# **TEST REPORT**

#### KOSTEC CO., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si, Gyeonggi-do, Korea Tel:031-222-4251, Fax:031-222-4252

Report No.: KST-FCR-160007



1. Applicant

Name :

Dogtra Co., Ltd.

· Address :

#715-2(146BL-3L) Gojan-dong, Namdong-gu, Incheon, Korea

2. Test Item

Product Name:

Pathfinder

· Model Name:

PT10U

· Brand:

None

· FCC ID:

SWN-PT10U

3. Manufacturer

Name :

Dogtra Co., Ltd.

Address:

#715-2(146BL-3L) Gojan-dong, Namdong-gu, Incheon, Korea

4. Date of Test:

2016. 09. 12. ~ 2016. 09. 13.

5. Test Method Used:

FCC CFR 47, Part 95

ANSI/TIA-603-D-2010

6. Test Result:

Compliance

7. Note: None

#### Supplementary Information

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with measurement procedures specified in ANSI/TIA-603-D-2010.

We attest to the accuracy of data and all measurements reported herein were performed by KOSTEC Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Affirmation

Tested by

Name: Lee, Mi-Young

Technical Manager

Name: Park, Gyeong-Hyeon-

2016.09.19.

KOSTEC Co., Ltd.

KST-FCR-RFS-Rev.0.3 Page: 1 / 19



# **Table of Contents**

| 1. GENERAL INFORMATION                      |    |
|---------------------------------------------|----|
| 1.1 Test Facility                           | 3  |
| 1.2 Location                                | 3  |
| 1.3 Revision History of test report         | Z  |
| 2. EQUIPMENT DESCRIPTION                    | Ę  |
| 3. SYSTEM CONFIGURATION FOR TEST            | 6  |
| 3.1 Characteristics of equipment            | 6  |
| 3.2 Used peripherals list                   | 6  |
| 3.3 Product Modification                    | 6  |
| 3.4 Operating Mode                          | 6  |
| 3.5 Test Setup of EUT                       | 6  |
| 3.6 Table Table for Carrier Frequencies     | 6  |
| 3.7 Used Test Equipment List                |    |
| 4. SUMMARY TEST RESULTS                     | g  |
| 5. MEASUREMENT RESULTS                      | 10 |
| 5.1 RF Output Power                         | 10 |
| 5.2 Occupied Bandwidth                      |    |
| 5.3 Emission Mask                           | 13 |
| 5.4 Transmitter Radiated Unwanted Emissions | 15 |
| 5.5 Frequency Stability                     |    |



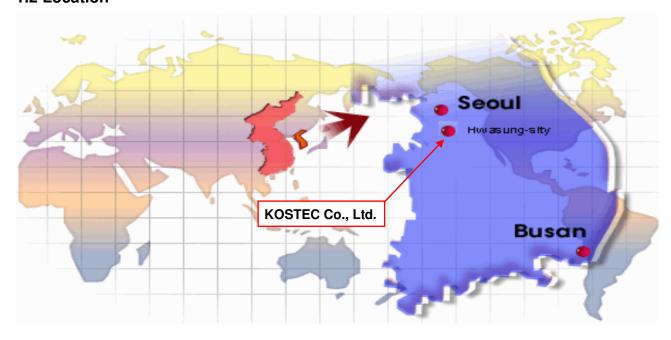


## 1. GENERAL INFORMATION

# 1.1 Test Facility

## Test laboratory and address

KOSTEC Co., Ltd.


128(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

## **Registration information**

KOLAS No.: 232

FCC Designation No. : KR0041 IC Registration Site No. : 8305A

## 1.2 Location



KST-FCR-RFS-Rev.0.3 Page: 3 / 19



# 1.3 Revision History of test report

| Rev. | Revisions     | Effect page | Reviewed           | Date          |
|------|---------------|-------------|--------------------|---------------|
| -    | Initial issue | All         | Gyeong Hyeon, Park | 2016. 09. 19. |
|      |               |             |                    |               |

KST-FCR-RFS-Rev.0.3 Page: 4 / 19



## 2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

| Equipment Name        | Pathfinder                                                                                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Model No              | PT10U                                                                                                                                         |
| Usage                 | MURS radio with BT                                                                                                                            |
| Serial Number         | Proto type                                                                                                                                    |
| Modulation type       | FSK                                                                                                                                           |
| Emission Type         | F1D                                                                                                                                           |
| Maximum output power  | 1.2 W                                                                                                                                         |
| Operated Frequency    | 151.820 MHz ~ 154.600 MHz                                                                                                                     |
| Channel Number        | 5 ea                                                                                                                                          |
| Operation temperature | -10 °C ~ 55 °C                                                                                                                                |
| Power Source          | Li-Po battery / DC 3.7 V / 2350 mA                                                                                                            |
| Antenna Description   | Helical antenna with SMA connector, gain : 0 dBi                                                                                              |
|                       | 1. The device was operating at its maximum output power for all measurements.                                                                 |
| Remark                | 2. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case (X) is shown in the report.                      |
|                       | 3. The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description. |
| FCC ID                | SWN-PT10U                                                                                                                                     |

