

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

UAV Remote Controller

MODEL NUMBER: DHI-UAV-R10-RH

FCC ID: SVNX820UAV-R

REPORT NUMBER: 4788103049-2-8

ISSUE DATE: November 03, 2017

Prepared for

Zhejiang Dahua Vision Technology Co., Ltd.

No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

DATE: November 03, 2017 FCC ID: SVNX820UAV-R

Revision History

Rev.	Issue Date	Revisions	Revised By
	11/03/2017	Initial Issue	

Page 2 of 71

TABLE OF CONTENTS

1.	AT	ESTATION OF TEST RESULTS	. 5
2.	TES	ST METHODOLOGY	6
3.	FAG	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	. 7
4	1.1.	MEASURING INSTRUMENT CALIBRATION	. 7
4	4.2.	MEASUREMENT UNCERTAINTY	. 7
5.	EQ	UIPMENT UNDER TEST	. 8
5	5.1.	DESCRIPTION OF EUT	. 8
5	5.2.	MAXIMUM OUTPUT POWER	. 8
5	5.3.	CHANNEL LIST	. 8
5	5.4.	TEST CHANNEL CONFIGURATION	. 8
5	5.5.	THE WORSE CASE CONFIGURATIONS	. 9
5	5.6.	TEST ENVIRONMENT	. 9
5	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5	5.8.	DESCRIPTION OF TEST SETUP	11
5	5.9.	MEASURING INSTRUMENT AND SOFTWARE USED	12
6.	ME	ASUREMENT METHODS1	13
6. 7.		ASUREMENT METHODS1 MMARY OF TEST RESULTS1	
	SUI		14
7. 8.	SUI	MMARY OF TEST RESULTS1	14 15
7. 8.	SUI AN	MMARY OF TEST RESULTS	14 15 15 20
7. 8.	SUI AN 3.1. 3.2. 8.2.	MMARY OF TEST RESULTS 1 FENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 2 1. 802.11b MODE	14 15 15 20 21
7. 8.	SUI AN 3.1. 3.2. 8.2.	MMARY OF TEST RESULTS 1 FENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 2 1. 802.11b MODE 2. 802.11g MODE	14 15 15 20 21 22
7. 8.	SUI AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.2.	MMARY OF TEST RESULTS 1 ITENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 2 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 1. 802.11b MODE	14 15 <i>20</i> <i>21</i> <i>22</i> <i>23</i> <i>24</i>
7. 8.	SUI AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2.	MMARY OF TEST RESULTS 1 TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 2 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11b MODE 2 2. 802.11b MODE 2 3. 802.11b MODE	14 15 20 21 22 23 24 25
7. 8. 8.	SUI AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2	MMARY OF TEST RESULTS 1 TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 2 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11g MODE 2 3. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT20 MODE 2	14 15 <i>15</i> <i>20</i> <i>21</i> <i>22</i> <i>23</i> <i>24</i> <i>25</i> <i>26</i>
7. 8. 8.	SUI AN 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2.	MMARY OF TEST RESULTS 1 Image: Construction of the system of t	14 15 <i>15</i> <i>20</i> <i>21</i> <i>22</i> <i>23</i> <i>24</i> <i>25</i> <i>26</i> <i>27</i> <i>28</i>
7. 8. 8.	SUI AN 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2.	MMARY OF TEST RESULTS 1 Image: Construction of the system of t	14 15 20 21 22 23 24 25 26 27 28 28
7. 8. 8	SUI AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3.	MMARY OF TEST RESULTS 1 Image: Construction of the system of t	14 15 <i>20</i> 21 22 23 24 25 26 27 28 28 28 28 28
7. 8. 8	SUI AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 4. 8. 4. 8. 4. 8. 4. 8. 4. 8. 4. 8. 4. 8. 4. 8. 5. 8. 5. 8. 8. 5. 8.	MMARY OF TEST RESULTS 1 Image: Construct of the system of the	14 15 <i>20</i> 21 22 23 24 25 26 27 28 28 28 29 30
7. 8. 8	SUI AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3.	MMARY OF TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 2 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11b MODE 2 7. 802.11n HT20 MODE 2 802.11n HT20 MODE 2 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT20 MODE 2 3. 802.11b MODE 2 3. 802.11n HT20 MODE 2 7. 802.11b MODE 2 802.11b MODE 2 <td< td=""><td>14 15 20 21 22 23 24 25 27 28 28 29 30 31</td></td<>	14 15 20 21 22 23 24 25 27 28 28 29 30 31

REPOR	RT NO:	: 4788103049-2-8	DATE: November 03, 2017
EUT: U		emote Controller	FCC ID: SVNX820UAV-R
		802.11b MODE	
		802.11g MODE	
8.5	5.1. 8	802.11n HT20 MODE	40
9. RA	DIATE	ED TEST RESULTS	42
9.1.	LIMI	TS AND PROCEDURE	
9.2.	RES	TRICTED BANDEDGE	
9.2	2.1. 8	802.11b MODE	
	2.2. 8	802.11g MODE	50
9.2	2.3. 8	802.11n HT20 MODE	52
9.3.	SPU	IRIOUS EMISSIONS (1~18GHz)	54
		802.11b MODE	
9.3	3.2. 8	802.11g MODE	56
9.3	3.3. 8	802.11n HT20 MODE	58
9.4.	SPU	IRIOUS EMISSIONS 18~25GHz	60
9.4	.1. 8	802.11n HT20 MODE	60
9.5.	SPU	IRIOUS EMISSIONS 30M ~ 1 GHz	
9.5		802.11n HT20 MODE	
9.6.	SPH	IRIOUS EMISSIONS BELOW 30M	64
		802.11n HT20 MODE	
0.0			
10.	AC PO	WER LINE CONDUCTED EMISSIONS	68
10.	1.1.	802.11n20 MODE	69
11.	ANTEN	NNA REQUIREMENTS	71

Page 4 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

1. ATTESTATION OF TEST RESULTS

Applicant Information Company Name: Address:	Zhejiang Dahua Vision Technology Co., Ltd. No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China				
Manufacturer Information Company Name: Address:	Zhejiang Dahua Vision Technology Co., Ltd. No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. Chin				
Factory Information					
Company Name:	Zhejiang Dahua Vision Technology Co., Ltd.				
Address:	No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China				
EUT Name:	UAV Remote Controller				
Brand:	alhua				
Model:	DHI-UAV-R10-RH				
Serials mode:	UAV-R10-RH				
Model Difference	All the same except for the model name.				
Date of Tested:	September 01, 2017~ October 22, 2017				

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

PASS

Tested By:

Juan

Checked By:

Shawn Wen

Laboratory Leader

Shenny les

Denny Huang Engineer Project Associate

Approved By:

sherbur

Stephen Guo Laboratory Manager

Page 5 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with 558074 D01 DTS Meas Guidance v04, 414788 D01 Radiated Test Site v01, FCC CFR 47 Part 2, FCC CFR 47 Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. The Certificate Registration Number is 4102.01. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The Designation Number is CN1187. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission).

Note:

- The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 2. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OATS.

Page 6 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Uncertainty for Conduction emission test	2.90dB			
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB			
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)			
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)			
emission)	5.23dB (18GHz-26Gz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

Page 7 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	UAV Remote Controller
Model Name	DHI-UAV-R10-RH
Radio Technology	IEEE802.11b/g/n HT20
Operation frequency	IEEE 802.11b: 2462MHz IEEE 802.11g: 2462MHz IEEE 802.11n HT20: 2462MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
Adapter	Input: AC100-240V, 50/60Hz, 1.5A Output: DC 12V, 4.0A
Battery	7.4V, 7800mAh

Note: The WiFi of EUT had been locked at 2462MHz channel by customer through software, so we only test the 2462MHz channel.

