

## FCC TEST REPORT No. 170603201SHA-001

| Applicant          | : | Intex Development Company limited<br>9th Floor, Everbright Centre, 108 Gloucester Road,<br>Wanchai, Hong Kong  |
|--------------------|---|----------------------------------------------------------------------------------------------------------------|
| Manufacturing site | : | Intex Industries (Xiamen) Co., ltd.<br>No.858 Wengjiao Road, Haicang District, Xiamen<br>City, Fujian Province |
| Product Name       | : | FLOATING POOL SPEAKER WITH LED LIGHT                                                                           |
| Type/Model         | : | FLS625                                                                                                         |
| TEST RESULT        | : | PASS                                                                                                           |

## SUMMARY

The equipment complies with the requirements according to the following standard(s) or specification:

47 CFR FCC Part 15 Subpart C (2016): Radio Frequency Devices

**ANSI C63.10 (2013):** American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Date of issue: July 28, 2017

Prepared by:

Nem li

Nemo Li (Project Engineer)

Reviewed by:

Daniel Zhao (Reviewer)



## **Description of Test Facility**

Name:Intertek Testing Services ShanghaiAddress:Bl. No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R. China

FCC Designation Number: CN1175 IC Assigned Code: 2402B-1

Name of contact: Jonny Jing Tel: 86 21 61278271 Fax: 86 21 54262353



## Content

| S |             | RY                                             |     |
|---|-------------|------------------------------------------------|-----|
| 1 | GE          | NERAL INFORMATION                              | 5   |
|   | 1.1         | Description of Client                          | 5   |
|   | 1.2         | Identification of the EUT                      | 5   |
|   | 1.3         | Technical Specification                        | 6   |
| 2 | TES         | ST SPECIFICATIONS                              | 7   |
|   | 2.1         | Standards or specification                     | 7   |
|   | 2.2         | Mode of operation during the test              |     |
|   | 2.3         | Test software list                             |     |
|   | 2.4         | Instrument list                                |     |
|   | 2.5         | Test Summary                                   |     |
|   | 2.6         | Measurement uncertainty                        |     |
| 3 | <b>20</b> E | B BANDWIDTH                                    |     |
|   | 3.1         | Limit                                          |     |
|   | 3.2         | Test Configuration                             |     |
|   | 3.3         | Test Procedure and test setup                  |     |
|   | 3.4         | Test Protocol                                  |     |
| 4 | CAF         | RIER FREQUENCY SEPARATION                      |     |
|   | 4.1         | Test limit                                     |     |
|   | 4.2         | Test Configuration                             |     |
|   | 4.3         | Test procedure and test setup                  |     |
|   | 4.4         | Test protocol                                  |     |
| 5 |             | XIMUM PEAK OUTPUT POWER                        |     |
| - | 5.1         | Test limit                                     |     |
|   | 5.2         | Test Configuration                             |     |
|   | 5.3         | Test procedure and test setup                  |     |
|   | 5.4         | Test Protocol                                  |     |
| 6 | Ем          | SSION OUTSIDE THE FREQUENCY BAND               | 23  |
|   | 6.1         | Test limit                                     |     |
|   | 6.2         | Test Configuration                             | .23 |
|   | 6.3         | Test procedure and test setup                  |     |
|   | 6.4         | Test Protocol                                  |     |
| 7 | NUN         | IBER OF HOPPING FREQUENCIES                    | 36  |
|   | 7.1         | Test limit                                     | .36 |
|   | 7.2         | Test Configuration                             | .36 |
|   | 7.3         | Test procedure and test setup                  |     |
|   | 7.4         | Test Protocol                                  |     |
| 8 | DW          | ELL TIME                                       | 38  |
|   | 8.1         | Test limit                                     | .38 |
|   | 8.2         | Test Configuration                             |     |
|   | 8.3         | Test procedure and test setup                  |     |
|   | 8.4         | Test Protocol                                  |     |
| 9 | RAI         | DIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS | 43  |
|   | 9.1         | Test limit                                     | .43 |
|   | 9.2         | Test Configuration                             |     |
|   | 9.3         | Test procedure and test setup                  |     |

# intertek

| Total Qualit | y. Assuleu.                    |    |
|--------------|--------------------------------|----|
| 9.4          | Test Protocol                  | 45 |
| 10 Pov       | WER LINE CONDUCTED EMISSION    |    |
| 10.1         | Limit                          |    |
| 10.2         | Test configuration             |    |
|              | Test procedure and test set up |    |
| 10.4         | Test protocol                  | 51 |
| 11 Oc        | CUPIED BANDWIDTH               |    |
| 11.1         | Test limit                     |    |
| 11.2         | Test Configuration             |    |
| 11.3         | Test procedure and test setup  |    |
| 11.4         | Test protocol                  |    |
|              | -                              |    |

## intertek Total Quality. Assured.

**1 GENERAL INFORMATION** 

## **1.1 Description of Client**

| Applicant          | : | Intex Development Company limited                                        |
|--------------------|---|--------------------------------------------------------------------------|
|                    |   | 9th Floor, Everbright Centre, 108 Gloucester Road,<br>Wanchai, Hong Kong |
| Manufacturing site | : | Intex Industries (Xiamen) Co., ltd.                                      |
|                    |   | No.858 Wengjiao Road, Haicang District, Xiamen City,<br>Fujian Province  |

## **1.2 Identification of the EUT**

| Product Name | : | FLOATING POOL SPEAKER WITH LED LIGHT |
|--------------|---|--------------------------------------|
| Type/model   | : | FLS625                               |
| FCC ID       | : | SVYFLS625                            |

# intertek

Total Quality. Assured.

## **1.3** Technical Specification

| Operation Frequency<br>Band | : | 2400 – 2483.5 MHz                                      |
|-----------------------------|---|--------------------------------------------------------|
| Protocol                    | : | Bluetooth Base Rate + EDR                              |
| Type of Modulation          | : | GFSK, $\pi/4$ -DQPSK                                   |
| Channel Number              | : | 79 channels                                            |
| Description of EUT          | : | EUT is a speaker with Bluetooth function.              |
| Antenna                     |   | PCB antenna, 0dBi                                      |
| Rating                      |   | 4.5V DC                                                |
| EUT type                    | : | <ul><li>☑ Table top</li><li>☑ Floor standing</li></ul> |
| Sample received date        | : | July 3, 2017                                           |
| Date of test                | : | July 3, 2017 ~ July 25, 2017                           |



## **2 TEST SPECIFICATIONS**

## 2.1 Standards or specification

47 CFR FCC Part 15 Subpart C (2016) ANSI C63.10 (2013) FCC Public Notice DA 00-705

### 2.2 Mode of operation during the test

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

The EUT is used for floating on the water, so only one installation was used to do the radiated emission.

| The lowest, m | iddle and | highest ch | annel were | tested as | s representatives | • |
|---------------|-----------|------------|------------|-----------|-------------------|---|
|               |           |            |            |           |                   |   |

| Freq. Band<br>(MHz) | Modulation | Lowest<br>(MHz) | Middle<br>(MHz) | Highest<br>(MHz) |
|---------------------|------------|-----------------|-----------------|------------------|
| 2400-2483.5         | GFSK       | 2402            | 2441            | 2480             |
|                     | π/4-DQPSK  | 2402            | 2441            | 2480             |

#### 2.3 Test software list

| Test Items         | Software | Manufacturer | Version |
|--------------------|----------|--------------|---------|
| Conducted emission | ESxS-K1  | R&S          | V2.1.0  |
| Radiated emission  | ES-K1    | R&S          | V1.71   |