KST-FCR-RFS-Rev.0.3 Page: 5 / 19



## 3. SYSTEM CONFIGURATION FOR TEST

# 3.1 Characteristics of equipment

MURS radio with BT

## 3.2 Used peripherals list

| Description | Model No. | Serial No. | Manufacture | Remark |
|-------------|-----------|------------|-------------|--------|
|             |           |            |             |        |
|             |           |            |             |        |

# 3.3 Product Modification

N/A

## 3.4 Operating Mode

Constantly transmitting with a modulated carrier at maximum power.

## 3.5 Test Setup of EUT

EUT (Standalone)

# 3.6 Table Table for Carrier Frequencies

| Channel | Freq. [MHz] |
|---------|-------------|
| 1       | 151.820     |
| 2       | 151.880     |
| 3       | 151.940     |
| 4       | 154.570     |
| 5       | 154.600     |

KST-FCR-RFS-Rev.0.3 Page: 6 / 19



# 3.7 Used Test Equipment List

| No. | Instrument                    | Model        | S/N          | Manufacturer               | Due to cal date | Cal<br>interval | used        |
|-----|-------------------------------|--------------|--------------|----------------------------|-----------------|-----------------|-------------|
| 1   | T & H Chamber                 | EY-101       | 90E14260     | TABAI ESPEC                | 2017.09.07      | 1 year          | $\boxtimes$ |
| 2   | T & H Chamber                 | SH-641       | 92006831     | ESPEC CORP                 | 2017.02.04      | 1 year          |             |
| 3   | Spectrum Analyzer             | 8563E        | 3846A10662   | Agilent Technology         | 2017.02.02      | 1 year          |             |
| 4   | Spectrum Analyzer             | 8593E        | 3710A02859   | Agilent Technology         | 2017.02.02      | 1 year          |             |
| 5   | Spectrum Analyzer             | FSV30        | 20-353063    | Rohde& Schwarz             | 2017.02.02      | 1 year          | $\boxtimes$ |
| 6   | Signal Analyzer               | N9020A       | MY50410369   | Agilent Technologies       | 2017.05.04      | 1 year          | $\boxtimes$ |
| 7   | EMI Test Receiver             | ESCI7        | 100823       | Rohde& Schwarz             | 2017.02.02      | 1 year          | $\boxtimes$ |
| 8   | EMI Test Receiver             | ESI          | 837514/004   | Rohde& Schwarz             | 2017.09.07      | 1 year          | $\boxtimes$ |
| 9   | Vector Signal Analyzer        | 89441A       | 3416A02620   | Agilent Technology         | 2017.02.04      | 1 year          |             |
| 10  | Network Analyzer              | 8753ES       | US39172348   | AGILENT                    | 2017.09.06      | 1 year          |             |
| 11  | EPM Series Power meter        | E4418B       | GB39512547   | Agilent Technology         | 2017.02.03      | 1 year          |             |
| 12  | RF Power Sensor               | E9300A       | MY41496631   | Agilent Technology         | 2017.02.03      | 1 year          |             |
| 13  | Microwave Frequency Counter   | 5352B        | 2908A00480   | Agilent Technology         | 2017.02.01      | 1 year          |             |
| 14  | Modulation Analyzer           | 8901A        | 3538A07071   | Agilent Technology         | 2017.02.03      | 1 year          |             |
| 15  | Audio Analyzer                | 8903B        | 3514A16919   | Agilent Technology         | 2017.02.01      | 1 year          |             |
| 16  | Audio Telephone Analyzer      | DD-5601CID   | 520010281    | CREDIX                     | 2017.02.04      | 1 year          |             |
| 17  | Digital storage Oscilloscope  | TDS3052      | B015962      | Tektronix                  | 2017.09.06      | 1 year          |             |
| 18  | ESG-D Series Signal Generator | E4436B       | US39260458   | Agilent Technology         | 2017.02.03      | 1 year          | $\boxtimes$ |
| 19  | Vector Signal Generator       | SMBV100A     | 257557       | Rohde & Schwarz            | 2017.02.03      | 1 year          |             |
| 20  | Signal Generator              | SMB100A      | 179628       | Rohde & Schwarz            | 2017.06.02      | 1 year          | $\boxtimes$ |