5.2. MAXIMUM OUTPUT POWER

Frequency Range (MHz)	Range Chains		Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
2462	1	IEEE 802.11b	2462	11[1]	17.43
2462	1	IEEE 802.11g	2462	11[1]	18.70
2462	2462 1		2462	11[1]	21.74

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2462						

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 11	2462MHz
WiFi TX(802.11g)	CH 11	2462MHz
WiFi TX(802.11n HT20)	CH 11	2462MHz

Page 8 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

DATE: November 03, 2017 FCC ID: SVNX820UAV-R

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Software			artgui					
	Transmit		Test Channel					
Modulation Mode	Antenna Number	١	NCB: 20MH	z	NCB: 40MHz			
Mode		CH 1	CH 7	CH 13	CH 3	CH 7	CH 11	
802.11b	1	N/A	N/A	14				
802.11g	1	N/A	N/A	8		N/A		
802.11n HT20	1	N/A	N/A	8				

5.6. TEST ENVIRONMENT

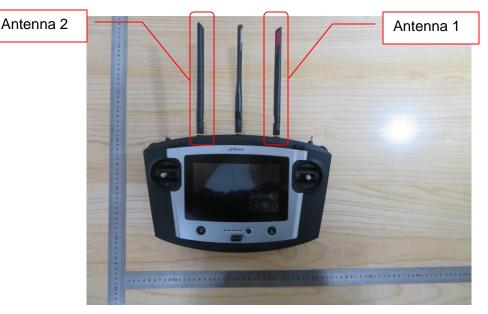
Environment Parameter	Selected Values During Tests			
Relative Humidity	55	5 ~ 65%		
Atmospheric Pressure:	1	025Pa		
Temperature	TN	23 ~ 28°C		
	VL	N/A		
Voltage :	VN	DC 7.4V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 9 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

DATE: November 03, 2017 FCC ID: SVNX820UAV-R


5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2462	External Antenna	5.0

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
2	2462	External Antenna	5.0

Test Mode	Transmit and Receive Mode	Description
802.11b	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
802.11g	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
802.11n HT20	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
802.11n HT20	⊠2TX, 2RX	Antenna 2 can be used as transmitting/receiving antenna.

Note: Only 802.11n HT20 support MIMO mode.

Page 10 of 71

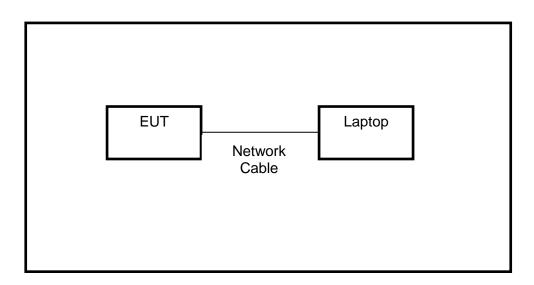
REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	Ethernet Port	RJ45	Unshielded	1	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Page 11 of 71

5.9. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions												
Instrument												
Used	Equipment	Manufacturer	Мо	del N	lo.	Seri	al No.	Last Cal.	Next Cal.			
\checkmark	EMI Test Receiver	R&S	E	ESR3	}	101	1961	Dec.20, 2016	Dec.19, 2017			
	Two-Line V- Network	R&S	EI	NV21	6	10	1983	Dec.20, 2016	Dec.19, 2017			
V	Artificial Mains Networks	Schwarzbeck	NS	LK 81	126	812	6465	Feb.10, 2017	Feb.10, 2018			
	Software											
Used	Des	cription		ſ	Manu	ufactu	urer	Name	Version			
\checkmark	Test Software for C	Conducted distu	rbanc	e	F	arad		EZ-EMC	Ver. UL-3A1			
		Rad	liated	Emi	ssio	ns						
			Inst	rume	nt							
Used	Equipment	Manufacturer	Мо	del N	lo.	Seri	al No.	Last Cal.	Next Cal.			
V	MXE EMI Receiver	KESIGHT	N	9038	A		56400 36	Feb. 24, 2017	Feb. 24, 2018			
	Hybrid Log Periodic Antenna	TDK	HLF	- 300	003C 130960		0960	Jan.09, 2016	Jan.09, 2019			
V	Preamplifier	HP	8	6447C)		1A090 99	Feb. 13, 2017	Feb. 13, 2018			
V	EMI Measurement Receiver	R&S	E	SR2	6	10'	1377	Dec. 20, 2016	Dec. 20, 2017			
\checkmark	Horn Antenna	TDK	HR	N-01	18	130	0939	Jan. 09, 2016	Jan. 09, 2019			
	High Gain Horn Antenna	Schwarzbeck	BBł	HA-9′	170	6	91	Jan.06, 2016	Jan.06, 2019			
V	Preamplifier	TDK	PA-	02-0 ⁻	118	00	-305- 066	Jan. 14, 2017	Jan. 14, 2018			
V	Preamplifier	TDK	P	A-02-	·2		-307- 003	Dec. 20, 2016	Dec. 20, 2017			
\checkmark	Loop antenna	Schwarzbeck	1	519E	3	00	800	Mar. 26, 2016	Mar. 25, 2019			
			So	ftware	e							
Used	Descr	iption		Man	ufact	urer		Name	Version			
\checkmark	Test Software for Ra	adiated disturba	ance	F	arac	ł		EZ-EMC	Ver. UL-3A1			
		Oth	ner in	stru	ment	ts						
Used	Equipment	Manufacturer	Mode	el No	. S	Serial	No.	Last Cal.	Next Cal.			
\checkmark	Spectrum Analyzer	Keysight	N90)30A	ΜY	(5541	10512	Dec. 20, 2016	Dec. 20, 2017			
\checkmark	Power Meter	Keysight	N19	911A	MY	(5541	6024	Aug. 20, 2017	Aug. 20, 2018			
\checkmark	Power Sensor	Keysight	N19	921A	MY	/5110	00041	Feb. 13, 2017	Feb. 13, 2018			
	DC Supply	Keysight	E36	103A	MY	(5535	50020	Feb. 10, 2017	Feb. 10, 2018			

Page 12 of 71

6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth and 99% Bandwidth	KDB 558074 D01 DTS Meas Guidance v04	8.0
2	Peak Output Power	KDB 558074 D01 DTS Meas Guidance v04	9.1.1
3	Power Spectral Density	KDB 558074 D01 DTS Meas Guidance v04	10.2
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 DTS Meas Guidance v04	11.0
5	Out-of-band emissions in restricted bands	KDB 558074 D01 DTS Meas Guidance v04	12.1
6	Band-edge	KDB 558074 D01 DTS Meas Guidance v04	13.3.2
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	7.3

Page 13 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

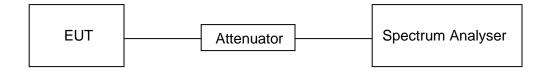
7. SUMMARY OF TEST RESULTS

	Summary of Test Results							
Clause	Test Items	FCC/IC Rules	Test Results					
1	6dB Bandwidth and 99% Bandwidth	FCC 15.247 (a) (2)	Pass					
2	Peak Conducted Output Power	FCC 15.247 (b) (3)	Pass					
3	Power Spectral Density	FCC 15.247 (e)	Pass					
4	Conducted Bandedge and Spurious Emission	FCC 15.247 (d)	Pass					
5	Radiated Bandedge and Spurious Emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass					
6	Conducted Emission Test For AC Power Port	FCC 15.207	Pass					
7	Antenna Requirement	FCC 15.203	Pass					

Page 14 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

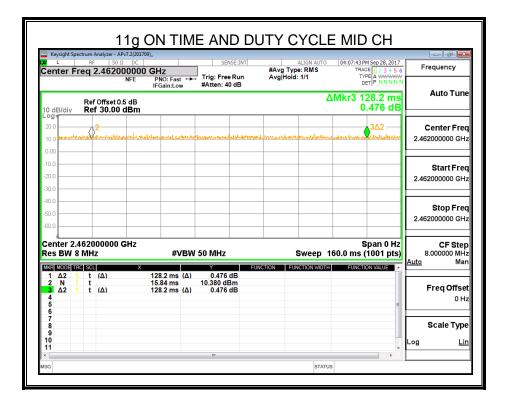
None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

ANTENNA 1 RESULTS


Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/B Minimum VBW (KHz)
11b	100	100	1	100	0	0.01
11g	100	100	1	100	0	0.01
11n20	100	100	1	100	0	0.01