Selected Instrument EC no. Model Valid until date Shielded room EC 2838 **GB88** 2018-1-8 EMI test receiver EC 2107 | ] ESCS 30 2017-10-19 A.M.N. EC 3119 ESH2-Z5 2017-12-01  $\square$ Semi anechoic chamber EC 3048 2017-9-9  $\square$ EMI test receiver EC 3045 ESIB26 2017-10-19  $\boxtimes$ Broadband antenna EC 4206 CBL 6112D 2018-6-1  $\square$ Horn antenna EC 3049 HF906 2017-9-23 Horn antenna EC 4792-1 3117 2017-8-24 EC 4792-3 2018-6-11 Horn antenna HAP18-26W  $\square$ **Pre-amplifier** EC 5262 pre-amp 18 2018-6-20 **Test Receiver** EC 4501 ESCI 7 2018-2-23  $\square$ PXA Signal Analyzer EC5338 N9030A 2018-3-3 Power sensor/Power meter EC4318 N1911A/N1921A 2018-5-12 EC5338-1 Power sensor U2021XA 2017-12-29 MXG Analog Signal Generator EC5338-2 N5181A 2017-8-29 MXG Vector Signal Generator EC5175 2018-3-3 N51812B

Total Quality. Assured. 2.5 Test Summary

This report applies to tested sample only. The test results have been compared directly with the limits, and the measurement uncertainty is recorded. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

| TEST ITEM                                        | FCC REFERANCE     | RESULT |
|--------------------------------------------------|-------------------|--------|
| 20 dB Bandwidth                                  | 15.247(a)(1)      | Tested |
| Carrier Frequency Separation                     | 15.247(a)(1)      | Pass   |
| Maximum peak output power                        | 15.247(b)(1)      | Pass   |
| Radiated Emissions in restricted frequency bands | 15.205 & 15.209   | Pass   |
| Emission outside the frequency band              | 15.247(d)         | Pass   |
| Number of Hopping Frequencies                    | 15.247(a)(1)(iii) | Pass   |
| Dwell time                                       | 15.247(a)(1)(iii) | Pass   |
| Power line conducted emission                    | 15.207            | Pass   |
| Occupied bandwidth                               | -                 | Tested |

Notes: 1: NA =Not Applicable

2: This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



Total Quality. Assured.

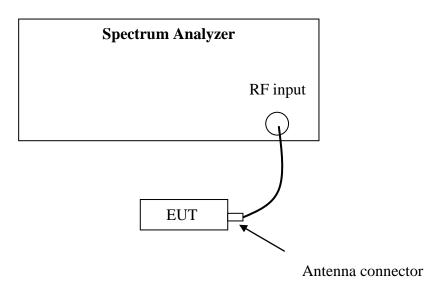
#### 2.6 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| TEST ITEM                                                      | MEASUREMENT UNCERTAINTY |
|----------------------------------------------------------------|-------------------------|
| Maximum peak output power                                      | $\pm 0.74$ dB           |
| Radiated Emissions in restricted frequency bands below 1GHz    | ± 4.90dB                |
| Radiated Emissions in restricted<br>frequency bands above 1GHz | ± 5.02dB                |
| Power line conducted emission                                  | ± 3.19dB                |



## 3 20 dB Bandwidth


Test result: Pass

## 3.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

## **3.2** Test Configuration



#### **3.3** Test Procedure and test setup

The 20 bandwidth per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span = 2 to 3 times the 20 dB bandwidth, RBW $\geq$ 1% of the 20 dB bandwidth, VBW $\geq$ RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)



| Temperature:       | 22°C |
|--------------------|------|
| Relative Humidity: | 54%  |

| Modulation | Channel | 20dB Bandwidth<br>(kHz) | Two-thirds of Bandwidth<br>(kHz) |
|------------|---------|-------------------------|----------------------------------|
|            | L       | 785.5                   | 523.67                           |
| GFSK       | М       | 785.8                   | 523.87                           |
|            | Н       | 785.3                   | 523.53                           |

## Channel L








#### Channel H





| Modulation | Channel | 20dB Bandwidth<br>(kHz) | Two-thirds of Bandwidth (kHz) |
|------------|---------|-------------------------|-------------------------------|
| π/4-DQPSK  | L       | 1227                    | 818.0                         |
|            | М       | 1229                    | 819.3                         |
|            | Н       | 1228                    | 818.7                         |

## Channel L





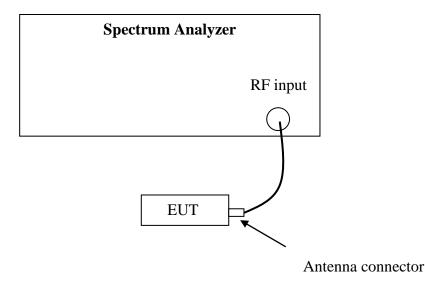


#### Channel H



# Intertek

## 4 Carrier Frequency Separation


Test result: Pass

## 4.1 Test limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

 $\bigcirc$  Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

## 4.2 Test Configuration



## 4.3 Test procedure and test setup

The Carrier Frequency Separation per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span can capture two adjacent channels,  $RBW \ge 1\%$  of the span,  $VBW \ge RBW$ , Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)



| Temperature:       | 22 °C |
|--------------------|-------|
| Relative Humidity: | 54 %  |

| Modulation | Channel | Frequency Separation<br>(kHz) | Limit<br>(kHz) |
|------------|---------|-------------------------------|----------------|
|            | L       | 1053                          | ≥ 523.67       |
| GFSK       | М       | 1011                          | ≥ 523.87       |
|            | Н       | 1014                          | ≥ 523.53       |

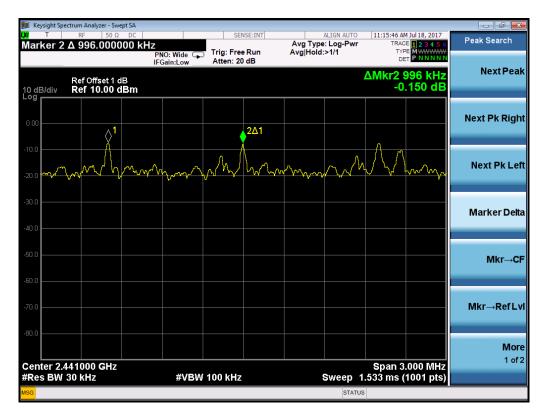
| 🎉 Keysight Sp    | ectrum Analyzer - Swe                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          |         |                |                                        | _           |                           |
|------------------|--------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--------------------------|---------|----------------|----------------------------------------|-------------|---------------------------|
| Center F         | RF 50 Ω<br>req 2.40200               | 0000 GH | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | ISE:INT        | Avg Type                 | Log-Pwr | TRAC           | 1 Jul 18, 2017<br>E <b>1 2 3 4 5 6</b> | F           | requency                  |
|                  |                                      |         | NO: Wide 🖵<br>Gain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trig: Free<br>Atten: 20 |                | Avg Hold:                | >1/1    | DE             |                                        |             |                           |
| 10 dB/div<br>Log | Ref Offset 1 d<br><b>Ref 10.00 d</b> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          | ΔΝ      | /kr2 1.0<br>-1 | 53 MHz<br>.561 dB                      |             | Auto Tune                 |
| 0.00             |                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          |         |                |                                        |             | Center Freq               |
|                  |                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ∆ <sup>1</sup> |                          |         | ▲2∆1           |                                        | 2.40        | 2000000 GHz               |
| -10.0            |                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                       | M              |                          | n N     | m              |                                        | 2.40        | Start Freq<br>0500000 GHz |
| -20.0            |                                      |         | لممرم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~ <sup>~</sup> ~        | <b>۴</b> ۳۰۰۰  | $\mathfrak{h}_{\Lambda}$ |         |                | ma                                     |             |                           |
| -30.0            |                                      |         | for the second s |                         |                | Т W.Л                    |         |                | /\/                                    | 2.40        | Stop Freq<br>3500000 GHz  |
| -40.0            | .Λ.                                  | , n     | A <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                |                          |         |                |                                        |             | CF Step                   |
| -50.0            |                                      | M.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          |         |                |                                        | <u>Auto</u> | 300.000 kHz<br>Man        |
| -60.0            | <b>∽</b> γ∕                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          |         |                |                                        |             |                           |
| -70.0            |                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          |         |                |                                        |             | Freq Offset<br>0 Hz       |
| -80.0            |                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          |         |                |                                        |             |                           |
| Center 2.        | 402000 GHz                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          |         | Span 3         | .000 MHz                               |             |                           |
| #Res BW          | 30 kHz                               |         | #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 kHz                 |                |                          |         |                | 1001 pts)                              |             |                           |
| MSG .            |                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                          | STATUS  |                |                                        |             |                           |





