

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10:2009 TEST REPORT

For

Z-Gate

Model : FG3200 ; FG2200

Trade Name : GOOD WAY

Issued for

GOOD WAY TECHNOLOGY CO., LTD.

3F, No. 135, Ln. 235, Baociao Rd., Sindian Dist., New Taipei City 231, Taiwan

Issued by

Compliance Certification Services Inc. Hsinchu Lab. NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C TEL: +886-3-5921698 FAX: +886-3-5921108

> http://www.ccsrf.com E-Mail : service@ccsrf.com

Issued Date: October 08, 2014

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	09/30/2014	Initial Issue	All Page 26	Dola Hsieh
01	10/01/2014	Revised Product Name & Added Product Description	All Page 26	Dola Hsieh
02	10/08/2014	Revised Antenna Information	Page 5	Gloria Chang

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	6
5. FACILITIES AND ACCREDITATION	7
5.1 FACILITIES	7
5.2 ACCREDITATIONS	7
5.3 MEASUREMENT UNCERTAINTY	8
6. SETUP OF EQUIPMENT UNDER TEST	9
7. FCC PART 15.249 REQUIREMENTS	10
7.1 20dB BANDWIDTH	10
7.2 RADIATED EMISSION	13
7.3 CONDUCTED EMISSION	20
APPENDIX I SETUP PHOTOS	25

1. TEST REPORT CERTIFICATION

Applicant	:	GOOD WAY TECHNOLOGY CO., LTD.
Address	:	3F, No. 135, Ln. 235, Baociao Rd., Sindian Dist., New
		Taipei City 231, Taiwan
Equipment Under Test	:	Z-Gate
Model	:	FG3200 ; FG2200
Trade Name	:	GOOD WAY
Tested Date	:	June 27 ~ September 22, 2014

APPLICABLE STANDARD				
Standard	Test Result			
FCC Part 15 Subpart C AND ANSI C63.10:2009	PASS			

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sb. Lu Sr. Engineer

Reviewed by:

Gundam Lin Sr. Engineer

2. EUT DESCRIPTION

Product Name	Z-Gate
Product Description	LAN to Z-Wave / Wifi to Z-Wave
Model Number	FG3200 ; FG2200
RF Module	ZWAVE RF Module, Model Number : MZM5101A-C84
Identify Number	T140627D04
Received Date	June 27, 2014
Frequency Range	908.42MHz
Transmit Power	94.01 dBuV/m
Channel Number	1 Channels
Type of Modulation	ASK
Antenna Type	Chip (SMD) Antenna, Antenna Gain 1.3 dBi
Power Rating	5Vdc
Test Voltage	120Vac, 60Hz
DC Power Cable Type	Non-shielded cable, 1.5m (Non-detachable), with a ferrite core
I/O Port	RJ-45 Port × 1, Power Port × 1

RF Module :

No.	Manufacturer	Model No.	Brand Name	Applicant	Device description	FCC ID
1	AzureWave	RTL8188EE	Realtek	Realtek Semiconductor Corp.	802.11b/g/n RTL8188EE miniCard	TX2-RTL818 8EE
2	Qcom	RTL8188EE	Realtek	Realtek Semiconductor Corp.	802.11b/g/n RTL8188EE miniCard	TX2-RTL818 8EE

Power Adapter :

No.	Manufacturer	Model No.	Power Input	Power Output
1	DVE	DSA-15P-05 US 050125	100-240Vac, 0.5A max, 50/60Hz	+5V, 2.5A

The difference of the series model :

Model Number	Difference (Function)	
FG3200	Wifi/LAN to Z-Wave	
FG2200	LAN to Z-Wave	

Remark :

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: SW8ZGATE filing to comply with Section 15.207, 15.209 and 15.249 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

The EUT (FG3200) had been tested under operating condition.