Note: Duty Cycle Correction Factor=10log(1/x). Where: x is Duty Cycle (Linear) Where: B is On Time

Page 15 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

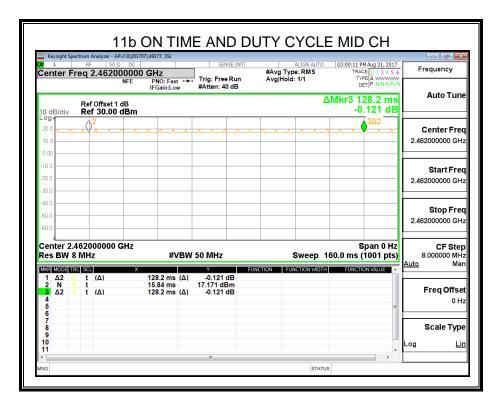
u L I		DC		SENSE:INT	ALIGN A #Avg Type: RMS		Sep 28, 2017	equency
enterr	req 2.462000			g: Free Run ten: 40 dB	Avg Hold: 1/1	TYPE	A WWWWW P NNNNN	
0 dB/div	Ref Offset 0.5 d Ref 30.00 dB	зв				ΔMkr3 128 -2.4	8.2 ms	Auto Tune
og	Aer 30.00 um	<u>,m</u>					3A2	
10.0			<u> </u>	<u> </u>	r	-	C	enter Fred 000000 GH:
0.00								
20.0								Start Fre 000000 GH
0.0								
10.0								Stop Fre
50.0							2.4620	000000 GH
enter 2. tes BW	.462000000 GH 8 MHz		/BW 50 N		Swee	Sp ep 160.0 ms (10	an 0 Hz 001 pts) Auto	CF Ste 000000 MH Ma
KR MODE T 1 Δ2	rc scl 1 t (Δ)	x 128.2 ms		FU	UNCTION FUNCTION	WIDTH FUNCTION		
2 Ν 3 Δ2 4 5	1 t 1 t (Δ)	15.84 ms 15.82 ms	16.7	2.455 dB 2.455 dB			F	req Offse 0 H
6 7 8 9							s	Scale Typ
10							Log	Li

Page 16 of 71

enter l	RF 5 Freq 2.462	NFE	GHz PNO: Fast IFGain:Low				#Avg Ty Avg Hol	ALIGN AUTO ype: RMS old: 1/1	TRAC	M Sep 28, 2017 CE 1 2 3 4 5 6 PE A WWWWW ET P N N N N N		requency
0 dB/div	Ref Offset Ref 30.0	et 0.5 dB						Δ		28.2 ms .446 dB		Auto Tune
og v 20.0	2 		a John de la barre	Netwood Street	la temposie autorentos	minulahikada	h.H. balanta	ieneltragentellerhinter	al a byte man	- 3∆2 		Center Free 2000000 GH
				+							2.46	Start Free
i0.0 i0.0 i0.0				=							2.46	Stop Fre 2000000 GH
enter 2 es BW		00 GHz ×	#V	BW	50 MHz	EUN		Sweep 1	60.0 ms (Span 0 Hz (1001 pts)	Auto 8	CF Ste j 3.000000 MH Ma
1 Δ2 2 N 3 Δ2 4 5	1 t (Δ) 1 t 1 t 1 t (Δ)		128.2 ms 15.84 ms 128.2 ms		-1.446 dB 10.585 dBr -1.446 dB	B m		UNGHON	Lonome			Freq Offse 0 H
6 7 8 9												Scale Typ
10 11											Log	Li

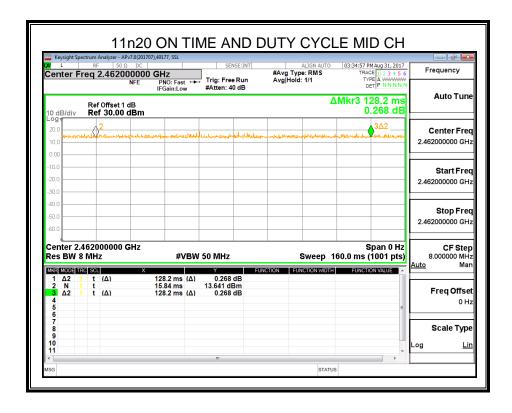
Page 17 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


DATE: November 03, 2017 FCC ID: SVNX820UAV-R

ANTENNA 2 RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/B Minimum VBW (KHz)
11b	100	100	1	100	0	0.01
11g	100	100	1	100	0	0.01
11n20	100	100	1	100	0	0.01


Note: Duty Cycle Correction Factor=10log(1/x). Where: x is Duty Cycle(Linear)

Where: B is On Time

Page 18 of 71

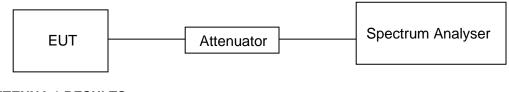
a í	L	RF	50	Ω DC 500000 NFE) GHz PNO:	Fast ↔	Trig: Free		#Avg Typ Avg Hold		TR/ T	PM Aug 31, 2017 ACE 1 2 3 4 5 6 YPE A WWWWW DET P N N N N		equency
0 dF	3/div		Offset		IFGain	:Low	#Atten: 4	0 dB		Δ	Mkr3 1	28.2 ms 0.094 dB		Auto Tun
.0g1			2									<mark>3∆2</mark> ★		enter Fre
10.0	where the	horthous	hulenas	Brown with	per-oleverlese	hauntuhik	an the state of th	http://tenno.	hairman ar Udingh b	n statur of solar	ogelolls free	nonenerrekenereten		1600000 GH
10.0	<u> </u>													Start Fre
30.0													2.461	1600000 GH
0.0	<u> </u>			_										Stop Fre
50.0 50.0													2.461	1600000 GH
es	BW 8	3 MH				#VBW	50 MHz			<u> </u>	60.0 ms	Span 0 Hz (1001 pts)	8 Auto	CF Ste .000000 MH Ma
1 .	MODE Π Δ2 N	t	(Δ)	х	15.84		0.094 16.249 di	dB 3m	CTION FUI	ICTION WIDTH	FUNC	TON VALUE		reg Offse
3 4 5 6	Δ2	t	(Δ)		128.2	ms (Δ)	0.094	dB				E		0 H
6 7 8 9														Scale Typ
0													Log	Li

Page 19 of 71

8.2. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH

<u>LIMITS</u>

FCC Part15 (15.247) Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
FCC 15.247(a)(2)	6 dB Bandwidth	>= 500KHz	2400-2483.5			

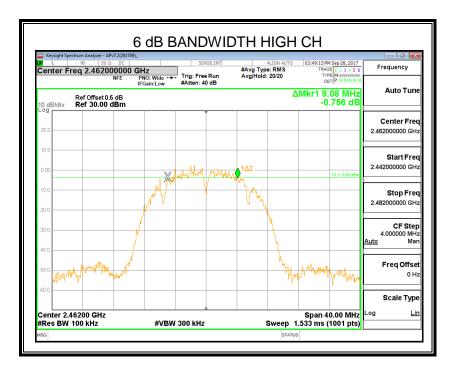

TEST PROCEDURE

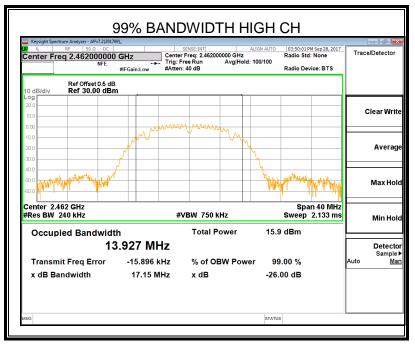
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 6dB Bandwidth :100K For 99% Bandwidth :1% to 5% of the occupied bandwidth
	For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