#### Channel H






| Modulation | Channel | Frequency Separation<br>(kHz) | Limit<br>(kHz) |
|------------|---------|-------------------------------|----------------|
|            | L       | 1008                          | ≥ 818.0        |
| π/4-DQPSK  | М       | 1002                          | ≥ 819.3        |
|            | Н       | 1002                          | ≥ 818.7        |

Channel L







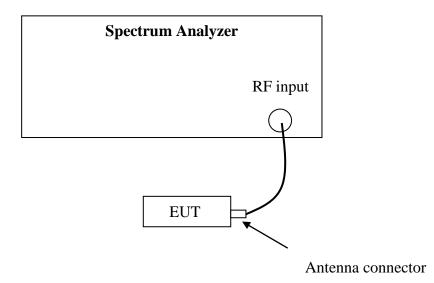
### Channel H





## 5 Maximum peak output power

Test result: Pass


### 5.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

### 5.2 Test Configuration



#### 5.3 Test procedure and test setup

The Maximum peak output power per FCC § 15.247(b) is measured using the Spectrum Analyzer with Span = 5 times the 20 dB bandwidth, RBW $\geq$  the 20 dB bandwidth, VBW $\geq$ RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)



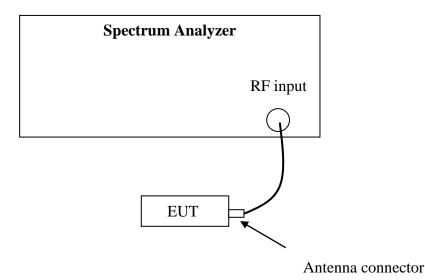
| Temperature:       | 22°C |
|--------------------|------|
| Relative Humidity: | 54%  |

| Modulation | Channel | Conducted Power<br>(dBm) | Limit<br>(dBm) |
|------------|---------|--------------------------|----------------|
|            | L       | -8.458                   | ≤21.00         |
| GFSK       | М       | -7.572                   | ≤21.00         |
|            | Н       | -6.731                   | ≤21.00         |

| Modulation | Channel | Conducted Power<br>(dBm) | Limit<br>(dBm) |
|------------|---------|--------------------------|----------------|
|            | L       | -7.572                   | ≤ 21.00        |
| π/4-DQPSK  | М       | -6.703                   | ≤21.00         |
|            | Н       | -5.815                   | ≤ 21.00        |

intertek

#### Total Quality. Assured.


## 6 Emission outside the frequency band

Test result: Pass

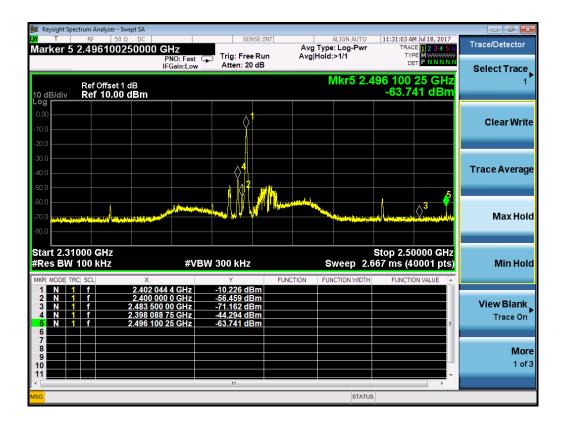
## 6.1 Test limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

## 6.2 Test Configuration

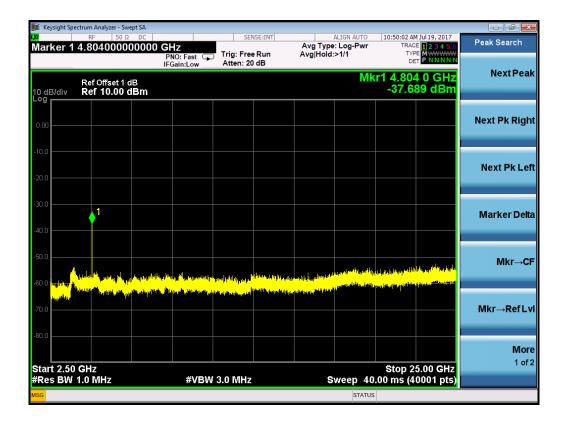


## 6.3 Test procedure and test setup

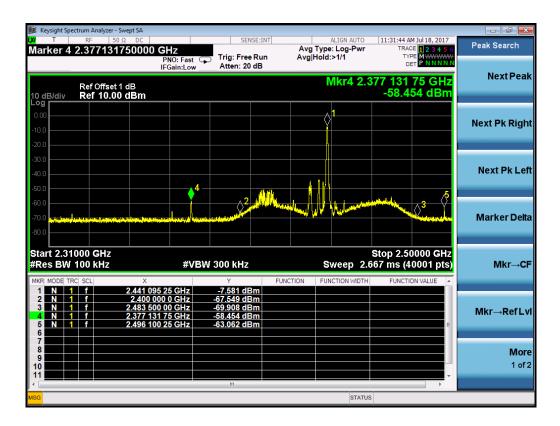

The Emission outside the frequency band per FCC § 15.247(d) is measured using the Spectrum Analyzer with Span wide enough capturing all spurious from the lowest emission frequency of the EUT up to 10th harmonics, RBW = 100kHz, VBW $\geq$ RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)



| Temperature:       | 22°C |
|--------------------|------|
| Relative Humidity: | 54%  |


| Modulation | Channel | Result | Limit<br>(dBm) |
|------------|---------|--------|----------------|
|            | L       | Pass   | ≥20            |
| GFSK       | М       | Pass   | ≥20            |
|            | Н       | Pass   | ≥20            |
|            | Hopping | Pass   | ≥20            |