| 21  | Tracking Source               | 85645A       | 070521-A1    | Agilent Technology         | 2017.02.02      | 1 year          |             |
| 22  | SLIDAC                        | None         | 0207-4       | Myoung sung Ele.           | 2017.02.01      | 1 year          |             |
| 23  | DC Power supply               | DRP-5030     | 9028029      | Digital Electronic Co.,Ltd | 2017.02.01      | 1 year          |             |
| 24  | DC Power supply               | 6038A        | 3440A12674   | Agilent Technology         | 2017.02.01      | 1 year          |             |
| 25  | DC Power supply               | E3610A       | KR24104505   | Agilent Technology         | 2017.02.01      | 1 year          |             |
| 26  | DC Power supply               | UP-3005T     | 68           | Unicon Co.,Ltd             | 2017.02.01      | 1 year          | $\boxtimes$ |
| 27  | DC Power Supply               | SM 3004-D    | 114701000117 | DELTA ELEKTRONIKA          | 2017.02.01      | 1 year          |             |
| 28  | Dummy Load                    | 8173         | 3780         | Bird Electronic Co., Corp  | 2017.02.03      | 1 year          |             |
| 29  | Attenuator                    | 50FH-030-500 | 140410 9433  | JEW Idustries Inc.         | 2017.02.03      | 1 year          |             |
| 30  | Attenuator                    | 765-20       | 9703         | Narda                      | 2017.09.06      | 1 year          |             |
| 31  | Attenuator                    | 24-30-34     | BX5630       | Aeroflex / Weinschel       | 2016.12.30      | 1 year          |             |
| 32  | Attenuator                    | 8498A        | 3318A09485   | HP                         | 2017.02.03      | 1 year          | $\boxtimes$ |
| 33  | Step Attenuator               | 8494B        | 3308A32809   | HP                         | 2017.02.03      | 1 year          |             |
| 34  | Attenuator                    | 18B50W-20F   | 64671        | INMET                      | 2017.02.17      | 1 year          |             |
| 35  | Attenuator                    | 10 dB        | 1            | Rohde & Schwarz            | 2017.05.31      | 1 year          |             |
| 36  | Attenuator                    | 54A-10       | 74564        | WEINSCHEL                  | 2017.06.02      | 1 year          |             |
| 37  | Attenuator                    | 56-10        | 66920        | WEINSCHEL                  | 2017.06.17      | 1 year          |             |
| 38  | Power divider                 | 11636B       | 51212        | HP                         | 2017.02.02      | 1 year          |             |
| 39  | 3Way Power divider            | KPDSU3W      | 00070365     | KMW                        | 2017.09.06      | 1 year          |             |
| 40  | 4Way Power divider            | 70052651     | 173834       | KRYTAR                     | 2017.02.02      | 1 year          |             |
| 41  | 3Way Power divider            | 1580         | SQ361        | WEINSCHEL                  | 2017.06.02      | 1 year          |             |
| 42  | White noise audio filter      | ST31EQ       | 101902       | SoundTech                  | 2017.09.07      | 1 year          |             |
| 43  | Dual directional coupler      | 778D         | 17693        | HEWLETT PACKARD            | 2017.02.03      | 1 year          |             |
| 44  | Dual directional coupler      | 772D         | 2839A00924   | HEWLETT PACKARD            | 2017.02.03      | 1 year          |             |
| 45  | Band rejection filter         | 3TNF-0006    | 26           | DOVER Tech                 | 2017.02.04      | 1 year          |             |
| 46  | Band rejection filter         | 3TNF-0008    | 317          | DOVER Tech                 | 2017.02.04      | 1 year          |             |
|     |                               | 3TNF-0007    | 311          | DOVER Tech                 | 2017.02.04      | 1 year          |             |

KST-FCR-RFS-Rev.0.3

This report shall not be reproduced except in full without the written approval of KOSTEC Co., Ltd, Page: 7 / 19