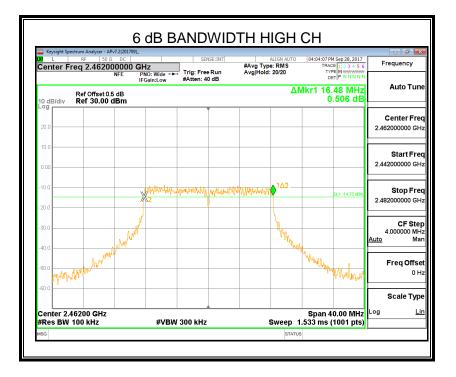

ANTENNA 1 RESULTS

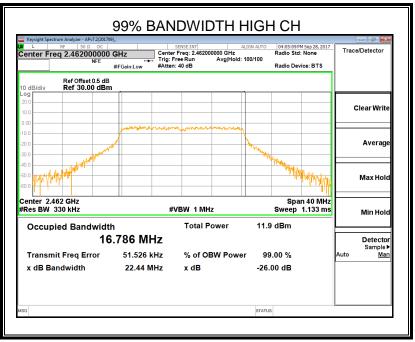

Page 20 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.2.1. 802.11b MODE

Frequency	6dB bandwidth	99% bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	(kHz)	
2462	9.08	13.927	500	Pass

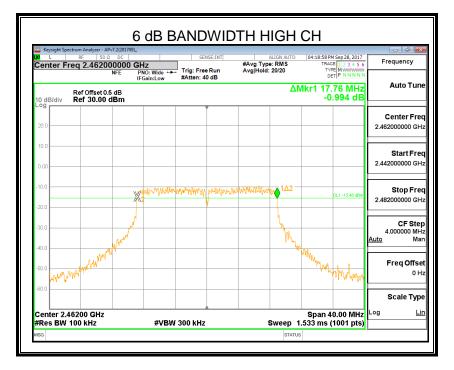


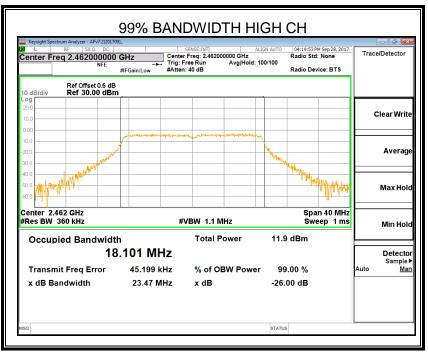


Page 21 of 71

8.2.2. 802.11g MODE

Frequency	6dB bandwidth	99% bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	(kHz)	
2462	16.48	16.786	500	Pass

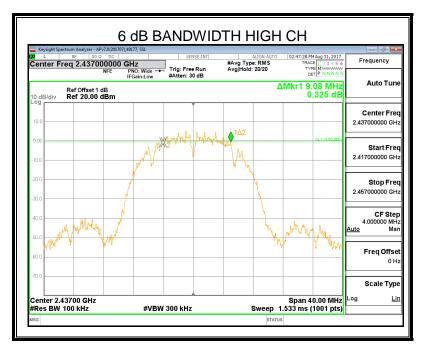


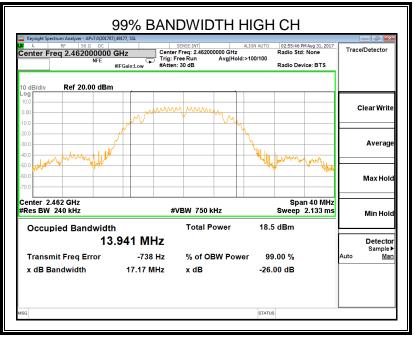


Page 22 of 71

8.2.3. 802.11n HT20 MODE

Frequency	6dB bandwidth	99% bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	(kHz)	
2462	17.76	18.101	500	Pass

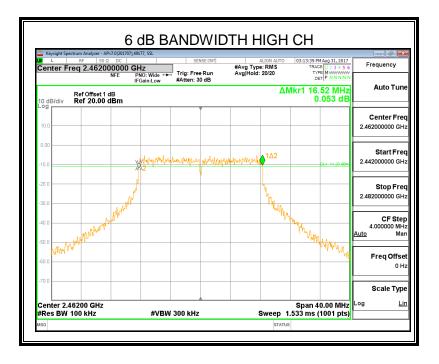


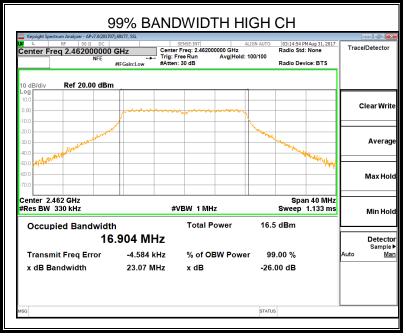

Page 23 of 71

ANTENNA 2 RESULTS

8.2.1. 802.11b MODE

Frequency	6dB bandwidth	99% bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	(kHz)	
2462	9.08	13.941	500	Pass

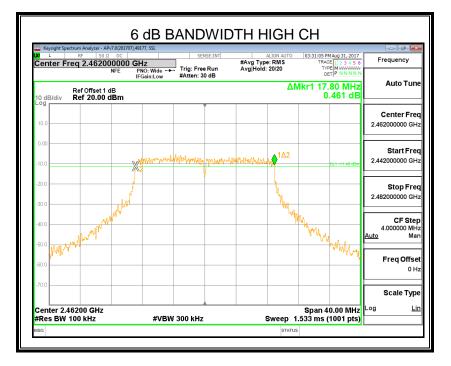


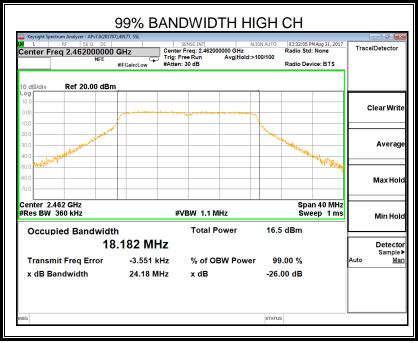

Page 24 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.2.2. 802.11g MODE

Frequency	6dB bandwidth	99% bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	(kHz)	
2462	16.52	16.904	500	Pass





Page 25 of 71

REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 8.2.3. 802.11n HT20 MODE

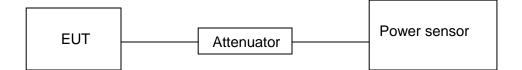
Frequency	6dB bandwidth	99% bandwidth	Limit	Result
(MHz)	(MHz)	(MHz)	(kHz)	
2462	17.80	18.182	500	Pass

Page 26 of 71

8.3. PEAK CONDUCTED OUTPUT POWER

<u>LIMITS</u>

FCC Part15 (15.247) Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)				
FCC 15.247(b)(3)	Peak & Average Output Power	1 watt or 30dBm	2400-2483.5				


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

TEST SETUP

Page 27 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

RESULTS

8.3.1. 802.11b MODE

Mode	Frequency	Antenna	Maximum PK Condu (dBr	Limit	
(MHz	(MHz)	(MHz)	Single	Total	(dBm)
902 11h	2462	1	17.43	N/A	20
802.11b	802.11b 2462		17.00	N/A	30

8.3.2. 802.11g MODE

Mode	Mode Frequency		Maximum PK Conducted Output Power (dBm)		Limit
(MHz)		Single	Total	(dBm)	
802.11g 2462	1	18.39	ΝΙ/Δ	20	
	2462	2	18.70	N/A	30

8.3.3. 802.11n HT20 MODE

Mode Frequency		Antenna	Maximum PK Conducted Output Power (dBm)		Limit
(MHz)		Single	Total	(dBm)	
000.44 = 20 0.460	1	18.47	21.74	20	
802.11n20	2462	2	18.96	21.74	30

Page 28 of 71

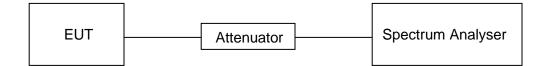
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 8.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

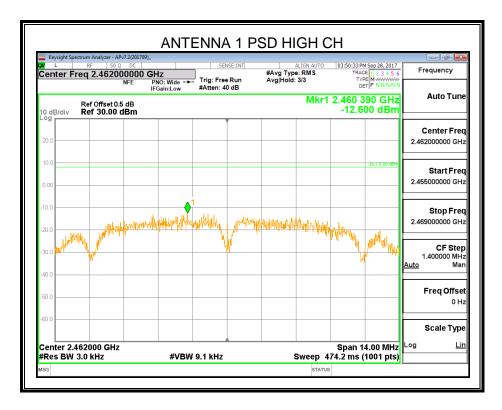

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW 100 ≤ kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

