KOST 28(175-20, Anny Hwaseong-s Tel:031-222-4	EC Co., Ltd. eong-dong) 406-gil sejaro, i, Gyeonggi-do, Korea 251, Fax:031-222-4252	Report No: KST-FCS-230001	(1) KOSTEC Co., Ltd. http://www.kostec.org
1. Applicant			
• Name :	Dogtra Co., Ltd.		
• Address :	35, Namdongdong-ro 33	3beon-gil, Namdong-gu, Inch	neon 21694 Rep. of KOREA
2. Test Item			
Product Na	ame: Pathfinder2		
• Model Nan	ne: PT20C		
Brand Nan	ne: 🖾 doatra		
3. Manufactur	er		
• Name :	Dogtra Co., Ltd.		
• Address :	35. Namdongdong-ro 33	Bbeon-ail. Namdona-au, Inch	eon 21694 Rep. of KOREA
4. Date of Tes	t : 2023. 05. 12.		
5. Test Metho	d Used : KDB 447498 I KDB 865664 I	Parts 2.1093 09-1528:2020 001 v06 001 v01r04	
6. Test Result	: Compliance		
7. Note: F	amily model names: PT 2	0C, PT-20C, PATHFINDER2	SERIES
The re	sults shown in this test repor This test repor	t refer only to the sample(s) tes t is not related to KOLAS accred	ted unless otherwise stated. ditation.
Affirmation	Tested by	Technica	nl Manager
	Name : Lee, Mi-Young	Name : F	Park, Gyeong-Hyeon (Signature)
	1		
		2023. 06. 29.	

KST-FCS-SRS-Rev.0.4 This report shall not be reproduced except in full without the written approval of KOSTEC Co., Ltd.

Table of Contents

1. Statement of Compliance 1.1 Test Method List	3 3
 2. Administration Data 2.1 Test Laboratory 2.3 Applicant 2.4 Manufacturer	4 4 4 4 4
 3. GENERAL INFORMATION	6 6 10 10
 4. Specific Absorption Rate (SAR)	11 11 11 11
5. SAR Measurement System	12 13 14 15 15 16 16
6. Measurement Results 6.1 Tissue Simulating Liquids 6.1 Tissue Simulating Liquids 6.2 System Verification 6.2 System Verification 6.3 DUT Testing Position 6.3 DUT Testing Position 6.4 SAR measurement procedure 6.5 SAR Exposure Limits 6.6 SAR test result 6.7 Simultaneous Transmission SAR Analysis 6.1	18 19 21 21 21 22 23
7. Uncertainty Assessment	24
Appendix A : Plot of measured tissue	25
Appendix B : Plot of system verification test	26
Appendix C : Plot of SAR test	27
Appendix D: DUT setup photos	28
Appendix E: System Certificate & calibration	29

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for DUT are as follows.

Limb Configuration

Mode	Freq.	Position	Measured 10 g SAR (W/kg)	Reported 10 g SAR (W/kg)	Note
FHSS	927.75	Front	2.09	2.55	

This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General population/Uncontrolled exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in IEC/IEEE 62209-1528:2020 and RF exposure KDB procedures.

1.1 Test Method List

KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04

2. Administration Data

2.1 Test Laboratory

Test laboratory and address

KOSTEC Co., Ltd. 28(175-20,Annyeong-dong)406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea Telephone Number: 82-31-222-4251 Facsimile Number: 82-31-222-4252

Registration information

KOLAS No.: KT232 RRA (National Radio Research Agency): KR0041 FCC Designation No.: KR0041 IC Designation No.: KR0041 (Company number: 8305A) VCCI Membership No.: 2005

2.3 Applicant

Dogtra Co., Ltd. 35, Namdongdong-ro 33beon-gil, Namdong-gu, Incheon 21694 Rep. of KOREA

2.4 Manufacturer

Dogtra Co., Ltd. 35, Namdongdong-ro 33beon-gil, Namdong-gu, Incheon 21694 Rep. of KOREA

2.5 Application Details

Date of Receipt of application : 2023. 05. 10. Date of test : 2023. 05. 12.

Revision History of test report

Rev.	Revisions	Effect page	Reviewed	Date
-	Initial issue	All	Park, Gyeong Hyeon	2023. 05. 17.
1	Correct address and add family model name.	1,4,6	Park, Gyeong Hyeon	2023. 06. 29.

3. GENERAL INFORMATION

3.1 Description of DUT

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

DUT Type	Portable devices
Device Category	General population/Uncontrolled exposure
Brand Name	<i>∉</i> >dogtr∂
Model Name	PT20C (Family model names: PT 20C, PT-20C, PATHFINDER2 SERIES)
Modulation Type	900 MHz: FSK BLE: GFSK
Operating Frequency Range	900MHz : 915.25 MHz ~ 927.75 MHz BLE: 2 402 ~ 2 480 MHz
Operating mode	Limb
Antenna Specification	900 MHz: Helical antenna, 1 dBi BLE: PCB antenna, 2.9 dBi
Power Source	AE654050P with 3.7V, 2400mAh
Max. Output power	900 MHz: 29.65 dBm BLE: -3.82 dBm
Max.SAR(10-g)	2.55 W/kg
FCC ID	SWN-PT20C
Remark	The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description.

3.1.1 The DUT conducted power measurements

Mode	Channel No	Frequency [MHz]	Conducted output Power [dBm]	Max. tune-up tolerance limit [dBm]	Scaling Factor
900MHz	Low	915.25	29.65	30	1.08
	Mid	921.50	29.37	30	1.16
	High	927.75	29.12	30	1.22
BLE	0	2 402	-4.01	-3.5	1.12
	19	2 440	-4.10	-3.5	1.15
	39	2 480	-3.82	-3.5	1.08

Note:

1) Conducted output power;

The maximum powers are marks in bold. 2) Scaling Factor = tune-up limit power (mW) / EUT RF power (mW)

3.1.2 The DUT Antenna location

3.1.3 SAR Test Exclusion consider Table.

According with FCC KDB 447498 D01, Appendix A, <SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and, this Device SAR test configurations consider as following :

Band	Frequency (MHz)	Config uration	Max. Conducted output Power		Separation Distance	Test exclusion	Exclusion	SAR
Band			dBm	mW	(mm)	threshold (mW)	Threshold	Exclusion
	915.25	Front	30	1 000	2.5	240.9	7.5	No
	915.25	Rear	30	1 000	8.3	145.1	7.5	No
900 MHz	915.25	Left	30	1 000	28	43.01	7.5	No
	915.25	Right	30	1 000	7.5	160.6	7.5	No
	915.25	Bottom	30	1 000	94.9	297.0	7.5	No
	2 480	Front	-3.50	0.447	10	0.07	7.5	Yes
BLE	2 480	Rear	-3.50	0.447	15	0.047	7.5	Yes
	2 480	Left	-3.50	0.447	40	0.018	7.5	Yes
	2 480	Right	-3.50	0.447	5	0.141	7.5	Yes
	2 480	Bottom	-3.50	0.447	20	0.035	7.5	Yes

Note:

1) Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.

2) Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold.

3) Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

a. f(GHz) is the RF channel transmit frequency in GHz

- b. Power and distance are rounded to the nearest mW and mm before calculation
- c. The result is rounded to one decimal place for comparison

4) Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances > 50 mm are determined by:

a. {[Power allowed at numeric threshold for 50 mm in step 3)] + [(test separation distance - 50 mm) (f(MHz)/150)]} mW, for 100 MHz to 1500 MHz

b {[Power allowed at numeric threshold for 50 mm in step 3)] + [(test separation distance – 50 mm) \cdot 10]} mW, for > 1500 MHz and \leq 6 GHz

3.2 Test Condition

3.2.1 Ambient Condition

- Ambient temperature : (21 ~ 22) °C
- Relative Humidity : (38 ~ 42) % R.H.

3.2.2 Test Configuration

For the 900 MHz SAR testing , the EUT is operated at the RF continuous emission mode. The channel should be tested at the 100 % duty cycle.

3.3 Requirements for compliance testing defined by FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones.

For consumer products, the applicable limit is 4 W/kg for an uncontrolled environment and 20 W/kg for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1.

According to the KDB publications by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (Dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dw} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However, for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4.3 SAR Measurement Procedure

The DUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The DUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1 mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1 g and 10 g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³)

Report No: KST-FCS-230001(1)

5. SAR Measurement System

[DASY6 SAR System Description]

DASY6 SAR is a cost-effective package for demonstration of compliance of mobile phones with specific absorption rate (SAR) limits. The fastest and most accurate scanner on the market, it is fully compatible with all worldwide standards for transmitters operating at the ear or near the body (<200 mm from the skin).

The system consists of the following components;

- 1) TX90XL Stäubli Robot and Controller CS8c incl. Cabinet
- 2) EOCx Electro Optical Converter (mounted on robot arm)
- 3) Robot Stand for TX90XL
- 4) Robot Arm Extension and Adaptors
- 5) Robot Remote Control
- 6) LB5 Light Beam Switch for Probe Tooling (incl. LB Adaptor)
- 7) Light Beam Mounting Plate
- 8) DASY6 Measurement Server
- 9) Desktop PC / 3.4 GHz (or higher) incl. Color-Monitor 23"
- 10) SAM Twin Phantom V5.0 incl. Support DASY6
- 11) MD4HHTV5 Mounting Device for Hand-Held Transmitters
- 12) DAEx Data Acquisition Electronics
- 13) EX3 SAR Probe
- 14) DP5 Dummy Probe for Training Purposes
- 15) Dipoles (not in picture)

Some of the components are described in details in the following sub-sections.