## Channel L

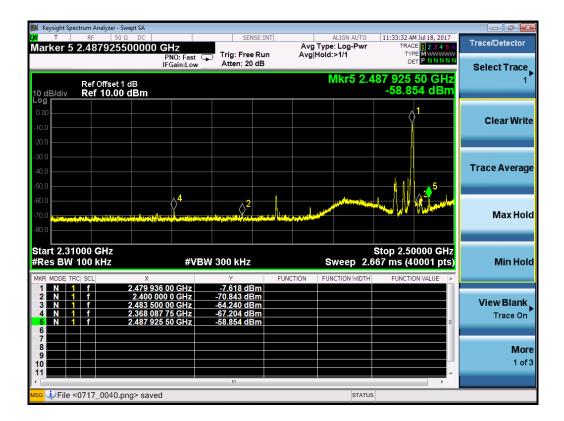





| Peak Search | M Jul 19, 2017<br>CE <b>1 2 3 4 5</b> 6<br>PE MWWWWW<br>ET P N N N N N | TRAC           | ALIGN AUTO<br>: Log-Pwr<br>>1/1      | Avg Typ<br>Avg Hold         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Z<br>PNO: Fast                                                                                                 | 2 DC<br>2450 MH         |                                                                                                                  |                       | a                 |
|-------------|------------------------------------------------------------------------|----------------|--------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|
| NextPea     | .01 MHz<br>67 dBm                                                      | <u>(r1 120</u> | M                                    |                             | ) dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Atten: 20                                      | Gain:Low                                                                                                       | ۱<br>dB                 | ef Offset 1<br>ef 10.00                                                                                          |                       |                   |
| Next Pk Rig |                                                                        |                |                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                |                         |                                                                                                                  |                       | <b>og</b><br>0.00 |
| Next Pk Le  |                                                                        |                |                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                |                         |                                                                                                                  |                       | 10.0<br>20.0      |
| Marker Del  |                                                                        |                |                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                |                         |                                                                                                                  |                       | 30.0<br>40.0      |
| Mkr→C       |                                                                        |                |                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                |                         |                                                                                                                  | 1                     | 50.0              |
| Mkr→RefL    | ay sa kili kenganang keng                                              |                | n president in same                  | a tradiente esta constitute | and <mark>to and a block of the designed statements and the second statem</mark> | san an tha |                                                                                                                | Why I was a star a star | line and the                                                                                                     |                       | 60.0<br>70.0      |
| Mo          |                                                                        |                | e og genetig bild tange professional |                             | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | la doll ga og þiða foð n <sub>a</sub> Ísl      | te e posta e la participa e la constituire |                         | - Ang ding along | an a gaint that a fee | 80.0              |
|             | .310 GHz<br>0001 pts)                                                  | 000 ms (4      | weep 8.0                             | 9                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300 kHz                                        | #VBW                                                                                                           |                         | 0 kHz                                                                                                            | t 9 kHz<br>5 BW 100   |                   |

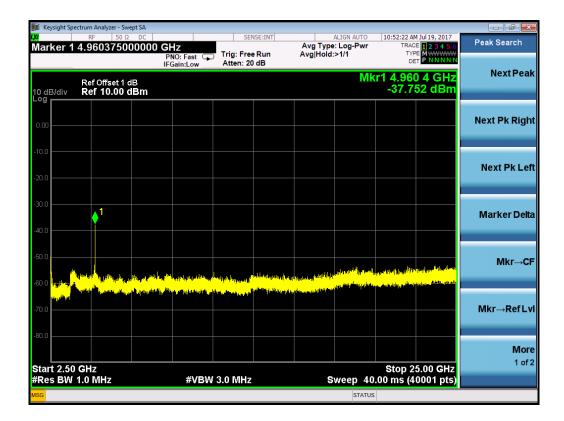






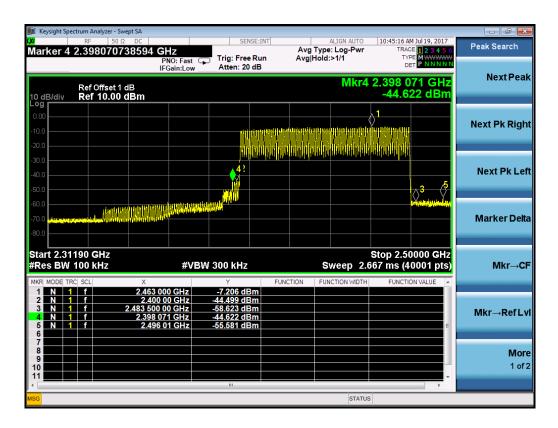






| 📕 Keysight Sp                                             | ectrum Analyzer - Swej<br>RF 50 Ω |           |                         |                                                   | ICE-INT       |              | ALIGN AUTO                                                                                                     | 10-51-27.4                               | M Jul 19, 2017                               |                  |
|-----------------------------------------------------------|-----------------------------------|-----------|-------------------------|---------------------------------------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|------------------|
| Marker 1                                                  | <b>4.88218750</b>                 | 0000 G    |                         |                                                   |               |              | : Log-Pwr                                                                                                      | TRAC                                     | E 1 2 3 4 5 6                                | Peak Search      |
| 10 dB/div                                                 | Ref Offset 1 d<br>Ref 10.00 d     | IF<br>B   | NO: Fast Ģ<br>Gain:Low  | Atten: 20                                         |               | Avginoid     |                                                                                                                | r1 4.88                                  | 2 2 GHz<br>65 dBm                            | NextPea          |
| 0.00                                                      |                                   |           |                         |                                                   |               |              |                                                                                                                |                                          |                                              | Next Pk Rig      |
| -10.0                                                     |                                   |           |                         |                                                   |               |              |                                                                                                                |                                          |                                              | Next Pk Le       |
| 30.0                                                      | 1                                 |           |                         |                                                   |               |              |                                                                                                                |                                          |                                              | Marker De        |
| 50.0                                                      |                                   | مر بار ال | a ultra.                |                                                   | <b>1</b> 6414 | n ta okoliat | linter <sup>1100</sup>                                                                                         | ang gal dag bang dalah                   | allan sa | Mkr→C            |
| 60.0 <mark>1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1</mark> |                                   |           |                         | entral (Haydod)<br>Notoy <sup>ark</sup> ot yarday |               |              | and a second | n an | a ya ana ani ani ana ana ana ana ana ana an  | Mkr→RefL         |
| start 2.50                                                |                                   |           | <i>#</i> 3 <b>(5</b> ). |                                                   |               |              |                                                                                                                | Stop 2                                   | 5.00 GHz                                     | <b>Мо</b><br>1 о |
| Res BW                                                    | 1.0 MHz                           |           | #VBV                    | / 3.0 MHz                                         |               | 8            | status                                                                                                         |                                          | 0001 pts)                                    |                  |

Channel H

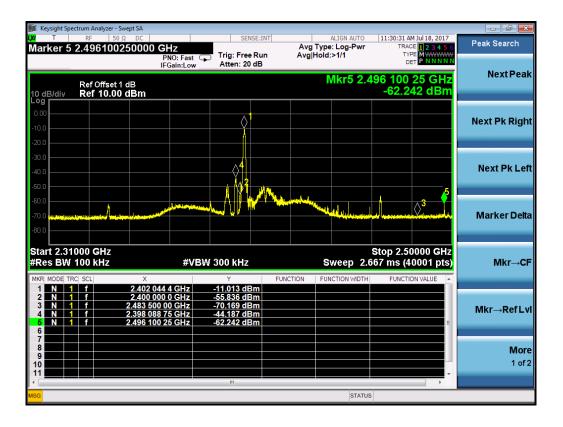





| Keysight Spectrum Analyzer - Swept SA<br>RF 50 Ω DI |                 | SENSE:INT                                 | ALIGN AUTO                         | 10:49:14 AM Jul 19, 2017                            |                   |
|-----------------------------------------------------|-----------------|-------------------------------------------|------------------------------------|-----------------------------------------------------|-------------------|
| Marker 1 63.995750700                               | MHz             | Free Run                                  | Avg Type: Log-Pwr<br>Avg Hold:>1/1 | TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P N N N N N | Peak Search       |
|                                                     | IFGain:Low Atte | n: 20 dB                                  |                                    |                                                     | NextPea           |
| Ref Offset 1 dB<br>IO dB/div Ref 10.00 dBn<br>-og   | n               |                                           | I                                  | 4.00 MHz<br>-54.508 dBm                             | noxer co          |
|                                                     |                 |                                           |                                    |                                                     |                   |
| 0.00                                                |                 |                                           |                                    |                                                     | Next Pk Rig       |
| 10.0                                                |                 |                                           |                                    |                                                     |                   |
|                                                     |                 |                                           |                                    |                                                     | Next Pk Le        |
| 20.0                                                |                 |                                           |                                    |                                                     |                   |
| 30.0                                                |                 |                                           |                                    |                                                     | Marker De         |
| 40.0                                                |                 |                                           |                                    |                                                     |                   |
|                                                     |                 |                                           |                                    |                                                     |                   |
| 50.0                                                |                 |                                           |                                    |                                                     | Mkr→C             |
| 60.0                                                |                 |                                           |                                    |                                                     |                   |
| 70.0                                                |                 |                                           |                                    | the last the description of                         | Mkr→RefL          |
|                                                     |                 | ala da kata kata kata kata kata kata kata |                                    |                                                     | WIKI - Kei L      |
|                                                     |                 |                                           |                                    |                                                     |                   |
|                                                     |                 |                                           |                                    |                                                     | <b>Mo</b><br>1 of |
| tart 9 kHz<br>Res BW 100 kHz                        | #VBW 300        | kHz                                       | Sweep 8.                           | Stop 2.310 GHz<br>000 ms (40001 pts)                |                   |
| <mark>SG</mark>                                     |                 |                                           | STATU                              |                                                     |                   |