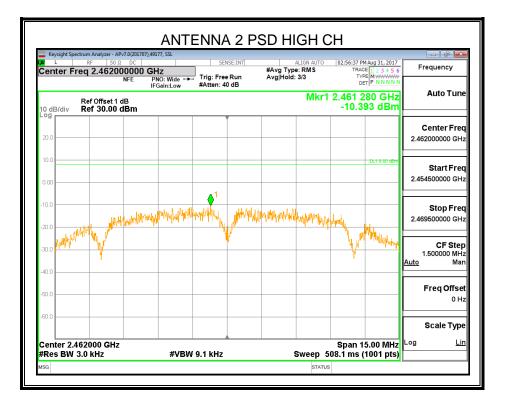
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP


RESULTS

Page 29 of 71

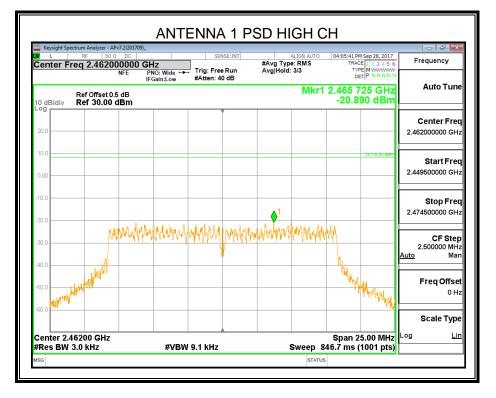
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

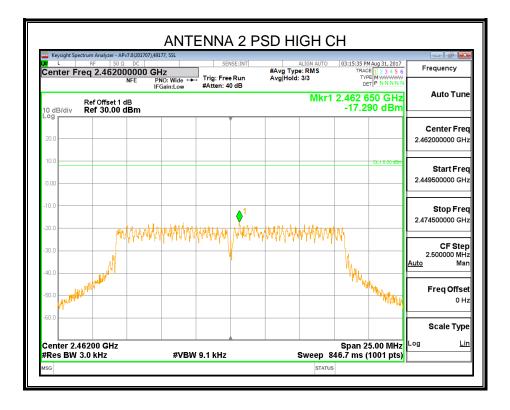

REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 8.4.1. 802.11b MODE

Mode Frequency		Antenna	Power Spectr (dBm/3		Limit
	(MHz)		Single	Total	(dBm/3kHz)
802.11b	2462	1	-12.600	N/A	0
		2	-10.393		8

Page 30 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

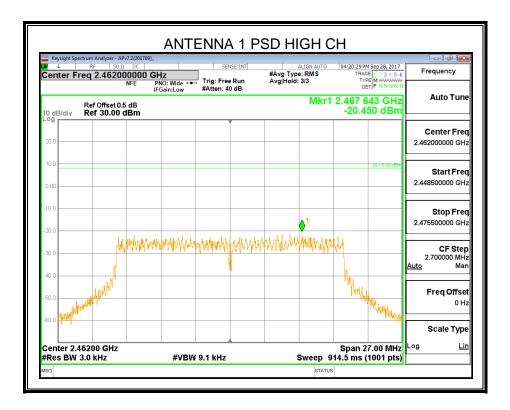



8.4.2. 802.11g MODE

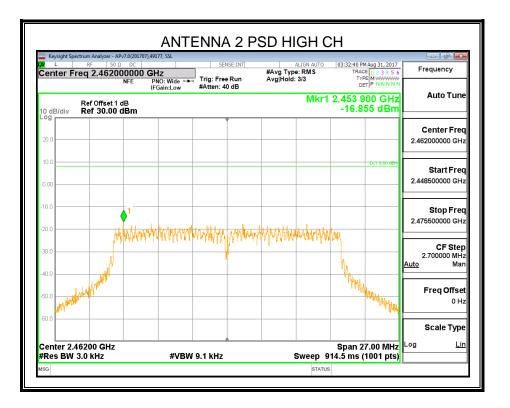
Mode Frequency		Antenna	Power Spectr (dBm/3		Limit
	(MHz)		Single	Total	(dBm/3kHz)
802.11g	2462	1	-20.890	N/A	0
		2	-17.290		0

Page 31 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



Page 32 of 71


8.4.3. 802.11n HT20 MODE

Mode	Frequency (MHz)	Antenna	Power Spectr (dBm/3	· · · · · · · · · · · · · · · · · · ·	Limit
			Single	Total	(dBm/3kHz)
802.11n20	2462	1	-20.450	-15.568	0
002.111120		2	-15.865	-15.500	0

Page 33 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Page 34 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

DATE: November 03, 2017 FCC ID: SVNX820UAV-R

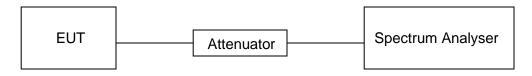
8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC Part15 (15.247) Subpart C				
Section	Section Test Item Limit			
FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

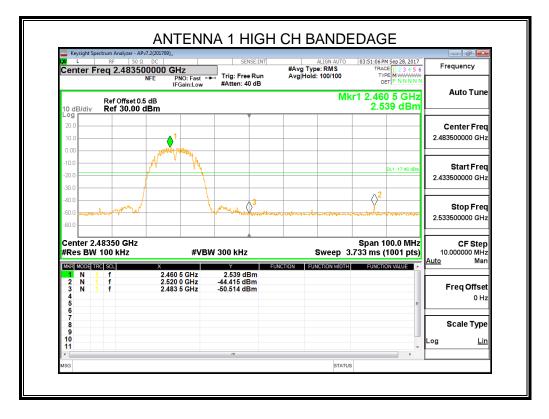

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

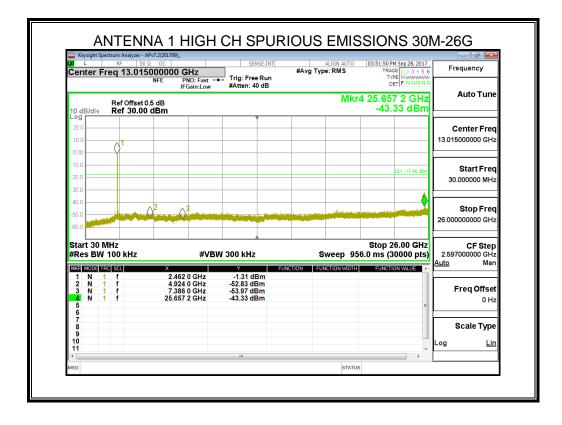
Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

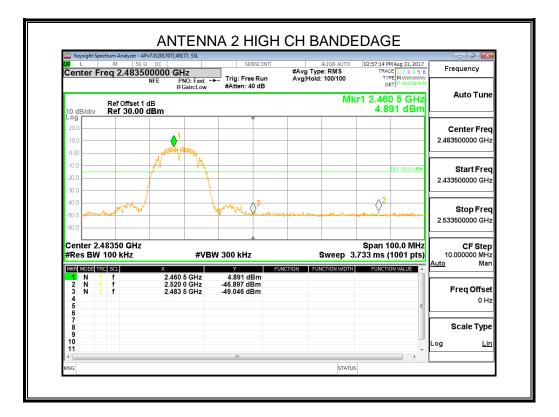
Use the peak marker function to determine the maximum amplitude level.