| No. | Instrument                          | Model                                | S/N          | Manufacturer                | Due to cal date | Cal<br>interval | used        |
|-----|-------------------------------------|--------------------------------------|--------------|-----------------------------|-----------------|-----------------|-------------|
| 48  | Band rejection filter               | WTR-BRF2442-84NN                     | 09020001     | WAVE TECH Co.,LTD           | 2017.02.03      | 1 year          |             |
| 49  | Band rejection filter               | WRCJV12-5695-5725-<br>5825-5855-50SS | 1            | Wainwright Instruments GmbH | 2017.05.31      | 1 year          |             |
| 50  | Band rejection filter               | WRCJV12-5120-5150-<br>5350-5380-40SS | 4            | Wainwright Instruments GmbH | 2017.05.31      | 1 year          |             |
| 51  | Band rejection filter               | WRCGV10-2360-2400-<br>2500-2540-50SS | 2            | Wainwright Instruments GmbH | 2017.05.31      | 1 year          |             |
| 52  | Highpass Filter                     | WHJS1100-10EF                        | 1            | WAINWRIGHT                  | 2017.02.03      | 1 year          |             |
| 53  | Highpass Filter                     | WHJS3000-10EF                        | 1            | WAINWRIGHT                  | 2017.02.03      | 1 year          |             |
| 54  | Highpass Filter                     | WHNX6-5530-3000-<br>26500-40CC       | 2            | Wainwright Instruments GmbH | 2017.06.17      | 1 year          |             |
| 55  | Highpass Filter                     | WHNX6-2370-7000-<br>26500-40CC       | 4            | Wainwright Instruments GmbH | 2017.06.17      | 1 year          |             |
| 56  | WideBand Radio Communication Tester | CMW500                               | 102276       | Rohde & Schwarz             | 2017.02.04      | 1 year          |             |
| 57  | Radio Communication Tester          | CMU 200                              | 112026       | Rohde & Schwarz             | 2017.02.03      | 1 year          |             |
| 58  | Bluetooth Tester                    | TC-3000B                             | 3000B6A0166  | TESCOM CO., LTD.            | 2017.02.03      | 1 year          |             |
| 59  | RF Up/Down Converter                | DCP-1780                             | 980901003    | CREDIX                      | 2017.02.03      | 1 year          |             |
| 60  | DECT Test set                       | 8923B                                | 3829U00364   | HP                          | 2017.02.04      | 1 year          |             |
| 61  | DECT Test set                       | CMD60                                | 840677/005   | Rohde& Schwarz              | 2017.09.06      | 1 year          |             |
| 62  | Loop Antenna                        | 6502                                 | 9203-0493    | EMCO                        | 2017.06.04      | 2 year          | $\boxtimes$ |
| 63  | BiconiLog Antenna                   | 3142B                                | 9910-1432    | EMCO                        | 2018.04.25      | 2 year          | $\boxtimes$ |
| 64  | Horn Antenna                        | 3115                                 | 2996         | EMCO                        | 2018.02.11      | 2 year          | $\boxtimes$ |
| 65  | Horn Antenna                        | 3160-09                              | 061591-21907 | ETS LINDGREN                | 2018.05.03      | 2 year          |             |
| 66  | Horn Antenna                        | 3160-10                              | 061221-022   | ETS LINDGREN                | 2018.05.03      | 2 year          |             |
| 67  | Antenna Master(3)                   | AT13                                 | None         | AUDIX                       | N/A             | N/A             | $\boxtimes$ |
| 68  | Turn Table(3)                       | None                                 | None         | AUDIX                       | N/A             | N/A             | $\boxtimes$ |
| 69  | PREAMPLIFIER(3)                     | 8449B                                | 3008A02577   | Agilent                     | 2017.02.01      | 1 year          | $\boxtimes$ |
| 70  | Low noise Amplifier                 | TK-PA1840H                           | 160010-L     | TESKTEK                     | 2017.07.05      | 1 year          |             |
| 71  | Antenna Master(10)                  | MA4000-EP                            | None         | inno systems GmbH           | N/A             | N/A             | $\boxtimes$ |
| 72  | Turn Table(10)                      | None                                 | None         | inno systems GmbH           | N/A             | N/A             | $\boxtimes$ |
| 73  | AMPLIFIER(10)                       | TK-PA6S                              | 120009       | TESTEK                      | 2017.02.02      | 1 year          | $\boxtimes$ |

 ${\it KST-FCR-RFS-Rev. 0.3} \\ {\it This report shall not be reproduced except in full without the written approval of KOSTEC Co., Ltd,}$ Page: 8 / 19



## 4. SUMMARY TEST RESULTS

| Description of Test                     | FCC Rule       | Reference Clause | Used        | Test Result |
|-----------------------------------------|----------------|------------------|-------------|-------------|
| RF OutputPower                          | Part 95.639(h) | Clause 5.1       | $\boxtimes$ | Compliance  |
| Occupied Bandwidth                      | Part 95.633(f) | Clause 5.2       | $\boxtimes$ | Compliance  |
| Emission Mask                           | Part 95.635(e) | Clause 5.3       | $\boxtimes$ | Compliance  |
| Transmitter Radiated Unwanted Emissions | Part 95.635(e) | Clause 5.4       | $\boxtimes$ | Compliance  |
| Frequency Stability                     | Part 95.632(c) | Clause 5.5       | $\boxtimes$ | Compliance  |

Compliance/pass: The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

#### **Procedure Reference**

FCC CFR 47, Part 95 ANSI/TIA-603-D-2010 ANSI C63.10-2013

KST-FCR-RFS-Rev.0.3 Page: 9 / 19

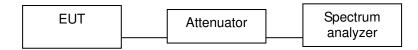


## 5. MEASUREMENT RESULTS

## 5.1 RF Output Power

## 5.1.1 Standard Applicable [FCC Part 95.639(h)]

No MURS unit, under any condition of modulation, shall exceed 2 Watts transmitter power output.


