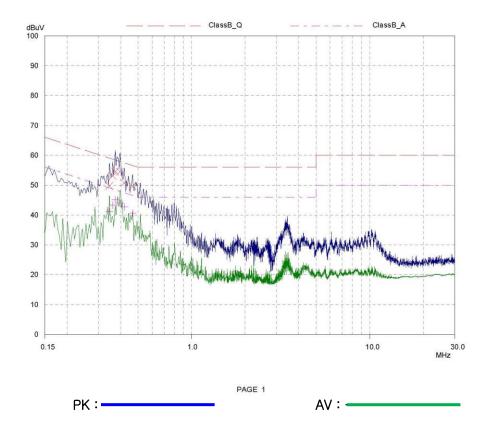

^{*} L: Line. Live, N: Line. Neutral
* Reading: test receiver reading value (with cable loss & pulse limiter factor)


^{*} Result = LISN + Reading

6.1.5 Conducted emission test graph

Line. Live





KST-FCC-EMC-Rev.0.7 Page: 13 / 29

Line. Neutral

KST-FCC-EMC-Rev.0.7 Page: 14 / 29

6.2 Radiated Emission

6.2.1 Measurement procedure

The radiated disturbance was measured and set-up was made accordance with ANSI C63.4. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 m above the reference ground plane and 3 m or 10 m away from the interference receiving antenna in the 10 m semi-anechoic chamber.

Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to 0.15 m above the reference ground plane.

Rotate the EUT from (0 - 360)° and position the receiving antenna at heights from (1 - 4) m above the reference ground plane continuously to determine associated with higher emission levels and record them.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

For below 1 Ill frequency range, Quasi-Peak detector with 120 Ill RBW was used.

Also Peak and Average detector with 1 Mb RBW were used for above 1 Gb frequency range.

For further description of the configuration refer to the picture of the test set-up.

6.2.2 Limit for Radiated emission

- The test frequency range of Radiated disturbance measurements are listed below.

Highest frequency generated or used in the device or on which the device operates or tunes [雕]	Upper frequency of measurement range [雕]
Below 108	1 000
108 – 500	2 000
500 – 1 000	5 000
Above 1 000	5 th harmonic of the highest frequency or 40 ଔz, whichever is lower

(1) Limit for Radiated emission below 1 000 Mb

Frequency range [船]	Class A Equipment (10 m distance) Quasi-peak [dB(µV/m)]	Class B Equipment (3 m distance) Quasi-peak [dB(µV/m)]
30 to 88	39.1	40
88 to 216	43.5	43.5
216 to 960	46.4	46
960 to 1 000	49.5	54

Note 1 The lower limit shall apply at the transition frequency.

Note 2 Additional provisions may be required for cases where interference occurs.

Note 3 According to 15.109(g), as an alternative to the radiated emission limit shown above, digital devices may be shown to comply with the standards(CISPR), Pub. 22 shown as below.

Frequency range [艦]	Class A Equipment (10 m distance) Quasi-peak	Class B Equipment (10 m distance) Quasi-peak
	[dB(µV/m)]	[dB(µV/m)]
30 to 230	40	30
230 to 1 000	47	37

KST-FCC-EMC-Rev.0.7 Page: 15 / 29

(2) Limits for Radiated emission above 1 000 $\,\mathrm{Mb}$ at a measuring distance of 3 m

Frequency [GHz]	Class A E	quipment	Class B Equipment		
	Peak [dΒ(μV/m)]	Average [dΒ(μV/m)]	Peak [dB(μV/m)]	Average [dB(μV/m)]	
1 to 40	80	60	74	54	

- Note) 1. Emission level = Reading value + Correction factor.
 - 2. Correction factor = Cable loss Amp gain + Antenna factor + Distance compensation value
 - 3. Margin = Limit Emission level

Fig.1 Dimensions of test site (Below 1 GHz): Class A (10 m), Class B (3 m)

Semi-Anechoic Chamber (9.8 m x 18.8 m x 8.7 m)