5.1 E-field Probe

Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis)
	± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g
	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g.,
	very strong gradient fields); the only probe that enables compliance
	testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

5.2 Mounting Devices

MD4HHTV5 - Mounting Device for Hand-Held Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material: Polyoxymethylene (POM)

5.3 DASY6 Robots

Our TX90 series of medium payload robots features an articulated arm with 6 degrees of freedom for optimum flexibility. A unique spherical work envelope allows maximum utilization of cell workspace. Additional benefits include floor, wall and ceiling mount options for easy robot integration. The robot arm's fully enclosed structure (rated IP65) makes it ideal for a wide range of applications, even in harsh environments.

Number of Axes	6
Nominal Load	5 kg
Maximum Load	12 kg
Reach	1 450 mm
Repeatability	± 0.035 mm
Control Unit	CS8c
Programming Language	VAL3
Weight	116 kg

5.4 SAM Phantoms

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions	Length: 1000 mm
(incl. Wooden Support)	Width: 500 mm
	Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table

5.5 ELI Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. ELI V6.0, released in August 2014, has the same shell geometry as ELI4 but offers increased longterm stability.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

5.6 DAE4 - Data Acquisition Electronics

Signal amplifier, multiplexer, A/D converter, and control logic Serial optical link for communication with DASY4/5 embedded system (fully remote controlled) Two-step probe touch detector for mechanical surface detection and emergency robot stop

Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,
	400mV)
Input Offset Voltage	< 5 μV (with auto zero)
Input Resistance	200 MOhm
Input Bias Current	< 50 fA
Battery Power	> 10 hours of operation (with two 9.6 V NiMH accus)
Dimensions (L x W x H)	60 x 60 x 68 mm
Calibration	ISO/IEC 17025 calibration service available.

5.7 Validation Dipoles

Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with tissue simulating solutions

Calibration	ISO/IEC 17025 calibration service available.
Return Loss	> 20 dB at specified validation position
Power Capability	> 100 W (f < 1GHz); > 40 W (f > 1GHz)

5.8 Test Equipment List

No.	Instrument	Manufacturer	Model	S/N	Due to	Cal Interval	used
					caluate	(Months)	
1	Staubli robot _{lab2}	SPEAG	TX90XL	F10/5E6EA1/A/01 F10/5E6EA1/C/01	N/A	-	\boxtimes
2	Staubli robot _{lab1}	SPEAG	TX60	J1202	N/A	-	
3	DAE	SPEAG	DAE4	1240	2023.08.18	12	
4	DAE	SPEAG	DAE3	580	2023.05.02	12	
5	DAE	SPEAG	DAE4	1763	2024.01.09	12	
6	Twin SAM Phantom lab2	SPEAG	QD 000 P40 CC	1600	N/A	-	
7	Twin SAM Phantom lab2	SPEAG	QD 000 P40 CC	1601	N/A	-	
8	Twin SAM Phantom lab1	SPEAG	QD 000 P40 CB	1309	N/A	-	
9	Flat Phantom lab2	SPEAG	ELI V 6.0	2002	N/A	-	\boxtimes
10	Flat Phantom lab1	SPEAG	ELI V 8.0	2143	N/A	-	
11	Device Holder	SPEAG	MD4HHTV5	SD 000H01 MA	N/A	-	
12	Device Holder	SPEAG	MD4HHTV5	SD 000H01 KA	N/A	-	
13	Device Holder	APREL Laboratories	ALS-H-E-SET-2	170-00507	N/A	-	
14	SAR Probe	SPEAG	FX3DV4	3664	2023 08 19	12	
15	SAR Probe	SPEAG	EX3DV4	7648	2023 04 29	12	Π
16	Reference Dinole	SPEAG	D450V3	1099	2023 08 24	24	
17	Reference Dipole	SPEAG	D835V3	492	2025 02 28	24	
18	Reference Dipole	SPEAG	D000V0	14038	2025.02.20	24	
10	Reference Dipole	SPEAG	D30012	2d081	2025.02.20	24	
20	Reference Dipole	SPEAG	D1000V2	5d078	2025.02.21	24	
20	Reference Dipole	SPEAG	D1900V2	704	2025.02.21	24	
21	Reference Dipole	SPEAG	D2400V2	194	2025.03.01	24	
22	Reference Dipole	SPEAG	D2600V2	1140	2025.03.01	24	
23	Reference Dipole	SPEAG	D3300V2	1102	2024.03.23	24	
24	Reference Dipole	SPEAG	D3700V2	1072	2024.03.23	24	
25	Reference Dipole	SPEAG	D4900V2	1064	2024.03.28	24	
26	Reference Dipole	SPEAG	D5GHzV2	1053	2025.02.28	24	
27	Reference Dipole	SPEAG	D6.5GHzV2	1027	2025.02.22	24	
28	Lowpass filter	WAINWRIGMCS INSTRUMNENTS GMBH	WLJS1000-6EF	1	2024.01.12	12	
29	Lowpass filter	WAINWRIGMCS INSTRUMNENTS GMBH	WLJS2500-6EF	1	2024.01.11	12	
30	Highpass Filter	WAINWRIGMCS INSTRUMNENTS GMBH	WHJS3000-10EF	1	2024.01.11	12	
31	Highpass Filter	SUNGSAN	FIL0020-0001	0001	2024.01.12	12	
32	Dual directional coupler	HEWLETT PACKARD	778D	17693	2024.01.11	12	
33	Dual directional coupler	HEWLETT PACKARD	772D	2839A00924	2024.01.11	12	
34	3.5 mm Cal. Kit	Agilent Technologies	85033D	3423A07123	N/A	-	
35	3 dB Attenuator	Weinschel Corp	23-3-34	BK2093	2023.11.29	12	
36	Attenuator	Aeroflex / Weinschel	24-30-34	BX5630	2024.01.11	12	\boxtimes
37	EPM Series Power meter	Agilent Technology	E4418B	MY41293610	2024.01.11	12	
38	Power sensor	Agilent Technology	E9300A	MY41496666	2024.01.11	12	\boxtimes
39	EPM Series Power meter	Agilent Technology	E4418B	GB39512547	2024.01.12	12	\boxtimes
40	Power sensor	Agilent Technology	E9300A	MY41496631	2024.01.12	12	\boxtimes
41	Power meter	HEWLETT PACKARD	EPM-442A	GB37170391	2024.01.11	12	
42	E-series avg power sensor	AGILENT	E9300A	US39211058	2024.01.11	12	
43	E-series avg power sensor	AGILENT	E9300A	US39212333	2024.01.11	12	
44	RF Amplifier	Sungsan Electronics Communications	SSA024	SSEC0001	2024.01.13	12	\boxtimes
45	RF Amplifier	Sungsan Electronics Communications	SA1061-OPT1A	SA1061-OPT1A-0001	2024.01.13	12	
46	RF Amplifier	EXODUS ADVANCED COMMUNICATIONS	AMP2027	1410015-AMP2027-10001	2024.01.12	12	
47	RF Amplifier	Sungsan Electronics Communications	SA1067A	SA1067A-0001	2024.04.17	12	
48	Signal Generator	Agilent Technology	E4428C	MY49070070	2024.01.12	12	
49	Signal Generator	ANRITSU	MG3692B	051807	2024.01.12	12	\boxtimes
50	Network Analyzer	Agilent	8753FS	US39170869	2023.08.24	12	
51	85070E.Dielectric Probe kit	Agilent	85070 F	None	N/A	-	
52	VECTOR REFLECTOMETER		R140	0020720	2024 02 13	12	
53	di-Electric parameter probe	SPEAG	DAKS-3.5	1124	2024 01 25	12	
54	Wideband Radio Communication Tester	ROHDE&SCHWAR7	C.MW/500	102276	2024.01.20	12	
55	Radio Communication Analyzer		MT8821C	6261830568	2024.01.10	12	
55	Signaling Testor	Anritou	MT8000A	6261097020	2024.01.11	12	
50	Signaling Tester	Annitsu	MT89210	6262207605	2024.01.13	12	
57	orginaling rester	Annisu	IVI 1002 I C	0202207090	2024.01.13	12	

6. Measurement Results

6.1 Tissue Simulating Liquids

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max \pm 5 %)

For head SAR testing, the liquid height from the ear reference point of the phantom to the liquid top surface is larger than 15 cm. for body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm.

Freq. (MHz)	Water	Sugar	Salt (NaCI)	DGBE	Bactericide	HEC	Mineral Oil	Emulsifiers
835	40.92	56.5	1.48	-	0.10	1.00	-	-
900	40.92	56.5	1.48	-	0.10	1.00	-	-
1 800 ~ 2 000	55.24	-	0.31	44.45	-	-	-	-
2 450	54.9	-	0.1	45.0	-	-	-	-
2 600	54.8	-	0.1	45.1	-	-	-	-
3 400 ~ 6 000	78	-	2	-	-	-	11	9
6 500	56	-	-	-	-	-	44	-

6.1.1 Recipes for tissue simulating liquid.

6.1.2 Simulated tissue liquid parameter confirmation

The head tissue dielectric parameters recommended by the KDB865664 D01 have been incorporated in the following table.

Target Frequency	Head					
(MHz)	٤٢	σ (S/m)				
900	41.50	0.97				
(εr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)						

6.1.3 Measuring result for simulating liquid

Liqui	d	Baramatara	Target	Measured	Dev.	Limit	Data	Noto
Freq. (MHz)	Temp. (°C)	Fardineters	value	value	(%)	(%)	Date	Note
000	21	Permitivity	41.50	41.64	0.33	±5		
900	21	Conductivity	0.97	0.96	-0.60	±5		
015 25	21	Permitivity	41.48	41.49	0.04	±5		
915.25		Conductivity	0.98	0.97	-0.40	±5	2022 05 12	Head
021 5	21	Permitivity	41.47	41.43	-0.09	±5	2023.05.12.	tissue
921.5		Conductivity	0.98	0.98	-0.14	±5		
007.75	21	Permitivity	41.46	41.37	-0.21	±5		
927.75	21	Conductivity	0.98	0.98	0.11	±5		
Note: Please see a	appendix for the	plot of measured tissu	ie.					