#### 5.1.2 Test Environment conditions

#### 5.1.3 Measurement Procedure

The EUT was setup according to ANSI/TIA 603D:2010 for compliance to FCC 47CFR part 95 requirements.

The transmitter output was connected to the spectrum analyzer with an attenuator. The maximum peak output power was measured and recorded with the spectrum analyzer. EUT was programmed to be in continuously transmitting mode.

## 5.1.4 Test setup



#### 5.1.5 Measurement Result

| Channal | Frequency | Conducted Power Limit Tool |      | Took Dooulto |              |
|---------|-----------|----------------------------|------|--------------|--------------|
| Channel | [MHz]     | [dBm]                      | [W]  | [W]          | Test Results |
| 1       | 151.820   | 30.55                      | 1.14 | 2.0          | Compliance   |
| 2       | 151.880   | 30.39                      | 1.09 | 2.0          | Compliance   |
| 3       | 151.940   | 30.47                      | 1.11 | 2.0          | Compliance   |
| 4       | 154.570   | 30.81                      | 1.21 | 2.0          | Compliance   |
| 5       | 154.600   | 30.97                      | 1.25 | 2.0          | Compliance   |

KST-FCR-RFS-Rev.0.3 Page: 10 / 19



## 5.2 Occupied Bandwidth

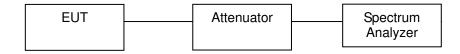
## 5.2.1 Standard Applicable [FCC Part 95.633(f)]

The authorized bandwidth is 11.25 kHz on frequencies 151.820 MHz, 151.880 MHz and 151.940 MHz.

The authorized bandwidth is 20.0 kHz on frequencies 154.570 and 154.600 MHz.

#### 5.2.2 Test Environment conditions

• Ambient temperature : (21  $\sim$  23)  $^{\circ}$  • Relative Humidity : (53  $\sim$  56) % R.H.


#### 5.2.3 Measurement Procedure

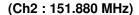
- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Measure the maximum width of the 99% occupied bandwidth is the frequency bandwidth of the signal power at the 99% channel power of occupied bandwidth.

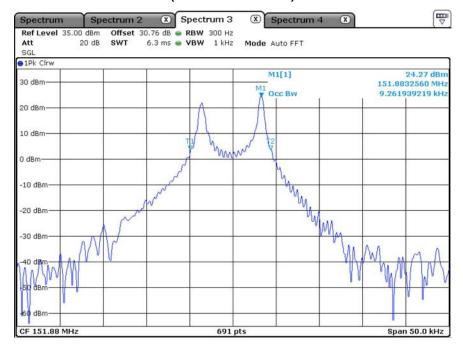
The spectrum analyzer is set to the as follows:

- RBW: 300 Hz - VBW: >3 x RBW - Detector function: peak - Trace: max hold

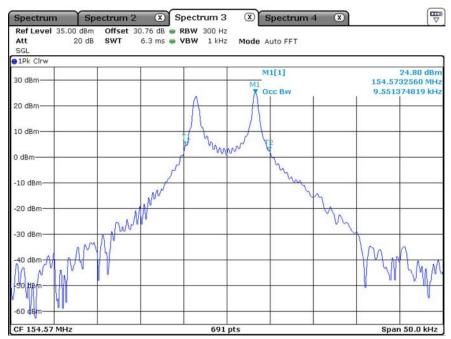
#### 5.2.4 Test setup




### 5.2.5 Measurement Result


| СН | Frequency<br>[MHz] | 99% Bandwidth<br>[kHz] | Limit<br>[kHz] | Test Results |
|----|--------------------|------------------------|----------------|--------------|
| 2  | 151.880            | 9.26                   | 11.25          | Compliance   |
| 4  | 154.570            | 9.55                   | 20.0           | Compliance   |

KST-FCR-RFS-Rev.0.3 Page: 11 / 19




#### 5.2.6 Test Plot





## (Ch4: 154.570 MHz)



KST-FCR-RFS-Rev.0.3 Page: 12 / 19



#### 5.3 Emission Mask

#### 5.3.1 Standard Applicable [FCC Part 95.635(e)]

For transmitters designed to operate in the MURS, transmitters shall comply with the following:

| Frequency                                | Mask with audio low pass filter | Mask without audio low pass filter |
|------------------------------------------|---------------------------------|------------------------------------|
| 151.820 MHz, 151.880 MHz and 151.940 MHz | (1)                             | (1)                                |
| 154.570 MHz and 154.600 MHz              | (2)                             | (3)                                |

