FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4:2003 TEST REPORT

For

Z-Wave USB Dongle

Model: WD6000

Trade Name: GOOD WAY

Issued for

GOOD WAY TECHNOLOGY CO., LTD.

3F, No. 135, Lane 235, Pau Chiao Rd., Hsin-Tien City, Taipei Hsien, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

> TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail: service@ccsrf.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	11/17/2010	Initial Issue	All Page 24	Winnie Chen

Report No.: T101027203-RP1

TABLE OF CONTENTS

TITLE	E NO.
1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	6
5. FACILITIES AND ACCREDITATION	6
5.1 FACILITIES	6
5.2 ACCREDITATIONS	7
5.3 MEASUREMENT UNCERTAINTY	7
6. SETUP OF EQUIPMENT UNDER TEST	8
7. FCC PART 15.249 REQUIREMENTS	9
7.1 RADIATED EMISSION	9-16
7.2 CONDUCTED EMISSION	17-21
APPENDIX II SETUP PHOTOS	22-24

1. TEST REPORT CERTIFICATION

Applicant: GOOD WAY TECHNOLOGY CO., LTD.

Address : 3F, No. 135, Lane 235, Pau Chiao Rd., Hsin-Tien City,

Taipei Hsien, Taiwan, R.O.C.

Equipment Under Test: Z-Wave USB Dongle

Ux Chiu

Model : WD6000

Trade Name : GOOD WAY

Tested Date : October 27 ~ November 16, 2010

APPLICABLE STANDARD			
Standard	Test Result		
FCC Part 15 Subpart C AND ANSI C63.4:2003	PASS		

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Alex Chiu Director Gundam Lin

Reviewed by:

Team Leader

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	Z-Wave USB Dongle
Model Number	WD6000
Received Date	October 27, 2010
Frequency Range	908.42MHz
Transmit Power	94.92 dBµV/m
Channel Number	1 Channel
Transmit Data Rate	9.6 kbps, 40 kbps
Type of Modulation	ASK
Antenna Type	PCB Antenna, Antenna Gain -3.10 dBi
Power Source	5.0VDC (From Notebook PC, Powered From Host Device)
I/O Port	USB port × 1

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: SW8WD6000 filing to comply with Section 15.207, 15.209 and 15.249 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

The EUT (WD6000) had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
1	908.42	

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only, and powerline conducted emission below 30MHz, which worst case was in normal link mode.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2003 and FCC CFR 47, 15.207, 15.209 and 15.249.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.4:2003 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Taiwan BSMI USA FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

UNCERTAINTY
./ 2.0267
+/- 3.9267
./ 2.6900
+/- 3.6899
+/- 3.6878
+/- 3.0070
+/- 3.0885
+/- 3.0663
. / . 2. 2000
+/- 3.2000
+/- 1.7468

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2006, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	DELL	INSPIRON 640m PP19L	CN-0MG532-70166-7 1G-03EC	DoC
2	Notebook PC	HP	ProBook 4421s	CNF03242PM	DoC
3	Power monitor	GOOD WAY	TD1030		SW8TD1030

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode

- 1. Set up all computers like the setup diagram.
- 2. Power on all equipments.
 - TX Mode: Frequency:908.42MHz
- 3. All of the function are under run.
- 4. Start test.

Normal Mode

- 1. Setup whole system for test as shown on diagram.
- 2. Power on all equipments.
- 3. EUT through the wireless connection AC outlet (Power monitor).
- 4. All of the function are under run.
- 5. Start test.

Report No.: T101027203-RP1

7. FCC PART 15.249 REQUIREMENTS

7.1 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

^{1.} 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2. 2 Above 38.6

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 - 1.705	24000/F(KHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

- (4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.
- (5) According to § 15.249 (a) Except as provided in paragraph (b) of this section, the field strength of emission from intentional radiators operated within these frequency bands shall comply with the following:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
902 - 928	50	500
2400 - 2483.5	50	500
5725 - 5875	50	500
24000 - 24250	250	2500