Hopping

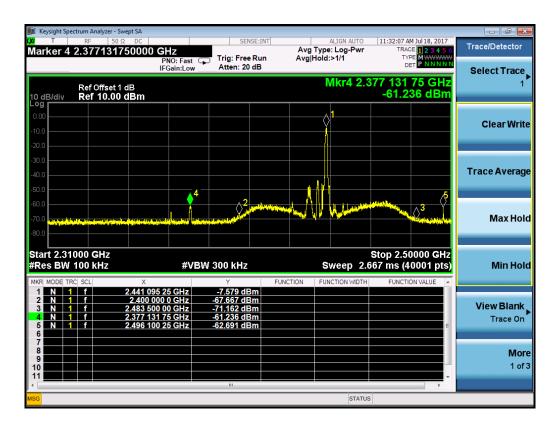




#### Limit Modulation Result Channel (dBm) L Pass ≥20 ≥20 Μ Pass $\pi/4$ -DQPSK Η Pass ≥20 Hopping Pass $\geq 20$

## Channel L




# intertek

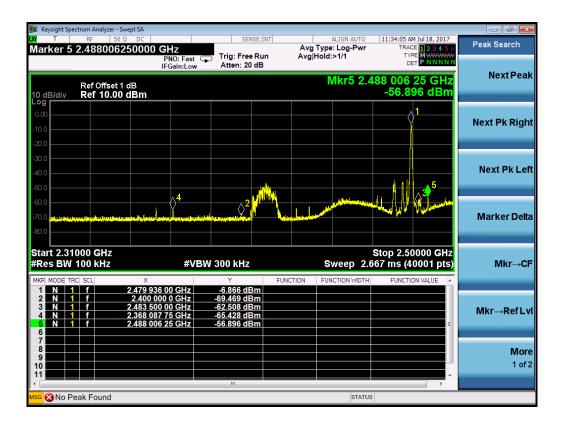
Total Quality. Assured.

| Keysight Spectrum Analyzer - Swept SA     |                           |                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                          |                |
|-------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| RF 50 Ω DC<br>Marker 1 120.013032450      | MHz                       | SENSE:INT                                                                                                                                                                                                                          | ALIGN AUTO                                                                                                      | 10:48:42 AM Jul 19, 2017<br>TRACE 1 2 3 4 5 6                                                                                                                                            | Peak Search    |
| Ref Offset 1 dB<br>0 dB/div Ref 10.00 dBm | PNO: Fast 🖵<br>IFGain:Low | Trig: Free Run<br>Atten: 20 dB                                                                                                                                                                                                     | Avg Hold:>1/1                                                                                                   | түре Милини<br>Det P NNNN N<br>kr1 120.01 MHz<br>-55.323 dBm                                                                                                                             | Next Peak      |
| • • • • • • • • • • • • • • • • • • •     |                           |                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                          | Next Pk Right  |
| 20.0                                      |                           |                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                          | Next Pk Left   |
| 40.0                                      |                           |                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                          | Marker Delta   |
|                                           |                           |                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                          | Mkr→CF         |
|                                           |                           | i yang seri dan dan basa yang seri dan basa seri dan seri<br>Seri dan seri dan juga seri dan seri da | g for a fair search and the second | n (marty sumplify all party start of the start plant of the start for<br>19 Marty - Start Start of the start start of the start of t | Mkr→RefLvl     |
| Start 9 kHz<br>Res BW 100 kHz             |                           | 300 kHz                                                                                                                                                                                                                            | Sween 8                                                                                                         | Stop 2.310 GHz<br>000 ms (40001 pts)                                                                                                                                                     | More<br>1 of 2 |
| sg                                        |                           |                                                                                                                                                                                                                                    | STATUS                                                                                                          |                                                                                                                                                                                          |                |

| ₹ 50.Ω DC<br>8034375000<br>ef Offset 1 dB<br>ef 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 GHz<br>PNO: Fast<br>IFGain:Low         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                    |                                                                                                                 | TRAC<br>TYP<br>DE<br><b>r1 4.80</b> 1                                                                            | 1 Jul 19, 2017<br>E 1 2 3 4 5 6<br>E MWWWW<br>T P NNNNN<br>3 4 GHz<br>09 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak Search<br>Next Pea<br>Next Pk Rigi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IFGain:Low                                | Atten: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) dB                       |                                    | Mk                                                                                                              | r1 4.803                                                                                                         | 3 4 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                    |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Novt Bk Big                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                    |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEXT PK RIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                    |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Next Pk Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                    |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marker De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| alling any state of the state o | s, ju liloga till (s. 1917). Andre i Ling | nistiki delmistika , a saf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | about a contraction of the | (ik) and in the ball of the office | ( <mark>gen produkter ober 18</mark> 1                                                                          | Personal Product State |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr⊸(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | and the second sec |                            |                                    | n de la constante de la constan | Nold Hay I have a statistical for                                                                                | <u>a hara sanki da si kata si kata</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mkr→RefL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 2.0 8414-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                    |                                                                                                                 | Stop 2                                                                                                           | 5.00 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Мо</b><br>1 о                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                    |                                                                                                                 |                                                                                                                  | In the second s<br>second second seco | I solve degrave degr<br>Event degrave degr<br>Event degrave degr |



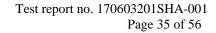





# intertek

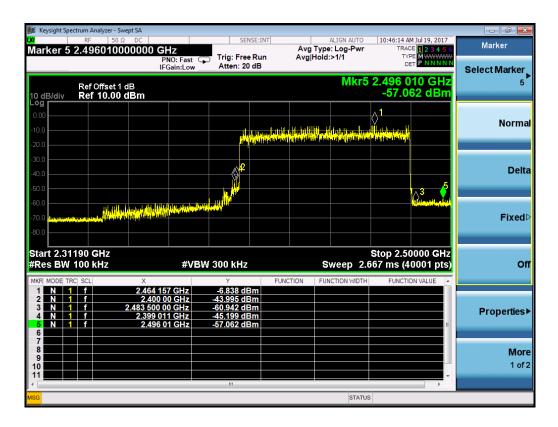
Total Quality. Assured.


| 🎉 Keysight Spectrum Ar          |                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                 |            |                                                                                                                |                                                                                                             |                |
|---------------------------------|-----------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|
| warker 1 4.88                   | 50 Ω DC<br>2750000000       | GHz                                                                           | SEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ISE:INT                        | Avg Type                                                                                                        | ALIGN AUTO | TRAC                                                                                                           | 1 Jul 19, 2017<br>E <b>1 2 3 4 5 6</b>                                                                      | Peak Search    |
| Ref 0<br>10 dB/div <b>Ref</b>   | Offset 1 dB<br>10.00 dBm    | PNO: Fast<br>IFGain:Low                                                       | Trig: Free<br>Atten: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | Avg Hold:                                                                                                       |            | DE                                                                                                             | 2 8 GHz<br>77 dBm                                                                                           | Next Peak      |
| 0.00                            |                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                 |            |                                                                                                                |                                                                                                             | Next Pk Righ   |
| -20.0                           |                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                 |            |                                                                                                                |                                                                                                             | Next Pk Lef    |
| -30.0                           | 1                           |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                 |            |                                                                                                                |                                                                                                             | Marker Delta   |
| -50.0                           | h, plans ghu, ghulun a shut | gen de la sette per de la section per se                                      | Hate Miller and all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.001                          | a de la compañía de l |            | an an tha an tha an tha an tao an | eggengal <sup>ja</sup> n d <sup>al</sup> pagti dan.<br>1999 - Angelan dan dan dan dan dan dan dan dan dan d | Mkr→Cl         |
| -70.0                           | Labor Development           | <mark>s.   phi</mark> ref paintin <sub>g</sub> dia at my rim <sub>an</sub> an | and <sub>the s</sub> ame of the part of the second sec | a la faith an an faith dha na. | and and a second se  |            |                                                                                                                |                                                                                                             | Mkr→RefLv      |
| Start 2.50 GHz<br>#Res BW 1.0 M |                             | #VBW                                                                          | 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | S                                                                                                               | weep 40    | Stop 2<br>.00 ms (4                                                                                            | 5.00 GHz<br>0001 pts)                                                                                       | More<br>1 of 2 |
| MSG                             |                             |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                 | STATUS     |                                                                                                                |                                                                                                             |                |