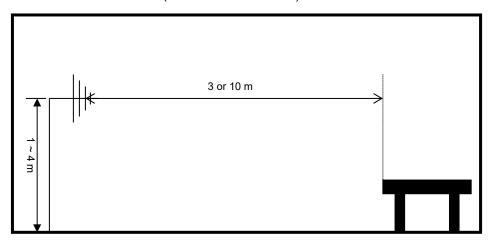
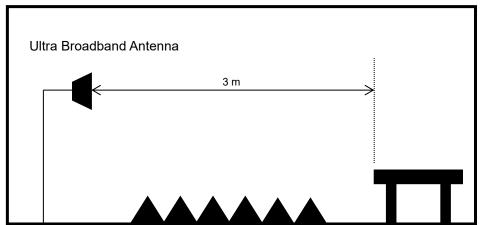



Fig.2 Dimensions of test site (Above 1 GHz)

Semi-Anechoic Chamber + Absorber

KST-FCC-EMC-Rev.0.7 Page: 16 / 29

6.2.3 Used equipment

1) Below 1 GHz

3 m Semi-Anechoic chamber

Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Used
Test Receiver	ESI	837514/004	Rohde & Schwarz	2022. 08. 30	-
Hybrid Antenna	VULB9168	606	Schwarzbeck	2022. 09. 21	-
LOW NOISE AMPLIFIER	TK-PA01S	200141-L	TESTEK	2022. 08. 31	-
Antenna Mast	MA4640	None	innco systems GmbH	-	-
Turn Table	DS2000-S-1t	None	innco systems GmbH	-	-

10 m Semi-Anechoic chamber

Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Used
Test Receiver	ESCI7	100823	Rohde & Schwarz	2023. 01. 17	•
Test Receiver	ESPI	100488	Rohde & Schwarz	2023. 01. 17	-
Biconilog Antenna	3142B	1745	ETS-Lindgren	2022. 04. 24	•
Biconilog Antenna	3142B	9910-1432	ETS-Lindgren	2022. 04. 07	_
Antenna Master	enna Master MA4000-EP None		innco systems GmbH	-	•
Turn Table	None	None	innco systems GmbH	-	•
AMPLIFIER	AMPLIFIER TK-PA6S 120009		TESTEK	2023. 01. 17	•

KST-FCC-EMC-Rev.0.7 Page: 17 / 29

2) Above 1 GHz

3 m Semi-Anechoic chamber

Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Used
Test Receiver	ESI	837514/004	Rohde & Schwarz	2022. 08. 30	_
Horn Antenna	3115	2996	ETS-Lindgren	2023. 02. 10	_
Broadband Horn Antenna	BBHA 9170	743	SCHWARZBECK MESS-ELEKTRONIK	2023. 01. 21	-
Antenna Mast	MA4640	None	None innco systems GmbH		-
Turn Table	DS2000-S-1t	None	innco systems GmbH	-	-
AMPLIFIER	8449B	3008A02577	Agilent	2023. 01. 17	-
Low Noise Amplifier	TK-PA1840H	160010-L	TESTEK	2023. 01. 18	_

10 m Semi-Anechoic chamber

Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Used
Test Receiver	ESCI7	100823	Rohde & Schwarz	2023. 01. 17	•
RECEIVER	ESI	837514/004	Rohde & Schwarz	2022. 08. 30	-
Test Receiver	ESCI7	100969	Rohde & Schwarz	2023. 01. 17	-
Horn Antenna	3115	9605-4834	ETS-Lindgren	2023. 03. 02	-
Horn Antenna	3115	2996	ETS-Lindgren	2023. 02. 10	•
Broadband Horn Antenna	BBHA 9170	743	SCHWARZBECK MESS-ELEKTRONIK	2023. 01. 21	-
Antenna Master	MA4000-EP	None	innco systems GmbH	-	•
Turn Table	None	None	innco systems GmbH	-	•
AMPLIFIER	TK-PA6S	120009	TESTEK	2023. 01. 17	-
AMPLIFIER	8449B	3008A02577	Agilent	2023. 01. 17	_
AMPLIFIER	8449B	3008A00149	H.P	2022. 08 .31	•
Low Noise Amplifier	TK-PA1840H	160010-L	TESTEK	2023. 01. 18	-