There is one channel have been tested as following :

Channel	Frequency (MHz)	
1	908.42	

Radiated Emission (Below 1 GHz & Above 1 GHz) Test:

TX Mode

Conducted Emission Test:

Normal Operating

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2009 and FCC CFR 47, 15.207, 15.209 and 15.249.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.10:2009 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	INDUSTRY CANADA
Japan	VCCI
Taiwan	BSMI
USA	FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Remark: FCC Designation Number TW1027.

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

N/A

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode :

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Power on all equipments.

TX Mode: Frequency: 908.42MHz

- 3. All of the functions are under run.
- 4. Start test.

Conduction Mode:

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Notebook PC 1 ping EUT IP through wireless LAN.
- 3. Notebook PC 2 telnet 192.168.0.254 to EUT, Key in command for power monitor switch start up.
- 4. EUT link to power monitor switch.
- 5. All of the functions are under run.
- 6. Start test.

7. FCC PART 15.249 REQUIREMENTS

7.1 20dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST EQUIPMENT

966Chamber_B

Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY46180323	04/15/2015
EMI Test Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/16/2014
Bi-log Antenna	SCHWARZBECK	VULB 9168	9168-250	08/21/2015
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-778	08/19/2015
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078733	12/05/2014
Horn Antenna	COM-POWER	AH-840	03077	12/18/2014
Pre-Amplifier	Agilent	8447D	2944A10052	07/15/2015
Pre-Amplifier	Agilent	8449B	3008A01916	07/15/2015
LOOP Antenna	COM-POWER	AL-130	121051	01/12/2015
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R

Remark: 1. Each piece of equipment is scheduled for calibration once a year. 2. N.C.R = No Calibration Request.

<u>TEST SETUP</u>

FCC ID : SW8ZGATE

TEST PROCEDURE

The 20dB band width was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20dB band width of the emission was determined.

TEST RESULTS

Channel Frequency	20dB Bandwidth
(MHz)	(kHz)
908.42	305

20dB BANDWIDTH

* A	gilent							RΤ		
	-								∆ Mkr1	305 kHz
Ref 10	1 dB µ V		#Ĥ	tten 4 di	3				-	-0.09 dB
Peak Log										
10 dB/				1R			1			
				/						
DI 79.7				×				who we have		
dB µ V LgAv	much	Marketylinden							and a second	waw
M1 S2 S3 FC										
£ (f): f>50k										
зwр										
	L									
Center	908.392	MHz						~	Sp:	an 1 MHz
#Kes B	2M IOO KH	Z		#	VRM 100	KHZ		ъмеер	1 ms (1)	001 pts)_

FCC ID : SW8ZGATE

7.2 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

1.¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2.² Above 38.6

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 - 1.705	24000/F(KHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

- (4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.
- (5) According to § 15.249 (a) Except as provided in paragraph (b) of this section, the field strength of emission from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (millivolts/meter)	Measurement Distance of Harmonics (microvolts/meter)
902 - 928	50	500
2400 - 2483.5	50	500
5725 - 5875	50	500
24000 - 24250	250	2500

TEST EQUIPMENT

966Chamber_B

Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY46180323	04/15/2015
EMI Test Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/16/2014
Bi-log Antenna	SCHWARZBECK	VULB 9168	9168-250	08/21/2015
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-778	08/19/2015
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078733	12/05/2014
Horn Antenna	COM-POWER	AH-840	03077	12/18/2014
Pre-Amplifier	Agilent	8447D	2944A10052	07/15/2015
Pre-Amplifier	Agilent	8449B	3008A01916	07/15/2015
LOOP Antenna	COM-POWER	AL-130	121051	01/12/2015
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R

Remark: 1. Each piece of equipment is scheduled for calibration once a year. 2. N.C.R = No Calibration Request.

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.