6.2 System Verification

6.2.1 Purpose of system performance check

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of ± 5 %. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 100 mW RF dipole input power was used. The 1 g and 10 g spatial average SAR values normalized to 1 W dipole input power give reference data for comparisons and it's equal to 10 x (dipole forward power)

6.2.2 System setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom with the correct distance spacer. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the short side of the phantom. The equipment setup is shown below:

[System set-up for system verification]

6.2.3 Verification Results

Freq	Measured 1 g SAR [W/kg]		Measured 10 g SAR [W/kg]		Target				Data	Tissue
[MHz]					1 g SAR	10 g SAR	1 g Dev.	10 g Dev.	Date	Туре
	100 mW	1 W	100 mW	1 W	[W/kg]	[W/kg]	[%]	[%]		
900	1.05	10.5	0.674	6.74	10.90	6.99	-3.67	-3.58	2023.05.12.	Head

Note:

1. Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Above table shows the target SAR and measured SAR after normalized to 1W input power.

2. Please see appendix for the plot of system verification test.

6.3 DUT Testing Position

Please see appendix for the DUT setup photos

6.4 SAR measurement procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

The measurement procedures are as follows:

1) For DUT, using engineering software and (or) radio communication tester to transmit RF power continuously in the middle channel.

2) Mesure output power through RF cable and power meter.

3) Place the DUT in the positions described in the appendix for the DUT setup photos.

4) set area scan, grid size and other setting on the ALSAS-10U software.

5) Taking data for the middle channel on each testing position.

6) Find out the largest SAR result on these testing positions of each band

7) measure SAR results for the lowest and highest channels in worst SAR testing position.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1 mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1 g and 10 g averages are derived from the zoom scan volume (interpolated resolution set at 1 mm³).

	SAR Lin	nit(W/kg)
Type of Exposure	(General Population /Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.6	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	<u>4.0</u>	20.0

6.5 SAR Exposure Limits

6.6 SAR test result

Limb Configuration

No	Mode	Freq.	СН	Test Position	Test distance (mm)	Drift (dB)	Tune-up scaling factor	Duty cycle (%)	Duty cycle Scaling factor	Measured 10-g SAR (W/kg)	Reported 10-g SAR (W/kg)	Limit (W/kg)
1		921.5	Mid	Front	0	-0.05	1.16	100	1.00	1.660	1.926	4
2		921.5	Mid	Rear	0	-0.06	1.16	100	1.00	1.510	1.752	4
3		921.5	Mid	Bottom	0	-0.05	1.16	100	1.00	0.101	0.117	4
4	900 MHz	921.5	Mid	Left	0	-0.05	1.16	100	1.00	0.924	1.072	4
5		921.6	Mid	Right	0	-0.02	1.16	100	1.00	1.000	1.160	4
6		915.25	Low	Front	0	-0.01	1.08	100	1.00	2.110	2.279	4
7		927.75	High	Front	0	-0.04	1.22	100	1.00	2.090	2.550*	4

Note:

1) * is highest SAR value.

2) SAR measurement was performed with test software at 100 % duty.

3) Per KDB 447498 D01 §4.4.1, IEEE Std 1528-2013 requires the middle channel to be tested first and because of the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, the middle channel was selected for SAR test.

4) Per KDB 447498 D01, General RF Exposure Guidance, testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

(1) \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz

 $(2) \le 0.6$ W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

(3) \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

So, ≤1.0 W/kg for 10-g SAR test of other channels have been reduced.

Repeated SAR test Result

No	Mode	Freq.	СН	Test Position	1	Measured 10-g SAR (W/kg)	Ratio	NOTE		
					Original	1st Repeat	2nd Repeat				
1	900 MHz	915.25	Low	Front	2.11	2.27	N/A	1.08	-		
* The	The ratio of largest to smallest SAR is less than 1.2, therefore the second repeat measurement is not necessary.										

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

1) Repeated measurement is not required when the original highest measured SAR is < 2 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 2.0 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 3.6 W/kg (~ 10 % from the 10-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 3.75 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

6.7 Simultaneous Transmission SAR Analysis

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 10-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 4 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 10-g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR = $\frac{\sqrt{f(GHz)}}{x} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$ where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

1. 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is > 50 mm

2. Per FCC KDB Publication 447498, when the test separation distance is < 5 mm, a distance of 5 mm is applied to determine estimated SAR.

Estimated SAR for BLE

Band	Frequency Config		Max. Cor output	nducted Power	Separation Distance	Estimated 10-g SAR (W/kg)
	(IVIHZ)	uration	dBm	mW	(mm)	
BLE	2 480	Front	-3.50	0.447	10	0.004
	2 480	Rear	-3.50	0.447	15	0.003
	2 480	Left	-3.50	0.447	40	0.001
	2 480	Right	-3.50	0.447	5	0.008
	2 480	Bottom	-3.50	0.447	20	0.002

Sum of the SAR for 900 MHz and BLE

RF Exposure	Standal	MAX. ΣSAR 10-g SAR (W/kg)		
condition	900 MHz (W/kg)	BLE (W/kg)	900 MHz + BLE	
Front	2.550	0.004	2.554	
Rear	1.752	0.003	1.755	
Left	1.072	0.001	1.073	
Right	1.160	0.008	1.168	
Bottom	0.117	0.002	0.119	

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 10-g SAR is < 4 W/kg

7. Uncertainty Assessment

Error Description	Uncert. Value (%)	Prob. Dist.	Divisor	(c _i) 1g	(c _i) 10g	Std. Unc. (1g) (%)	Std. Unc. (10g) (%)	(vi)
Measurement System Errors								
Probe Calibration	12.0	Ν	2	1	1	6.0	6.0	8
Probe Calibration Drift	1.0	N	1	1	1	1.0	1.0	8
Probe Linearity	4.7	R	√3	1	1	2.7	2.7	8
Broadband Signal	3.0	Ν	2	1	1	1.5	1.5	8
Probe Isotropy	7.6	R	√3	1	1	4.4	4.4	8
Data Acquisition	0.3	Ν	1	1	1	0.3	0.3	8
RF Ambient	1.8	Ν	1	1	1	1.8	1.8	8
Probe Positioning	0.2	Ν	1	0.14	0.14	0.0	0.0	8
Data Processing	1.2	Ν	1	1	1	1.2	1.2	8
Phantom and Device Errors								
Conductivity (meas.)DAK	0.6	Ν	1	0.78	0.71	0.5	0.4	8
Conductivity (temp.)BB	3.2	R	√3	0.78	0.71	1.4	1.3	8
Phantom Permittivity	14.0	R	√3	0	0	0.0	0.0	8
Distance DUT - TSL	2.0	Ν	1	2	2	4.0	4.0	8
Device Holder	3.6	Ν	1	1	1	3.6	3.6	8
DUT Modulationm	2.4	R	√3	1	1	1.4	1.4	8
Time-average SAR	2.6	R	√3	1	1	1.5	1.5	8
DUT drift	5.0	Ν	1	1	1	2.9	2.9	8
Correction to the SAR results								
Deviation to Target	1.9	Ν	1	1	0.84	1.9	1.6	8
SAR scalingp	0.0	R	√3	1	1	0.0	0.0	∞
Combined Uncertainty						10.9	10.8	
Expanded Uncertainty						21.7	21.6	

DASY6 (Frequency band: 300 MHz ~ 3 GHz)

[Exposure Assessment Measurement Uncertainty]

Appendix A : Plot of measured tissue.

Name : DAKS 3.5 Head 6GHz 21 deg.C 2023-May-12 08:42:15 Date : 2023-May-12 08:42:15 Temperature(C) : 21 Probe : DAKS 3.5 Network Analyzer : Planar R140 Originally imported from : Notes :

Measured da	ta		Target data :	Head 6GH	z	Deviation %		
f (MHz) ε'	σ	(S/m)	f (MHz) ε'	σ	(S/m)	f (MHz) ε'	σ	(S/m)
850	41.99	0.91	850	41.50	0.92	850	1.18	-0.65
900	41.64	0.96	900	41.50	0.97	900	0.33	-0.60
915.25	41.49	0.97	915.25	41.48	0.98	915.25	0.04	-0.40
921.5	41.43	0.98	921.5	41.47	0.98	921.5	-0.09	-0.14
927.75	41.37	0.98	927.75	41.46	0.98	927.75	-0.21	0.11
950	41.16	1.00	950	41.43	0.99	950	-0.65	0.96

Appendix B : Plot of system verification test.

System Performance Check Report

Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]	Dev. 1g [%]	Dev. 10g [%]	Dev. Peak [%]	Iso. Error [%]	
D900V2 -	900.0	HSL	20.0	-3.7	-3.6	-4.0	2.5	
SN1d038								

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	15		CW,	900.0,	9.81	0.960	41.6
HSL			0	0			

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
ELI V6.0 (20deg probe tilt) - 2002	HBBL-600-10000	EX3DV4 - SN3664, 2022-08-19	DAE4 Sn1240, 2022-08-18	

Measurement Results

Zoom Scan

Scan Setup

1.52	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 90.0	30.0 x 30.0 x 30.0	Date	2023-05-12, 10:13	2023-05-12, 10:19
Grid Steps [mm]	10.0 x 15.0	6.0 x 6.0 x 1.5	psSAR1g [W/Kg]	1.04	1.05
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/Kg]	0.671	0.674
Graded Grid	n/a	Yes	Power Drift [dB]	-0.01	-0.01
Grading Ratio	n/a	1.5	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor [dB]		
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction
Scan Method	Measured	Measured			

Warning(s) / Error(s)

Details Area Scan Warning(s) Error(s)

Interpolated SAR [W/kg]

Appendix C : Plot of SAR test.