- (1) Emission Mask 1—For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows: (i) On any frequency from the center of the authorized bandwidth foto 5.625 kHz removed from fo: Zero dB. (ii) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: at least 7.27(fd-2.88 kHz) dB. (iii) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: at least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
- (2) Emission Mask 2—For transmitters designed to operate with a 25 kHz channel bandwidth that are equipped with an audio low-pass filter, the power of any emission must be below the unmodulated carrier power (P) as follows: (i) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: at least 25 dB. (ii) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: at least 35 dB. (iii) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: at least 43 + 10 log (P) dB.
- (3) Emission Mask 3—For transmitters designed to operate with a 25 kHz channel bandwidth that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows: (i) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: at least 83 log (fd/5) dB. (ii) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250 percent of the authorized band-width: at least 29 log (fd2/11) dB or 50 dB, whichever is the lesser attenuation. (iii) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: at least 43 + 10 log (P) dB.

#### 5.3.2 Test Environment conditions

• Ambient temperature : (21  $\sim$  23)  $^{\circ}$  • Relative Humidity : (53  $\sim$  56) % R.H.

#### 5.3.3 Measurement Procedure

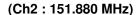
The transmitter output (antenna port) was connected to the spectrum analyzer.

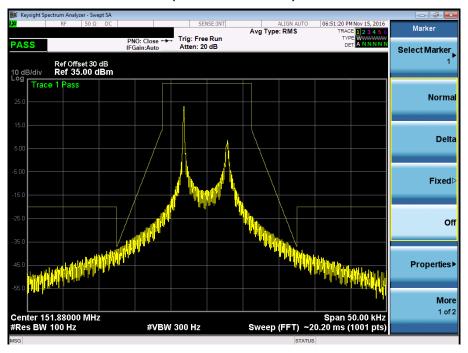
The spectrum analyzer is set to the as follows

- RBW = 300 Hz
- VBW: >3xRBW

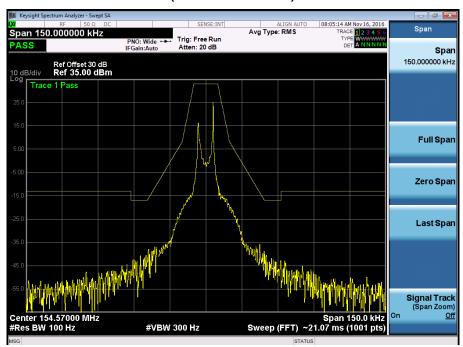
## 5.3.4 Test setup

Please refer 5.3.4


#### 5.3.5 Measurement Result


please refer 5.3.6 for details

KST-FCR-RFS-Rev.0.3 Page: 13 / 19




#### 5.3.6 Test Plot





#### (Ch4: 154.570 MHz)



KST-FCR-RFS-Rev.0.3 Page: 14 / 19

#### 5.4 Transmitter Radiated Unwanted Emissions

#### 5.4.1 Standard Applicable [FCC Part 95.635(e)]

According to FCC section 95.635(e), the unwanted emission should be attenuated below TP(transmitter power) by at least 50+10 log (TP) dB for 151.880 MHz and at least 43+10log(TP) dB for 154.570 MHz.

#### 5.4.2 Test Environment conditions

• Ambient temperature : (21 ~ 23) °C • Relative Humidity : (53 ~ 56) % R.H.

#### 5.4.3 Measurement Procedure

**Conducted:** The transmitter output (antenna port) was connected to the spectrum analyzer. The RBW set for 100 kHz and the reference level was adjusted to ensure the system had sufficient dynamic range to measure spurious emissions. The frequency range from 30 MHz to the 10th harmonic of the fundamental transmitter was observed and plotted.

Radiated; The EUT was setup according to ANSI/TIA 603D:2010 for compliance to FCC 47CFR part 95 requirements.

As a below test procedure (1 $^{\circ}$ 3), The result value of measurement is performed to condition of the below; The EUT will operate in continuous transmission mode during the time necessary to perform the measured of the frequency. Substitution method was performed to determine the actual  $P_{ero}$  (or  $P_{eiro}$ ) emission levels of the EUT.

The following test procedure as below;

The test is performed in a fully pyramidal chamber to determine the accurate frequencies, after maximum emissions level will be checked on a test chamber and measuring distance is 3 m from EUT to test antenna.