## Channel H






|             |                                                     | 40.40.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                          |                           |                          |                  | ctrum Analyzer -        | (eysight Spe                    |
|-------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------|-------------------------|---------------------------------|
| Peak Search | I Jul 19, 2017<br>E 1 2 3 4 5 6                     | TRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LIGN AUTO             |                          |                           |                          | οΩ DC<br>0700 MH | RF 50<br>63.99575       | rker 1                          |
| NextPea     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Avginoid.                | Atten: 20                 | PNO: Fast 🗣<br>FGain:Low |                  |                         |                                 |
| Nextree     | 00 MHz<br>72 dBm                                    | 1kr1 64.<br>-56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                     |                          |                           |                          |                  | Ref Offset<br>Ref 10.00 | dB/div                          |
| Next Pk Rig |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         | ·                               |
| Next FK Kig |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         |                                 |
|             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         |                                 |
| Next Pk L   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         | J                               |
|             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         |                                 |
| Marker De   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         |                                 |
|             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         |                                 |
| Mkr→        |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         | □ <mark> </mark> 1 <sup>-</sup> |
|             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         | ∘┠┼┼                            |
| Mkr→RefL    |                                                     | لمعد المدرية المريط                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alakata af an alfacht | <u>41 411 100 - 1</u> 00 |                           | Heranda tang talah sa sa |                  |                         |                                 |
|             | en saar jaar ka | And the Rest of the Party of th | ulpanen jinii eksi    |                          | anger ng gala da taking a |                          |                  | and additional states   |                                 |
| Mo          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |                           |                          |                  |                         |                                 |
| 1 o         | 310 GHz                                             | Stop 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                          |                           |                          |                  |                         | rt 9 kH                         |
|             | 0001 pts)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | weep 8.0              | s                        | 300 kHz                   | #VBW                     |                  | 100 kHz                 | es BW                           |



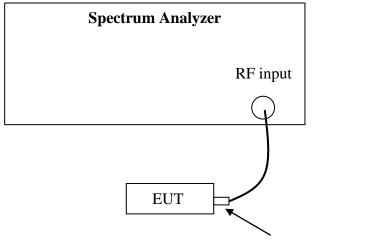




Hopping






## 7 Number of Hopping Frequencies

Test result: Pass

## 7.1 Test limit

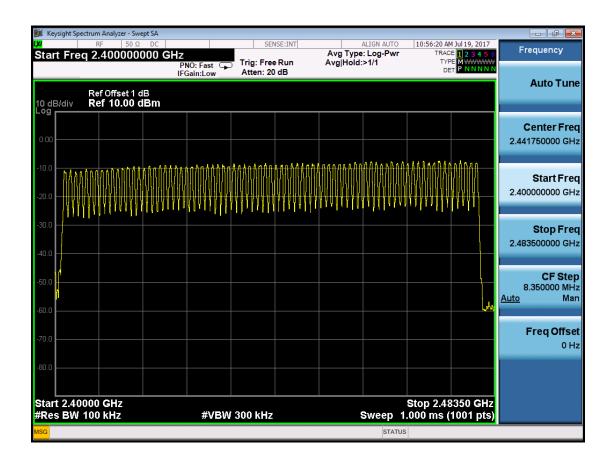
Number of Hopping Frequencies in the 2400-2483.5 MHz band shall use at least 15 channels.

### 7.2 Test Configuration



Antenna connector

## 7.3 Test procedure and test setup


The Number of Hopping Frequencies per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with RBW=100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

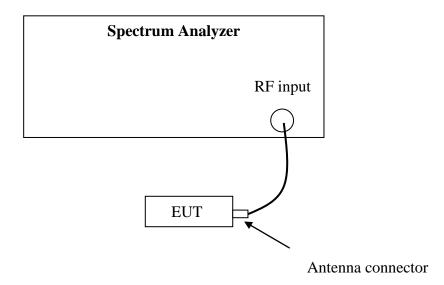


| Temperature:       | 22°C |
|--------------------|------|
| Relative Humidity: | 54%  |

| Number of Hopping Frequencies | Limit |
|-------------------------------|-------|
| 79                            | ≥15   |






# 8 Dwell Time

Test result: Pass

## 8.1 Test limit

The dwell time on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

## 8.2 Test Configuration



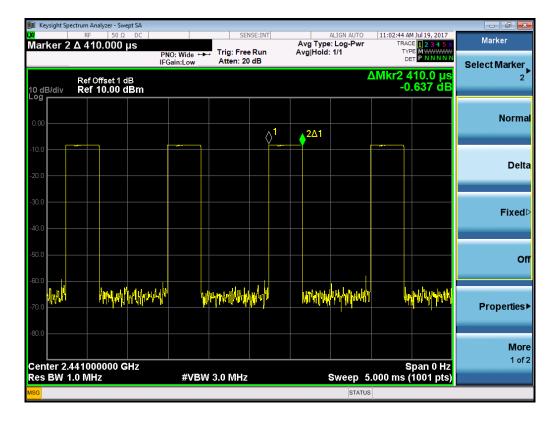
#### 8.3 Test procedure and test setup

Dwell time per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with Span = 0, RBW=1MHz, VBW≥RBW, Sweep can capture the entire dwell time, Detector = peak, Trace = max hold.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).



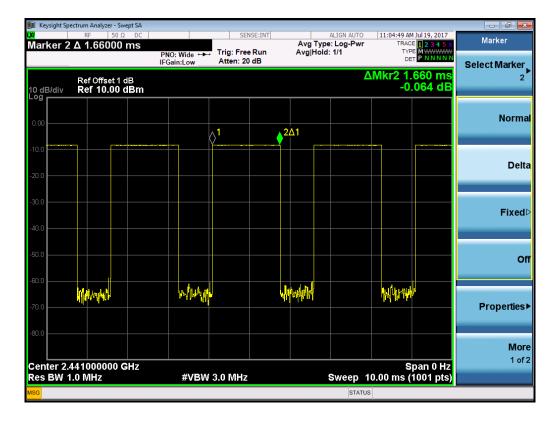
| Temperature:       | 22°C |
|--------------------|------|
| Relative Humidity: | 54%  |