Measurement Report for PT20C, FRONT, Custom Band, UID 0 -, Channel 927800 (927.8MHz)

Device under Test Properties

Model, Manufacturer	Dimensions (mm)	IMEI	DUT Type	
PT20C, Dogtra Co.,Ltd	95.0 x 48.0 x 25.0		Phone	

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	FRONT,	Custom	CW,	927.8,	9.81	0.980	41.4
HSL	0.00	Band	0-	927800			

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V6.0 (20deg probe tilt) - 2002	HBBL-600-10000	EX3DV4 - SN3664, 2022-08-19	DAE4 Sn1240, 2022-08-18

Scan Setup

Scan Setup			Measurement Resu	lts	
1997 998 1997 1997 1997 1 99	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	90.0 x 210.0	30.0 x 30.0 x 30.0	Date	2023-05-12, 14:17	2023-05-12, 14:24
Grid Steps [mm]	15.0 x 15.0	6.0 x 6.0 x 1.5	psSAR1g [W/kg]	3.20	3.31
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	2.12	2.09
Graded Grid	n/a	Yes	Power Drift [dB]	0.03	-0.04
Grading Ratio	n/a	1.5	Power Scaling	Disabled	Disabled
MAIA	N/A	N/A	Scaling Factor [dB]		
Surface Detection	VMS + 6p	VMS + 6p	TSL Correction	No correction	No correction
Scan Method	Measured	Measured	M2/M1 [%]		85.2
			Dist 3dB Peak [mm]		13.0

Zoom Scan

Warning(s) / Error(s)

Details Area Scan Warning(s) Error(s)

Appendix D: DUT setup photos

Please refer to a separate document.

Appendix E: System Certificate & calibration

E-1: Probe Calibration

eughausstrasse 43, 8004 70	rich. Switzerland		Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accre he Swiss Accreditation Se iultilateral Agreement for t	editation Service (SAS) rvice is one of the signate he recognition of calibrati	adviduos Acce ories to the EA on certificates	reditation No.: SCS 0108
lient Kostec (Dyr	nstec)	Certificate No EX	-3664_Aug22
CALIBRATION C	ERTIFICATE		
Object	EX3DV4 - SN:30	664	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-25.v7 Calibration proc	QA CAL-12.v9, QA CAL-14.v6, QA edure for dosimetric E-field probes	CAL-23.v5,
Calibration date	August 19, 2022	2	
This calibration certificate do The measurements and the All calibrations have been co Calibration Equipment used	ocuments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration	national standards, which realize the physical use probability are given on the following pages a atory facility: environment temperature $(22\pm3)^{\circ}$	nits of measurements (SI). and are part of the certificate. °C and humidity < 70%.
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used	ocuments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration	national standards, which realize the physical u se probability are given on the following pages a atory facility: environment temperature (22±3) 1)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%.
This calibration certificate de The measurements and the All calibrations have been or Calibration Equipment used Primary Standards Prover meter NBP	ocuments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration	national standards, which realize the physical use probability are given on the following pages a atory facility: environment temperature (22±3) n) Cal Date (Certificate No.)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration
This calibration certificate de The measurements and the All calibrations have been or Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-791	ocuments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration ID SN: 104778 SN: 104244	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03526)	nits of measurements (SI). and are part of the certificate. "C and humidity < 70%. Scheduled Calibration Apr-23
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 DOCP DAK-3.5 (weighter!)	ocuments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 103244 SN: 1249	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ⁽¹⁾ (21) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-021-21 (OCEPD4K3 5.1249, Oct21)	nits of measurements (SI). and are part of the certificate. "C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Or:-22
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 DCP DAK-3.5 (weighted) DCP DAK-12	ID SN: 104778 SN: 104778 SN: 104244 SN: 1249 SN: 1016	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ¹ n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK13-51249_Oct21) 20-Oct-21 (OCP-DAK13-51249_Oct21)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuator	ID SN: 104778 SN: 1046 SN: 104778 SN: 104244 SN: 1016 SN: 1016 SN: 22552 (20x)	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ⁽¹⁾ Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 04-Apr-22 (No. 217-03527)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23
This calibration certificate de The measurements and the All calibrations have been or Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuator DAE4	ocuments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 10244 SN: 10244 SN: 1016 SN: CC2552 (20x) SN: 660	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. 217-03527) 13-Oct-21 (No. DAE4-660 Oct21)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Oct-22
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power sensor NRP-291 OCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	ID SN: 104778 SN: 104778 SN: 103244 SN: 10244 SN: 1026 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ⁽¹⁾ (22±3) ⁽¹⁾ (24-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK13-51249_Oct21) 20-Oct-21 (OCP-DAK13-51249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power sensor NRP- Power sen	ID SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ¹ 1) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK13-51249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Apr-23 Oct-22 Dec-22 Scheduled Check
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B	ID SN: 104778 SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 103244 SN: 1016 SN: C2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK12-1016_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 OCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	ocuments the traceability to i uncertainties with confidence onducied in the closed labor. (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	nits of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 DCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ocuments the traceability to i uncertainties with confidence onducied in the closed labor. (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 1046 SN: 102552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (No. DAE4-660_Oct21) 13-Oct-21 (No. ES3-3013_Dec21) Check Date (in house 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 DCP DAK-3.5 (weighted) DCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A Reference HP 8648C	ID SN: 104778 SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: WY41498087 SN: US3642U01700	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ⁻ n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK12-1016_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 OCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Reference Probe E	incertainties with confidence uncertainties with confidence unducied in the closed labor. (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 6B41293874 SN: 000110210 SN: U3842U01700 SN: U341080477	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK3.5-1249_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-20)	nits of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Oct-22
This calibration certificate de The measurements and the All calibrations have been or Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A Reference HP 8648C Vetwork Analyzer E8358A	ocuments the traceability to i uncertainties with confidence onducied in the closed labor. (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: O0110210 SN: US3642U01700 SN: US44080477 Name	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ⁻ n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK12-1016_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-20) Function	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house
This calibration certificate de The measurements and the All calibrations have been or Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	Comments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41060477 Name Jeton Kastrati	national standards, which realize the physical u re probability are given on the following pages a atory facility: environment temperature (22±3) ⁽¹⁾ Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 20-Oct-21 (No. 217-03527) 12-Oct-21 (OCP-DAK12-1016_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 31-Mar-14 (in house check Jun-22) Stunction Laboratory Technician	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house check: Jun-24 Signature
This calibration certificate de The measurements and the All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP Power sensor NRP-Z91 OCP DAK-3.5 (Weighted) OCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Vetwork Analyzer E8358A Calibrated by Approved by	Comments the traceability to i uncertainties with confidence onducted in the closed labor. (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 1016 SN: 0C2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 00110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Jeton Kastrati Sven Kühn	national standards, which realize the physical u re probability are given on the following pages a atory facility : environment temperature (22±3) ¹ n) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 20-Oct-21 (OCP-DAK12-1016_Oct21) 20-Oct-21 (OCP-DAK12-1016_Oct21) 04-Apr-22 (No. 217-03527) 13-Oct-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. DAE4-660_Oct21) 27-Dec-21 (No. ES3-3013_Dec21) Check Date (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Jun-22) Function Laboratory Technician Technical Manager	nits of measurements (SI). and are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Oct-22 Oct-22 Oct-22 Dec-22 Scheduled Check In house check: Jun-24 In house

Page 1 of 22

Report No: KST-FCS-230001(1)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- C S S
 - Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900MHz in TEM-cell; f > 1800MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(I)x,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 sozt = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 sozt = NORMx,y,z * frequency_response (see Frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3664_Aug22

Page 2 of 22

August 19, 2022

Parameters of Probe: EX3DV4 - SN:3664

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm (µV/(V/m) ²) A	0.61	0.48	0.50	±10.1%
DCP (mV) B	99.1	101.7	99.4	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$^{B}_{dB\sqrt{\mu V}}$	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	Х	0.00	0.00	1.00	0.00	139.2	±2.5%	±4.7%
		Y	0.00	0.00	1.00	-	128.5		
		Z	0.00	0.00	1.00	8 S	129.3		
10352	Pulse Waveform (200Hz, 10%)	X	20.00	90.67	21.07	10.00	60.0	±3.4%	±9.6%
	A2 25 52	Y	90.00	112.00	27.00		60.0		
		Z	20.00	88.77	19.80	·	60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	90.61	20.18	6.99	80.0	±1.7%	±9.6%
		Y	20.00	93.04	20.85		80.0	-	
		Z	20.00	88.70	18.98		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	92.61	19.97	3.98	95.0	±1.0%	±9.6%
	N 25 66	Y	20.00	94.42	19.94	95	95.0	1	
		Z	20.00	90.18	18.61		95.0	·	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	96.04	20.39	2.22	120.0	±1.1%	±9.6%
		Y	20.00	93.96	18.24	120.0			
		Z	20.00	92.81	18.71	e e	120.0		
10387	QPSK Waveform, 1 MHz	X	1.63	65.68	14.69	1.00 150.0	0 150.0	±2.7%	±9.6%
	1	Y	1.48	64.93	13.83		150.0		
		Z	1.65	66.65	15.02	ii	150.0		
10388	QPSK Waveform, 10 MHz	X	2.16	67.45	15.42	0.00	150.0	±0.9%	±9.6%
		Y	1.99	66.53	14.70	1	150.0		
		Z	2.21	68.24	15.81		150.0	-	
10396	64-QAM Waveform, 100 kHz	X	3.12	71.14	19.22	3.01	150.0	±0.7%	±9.6%
		Y	2.64	68.69	17.84	1	150.0		
		Z	2.81	70.13	18.76		150.0	l	
10399	64-QAM Waveform, 40 MHz	X	3.47	66.85	15.62	0.00	150.0	±2.4%	±9.6%
		Y	3.35	66.47	15.27		150.0 150.0		
		Z	3.50	67.23	15.82				
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.84	65.52	15.47	0.00	150.0	±4.2%	±9.6%
		Y	4.73	65.37	15.29		150.0		
		Z	4.83	65.78	15.61		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Linearization parameter uncertainty for maximum specified field strength. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3664_Aug22