- ① The EUT was set on with continuous transmission mode and placed on a high non-conductive table on the chamber.
- ② The test antenna is used on Bi-Log antenna at above 30 MHz, and used on Horn antenna at 1 GHz and then the measurements are repeated with the test antenna for vertical and horizontal polarization. The output of the test antenna will be connected to a measuring receiver, and it is set to tuned over the required standard measuring frequency range.
- ③ At each frequency at which a relevant spurious component is detected, the test antenna will be raised and lowered through the specified range of heights until an maximum signal level is detected on the measuring receiver.
- 4 The EUT is position x, y, z axis on rotating through 360 degrees in the horizontal plane, until the Max. signal level is detected by the measuring receiver.
- ⑤ The receiver is scanned from requested measuring frequency band and then the maximum meter reading is recorded. The radiated emissions were measured with requested standard specification (detector and resolution bandwidth etc.)
- ⑥ The EUT was then removed and replaced with substitution antenna. The center of the antenna was approximately at the same location as the center of the EUT, and calibrated for the frequency of the spurious component detected.
- Signal generator output port connected with substitution antenna input port. If necessary, may use shield cable between signal generator and substitution antenna
- ® The frequency of the calibrated signal generator is set to frequency of the spurious component detected, and the input attenuator setting of the measuring receiver was adjust in order to increase the sensitivity of the measuring receiver, if necessary
- The test antenna was raised and lowered through the specified range of heights to ensure that maximum signal is received.
- ① The input signal to the substitution antenna was be adjusted until an equal or a known related level to that detected from the transmitter is obtained on the measuring receiver.
- (1) The input signal to the substitution antenna was be recorded as a power level and corrected for any change of input attenuator setting of the measuring receiver
- <sup>®</sup> The measure of P<sub>erp</sub>(or P<sub>eirp</sub>) the spurious components is the larger of the two power levels recorded for each spurious component at the input to the substitution antenna, corrected for the gain of the substitution antenna, if necessary.
- (3) It is correction to signal generator's offset value. In this case of Perp(or Peirp) shall calculated as follow as formula;
- $P_{erp}(or P_{eirp}) = Signal generator level (dBm) Cable loss(dB)$

KST-FCR-RFS-Rev.0.3 Page: 15 / 19



## The compliance limit was calculated as the following table:

| CH | Freq [MHz] | Max output power [dBm] | Required attenuation [dB]  |
|----|------------|------------------------|----------------------------|
| 2  | 151.880    | 30.39                  | $50 + 10\log(1.09) = 50.4$ |
| 4  | 154.570    | 30.81                  | $43 + 10\log(1.09) = 43.8$ |

# 5.4.4 Measurement Result (Conducted)

| Channel     | СН | Freq.<br>[MHz] | output power |      |
|-------------|----|----------------|--------------|------|
| Description | СП |                | [dBm]        | [W]  |
| -           | 2  | 151.880        | 30.39        | 1.09 |

| Emission Frequency [Mt] | Level below Carrier<br>[dBc] | Margin<br>[dB] | Limit<br>[dB <b>c</b> ] | Test Results |
|-------------------------|------------------------------|----------------|-------------------------|--------------|
| 304.4                   | 53.30                        | 2.90           | 50.4                    | Compliance   |
| 456.0                   | 55.59                        | 5.19           | 50.4                    | Compliance   |
| 577.4                   | 61.28                        | 10.88          | 50.4                    | Compliance   |

| Channel     | СН | Freq.<br>[MHz] | output power |      |
|-------------|----|----------------|--------------|------|
| Description | СП |                | [dBm]        | [W]  |
| -           | 4  | 154.570        | 30.81        | 1.21 |

| Emission Frequency [Mt] | Level below Carrier<br>[dBc] | Margin<br>[dB] | Limit<br>[dB <b>c</b> ] | Test Results |
|-------------------------|------------------------------|----------------|-------------------------|--------------|
| 308.6                   | 46.30                        | 2.50           | 43.8                    | Compliance   |
| 463.0                   | 55.24                        | 11.44          | 43.8                    | Compliance   |

# (Radiated)

| Channel     | СН | Freq.<br>[MHz] | ERP power |      |
|-------------|----|----------------|-----------|------|
| Description | 5  |                | [dBm]     | [W]  |
| -           | 2  | 151.880        | 30.50     | 1.12 |

| Emission Frequency [Mt] | Ant Pol | Level below Carrier [dBc] | Margin<br>[dB] | Limit<br>[dB <b>c</b> ] | Test Results |
|-------------------------|---------|---------------------------|----------------|-------------------------|--------------|
| 303.3                   | V       | 52.04                     | 1.64           | 50.4                    | Compliance   |
| 454.6                   | V       | 71.00                     | 20.60          | 50.4                    | Compliance   |
| 1 082                   | V       | 81.31                     | 30.91          | 50.4                    | Compliance   |

KST-FCR-RFS-Rev.0.3 Page: 16 / 19

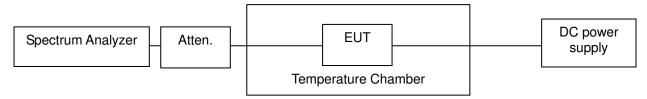
## 5.5 Frequency Stability

## 5.5.1 Standard Applicable [FCC Part 95.632(c)]

MURS transmitters must maintain a frequency stability of 5.0 ppm, or 2.0 ppm if designed to operate with a 6.25 kHz bandwidth.