KST-FCC-EMC-Rev.0.7 Page: 18 / 29

6.2.4 Test data

a) Below 1 GHz

[Mode 1]

< Class B >

Fred	Freq. Reading		во Н		Factor			Result	Margin
[MHz]	. 1	POL [m]		ANT. [dB/m]	CABLE [dB]	AMP. [dB]	Limit [dΒ(μV/m)]	[dB(μV/m)]	[dB]
49.55	17.38	V	1.0	14.32	1.41	43.53	40.00	17.38	22.62
58.97	16.25	V	1.0	13.29	1.50	43.00	40.00	16.25	23.75
74.59	19.70	V	1.0	12.85	1.76	42.15	40.00	19.70	20.30
80.11	23.64	V	1.0	12.91	1.83	41.90	40.00	23.64	16.36
107.60	19.73	V	1.0	13.81	2.20	41.14	43.50	19.73	23.77
136.87	19.99	Н	2.0	13.55	2.47	41.28	43.50	19.99	23.51

^{*} Result & Reading: Test receiver reading value (Included ANT., CABLE and AMP. factor)

[Mode 2]

< Class B >

Freq.	Reading		н		Factor		Limit	Result	Margin	
[MHz]	[dB(μV)]	POL	[m]	ANT. [dB/m]	CABLE [dB]	AMP. [dB]	[dB(µV/m)]	[dB(μV/m)]	[dB]	
58.15	14.27	V	1.0	13.37	1.49	43.05	40.00	14.27	25.73	

^{*} Result & Reading: Test receiver reading value (Included ANT., CABLE and AMP. factor)

Except for the above data, the emission levels were very low, so that the other data are not reported. (See Radiated Emission Graph)

[Mode 3]

< Class B >

Freq.	Reading - H Factor			Limit	Result	Margin			
[MHz]	[dB(μV)]	POL	[m]	ANT. [dB/m]	CABLE [dB]	AMP. [dB]	[dB(<i>µ</i> V/m)]	[dB(μV/m)]	[dB]
59.31	12.87	V	1.0	13.26	1.50	42.98	40.00	12.87	27.13

^{*} Result & Reading: Test receiver reading value (Included ANT., CABLE and AMP. factor)

Except for the above data, the emission levels were very low, so that the other data are not reported. (See Radiated Emission Graph)

KST-FCC-EMC-Rev.0.7 Page: 19 / 29

^{*} POL = Antenna Polarization / H = Antenna Height * Receiving Antenna Mode : Horizontal, Vertical

^{*} ANT. = Antenna factor / CABLE = used Cable loss/AMP.: Gain of the Amplifier

^{*} POL = Antenna Polarization / H = Antenna Height * Receiving Antenna Mode : Horizontal, Vertical

^{*} ANT. = Antenna factor / CABLE = used Cable loss/AMP.: Gain of the Amplifier

^{*} POL = Antenna Polarization / H = Antenna Height * Receiving Antenna Mode : Horizontal, Vertical

^{*} ANT. = Antenna factor / CABLE = used Cable loss/AMP.: Gain of the Amplifier

b) Above 1 GHz

[Mode 1]

< Class B >

Erea	Freq. Reading		Р	Н		Fa	ctor			Peak		CIS	SPR Avera	ige
[GHz]	Peak [dB(µV)]	Average [dΒ(μV)]	O L	[m]	ANT. [dB/m]	CABLE [dB]	AMP. [dB]	Distance [dB]	Limit [dB(µV/m)]	Result [dB(µV/m)]	Margin [dB]	Limit [dB(µV/m)]	Result [dB(µV/m)]	Margin [dB]
3.480	53.38	39.88	Н	1.0	31.12	10.45	34.45	1.34	74.00	54.72	19.28	54.00	41.22	12.78
3.620	52.63	40.42	٧	1.0	31.82	11.03	34.52	1.34	74.00	53.97	20.03	54.00	41.76	12.24

^{*} Result = Reading + Distance

Distance: Distance compensation value

Except for the above data, the emission levels were very low, so that the other data are not reported. (See Radiated Emission Graph)

[Mode 2]