Page 3 of 22

August 19, 2022

Parameters of Probe: EX3DV4 - SN:3664

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	45.4	341.20	35.85	29.16	0.19	5.10	1.12	0.33	1.01
y	42.0	314.79	35.67	13.62	0.50	5.10	0.43	0.37	1.01
Z	41.3	307.78	35.47	30.31	0.02	5.10	0.73	0.29	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-61.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3664_Aug22

Page 4 of 22

August 19, 2022

Parameters of Probe: EX3DV4 - SN:3664

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
450	43.5	0.87	11.25	11.25	11.25	0.16	1.30	±13.3%
600	42.7	0.88	10.63	10.63	10.63	0.10	1.25	±13.3%
750	41.9	0.89	10.39	10.39	10.39	0.42	0.80	±12.0%
835	41.5	0.90	10.13	10.13	10.13	0.45	0.80	±12.0%
900	41.5	0.97	9.81	9.81	9.81	0.46	0.82	±12.0%
1810	40.0	1.40	8.69	8.69	8.69	0.36	0.86	±12.0%
1900	40.0	1.40	8.57	8.57	8.57	0.34	0.86	±12.0%
2450	39.2	1.80	8.10	8.10	8.10	0.29	0.90	±12.0%
2600	39.0	1.96	7.85	7.85	7.85	0.40	0.90	±12.0%
3500	37.9	2.91	7.35	7.35	7.35	0.30	1.35	±13.1%
3700	37.7	3.12	7.28	7.28	7.28	0.30	1.35	±13.1%
4800	36.4	4.25	6.40	6.40	6.40	0.40	1.80	±13.1%
5250	35.9	4.71	5.59	5.59	5.59	0.40	1.80	±13.1%
5300	35.9	4.76	5.54	5.54	5.54	0.40	1.80	±13.1%
5500	35.6	4.96	5.35	5.35	5.35	0.40	1.80	±13.1%
5600	35.5	5.07	5.14	5.14	5.14	0.40	1.80	±13.1%
5800	35.3	5.27	5.05	5.05	5.05	0.40	1.80	±13.1%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±10 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (*c* and *a*) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*c* and *a*) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page 5 of 22

August 19, 2022

Parameters of Probe: EX3DV4 - SN:3664

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.55	5.55	5.55	0.20	2.50	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ^F At frequencies 6-10 GHz, the validity of tissue parameters (*ε* and *σ*) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-3664_Aug22

Page 6 of 22

August 19, 2022

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Certificate No: EX-3664_Aug22

Page 7 of 22

August 19, 2022

Certificate No: EX-3664_Aug22

Page 8 of 22

August 19, 2022

August 19, 2022

Conversion Factor Assessment

Error (ϕ , θ), f = 900 MHz

Certificate No: EX-3664_Aug22

Page 10 of 22

August 19, 2022

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	UncE k = 2
0	5	CW	CW	0.00	±4.7
10010	CAA	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	+9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	+9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	+9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	+9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	+9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	10.0
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.90	+0.6
10028	DAC	GPRS-FDD (TDMA_GMSK_TN 0.1.2.3)	GSM	9.60	10.6
10029	DAC	EDGE-EDD (TDMA 8PSK TN 0.1-2)	GSM	7.70	±9.0
10030	CAA	IEEE 802 15 1 Bluetooth (GESK_DH1)	Blustooth	F 20	±9.0
10031	CAA	IEEE 802 15 1 Bluetooth (GESK_DH3)	Bluetooln	5.30	±9.6
10032	CAA	IEEE 802 15 1 Bluetooth (GESK, DH5)	Bluetooth	1.8/	±9.6
10033	CAA	IEEE 802 15 1 Bluetooth (BIA DORSK, DH1)	Bluetooth	1.16	±9.6
10034	CAA	IEEE 802.15.1 Didetooth (PI/4-DQPSK, DH1)	Bluetooth	1.14	±9.6
10.025	CAA	IEEE 602.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
0035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
00000	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	GAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
0038	GAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
0039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
0042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
0044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
0048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
0049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
0056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
0058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
0059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	+9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	+9.6
0061	CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	+9.6
0.062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	+9.6
0063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	+9.6
0064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	+9.6
0.065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WIAN	9.00	+9.6
0.066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	0.00	+0.6
0067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM 36 Mbos)	WLAN	10.12	10.6
0068	CAD	IEEE 802 11a/b WiEi 5 GHz (OEDM 48 Mbps)	MI ANI	10.12	13.0
0.069	CAD	IEEE 802.11a/h WiFi 5 GHz (OEDM, 54 Mbps)	WLAN	10.24	±9.0
0071	CAB	IFFE 802 110 WIFI 2 4 GHz (DSSS/OEDM, 0 Mhost	VVLAIN	10.56	±9.6
0072	CAB	IFEE 802 110 WIEL2 4 GHz (DSSS/OEDM, 12 Mbos)	WILMIN	9.83	±9.6
0073	CAB	IEEE 802.11g MITLET GITE (DODG/OF DW, 12 MDps)	VVLAN	9.62	±9.6
0074	CAR	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 MDps)	WLAN	9.94	±9.6
0075	CAR	IEEE 002.11g WIFI 2.4 GHz (DSSS/OFDM, 24 MDps)	WLAN	10.30	±9.6
0076	CAR	IEEE 802.11g WIFI 2.4 GHZ (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
0070	CAB	IEEE 802,11g WIFI 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
0077	CAD	ODMAGGGG (I DTT DOG)	WLAN	11.00	±9.6
0081	CAB	CDMA2000 (1XH11, RC3)	CDMA2000	3.97	±9.6
0082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fulirate)	AMPS	4.77	±9.6
0090	DAG	GPHS-FDD (TUMA, GMSK, TN 0-4)	GSM	6.56	±9.6
0097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
0098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
0.088	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
J100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
0101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
0102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
0103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	+9.6
0104	the second se	ITE-TOD (SC-EDMA 100% PR 20 MHz 64 OAM)	LITE TOO	10.01	+9.6
0105	CAE	ETE TOO (00-T DIMA, 100% HD, 20 MHZ, 04-QAM)	LICIUD	10.01	
0105	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	+9.6
0104 0105 0108 0109	CAE CAE CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 0PSK) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 0PSK)	LTE-FDD	5.80	±9.6
0104 0105 0108 0109 0110	CAE CAE CAG CAG	LTE-FDD (SC-FDMA, 100% RB, 20 MRz, 04-QAM) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD LTE-FDD	5.80 6.43	±9.6 ±9.6

Certificate No: EX-3664_Aug22

Page 11 of 22

August 19, 2022

10110	Hev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10117	CAG	IEEE 802.11n (HT Greentield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10110	CAD	IEEE 802.11n (H1 Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10110	CAD	IEEE 802.11n (HT Mixed, B1 Mbps, 16-QAM)	WLAN	8.59	±9.6
10140	CAD	IEEE 802.11h (H1 Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
0142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
0143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3MHz, 16-QAM)	LTE-FDD	6.35	±9.6
0145	CAC	LTE-FDD (SC-FDMA, 100% RB, 3MHz, 64-QAM)	LTE-FDD	6.65	±9.6
0145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
0140	CAC	LTE-FDD (SC-FDMA, 100% HB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
0147	CAC	LTE-FDD (SC-FDMA, 100% HB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
0149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
0150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
0151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
0152	CAE	LTE-TOD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
0154	CAE	LTE-TUD (SG-FUMA, 50% HB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
0155	CAP	LTE-FDD (SC-FDMA, 50% HB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
0155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
0155	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
0157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
0158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
0159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
0160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
1101	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
1162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
1100	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
1107	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
1168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
1169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
171	CAE	LIE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
11/2	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
11/4	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
175	GAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
1/9	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
101	CAG	LTE-FDD (SC-FDMA, 1 RB, 15MHz, QPSK)	LTE-FDD	5.72	±9.6
182	CAG	LIE-FDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-FDD	6.52	±9.6
183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15MHz, 64-QAM)	LTE-FDD	6.50	±9.6
184	GAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
185	GAL	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10/	CAG	LTE-FDD (SG-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
168	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
189	CAE	LTE-FUD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	+9.6
23	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	+9.6
				1	1 mm - 1 mm

Certificate No: EX-3664_Aug22

Page 12 of 22

August 19, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9,49	±9.6
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz; QPSK)	LTE-TDD	9.20	±9.6
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAD	PHS (QPSK)	PHS	11.81	±9.6
10278	CAD	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAG	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	+9.6
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	+9.6
10301	CAC	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WIMAX	12.03	+9.6
10302	CAB	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3CTRL)	WiMAX	12.57	+9.6
10303	CAB	IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6
10304	CAA	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX	11.86	+9.6
10305	CAA	IEEE 802.16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC)	WIMAX	15.24	+9.6
10306	CAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 64OAM, PUSC)	WIMAX	14.67	+9.6
	and the second second	,			2.0.0

Certificate No: EX-3664_Aug22

Page 13 of 22

August 19, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10307	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, OPSK, PUSC)	WIMAX	14.49	±9.6
0308	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3)	WIMAX	14.58	±9.6
10310	AAB	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3	WIMAX	14.57	±9.6
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAD	IDEN 1:3	IDEN	10.51	±9.6
10314	AAD	IDEN 1:6	IDEN	13.48	±9.6
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	±9.6
10316	AAD	IEEE 802 11g WIFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200 Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200 Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200 Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200 Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200 Hz, 80%)	Generic	0.97	±9.6
10387	AAA	OPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAD	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc dc)	WLAN	8.37	±9.6
10401	AAA	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc dc)	WLAN	8.60	±9.6
10402	AAA	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc dc)	WLAN	8.53	±9.6
0403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
0415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	±9.6
0416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
0417	AAA	IEEE 802.11a/h WIFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6
0418	AAA	IEEE 802 11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6
0419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	±9.6
10422	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
0423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
0424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
0425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
0426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
0427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
0430	AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
0431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
0432	AAB	LTE-FDD (OFDMA, 15MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
0433	AAG	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
0434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
0435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
0447	AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
0448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
0449	AAC	LTE-FUD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
0450	AAA	LTE-FUD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
0451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
0453	AAC	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
0456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc dc)	WLAN	8.63	±9.6
0457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
0.458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
0459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
0.460	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
0.461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
0462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	±9.6
0463	AAD	LTE-TUD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.6
1464	AAD	LIE-TUD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
0465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
J466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
0467	AAA	LIE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
0468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
1469	AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	±9.6
0470	AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
1471	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6