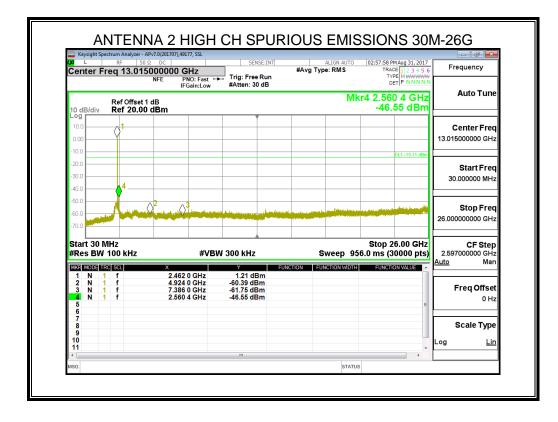
TEST SETUP

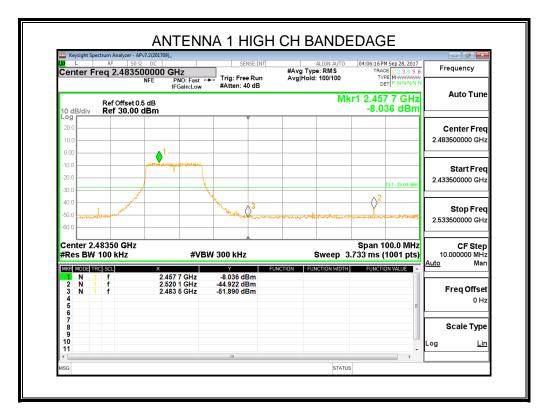


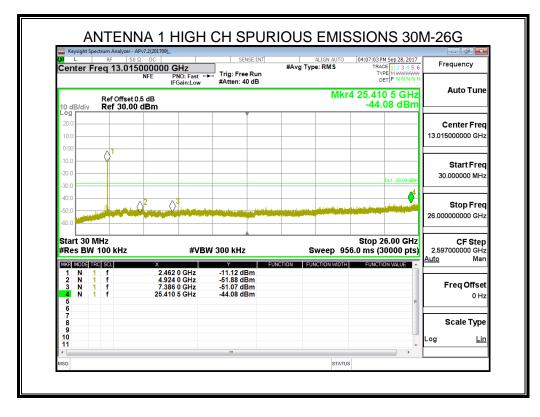

RESULTS

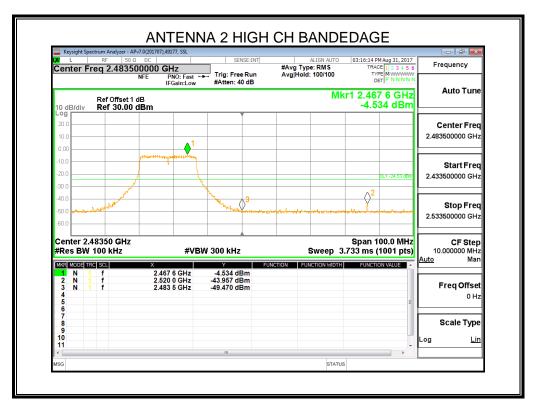
Page 35 of 71

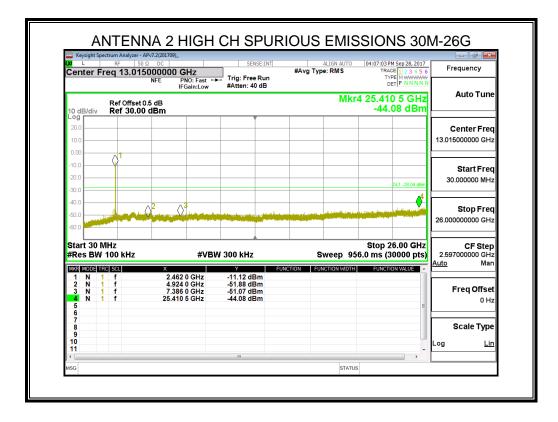

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 8.5.1. 802.11b MODE

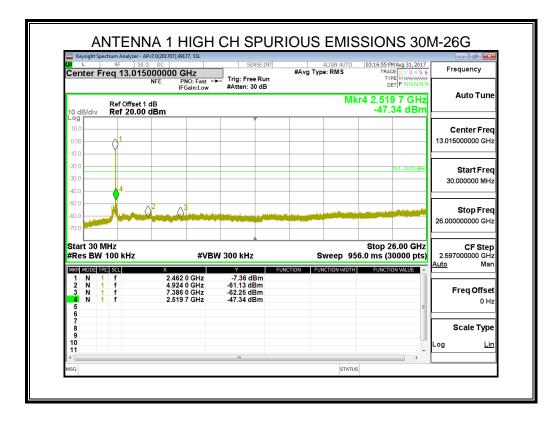

Page 36 of 71

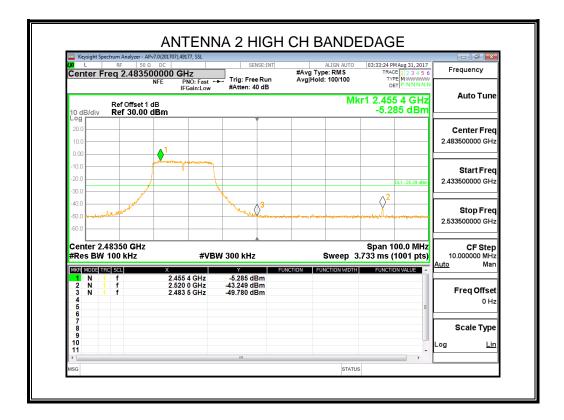


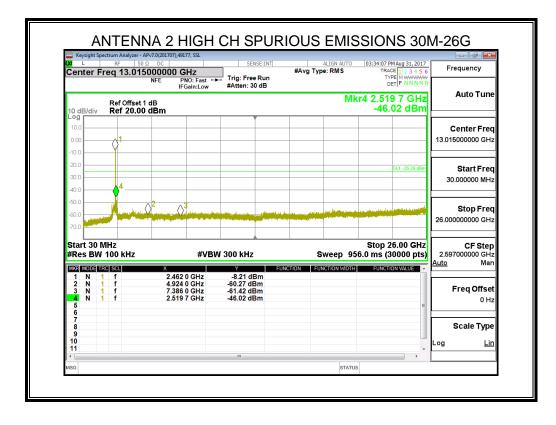

Page 37 of 71


REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 8.5.1. 802.11g MODE

Page 38 of 71




Page 39 of 71


REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 8.5.1. 802.11n HT20 MODE

Page 40 of 71

Page 41 of 71

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

Please refer to FCC §15.205 and §15.209

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

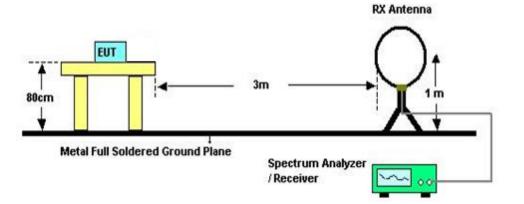
(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	

Restricted bands of operation


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

Page 43 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 30MHz

The setting of the spectrum analyser

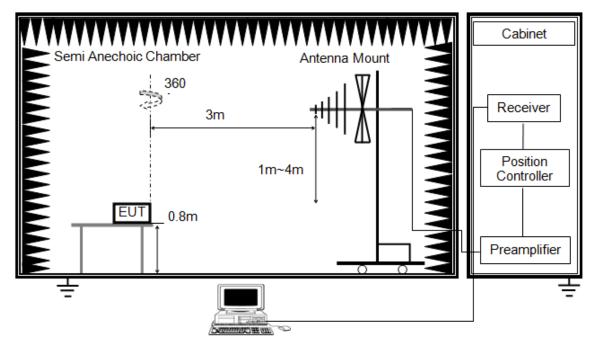
RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Page 44 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1G

The setting of the spectrum analyser

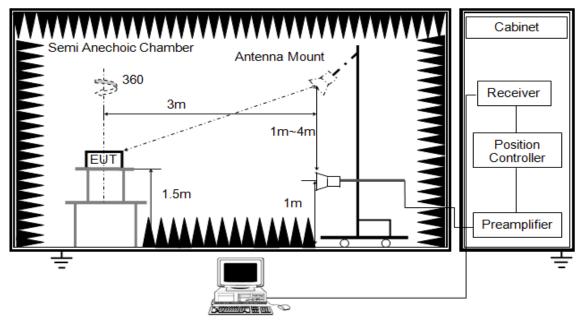
RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

6. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

Page 45 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

ABOVE 1G

The setting of the spectrum analyser

RBW	1M
IV BWV	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

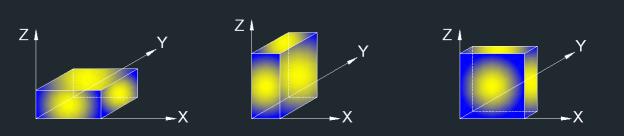
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For average power measurement, set the VBW to 10 Hz, while maintaining all of the other instrument settings, if the duty cycle of the EUT is less than 98%, the Duty Cycle Correction Factor shall be added to the measured emission levels. For the Duty Cycle and Correction Factor please refer to clause 6.1.ON TIME AND DUTY CYCLE.