< Class B >

Freq.	Rea	ading	РН		Factor				Peak			CISPR Average		
[GHz]	Peak [dB(µV)]	Average [dB(µV)]	O L	[m]	ANT. [dB/m]	CABLE [dB]	AMP. [dB]	Distance [dB]	Limit [dB(µV/m)]	Result [dB(µV/m)]	Margin [dB]	Limit [dB(µV/m)]	Result [dB(µV/m)]	Margin [dB]
1.657	43.51	29.95	Н	1.0	26.09	6.89	35.49	1.58	74.00	45.09	28.91	54.00	31.53	22.47
2.575	47.23	33.59	٧	1.0	29.13	8.77	34.61	1.58	74.00	48.81	25.19	54.00	35.17	18.83

^{*} Result = Reading + Distance

Distance: Distance compensation value

Except for the above data, the emission levels were very low, so that the other data are not reported. (See Radiated Emission Graph)

[Mode 3]

< Class B >

Freq.	Reading		Р	Р	Factor				Peak			CISPR Average		
[GHz]	Peak [dB(µV)]	Average [dB(μV)]	0 L	H [m]	ANT. [dB/m]	CABLE [dB]	AMP. [dB]	Distance [dB]	Limit [dB(µV/m)]	Result [dB(µV/m)]	Margin [dB]	Limit [dB(µV/m)]	Result [dB(µV/m)]	Margin [dB]
2.363	46.41	32.85	Н	1.0	28.34	8.51	34.84	1.58	74.00	47.99	26.01	54.00	34.43	19.57
2.431	46.38	32.89	٧	1.0	28.69	9.09	34.78	1.58	74.00	47.96	26.04	54.00	34.47	19.53

^{*} Result = Reading + Distance

Distance: Distance compensation value

Except for the above data, the emission levels were very low, so that the other data are not reported. (See Radiated Emission Graph)

KST-FCC-EMC-Rev.0.7 Page: 20 / 29

^{*} Reading: Test receiver reading value (Included ANT., CABLE and AMP. factor)

^{*} POL = Antenna Polarization / H = Antenna Height * Receiving Antenna Mode : Horizontal, Vertical

^{*} ANT. = antenna factor / CABLE = used cable loss / AMP.: Gain of the Amplifier /

^{*} Reading: Test receiver reading value (Included ANT., CABLE and AMP. factor)

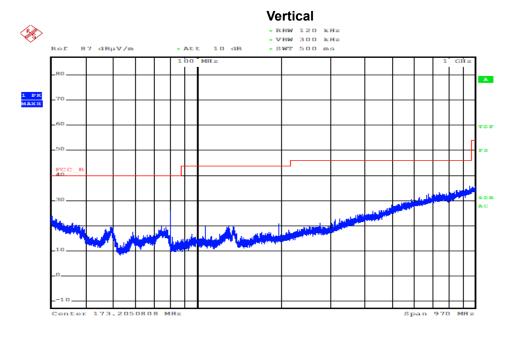
^{*} POL = Antenna Polarization / H = Antenna Height * Receiving Antenna Mode : Horizontal, Vertical

^{*} ANT. = antenna factor / CABLE = used cable loss / AMP.: Gain of the Amplifier /

^{*} Reading: Test receiver reading value (Included ANT., CABLE and AMP. factor)

^{*} POL = Antenna Polarization / H = Antenna Height * Receiving Antenna Mode : Horizontal, Vertical

^{*} ANT. = antenna factor / CABLE = used cable loss / AMP.: Gain of the Amplifier /


6.2.5 Radiated Emission test graph

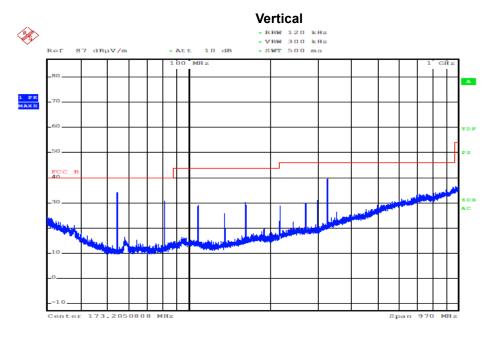
a) Below 1 Hz

[Mode 1]