Certificate No: EX-3664_Aug22

Page 14 of 22

August 19, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	±9.6
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10475	AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	±9.6
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	±9.6
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	±9.6
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	±9.6
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	±9.6
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	±9.6
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6
0487	AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	±9.6
0488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	±9.6
0489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6
0490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6
0491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
0492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	+9.6
0493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	+9.6
0494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	+9.6
0495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	+9.6
0496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8 54	+9.6
0497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, OPSK, UI, Sub)	LTE-TDD	7.67	+0.6
0498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1 4 MHz, 16-OAM, UI, Sub)	ITE-TOD	9.40	20.0
0499	AAC	LTE-TDD (SC-FDMA 100% BB 14 MHz 64-OAM UI Sub)	ITE TOD	0.40	19.0
0500	AAF	LTE-TDD (SC-EDMA 100% BB 3 MHz OPSK UL Sub)	LTE TOD	0.00	19.0
0501	AAF	LTE-TDD (SC-EDMA 100% BB 3 MHz 16-OAM LIL Sub)	LIC-TOD	7.07	±9.0
0502	AAB	TE-TOD (SC-EDMA 100% BB 3MHz R4 OAM, UL Sub)	LIE-IDD	0.44	±9.6
0503	AAB	TE-TOD (SC-EDMA, 100% PB 5MHz, OPSK UL Stab)	LIE-IDD	8.52	±9.6
0504	AAB	LTE-TOD (SC-EDMA, 100% PB, EMH: 15 CAM UK Sch)	LIE-TOD	1.12	±9.6
0505	AAC	LTE-TOD (SC-EDMA, 100% PB, 5MHz, 16-CAM, 0L SUD)	LIE-IDD	8.31	±9.6
0506	AAC	LTE TOD (SC EDMA, 100% PB, 10 MUE, 000% UL SUD)	LIE-IDD	8.54	±9.6
0507	AAC	LTE-TOD (SC-EDMA, 100% PB, 10 MHz, 0 PSK, 0L S00)	LIE-IDD	1.14	±9.6
0508	AAE	TE TOD (SC-EDMA, 100% PD, 10 MHZ, 10-CAM, UL SUD)	LIE-IDD	8.36	±9.6
0.500	AAE	TE TOD (SC FDMA, 100% PD, 10 MHZ, 64-QAM, UL SUD)	LIE-IDD	8.55	±9.6
0510	AAE	TE TOD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL SUD)	LIE-TDD	7.99	±9.6
0511	AAE	LTE TOD (SC-PDMA, 100% PB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8,49	±9.6
0512	AAF	LTE-TOD (SC-FDMA, 100% HB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	±9.6
0512	AAF	LTE-TOD (SC-FDMA, 100% HB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6
3614	AAF	LTE-TOD (SC-FDMA, 100% HB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	±9.6
1514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	±9.6
515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	±9.6
516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	±9.6
1517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	±9.6
1518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6
1519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	±9.6
520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	±9.6
0521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	±9.6
522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	±9.6
523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	+9.6
524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	+9.6
525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc dc)	WLAN	8.36	+9.6
526	AAF	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc dc)	WLAN	8.42	+9.6
527	AAF	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc dc)	WLAN	8.21	+9.6
528	AAF	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc dc)	WLAN	8.36	+9.6
529	AAF	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc dc)	WLAN	8.36	+9.6
531	AAF	IEEE 802.11ac WIFI (20 MHz, MCS6, 99pc dc)	WLAN	8.43	+0.6
532	AAF	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc dc)	WLAN	8.20	10.0
533	AAE	IEEE 802.11ac WIFI (20 MHz, MCS8, 99pc dc)	WLAN	0.69	19.0
534	AAE	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc dc)	WI AN	0.38	19.6
535	AAE	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc dc)	IAU AN	0.45	±9.6
536	AAF	IEEE 802 11ac WiEi (40 MHz, MCS2, 00cc do)	WLAN	8.45	±9.6
537	AAF	IFEE 802 11 ac WIEI (40 MHz, MCS2, 99pc 00)	WLAN	8.32	±9.6
538	AAF	IEEE 802 1100 WIFI (40 MIR2, MGS3, 99pc dc)	WLAN	8.44	±9.6
540	AAA	IEEE 002.11a0 WIFI (40 MIFZ, MUS4, 99pc dc)	WLAN	8.54	±9.6
340	AMA	IEEE 002.11ac WIFI (40 MHz, MCS6, 99pc dc)	WLAN	8.39	±9.6

Certificate No: EX-3664_Aug22

Page 15 of 22

August 19, 2022

Page: 44 / 56

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10541	AAA	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc dc)	WLAN	8.46	±9.6
10542	AAA	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc dc)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc dc)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc dc)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc dc)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc dc)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc dc)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc dc)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc dc)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFI (80 MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6
0553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc dc)	WLAN	8.45	±9.6
0554	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc dc)	WLAN	8.48	±9.6
0555	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc dc)	WLAN	8.47	±9.6
0556	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc dc)	WLAN	8.50	±9.6
0557	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc dc)	WLAN	8.52	±9.6
0558	AAC	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc dc)	WLAN	8.61	±9.6
0560	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc dc)	WLAN	8.73	±9.6
0561	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc dc)	WLAN	8.56	±9.6
0562	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc dc)	WLAN	8.69	±9.6
0563	AAC	ILEE 802.11ac WiFi (160 MHz, MCS9, 99pc dc)	WLAN	8.77	±9.6
0564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	±9.6
0565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	±9.6
0566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	±9.6
0567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	±9.6
0568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	±9.6
0569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	±9.6
05/0	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	±9.6
05/1	AAG	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	±9.6
05/2	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	±9.6
05/3	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	±9.6
05/4	AAG	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	±9.6
0575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
05/6	AAG	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
05//	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
0070	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
05/9	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
0.000	AAD	TEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
1000	AAD	TEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
1002	AAD	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
100	AAD	IEEE 802.11a/n WIFI 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	±9.6
1004	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6
500	AAD	TEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6
0000	AAD	TEEE 802.11a/n WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6
1007	AAA	IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	±9.6
0001	AAA	TEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6
1000	AAA	TEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	±9.6
0.601	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6
500	AAA	IEEE 802.11n (H1 Mixed, 20 MHz, MCS0, 90pc dc)	WLAN	8.63	±9.6
502	AAA	IEEE 802.11n (H1 Mixed, 20 MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6
593	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc dc)	WLAN	8.64	±9.6
505	AAA	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6
590	AAA	IEEE 002.11n (HT Mixed, 20 MHz, MCS4, 90pc dc)	WLAN	8.74	±9.6
507	AAA	IEEE ou2.11n (H1 Mixed, 20 MHz, MCS5, 90pc dc)	WLAN	8.71	±9.6
509	AAA	IEEE ouz.11n (H1 Mixed, 20 MHz, MCS6, 90pc dc)	WLAN	8.72	±9.6
500	AAA	IEEE 002.11n (H1 Mixed, 20 MHz, MCS7, 90pc dc)	WLAN	8.50	±9,6
600	AAA	IEEE 802.110 (HT Mixed, 40 MHz, MCS0, 90pc dc)	WLAN	8.79	±9.6
601	AAA	IEEE 802.110 (H1 Mixed, 40 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
602	AAA	IEEE 002.11n (H1 Mixed, 40 MHz, MCS2, 90pc dc)	WLAN	8.82	±9.6
002	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc dc)	WLAN	8.94	±9.6
603	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc dc)	WLAN	9.03	±9.6
004	AAA	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc dc)	WLAN	8.76	±9.6
COF 1	AAA	IEEE 802.11n (H1 Mixed, 40 MHz, MCS6, 90pc dc)	WLAN	8.97	±9.6
605	440	IEEE DOO 11 - ALENE I JOANNI LIGAR	the second se		
605 606	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
605 606 607	AAC AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc dc) IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc dc)	WLAN WLAN	8.82 8.64	±9.6 ±9.6