7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

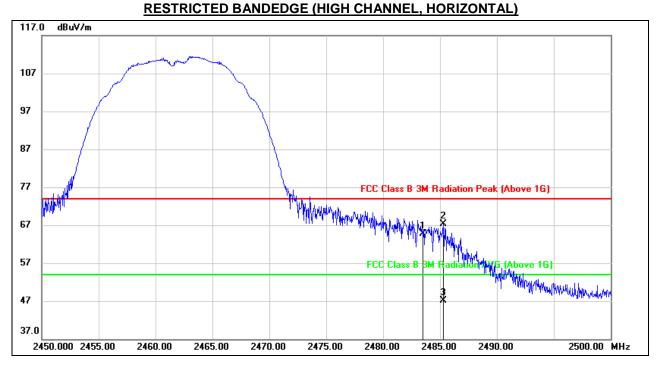
Page 46 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.


Note 2: All the EUT's emissions had been evaluated for simultaneous transmission with the other 2.4GHz transmitter and there were no any additional or worse emissions found.

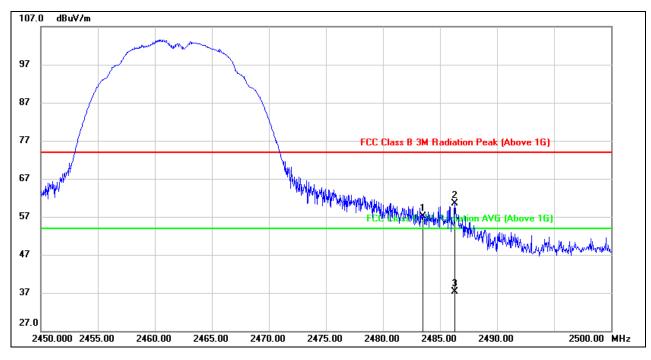
Page 47 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 9.2. RESTRICTED BANDEDGE

9.2.1. 802.11b MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	31.99	32.78	64.77	74.00	-9.23	peak
2	2485.300	34.46	32.79	67.25	74.00	-6.75	peak
3	2485.300	14.32	32.79	47.11	54.00	-6.89	AVG


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

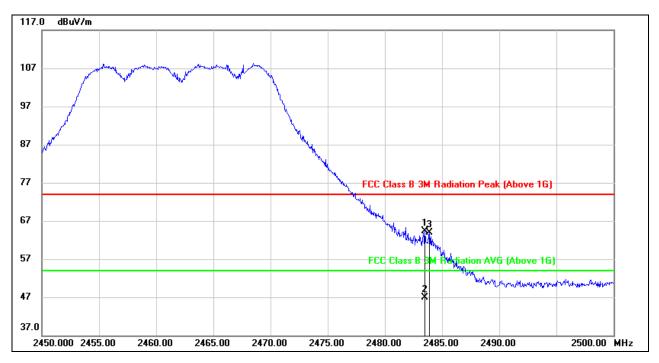
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

Page 48 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	24.26	32.88	57.14	74.00	-16.86	peak
2	2486.300	27.70	32.89	60.59	74.00	-13.41	peak
3	2486.300	4.37	32.89	37.26	54.00	-16.74	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

Note: All the antennas had been tested, but only the worst data record in the report.

Page 49 of 71

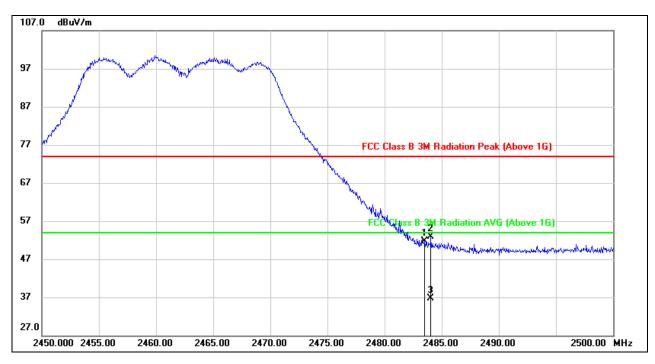
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.2.2. 802.11g MODE

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	31.58	32.78	64.36	74.00	-9.64	peak
2	2483.500	14.18	32.78	46.96	54.00	-7.04	AVG
3	2483.900	31.04	32.78	63.82	74.00	-10.18	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

Page 50 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

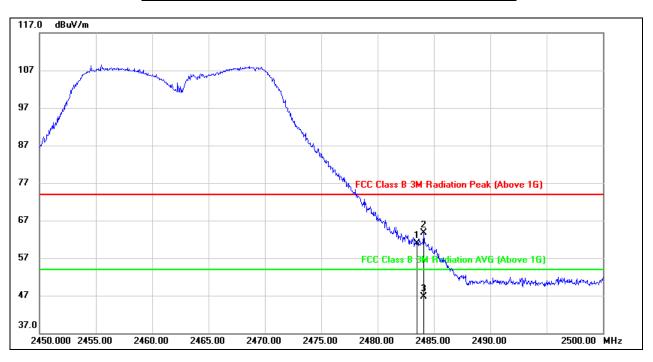
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.82	32.88	51.70	74.00	-22.30	peak
2	2484.050	20.00	32.88	52.88	74.00	-21.12	peak
3	2484.050	3.75	32.88	36.63	54.00	-17.37	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.


5. For transmit duration, please refer to clause 7.1.

Note: All the antennas had been tested, but only the worst data record in the report.

Page 51 of 71

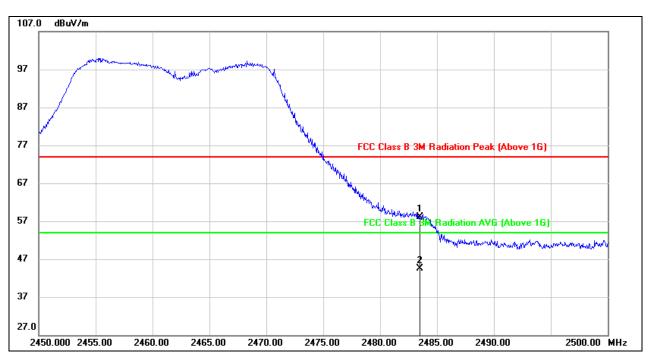
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 9.2.3. 802.11n HT20 MODE

RESTRICTED BANDEDGE	(HIGH CHANNEL	. HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	28.21	32.78	60.99	74.00	-13.01	peak
2	2484.100	30.90	32.78	63.68	74.00	-10.32	peak
3	2484.100	14.00	32.78	46.78	54.00	-7.22	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

Page 52 of 71

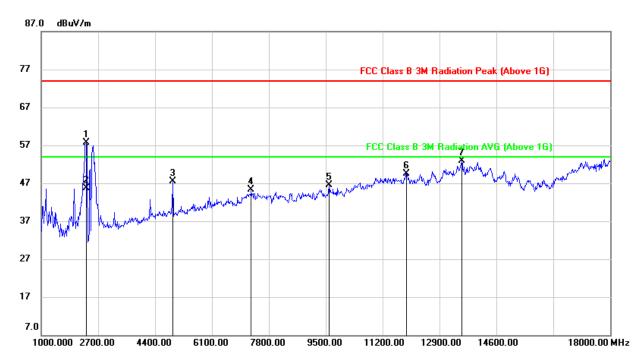
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