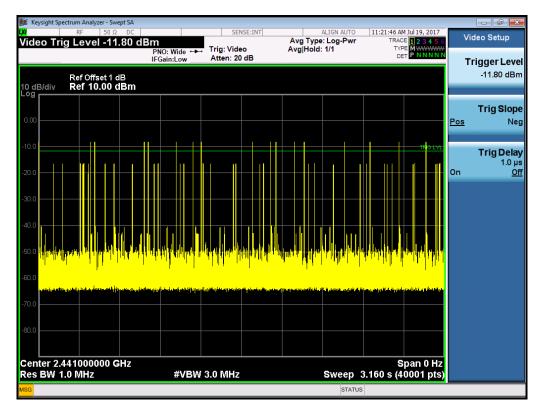

| Packet | Occupancy time<br>for single hop<br>(ms)<br>O | Channel | Real observed<br>period<br>(s)<br>P | Hops among<br>Observed<br>period<br>I | Dwell time<br>(ms)<br>T | Limit<br>(s) |
|--------|-----------------------------------------------|---------|-------------------------------------|---------------------------------------|-------------------------|--------------|
|        |                                               | L       | 3.16                                | 32                                    | 131.2                   |              |
| DH1    | 0.410                                         | М       | 3.16                                | 32                                    | 131.2                   |              |
|        |                                               | Н       | 3.16                                | 32                                    | 131.2                   |              |
|        |                                               | L       | 3.16                                | 17                                    | 282.2                   |              |
| DH3    | 1.660                                         | М       | 3.16                                | 17                                    | 282.2                   | ≤0.4         |
|        |                                               | Н       | 3.16                                | 17                                    | 282.2                   |              |
|        |                                               | L       | 3.16                                | 10                                    | 290.0                   |              |
| DH5    | 2.900                                         | М       | 3.16                                | 10                                    | 290.0                   |              |
|        |                                               | Н       | 3.16                                | 10                                    | 290.0                   |              |


Remark: 1. There are 79 channels in all. So the complete observed period P = 0.4 \* 79 = 31.6 s.

2. Average time of occupancy T = O \*I \* 31.6 / P



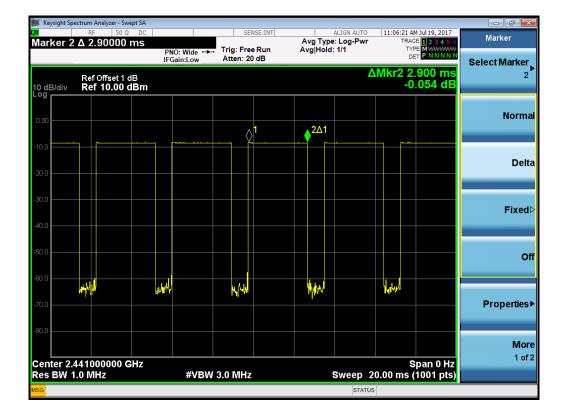

DH1








DH3







DH5

intertek

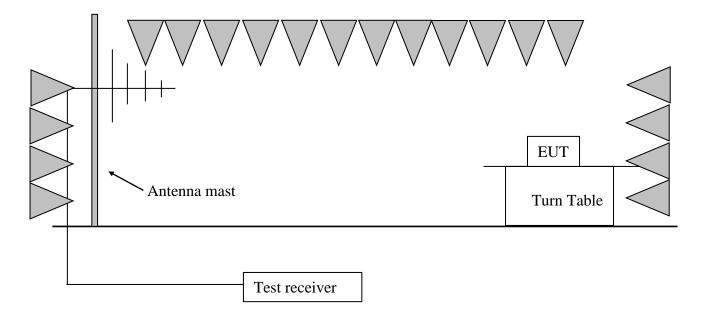
Total Quality. Assured.







# **9** Radiated Emissions in restricted frequency bands


Test result: Pass

#### 9.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in  $\S$  15.205(a), must also comply with the radiated emission limits specified in  $\S$  15.209(a) showed as below:

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009 ~ 0.490        | 2400/F(kHz)                          | 300                              |
| 0.490 ~ 1.705        | 24000/F(kHz)                         | 30                               |
| 1.705 ~ 30.0         | 30                                   | 30                               |
| 30 ~ 88              | 100                                  | 3                                |
| 88 ~ 216             | 150                                  | 3                                |
| 216 ~ 960            | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

#### 9.2 Test Configuration





The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

Tabletop devices shall be placed on a nonconducting platform with nominal top surface dimensions 1 m by 1.5 m. For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m.

The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

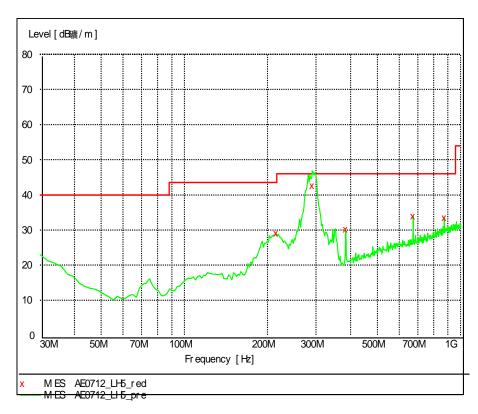
RBW = 300 Hz, VBW = 1 kHz (9 kHz~150 kHz); RBW = 10 kHz, VBW = 30 kHz (150 kHz~30MHz); RBW = 100 kHz, VBW = 300 kHz (30MHz~1GHz for PK) RBW = 1MHz, VBW = 3MHz (>1GHz for PK);

Remark:

- 1. Factor= Antenna Factor + Cable Loss (-Amplifier, is employed)
- 2. Measured level= Original Receiver Reading + Factor
- 3. Margin = Limit Measured level
- 4. If the PK measured level is lower than AV limit, the AV test can be elided.

Example:

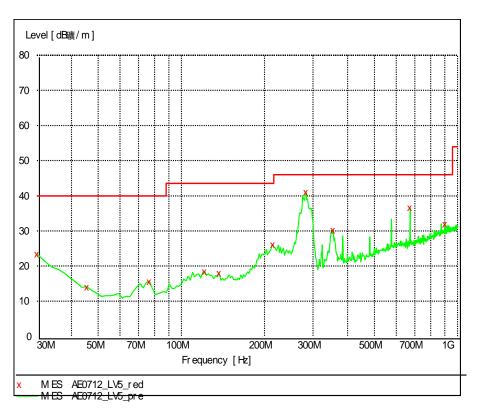
Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV. Then Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Measured level = 10dBuV + 0.20dB/m = 10.20dBuV/m Assuming limit = 54dBuV/m, Measured level = 10.20dBuV/m, then Margin = 54 - 10.20 = 43.80dBuV/m.




#### 9.4 Test Protocol

| Temperature:       | 22°C |
|--------------------|------|
| Relative Humidity: | 54%  |

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


The worst waveform from 30MHz to 1000MHz is listed as below:



Horizontal







| 1 est l'esul | t below IGHZ | •         |         |          |        |          |
|--------------|--------------|-----------|---------|----------|--------|----------|
| Antenna      | Frequency    | Corrected | Correct | Limit    | Margin | Detector |
|              | (MHz)        | Reading   | Factor  | (dBuV/m) | (dB)   |          |
|              |              | (dBuV/m)  | (dB/m)  |          |        |          |
| Н            | 214.67       | 29.20     | 12.10   | 43.50    | 14.30  | РК       |
| Н            | 290.48       | 42.70     | 15.30   | 46.00    | 3.30   | QP       |
| Н            | 383.79       | 30.30     | 18.20   | 46.00    | 15.70  | РК       |
| Н            | 673.43       | 33.90     | 22.30   | 46.00    | 12.10  | РК       |
| Н            | 873.65       | 33.50     | 24.60   | 46.00    | 12.50  | РК       |
| V            | 214.67       | 26.10     | 12.10   | 43.50    | 17.40  | РК       |
| V            | 282.71       | 41.10     | 15.20   | 46.00    | 4.90   | РК       |
| V            | 354.63       | 30.30     | 17.30   | 46.00    | 15.70  | РК       |
| V            | 673.43       | 36.60     | 22.30   | 46.00    | 9.40   | РК       |
| V            | 900.86       | 32.00     | 24.90   | 46.00    | 14.00  | РК       |

Test result below 1GHz:



## Test result above 1GHz:

## GFSK:

| Channel | Antenna | Frequency | Corrected           | Correct          | Limit       | Margin | Detector |
|---------|---------|-----------|---------------------|------------------|-------------|--------|----------|
|         |         | (MHz)     | Reading<br>(dBuV/m) | Factor<br>(dB/m) | (dBuV/m)    | (dB)   |          |
|         | V       | 2402.20   | 83.60               | 34.34            | Fundamental | /      | РК       |
| L       | V       | 2389.60   | 45.90               | 34.29            | 74.00       | 28.10  | PK       |
|         | V       | 4804.21   | 47.60               | -3.55            | 74.00       | 26.40  | PK       |
| М       | V       | 2441.20   | 84.40               | 34.60            | Fundamental | /      | PK       |
| IVI     | V       | 4881.25   | 47.20               | -3.35            | 74.00       | 26.80  | РК       |
|         | V       | 2480.20   | 85.00               | 34.62            | Fundamental | /      | PK       |
| Н       | V       | 2483.60   | 45.80               | 34.63            | 74.00       | 28.20  | РК       |
|         | V       | 4962.26   | 47.60               | -3.16            | 74.00       | 26.40  | РК       |

#### $\pi/4$ -DQPSK:

| Channel | Antenna | Frequency<br>(MHz) | Corrected<br>Reading<br>(dBuV/m) | Correct<br>Factor<br>(dB/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|---------|---------|--------------------|----------------------------------|-----------------------------|-------------------|----------------|----------|
|         | V       | 2402.20            | 84.40                            | 34.34                       | Fundamental       | /              | PK       |
| L       | V       | 2389.50            | 45.80                            | 34.25                       | 74.00             | 28.20          | РК       |
|         | V       | 4804.25            | 48.20                            | -3.55                       | 74.00             | 25.80          | PK       |
| М       | V       | 2441.20            | 85.20                            | 34.60                       | Fundamental       | /              | РК       |
| 111     | V       | 4881.85            | 48.65                            | -3.35                       | 74.00             | 25.35          | PK       |
|         | V       | 2480.20            | 85.80                            | 34.62                       | Fundamental       | /              | PK       |
| Н       | V       | 2483.80            | 45.90                            | 34.65                       | 74.00             | 28.10          | PK       |
|         | V       | 4962.41            | 48.90                            | -3.16                       | 74.00             | 25.10          | РК       |

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)

2. Corrected Reading = Original Receiver Reading + Correct Factor

3. Margin = limit – Corrected Reading

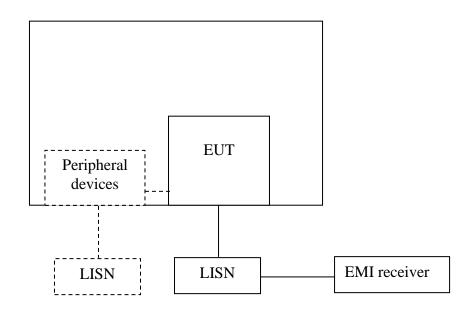
Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,



Test report no. 170603201SHA-001 Page 48 of 56

Total Quality. Assured.

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin = 54 -10.20 = 43.80dBuV/m


# intertek Total Quality. Assured. 10 Power line conducted emission

Test result: NA

## 10.1 Limit

| Conducted Limit (dBuV) |                       |  |
|------------------------|-----------------------|--|
| QP                     | AV                    |  |
| 66 to 56*              | 56 to 46 *            |  |
| 56                     | 46                    |  |
| 60                     | 50                    |  |
|                        | QP<br>66 to 56*<br>56 |  |

## **10.2 Test configuration**



For table top equipment, wooden support is 0.8m height table

For floor standing equipment, wooden support is 0.1m height rack.

## 10.3 Test procedure and test set up



Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50  $\Omega$  LISN port (to which the EUT is connected), where permitted, terminated into a 50  $\Omega$  measuring instrument. All emission voltage and current measurements shall be made on each currentcarrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50  $\Omega$ measuring port is terminated by a measuring instrument having 50  $\Omega$  input impedance. All other ports are terminated in 50  $\Omega$  loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.10. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

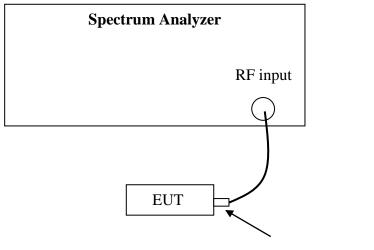


## **10.4 Test protocol**

| Temperature:       | °C |
|--------------------|----|
| Relative Humidity: | %  |



Total Quality. Assured.


# **11 Occupied Bandwidth**

**Test Status: Tested** 

## 11.1 Test limit

None

# **11.2 Test Configuration**



Antenna connector

## 11.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer.

intertek Total Quality. Assured. 11.4 Test protocol

| Temperature       | : | 25 °C |
|-------------------|---|-------|
| Relative Humidity | : | 55 %  |

| Modulation | Mode | 99% Bandwidth<br>(MHz) |
|------------|------|------------------------|
| GFSK       | L    | 826.07                 |
|            | М    | 821.48                 |
|            | Н    | 824.96                 |

## Channel L

| 〕 Keysight Spectrum Analyzer - Occupied BW       |                                        |                                       |                                         |                                             |            |
|--------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------------|------------|
| <mark>X//</mark> T RF 50 Ω DC<br>Span 2.0000 MHz | Cente                                  | SENSE:INT                             | ALIGN AUTO                              | 11:04:15 AM Jul 18, 2017<br>Radio Std: None | Span       |
| Spart 2.0000 MHZ                                 | Trig:                                  | Free Run Avg Ho                       | old:>10/10                              |                                             |            |
|                                                  | #IFGain:Low #Atte                      | n: 10 dB                              |                                         | Radio Device: BTS                           | Span       |
|                                                  |                                        |                                       |                                         |                                             | 2.0000 MHz |
| 15 dB/div Ref 10.00 dBm                          |                                        |                                       |                                         |                                             |            |
| -5.00                                            |                                        |                                       |                                         |                                             |            |
| -20.0                                            |                                        | Mary Mary                             |                                         |                                             |            |
| -35.0                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | , , , , , , , , , , , , , , , , , , , | m                                       |                                             |            |
| -50.0                                            |                                        |                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | m                                           |            |
| -65.0                                            |                                        |                                       |                                         |                                             | Full Span  |
| -80.0                                            |                                        |                                       |                                         |                                             |            |
| -95.0                                            |                                        |                                       |                                         |                                             |            |
| -110                                             |                                        |                                       |                                         |                                             |            |
| -125                                             |                                        |                                       |                                         |                                             |            |
|                                                  |                                        |                                       |                                         |                                             |            |
| Center 2.402 GHz<br>#Res BW 10 kHz               | +                                      | VBW 30 kHz                            |                                         | Span 2 MHz<br>Sweep 19.13 ms                |            |
| TO RITZ                                          | "                                      | VDVV JO KIIZ                          |                                         | Sweep 19.15 ms                              | Last Span  |
| Occupied Bandwidth                               | า                                      | Total Power                           | -2.82                                   | dBm                                         |            |
| 82                                               | 26.07 kHz                              |                                       |                                         |                                             |            |
| Transmit Freq Error                              | 6.911 kHz                              | <b>OBW Power</b>                      | 99                                      | .00 %                                       |            |
| x dB Bandwidth                                   | 785.5 kHz                              | x dB                                  | -20.                                    | 00 dB                                       |            |
|                                                  |                                        |                                       |                                         |                                             |            |
|                                                  |                                        |                                       |                                         |                                             |            |
|                                                  |                                        |                                       |                                         |                                             |            |
| MSG                                              |                                        |                                       | STATUS                                  | 3                                           |            |
|                                                  |                                        |                                       |                                         |                                             |            |



Channel M



#### Channel H





| Modulation | Mode | 99% Bandwidth<br>(MHz) |  |
|------------|------|------------------------|--|
| π/4-DQPSK  | L    | 1164.9                 |  |
|            | М    | 1165.6                 |  |
|            | Н    | 1165.4                 |  |

## Channel L





Channel M



#### Channel H