Certificate No: EX-3664_Aug22

Page 16 of 22

August 19, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc dc)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc dc)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc dc)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc dc)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc dc)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc dc)	WLAN	8.58	±9.6
10619	AAC	IEEE 802.11ac WiFI (40 MHz, MCS3, 90pc dc)	WLAN	8.86	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc dc)	WLAN	8.87	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc dc)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc dc)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6
0629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6
0631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc dc)	WLAN	8.81	±9.6
0632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc dc)	WLAN	8.74	±9.6
0633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc dc)	WLAN	8.83	+9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc dc)	WLAN	8.80	+9.6
0635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc dc)	WLAN	8.81	+9.6
0636	AAC	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc dc)	WLAN	8.83	+9.6
0637	AAC	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc dc)	WLAN	8.79	+9.6
0638	AAC	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc dc)	WLAN	8.86	+9.6
0639	AAC	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc dc)	WLAN	8.85	+9.6
0640	AAC	IEEE 802 11ac WiFi (160 MHz, MCS4, 90pc dc)	WLAN	8.98	+9.6
0641	AAC	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc dc)	WLAN	9.06	+9.6
0642	AAC	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc dc)	WLAN	9.06	+9.6
0643	AAC	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc dc)	WLAN	8.89	+9.6
0644	AAC	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc dc)	WLAN	9.05	+9.6
0645	AAC	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc dc)	WLAN	9.11	+9.6
0646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	+9.6
0647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	+9.6
0648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	+9.6
0652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	+9.6
0653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	+9.6
0654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	+9.6
0655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	+9.6
0658	AAC	Pulse Waveform (200 Hz, 10%)	Test	10.00	+9.6
0659	AAC	Pulse Waveform (200 Hz, 20%)	Test	6.99	+9.6
0660	AAC	Pulse Waveform (200 Hz, 40%)	Test	3.98	+9.6
0661	AAC	Pulse Waveform (200 Hz, 60%)	Test	2.22	+9.6
0662	AAC	Pulse Waveform (200 Hz, 80%)	Test	0.97	+0.6
0670	AAC	Bluetooth Low Energy	Bluetooth	219	19.6
0671	AAD	IEEE 802.11ax (20 MHz, MCS0, 90pc dc)	WLAN	0.00	19.0
0672	AAD	IEEE 802.11ax (20 MHz, MCS1, 90pc dc)	WLAN	8.57	10.6
0673	AAD	IEEE 802.11ax (20 MHz, MCS2, 90pc dc)	WLAN	8.78	+0.6
0674	AAD	IEEE 802.11ax (20 MHz, MCS3, 90pc dc)	WLAN	874	±0.0
0675	AAD	IEEE 802.11ax (20 MHz, MCS4, 90pc dc)	WLAN	8 90	10.6
0676	AAD	IEEE 802.11ax (20 MHz, MCS5, 90pc dc)	WLAN	877	+0.0
0677	AAD	IEEE 802.11ax (20 MHz, MCS6, 90pc dc)	WLAN	872	T0 C
0678	AAD	IEEE 802.11ax (20 MHz, MCS7, 90pc dc)	WLAN	8.73	±9.0
0679	AAD	IEEE 802.11ax (20 MHz, MCS8, 90pc dc)	WIAN	8.80	10.6
0680	AAD	IEEE 802.11ax (20 MHz, MCS9, 90pc dc)	WIAN	0.69	±9.0
0681	AAG	IEEE 802.11ax (20 MHz, MCS10, 90pc do)	WIAN	0.80	±9.6
0682	AAF	IEEE 802.11ax (20 MHz, MCS11, 90pc dc)	WI AN	0.62	±9.6
0683	AAA	IEEE 802.11ax (20 MHz MCS0 99oc do)	WLAN	8.83	±9.6
0684	AAC	IEEE 802 11ax (20 MHz, MCS1, 99pt do)	WLAN	8.42	±9.6
0685	AAC	IEEE 802 11ax (20 MHz, MCS2, 99pc dc)	WLAN	8.26	±9.6
)686	AAC	IEEE 802 11ax (20 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
	1410	tan ester rax (Estraine, mode, sabc dc)	WLAN	8.28	+9.6

Certificate No: EX-3664_Aug22

Page 17 of 22

August 19, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10687	AAE	IEEE 802.11ax (20 MHz, MCS4, 99pc dc)	WLAN	8.45	±9.6
10688	AAE	IEEE 802.11ax (20 MHz, MCS5, 99pc dc)	WLAN	8.29	±9.6
0689	AAD	IEEE 802.11ax (20 MHz, MCS6, 99pc dc)	WLAN	8.55	±9.6
0690	AAE	IEEE 802.11ax (20 MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6
0691	AAB	IEEE 802.11ax (20 MHz, MCS8, 99pc dc)	WLAN	8.25	±9.6
0692	AAA	IEEE 802.11ax (20 MHz, MCS9, 99pc dc)	WLAN	8.29	±9.6
0693	AAA	IEEE 802.11ax (20 MHz, MCS10, 99pc dc)	WLAN	8.25	±9.6
0694	AAA	IEEE 802.11ax (20 MHz, MCS11, 99pc dc)	WLAN	8.57	±9.6
0695	AAA	IEEE 802.11ax (40 MHz, MCS0, 90pc dc)	WLAN	8.78	±9.6
0696	AAA	IEEE 802.11ax (40 MHz, MCS1, 90pc dc)	WLAN	8.91	±9.6
0697	AAA	IEEE 802.11ax (40 MHz, MCS2, 90pc dc)	WLAN	8.61	±9.6
0698	AAA	IEEE 802.11ax (40 MHz, MCS3, 90pc dc)	WLAN	8.89	±9.6
0699	AAA	IEEE 802.11ax (40 MHz, MCS4, 90pc dc)	WLAN	8.82	±9.6
0700	AAA	IEEE 802.11ax (40 MHz, MCS5, 90pc dc)	WLAN	8.73	±9.6
0701	AAA	IEEE 802.11ax (40 MHz, MCS6, 90pc dc)	WLAN	8.86	±9.6
0702	AAA	IEEE 802.11ax (40 MHz, MCS7, 90pc dc)	WLAN	8.70	±9.6
0703	AAA	IEEE 802.11ax (40 MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6
0704	AAA	IEEE 802.11ax (40 MHz, MCS9, 90pc dc)	WLAN	8.56	+9.6
0705	AAA	IEEE 802.11ax (40 MHz, MCS10, 90pc dc)	WLAN	8.69	+9.6
706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc dc)	WLAN	8.66	±9.6
0707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc dc)	WLAN	8.32	±9.6
708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6
709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6
1710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc dc)	WLAN	8.29	+9.6
0711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc dc)	WLAN	8.39	±9.6
)712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc dc)	WLAN	8.67	±9.6
)713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc dc)	WLAN	8.33	±9.6
)714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc dc)	WLAN	8.26	+9.6
1715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc dc)	WLAN	8.45	+9.6
716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc dc)	WLAN	8.30	+9.6
717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc dc)	WLAN	8.48	+9.6
718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc dc)	WLAN	8.24	+9.6
719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc dc)	WLAN	8.81	+9.6
720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc dc)	WLAN	8.87	+9.6
721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc dc)	WLAN	8.76	±9.6
722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc dc)	WLAN	8.55	±9.6
723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc dc)	WLAN	8.70	+9.6
724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc dc)	WLAN	8.90	±9.6
725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc dc)	WLAN	8.74	+9.6
726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc dc)	WLAN	8.72	±9.6
727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc dc)	WLAN	8.66	+9.6
728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc dc)	WLAN	8.65	+9.6
729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc dc)	WLAN	8.64	+9.6
730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc dc)	WLAN	8.67	+9.6
731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc dc)	WLAN	8.42	+9.6
732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc dc)	WLAN	8.46	+9.6
733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc dc)	WLAN	8.40	+9.6
734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc dc)	WLAN	8.25	+9.6
735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc dc)	WLAN	8.33	+9.6
736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc dc)	WLAN	8.27	+9.6
737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc dc)	WLAN	8.36	+9.6
738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc dc)	WLAN	8.42	+9.6
739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc dc)	WLAN	8.29	+9.6
740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc dc)	WLAN	8.48	+9.6
741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc dc)	WLAN	8.40	+9.6
742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc dc)	WLAN	8.43	+9.6
743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc dc)	WLAN	8.94	±9.6
744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc dc)	WLAN	9.16	±9.6
745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc dc)	WLAN	8.93	+9.6
746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc dc)	WLAN	9.11	+9.6
747	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc dc)	WLAN	9.04	+9.6
748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc dc)	WLAN	8.93	+9.6
749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc dc)	WLAN	8.90	+9.6
750	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc dc)	WLAN	8.79	+9.6
751	AAC	IEEE 802.11ax (160 MHz, MCS8, 90pc dc)	WLAN	8.82	+9.6
752	AAC	IEEE 802.11ax (160 MHz, MCS9, 90pc dc)	WLAN	8.81	+9.6