TEST EQUIPMENT

966Chamber_A

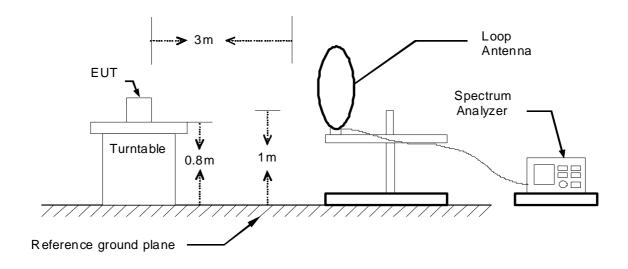
Name of Equipment Manufacture		Model	Serial Number	Calibration Due
Spectrum Analyzer Agilent		E4446A	MY43360132	06/20/2011
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	100221	05/03/2011
Bilog Antenna	SCHWARZBECK	VULB	9168-249	10/04/2011
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00078732	07/05/2011
Pre-Amplifier	Agilent	8449B	3008A01471	08/02/2011
Pre-Amplifier	HP	8447F	2944A03748	09/23/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31347	07/21/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31350	07/21/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31355	07/21/2011
LOOP Antenna	EMCO	6502	8905-2356	06/09/2011
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	009	N.C.R

Remark: 1. Each piece of equipment is scheduled for calibration once a year.

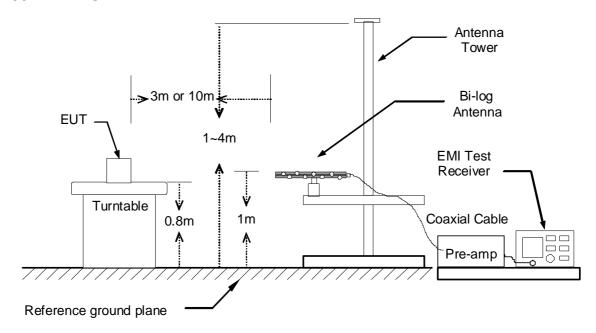
966Chamber_B

Name of Equipment	e of Equipment Manufacture		Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4407B	US41443108	08/12/2011
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	100221	05/03/2011
Broadband Hybrid Bi-Log Antenna	Sunol Sciences	JB1	A100209-4	10/07/2011
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-778	09/06/2011
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078733	12/17/2010
Pre-Amplifier	Miteq	AM-1652-3000	1490937	10/10/2011
Pre-Amplifier	Miteq	AFS44-001026 50-42-10P-44	1494026	10/10/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31346	10/07/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN33957	10/07/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN33958	10/07/2011
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R

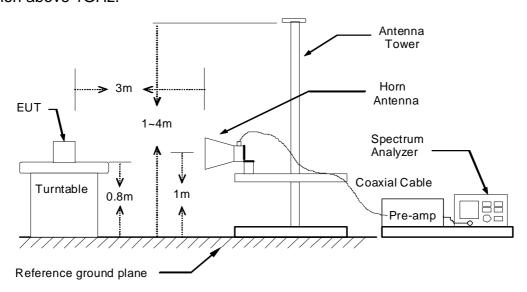
Remark: 1. Each piece of equipment is scheduled for calibration once a year.


^{2.} N.C.R = No Calibration Request.

^{2.} N.C.R = No Calibration Request.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.


9kHz ~ 30MHz

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	Z-Wave USB Dongle	Test By	Albert Lai
Model	WD6000	Test Date	2010/11/16
Test Mode	Normal operating (worst-case)	TEMP & Humidity	23°C, 56%

966 Chamber_B at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
38.73	46.14	-26.19	19.95	40.00	-20.05	Peak
189.08	48.59	-40.53	8.06	43.50	-35.44	Peak
275.41	50.21	-38.13	12.08	46.00	-33.92	Peak
480.08	51.20	-25.83	25.37	46.00	-20.63	Peak
719.67	45.72	-30.07	15.66	46.00	-30.34	Peak
804.06	41.89	-24.33	17.55	46.00	-28.45	Peak
960.23	46.23	-24.78	21.45	54.00	-32.55	Peak
		966 Chamb	er_B at 3Met	er / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
48.43	60.88	-43.09	17.79	40.00	-22.21	Peak
60.07	58.05	-43.79	14.27	40.00	-25.73	Peak
90.14	54.67	-38.44	16.23	43.50	-27.27	Peak
191.99	47.51	-33.27	14.24	43.50	-29.26	Peak
306.45	51.81	-35.71	16.10	46.00	-29.90	Peak
455.83	56.36	-32.74	23.62	46.00	-22.38	Peak