Horizontal - RBW 120 kHz - VBW 300 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - SWT 500 ms - RBW 120 kHz - VBW 300 kHz - RBW 120 kHz - RBW 120 kHz - VBW 300 kHz - RBW 120 kHz - RB

Date: 6.MAR.2022 08:52:45

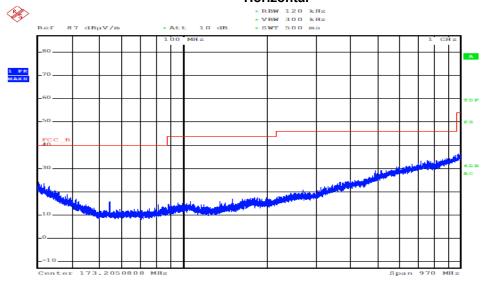
Date: 6.MAR.2022 08:57:59


KST-FCC-EMC-Rev.0.7 Page: 21 / 29

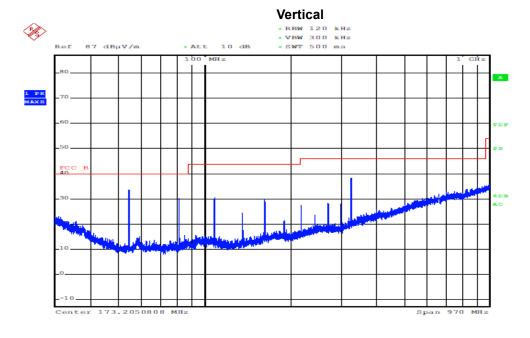
[Mode 2]

Date: 6.MAR.2022 08:26:56

Date: 6.MAR.2022 08:21:52


KST-FCC-EMC-Rev.0.7 Page: 22 / 29

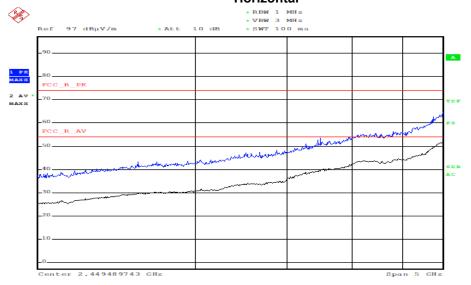
^{*} Fundamental frequency of Transmitter: 27.195 Mb


^{*} Harmonic Frequency of Transmitter : 54.39 Mtz, 81.585 Mtz, 108.78 Mtz, 135.975 Mtz, 163.17 Mtz, 190.365 Mtz, 217.56 Mtz, 244.755 Mtz, 271.95 Mtz, 299.145 Mtz, 326.34 Mtz

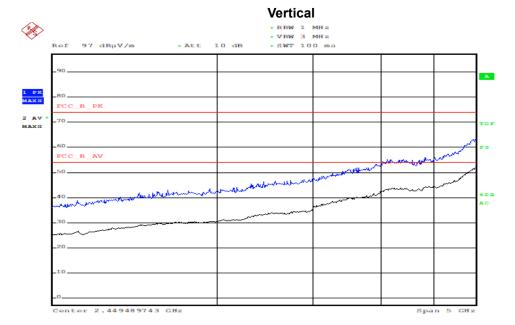
[Mode 3]

Date: 6.MAR.2022 08:36:25

- * Fundamental frequency of Transmitter: 27.195 Mb
- * Harmonic Frequency of Transmitter :


 $54.39~\text{MHz},\,81.585~\text{MHz},\,108.78~\text{MHz},\,135.975~\text{MHz},\,163.17~\text{MHz},\,190.365~\text{MHz},\,217.56~\text{MHz},\,244.755~\text{MHz},\,271.95~\text{MHz},\,299.145~\text{MHz},\,326.34~\text{MHz},\,353.535~\text{MHz}$