Certificate No: EX-3664_Aug22

Page 18 of 22

August 19, 2022

40.000	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc dc)	WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc dc)	WLAN	8.94	+9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc dc)	WLAN	8.64	+9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc dc)	WLAN	8.77	+9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc dc)	WLAN	8.77	+9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc dc)	WLAN	8.69	19.0
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc dc)	WEAN	0.03	10.0
10760	AAC	IEEE 802,11ax (160 MHz, MCS5, 99pc dc)	WLAN	0.00	+9.6
10761	AAC	IEEE 802.11ax (160 MHz MCS6, 99pc dc)	MUAN	0.49	±9.6
10762	AAC	IEEE 802 11ax (160 MHz, MCS7, 98pc dc)	WLAN	8,58	±9.6
10763	AAC	IEEE 802 11ax (160 MHz, MCS8, 99pc dc)	WLAN	8.49	±9.6
10764	AAC	IEEE 802 11ax (160 MHz, MCS0, 00pp dc)	WLAN	8.53	±9.6
10765	AAC	IEEE 002.11ax (160 MHz, MCG39, 9900 00)	WLAN	8.54	±9.6
10766	AAC	IEEE 802 11ax (160 MHz, MCS10, 99pc dc)	WLAN	8.54	±9.6
10767	AAC	FG NB (CB OEDM 1 DB SMILL ODD)	WLAN	8.51	±9.6
10769	AAC	SG NR (CF-OFDM, 1 RB, 5 MHZ, QPSK, 15 KHZ)	5G NR FR1 TDD	7.99	±9.6
10700	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAG	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
0773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
0774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	+9.6
0775	AAC	5G NR (CP-OFDM, 50% RB, 5MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	+9.6
0776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	+9.6
0777	AAC	5G NR (CP-OFDM, 50% RB, 15MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	10.0
0778	AAC	5G NR (CP-OFDM, 50% BB, 20 MHz, OPSK, 15 kHz)	5G NR ERI TOD	0.00	10.0
0779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, OPSK, 15 kHz)	5G NR ER1 TDD	0.04	19.0
0780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 15 kHz)	SC NR ERI TOD	0.42	±9.6
0781	AAC	5G NB (CP-OEDM 50% BB 40 MHz OBSK 15 kHz)	SG ND FDI TDD	0.38	±9.6
0782	AAC	5G NB (CP.OEDM 50% BB 50 MHz, OPSK, 15 kHz)	SG NR FRI TOD	8.38	±9.6
0783	AAC	5G NB (CP.OEDM 100% PR EMU: OPSK, 15 KHz)	5G NH FR1 TDD	8.43	±9.6
0784	AAC	SG NR (CP.OEDM, 100% PB, 10M/L, OPOK, 15 KHZ)	5G NR FR1 TDD	8.31	±9.6
0785	AAC	SCINE (OP-OFDM, 100% BB, 10MHz, OPSK, 15 KHz)	5G NR FR1 TDD	8.29	±9.6
0796	AAC	50 NR (CP-OPDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
0700	AAC	50 NR (CP-OFDM, 100% HB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
0700	MAG	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
0700	AAC	5G NH (CP-OFDM, 100% HB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
0789	AAC	5G NH (GP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
0.490	AAG	5G NH (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
0791	AAC	5G NH (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
0792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
0793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	+9.6
0794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	+9.6
0795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NB FR1 TDD	7.84	+9.6
0796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	+0.6
0797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	+9.6
0798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 30 kHz)	5G NR ERI TOD	7.00	10.0
0799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30 kHz)	SG ND EDI TOD	7.05	19.6
0801	AAC	5G NR (CP-OFDM 1 RB 80 MHz OPSK 30 kHz)	SC NR FRI 100	7.93	±9.6
0802	AAC	5G NR (CP-OFDM, 1 BB, 90 MHz, OPSK, 30 KHz)	SGINE FRI TDD	7.89	±9.6
0803	AAE	5G NB (CP-OEDM 1 BB 100 MH+ OBEK 20 HH-1	DG NH FH1 TDD	7.87	±9.6
0805	AAD	5G NB (CP-OEDM 50% BB 10MHz ODEK 20 HLS	SGINH FH1 TDD	7.93	±9.6
808	AAD	5G NB (CP-OEDM 50% PB 15 MUS ODOK 00 ULL)	5G NR FR1 TDD	8.34	±9.6
1809	AAD	5G NB (CB.OEDM, 50% PB, 00 MHZ, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
1810	440	5C NP (CP OFDM, 50% PD, 4CHH, 2PSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
812	AAD	SG NR (CP OFDM, 50% PD 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
817	AAD	EC NE (CP OFDM, 50% HB, 60 MHZ, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
010	AAD	50 NR (OP-OFDM, 100% HB, 5MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10110	AAD	DG NH (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
010	AAD	DG NH (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
819		5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
0819 0820	AAD		an tip part man		
0819 0820 0821	AAD AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	+9.6
0819 0820 0821 0822	AAD AAC AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.41	±9.6
0819 0820 0821 0822 0823	AAD AAC AAD AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NB FR1 TDD	8.41 8.41 8.36	±9.6 ±9.6
0819 0820 0821 0822 0823 0824	AAD AAC AAD AAC AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 KHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.41 8.36 8.39	±9.6 ±9.6 ±9.6
819 820 821 822 823 823 824 825	AAD AAC AAD AAC AAD AAD AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 KHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz)	5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.36 8.39 8.4*	±9.6 ±9.6 ±9.6 ±9.6
819 820 821 822 823 824 825 827	AAD AAC AAD AAC AAD AAD AAD AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.41 8.36 8.39 8.41 8.42	±9.6 ±9.6 ±9.6 ±9.6 ±9.6

Certificate No: EX-3664_Aug22

Page 19 of 22

August 19, 2022

10000	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, OPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NH (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10035	AAD	5G NH (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAD	5G NH (CP-OFDM, 1 HB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NH (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NH (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NH (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
0857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
0858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
0859	AAD	5G NH (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
0860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
0861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
0863	AAD	5G NH (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
0864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
0865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
0866	AAD	5G NH (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
0868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
0869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
0870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
0871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
08/2	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
0873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
08/4	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
08/5	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
08/6	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
08//	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
0878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
08/9	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
0880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
0881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
0882	AAD	5G NH (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
0883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
0884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
0885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
0886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
0887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
0888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
0889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
0890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
0891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
1892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
0897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
900	AAD	5G NH (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	5.68	+9.6
907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	+9.6
909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6
910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	+9.6
			and a second		

Certificate No: EX-3664_Aug22

Page 20 of 22

August 19, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10920	AAD	5G NH (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
0939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
0940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	+9.6
0941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	+9.6
0942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	+9.6
0943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	+9.6
0944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	+9.6
0945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	+9.6
0946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	+9.6
0947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NB FB1 FDD	5.87	19.6
0948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NB FB1 FDD	5.94	+9.6
0949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NB FB1 FDD	5.87	+9.6
0950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NB EB1 EDD	5.94	+9.6
0951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	10.6
0952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	10.0
0953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	10.0
0954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR ER1 EDD	8.10	19.0
0955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-OAM, 15 kHz)	5G NR ERI EDD	0.23	19.6
0956	AAB	5G NR DL (CP-OEDM_TM 3.1_5MHz_64-OAM_30.kHz)	SC NR FRI FDD	0.42	±9.6
0957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-OAM, 30 KHz)	SG NR FRI FDD	8.14	±9.6
0958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-OAM, 30 KHz)	SG NR FRI FDD	8.31	±9.6
0959	AAB	5G NB DL (CP-OEDM TM 3.1. 20 MHz 64 OAM 30 KHz)	SGINH FHI FDD	8.61	±9.6
0960	AAB	5G NB DL (CP-OEDM TM 3.1 5 MHz CA OAM 15 MHz)	SG NR FH1 FUD	8.33	±9.6
0961	AAB	5G NR DL (CP-OEDM TM 3.1. 10 MHz, 64 OAM 15 HHz)	SGINK FRI 100	9.32	±9.6
0962	AAB	5G NB DL (CP-OEDM TM 3.1.15 MHz, 64-OAM 45 HILL)	SGINH FHI TOD	9.36	±9.6
0963	AAB	5G NB DL (CP-OEDM TM 3.1, 15 MHz, 64 OAM 15 KHz)	SG NH FH1 (DD	9.40	±9.6
1964	AAR	SG NR DL (CP_OEDM_TM 3.1, 20 MHz, 64 CAM, 15 KHZ)	SG NR FR1 TDD	9.55	±9,6
965	AAR	5G NB DL (CP-OEDM TM 3.1, DMH2, C4-OAM, 30 KH2)	DG NH FH1 TDD	9.29	±9.6
966	AAB	5G NB DL (CP.OEDM TM 3.1, 15 MHz, 64 QAM, 30 KHZ)	SGINH FRI TOD	9.37	±9.6
0967	AAR	5G NB DL (CP.OEDM, TM 2.1, 20 MHz, 64 QAM, 30 KHz)	5G NH FR1 TDD	9.55	±9.6
0968	AAB	5G NR DL (CP-OEDM TM 3.1, 20 MHZ, 64-QAM, 30 KHZ)	5G NR FR1 TDD	9.42	±9.6
1972	AAB	5G NR (CR.OEDM 1 PR 20MU- COOK 45111)	5G NR FR1 TDD	9.49	±9.6
1972	AAB	5G NR (DET OFDM 1 PR 10CHUE OFOK 15 KHZ)	5G NR FR1 TDD	11.59	±9.6
1974	AAD	50 NR (CP OFDM, THB, TOUMHZ, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
070	AAD	3G NH (GP-OFDM, 100% HB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
0070	AAA		ULLA	2.23	±9.6
19/9	AAA	ULLA HDH4	ULLA	7.02	±9.6
1980	AAA	ULLA HDR8	ULLA	8.82	±9.6
1981	AAA	ULLA HDRp4	ULLA	1.50	±9.6
1985	AAA	ULLA HURp8	ULLA	1.44	±9.6

Certificate No: EX-3664_Aug22

Page 21 of 22

Report No: KST-FCS-230001(1)

EX3DV4 - SN:3664

August 19, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3664_Aug22

Page 22 of 22

E-2: Dipole antenna Calibration

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Engineering AG Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D900V2-1d038_Feb23 Client Kostec **CALIBRATION CERTIFICATE** Object D900V2 - SN:1d038 QA CAL-05.v12 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 28, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-22 (No. 217-03525/03524) Apr-23 Power sensor NRP-Z91 SN: 103244 04-Apr-22 (No. 217-03524) Apr-23 Power sensor NRP-Z91 SN: 103245 04-Apr-22 (No. 217-03525) Apr-23 Reference 20 dB Attenuator SN: BH9394 (20k) 04-Apr-22 (No. 217-03527) Apr-23 Type-N mismatch combination SN: 310982 / 06327 04-Apr-22 (No. 217-03528) Apr-23 Reference Probe EX3DV4 SN: 7349 10-Jan-23 (No. EX3-7349_Jan23) Jan-24 DAF4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-24 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Name Function Signature Calibrated by: Paulo Pina Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: March 1, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D900V2-1d038_Feb23 Page 1 of 6

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

HARDIN & SCORE

S

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage Servizio svizzero di taratura
 - Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-1d038_Feb23

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		1000

SAR result with Head TSL

SAR for nominal Head TSL parameters

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	11.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1 78 \///////////////////////////////////

normalized to 1W

7.16 W/kg ± 16.5 % (k=2)

Certificate No: D900V2-1d038_Feb23

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 3.6 jΩ	
Return Loss	- 28.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.403 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D900V2-1d038_Feb23

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 28.02.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d038

Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 65.23 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 4.25 W/kg **SAR(1 g) = 2.78 W/kg; SAR(10 g) = 1.78 W/kg Smallest distance from peaks to all points 3 dB below = 16.8 mm Ratio of SAR at M2 to SAR at M1 = 65.4\% Maximum value of SAR (measured) = 3.71 W/kg**

Certificate No: D900V2-1d038_Feb23

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D900V2-1d038_Feb23

Page 6 of 6