## 5.5.2 Test Environment conditions

• Ambient temperature : (21 ~ 23) °C • Relative Humidity : (53 ~ 56) % R.H.


#### 5.5.3 Measurement Procedure

EUT connect to Spectrum analyzer, test is performed in T&H chamber.

These measurements shall also be performed at normal and extreme test conditions.

- Test Method: ANSI/TIA-603-D-2010, clause 3.2.2 for frequency stability tests
  - -Frequency stability with respect to ambient temperature
  - -Frequency stability when varying supply voltage

#### 5.5.4 Test setup



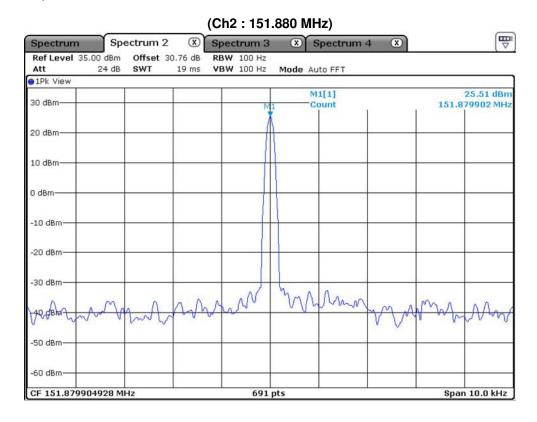
#### 5.5.5 Measurement Result

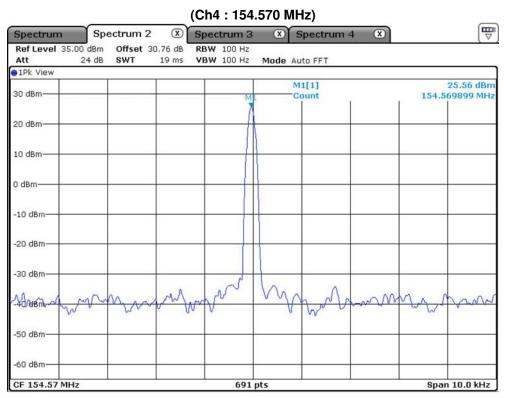
(Ch2: 151.880 MHz)

| Temp(°C)        | Power Supply  | Measured Freq(Hz) | Freq Drift(ppm) |
|-----------------|---------------|-------------------|-----------------|
| 50              | DC 3.7 (Vnom) | 151879902         | -0.65           |
| 40              | DC 3.7 (Vnom) | 151879910         | -0.59           |
| 30              | DC 3.7 (Vnom) | 151879952         | -0.32           |
| 20              | DC 3.7 (Vnom) | 151879945         | -0.36           |
| 10              | DC 3.7 (Vnom) | 151879946         | -0.36           |
| 0               | DC 3.7 (Vnom) | 151879941         | -0.39           |
| -10             | DC 3.7 (Vnom) | 151879936         | -0.42           |
| -20             | DC 3.7 (Vnom) | 151879933         | -0.44           |
| -30             | DC 3.7 (Vnom) | 151879911         | -0.59           |
|                 |               |                   |                 |
| Nom Temperature | DC 3.2 (Vmin) | 151879943         | -0.38           |
| Nom Temperature | DC 4.2 (Vmax) | 151879941         | -0.39           |
| Test Results    |               | Co                | mpliance        |

KST-FCR-RFS-Rev.0.3 Page: 17 / 19




# (Ch4: 154.570 MHz)


| Temp(°C)        | Power Supply  | Measured Freq(Hz) | Freq Drift(ppm) |
|-----------------|---------------|-------------------|-----------------|
| 50              | DC 3.7 (Vnom) | 154 569 899       | -0.65           |
| 40              | DC 3.7 (Vnom) | 154 569 902       | -0.63           |
| 30              | DC 3.7 (Vnom) | 154 569 910       | -0.58           |
| 20              | DC 3.7 (Vnom) | 154 569 958       | -0.27           |
| 10              | DC 3.7 (Vnom) | 154 569 952       | -0.31           |
| 0               | DC 3.7 (Vnom) | 154 569 954       | -0.30           |
| -10             | DC 3.7 (Vnom) | 154 569 963       | -0.24           |
| -20             | DC 3.7 (Vnom) | 154 569 921       | -0.51           |
| -30             | DC 3.7 (Vnom) | 154 569 933       | -0.43           |
|                 |               |                   |                 |
| Nom Temperature | DC 3.2 (Vmin) | 154 569 956       | -0.28           |
| Nom Temperature | DC 4.2 (Vmax) | 154 569 953       | -0.30           |
| Test Results    |               | Compliance        |                 |



#### 5.5.6 Test Plot

#### \*Worst case only





KST-FCR-RFS-Rev.0.3 Page: 19 / 19