Remark:

666.32

960.23

44.76

46.39

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

20.05

22.49

46.00

54.00

-25.95

-31.51

Peak

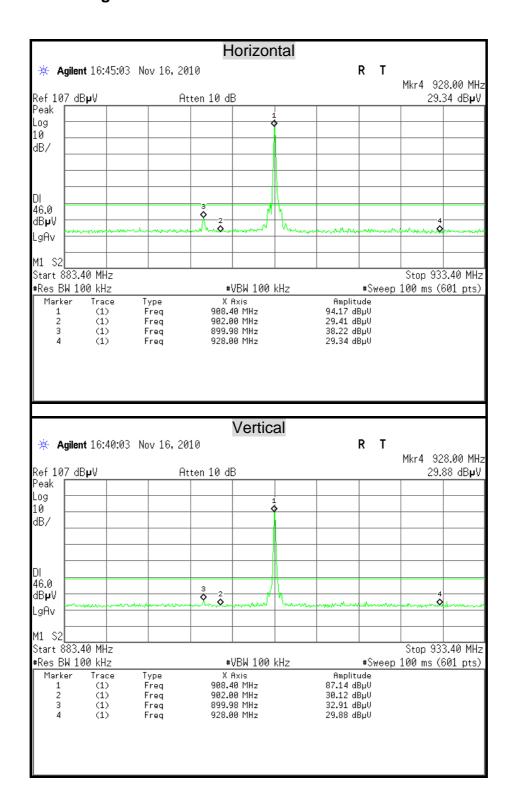
Peak

- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

-24.71

-23.90

Above 1 GHz


Product Name	Z-Wave USB Dongle	Test By	Rueyyan Lin
Model	WD6000	Test Date	2010/11/10
Test Mode	TX Mode	TEMP & Humidity	24°C, 52%

	966 Chamber_A at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)			Limit-AV (dBuV/m)	Margin (dB)	Remark
* 908.42	91.81	89.36	3.11	94.92	92.47	114.00	94.00	-1.53	AVG
1328.50	45.27		-3.36	41.91		74.00	54.00	-12.09	Peak
1823.50	43.03		0.04	43.07		74.00	54.00	-10.93	Peak
2327.50	45.24		2.20	47.45		74.00	54.00	-6.55	Peak
2894.50	42.83		3.36	46.18		74.00	54.00	-7.82	Peak
3610.00	41.90		4.11	46.01		74.00	54.00	-7.99	Peak
4550.50	40.89		6.59	47.47		74.00	54.00	-6.53	Peak

	966 Chamber_A at 3Meter / Vertical								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)		Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
* 908.42	84.69	82.04	3.11	87.80	85.15	114.00	94.00	-8.85	AVG
1333.00	50.71		-3.34	47.37		74.00	54.00	-6.63	Peak
1499.50	48.33		-2.66	45.67		74.00	54.00	-8.33	Peak
2323.00	45.08		2.19	47.27		74.00	54.00	-6.73	Peak
2723.50	43.86		3.01	46.87		74.00	54.00	-7.13	Peak
3241.00	41.55		3.69	45.24		74.00	54.00	-8.76	Peak
3929.50	42.03		4.98	47.01		74.00	54.00	-6.99	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- Result = Reading + Correction Factor Margin = Result - Limit Remark Peak = Result(PK) - Limit(AV) Remark AVG = Result(AV) - Limit(AV)
- 7. (*) Fundamental