9kHz ~ 30MHz

Compliance Certification Services Inc. FCC ID : SW8ZGATE

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	Z-Gate	Test By	Audi Chang
Test Model	FG3200	Test Date	2014/08/12
Test Mode	TX Mode	Temp. & Humidity	30 [°] C, 50%

966 Chamber_B at 3Meter / Horizontal							
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
908.42	93.78	-1.05	92.73	94.00	-12.7	Peak	
52.31	44.22	-13.89	30.33	40.00	-9.67	Peak	
260.86	57.33	-13.31	44.03	46.00	-1.97	Peak	
312.27	57.50	-11.66	45.84	46.00	-0.16	Peak	
468.44	54.43	-8.61	45.82	46.00	-0.18	QP	
901.06	32.70	-1.14	31.56	46.00	-14.44	Peak	
909.79	39.14	-1.04	38.10	46.00	-7.90	Peak	
960.23	28.40	-0.40	28.00	54.00	-26.00	Peak	

966 Chamber_B at 3Meter / Vertical							
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
908.42	94.93	-1.05	93.88	94.00	-0.12	Peak	
52.31	53.30	-13.89	39.41	40.00	-0.59	QP	
312.27	50.58	-11.66	38.92	46.00	-7.08	Peak	
397.63	52.61	-9.98	42.64	46.00	-3.36	Peak	
468.44	53.78	-8.61	45.17	46.00	-0.83	Peak	
904.94	31.94	-1.10	30.85	46.00	-15.15	Peak	
920.46	31.75	-0.92	30.82	46.00	-15.18	Peak	
960.23	27.63	-0.40	27.23	54.00	-26.77	Peak	

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) – PreAmp.Gain (dB)

- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Above 1 GHz

Product Name	Z-Gate	Test By	Audi Chang
Test Model	FG3200	Test Date	2014/08/05
Test Mode	TX Mode	Temp. & Humidity	27 [°] C, 57%

966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1085.00	52.47		-2.88	49.59		74.00	54.00	-4.41	Peak
1816.00	46.90		0.08	46.98		74.00	54.00	-7.02	Peak
2700.00	42.13		3.32	45.45		74.00	54.00	-8.55	Peak
3244.00	41.84		4.28	46.12		74.00	54.00	-7.88	Peak
3873.00	42.23		5.51	47.75		74.00	54.00	-6.25	Peak
4604.00	42.14		7.62	49.76		74.00	54.00	-4.24	Peak

Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1085.00	52.53		-2.88	49.65		74.00	54.00	-4.35	Peak
1697.00	48.12		-1.04	47.08		74.00	54.00	-6.92	Peak
2683.00	42.44		3.27	45.72		74.00	54.00	-8.28	Peak
3125.00	42.56		4.18	46.74		74.00	54.00	-7.26	Peak
4009.00	41.19		5.89	47.08		74.00	54.00	-6.92	Peak
4672.00	40.77		7.76	48.53		74.00	54.00	-5.47	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

5. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

7.3 CONDUCTED EMISSION

<u>LIMITS</u>

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)			
(MHz)	Quasi-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5.00	56	46		
5.00 - 30.0	60	50		

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/06/2015
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/10/2015
EMI Test Receiver	ROHDE & SCHWARZ	ESHS 30	838550/003	11/07/2014
Pulse Limiter	ROHDE & SCHWARZ	ESH3-Z2	100111	06/30/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.10:2009.

The test procedure is performed in a $4m \times 3m \times 2.4m$ (L×W×H) shielded room.

The EUT along with its peripherals were placed on a 1.0m (W) \times 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	Z-Gate	Test By	Jey Li
Test Model	FG3200	Test Date	2013/07/11
Test Mode	Normal Operating	Temp. & Humidity	21 [°] C, 61%

Remark:

1. Correction Factor = Insertion loss + Cable loss

2. Emission level = Reading Value + Correction factor

3. Margin value = Emission level – Limit value

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Product Name	Z-Gate	Test By	Jey Li
Test Model	FG3200	Test Date	2013/07/11
Test Mode	Normal Operating	Temp. & Humidity	21 [°] C, 61%

Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.