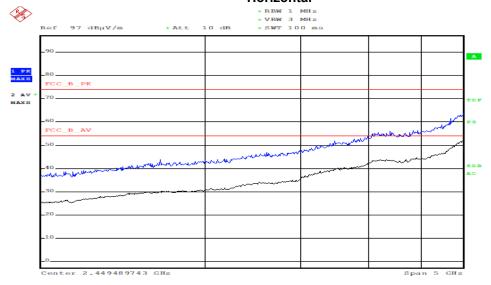
KST-FCC-EMC-Rev.0.7 Page: 23 / 29


b) Above 1 @z

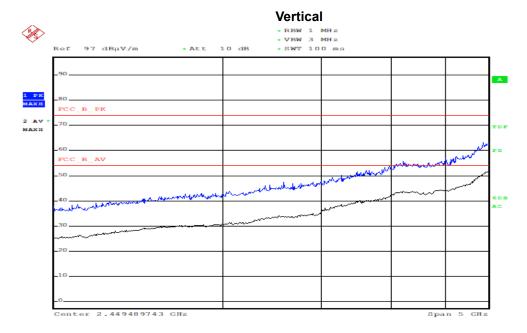
[Mode 1]

Horizontal

Date: 6.MAR.2022 07:27:26


Date: 6.MAR.2022 07:20:14

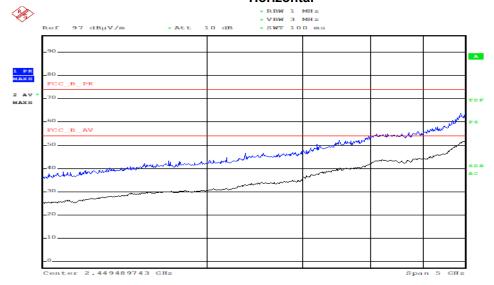
KST-FCC-EMC-Rev.0.7 Page: 24 / 29



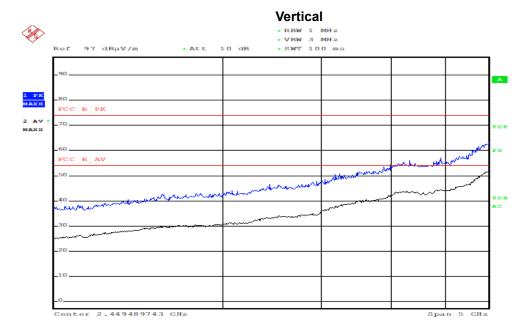
[Mode 2]

Horizontal

Date: 6.MAR.2022 07:52:07


Date: 6.MAR.2022 07:46:50

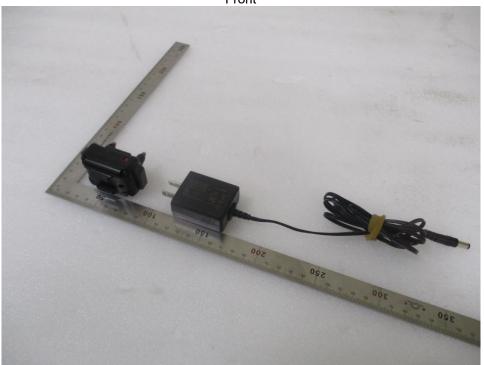
KST-FCC-EMC-Rev.0.7 Page: 25 / 29



[Mode 3]

Horizontal

Date: 6.MAR.2022 07:41:24


Date: 6.MAR.2022 07:35:58

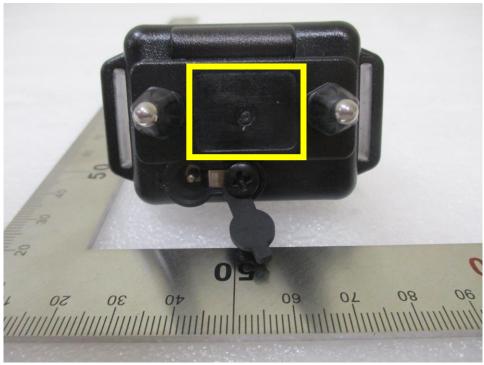
KST-FCC-EMC-Rev.0.7 Page: 26 / 29

EUT

Rear

KST-FCC-EMC-Rev.0.7

This report shall not be reproduced except in full without the written approval of KOSTEC Co., Ltd. Page: 27 / 29


Port

Label

KST-FCC-EMC-Rev.0.7 Page: 29 / 29