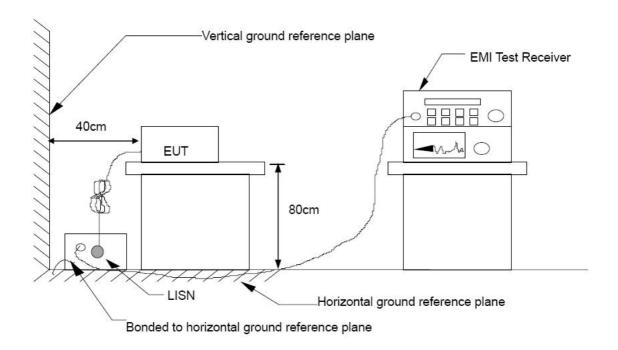
Restricted Band Edges

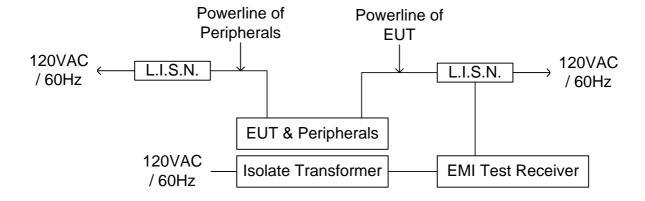
7.2 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)				
(MHz)	Quasi-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			


TEST EQUIPMENT


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/08/2011
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/22/2011
EMI Test Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/24/2011
Pulse Limit	ROHDE & SCHWARZ	ESH3-Z2	100117	09/17/2011
N Type Coaxial Cable	BELDEN	8268 M17/164	003	07/09/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Report No.: T101027203-RP1

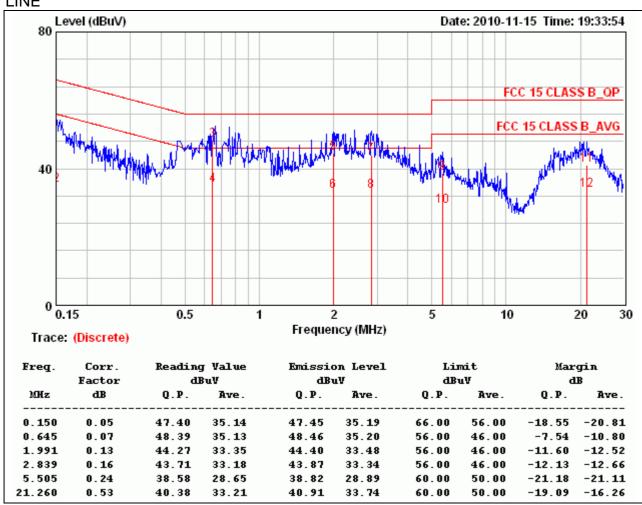
TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.4:2003.

The test procedure is performed in a $4m \times 3m \times 2.4m$ (L×W×H) shielded room.

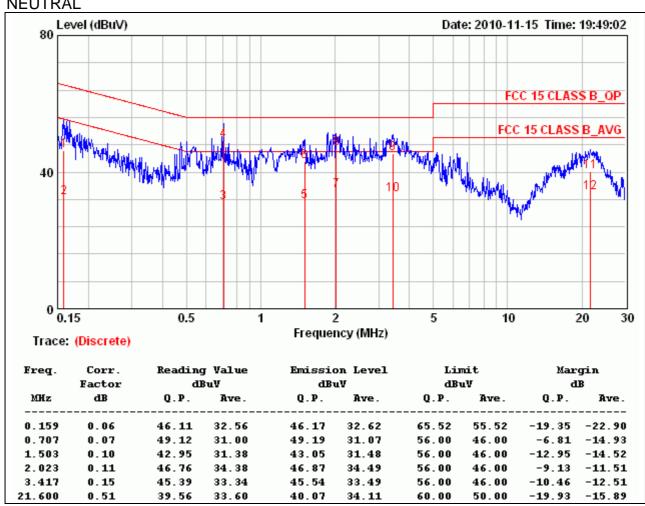
The EUT along with its peripherals were placed on a 1.0m (W) \times 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.


The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	Z-Wave USB Dongle	Test By	Rueyyan Lin	
Model	WD6000	Test Date	2010/11/15	
Test Mode	Normal operating (worst-case)	TEMP & Humidity	23.1°C, 53%	


LINE

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Z-Wave USB Dongle	Test By	Rueyyan Lin	
Model	WD6000	Test Date	2010/11/15	
Test Mode	Normal operating (worst-case)	TEMP & Humidity	23.1°C, 53%	

NEUTRAL

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value