RESTRICTED BANDEDGE	HIGH CHANNEL	VERTICAL)
REGITIOTED DANDEDGE		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	25.21	32.88	58.09	74.00	-15.91	peak
2	2483.500	11.64	32.88	44.52	74.00	-29.48	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 53 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.3.1. 802.11b MODE

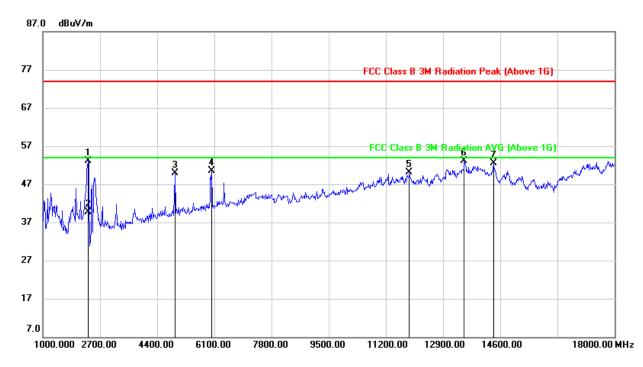
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2343.000	66.31	-8.61	57.70	74.00	-16.30	peak
2	2344.938	54.25	-8.62	45.63	54.00	-8.37	AVG
3	4927.000	48.13	-0.70	47.43	74.00	-26.57	peak
4	7273.000	39.40	5.96	45.36	74.00	-28.64	peak
5	9602.000	37.38	9.06	46.44	74.00	-27.56	peak
6	11914.000	34.22	15.37	49.59	74.00	-24.41	peak
7	13563.000	33.95	18.86	52.81	74.00	-21.19	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

Page 54 of 71

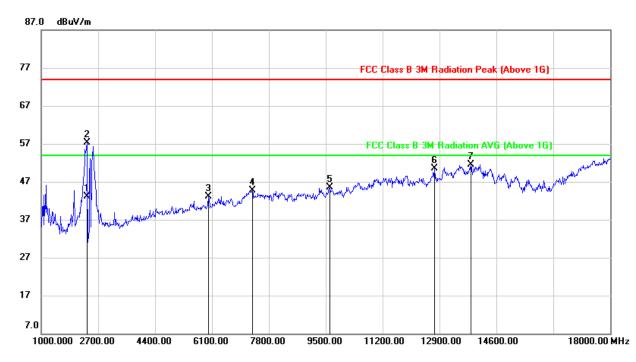
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2343.000	61.53	-8.50	53.03	74.00	-20.97	peak
2	2343.380	48.12	-8.50	39.62	54.00	-14.38	AVG
3	4927.000	50.70	-0.75	49.95	74.00	-24.05	peak
4	6015.000	48.40	2.11	50.51	74.00	-23.49	peak
5	11897.000	35.06	15.09	50.15	74.00	-23.85	peak
6	13529.000	33.83	19.26	53.09	74.00	-20.91	peak
7	14396.000	33.96	18.60	52.56	74.00	-21.44	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

Note: All the antennas had been tested, but only the worst data record in the report.

Page 55 of 71

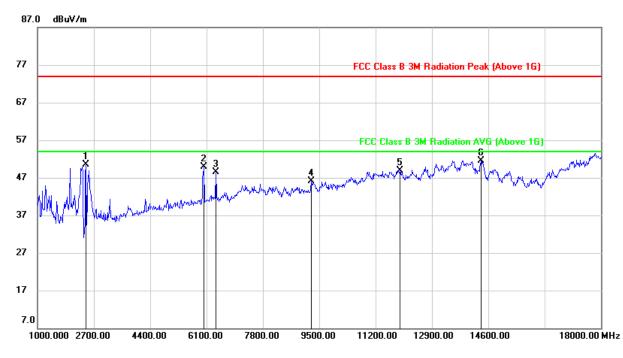
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2359.880	51.80	-8.72	43.08	54.00	-10.92	AVG
2	2360.000	66.12	-8.72	57.40	74.00	-16.60	peak
3	5998.000	41.10	1.99	43.09	74.00	-30.91	peak
4	7307.000	38.83	5.91	44.74	74.00	-29.26	peak
5	9619.000	36.45	9.07	45.52	74.00	-28.48	peak
6	12747.000	34.26	16.29	50.55	74.00	-23.45	peak
7	13835.000	32.50	19.01	51.51	74.00	-22.49	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

Page 56 of 71

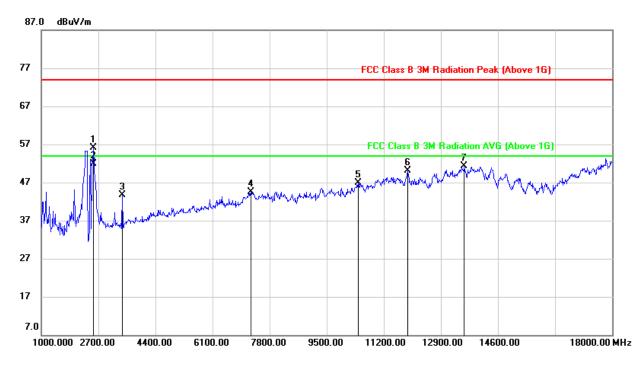
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2462.000	59.58	-9.11	50.47	74.00	-23.53	peak
2	6015.000	47.83	2.11	49.94	74.00	-24.06	peak
3	6372.000	45.52	3.07	48.59	74.00	-25.41	peak
4	9262.000	37.47	8.64	46.11	74.00	-27.89	peak
5	11931.000	33.88	15.10	48.98	74.00	-25.02	peak
6	14379.000	33.01	18.57	51.58	74.00	-22.42	peak

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
Peak: Peak detector.


Note: All the antennas had been tested, but only the worst data record in the report.

Page 57 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT NO: 4788103049-2-8 EUT: UAV Remote Controller 9.3.3. 802.11n HT20 MODE

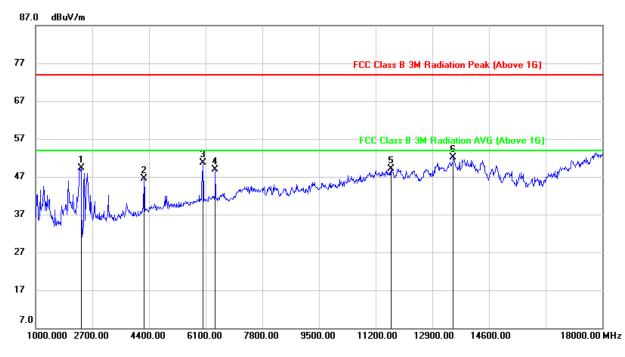
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2547.000	65.13	-9.12	56.01	74.00	-17.99	peak
2	2560.037	60.85	-9.04	51.81	54.00	-2.19	AVG
3	3414.000	50.00	-6.39	43.61	74.00	-30.39	peak
4	7239.000	38.61	5.91	44.52	74.00	-29.48	peak
5	10435.000	35.68	11.25	46.93	74.00	-27.07	peak
6	11914.000	34.82	15.37	50.19	74.00	-23.81	peak
7	13597.000	32.24	19.03	51.27	74.00	-22.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

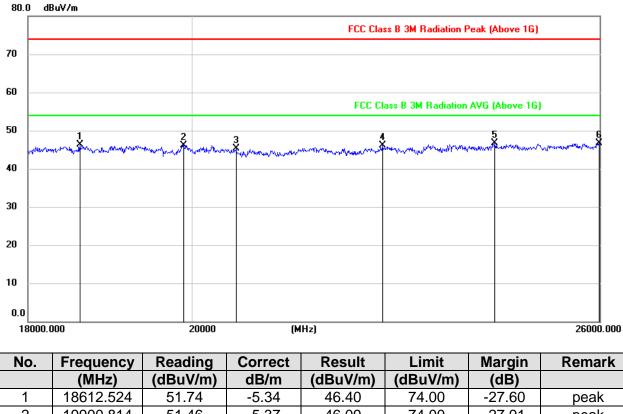
Page 58 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2360.000	58.01	-8.62	49.39	74.00	-24.61	peak
2	4247.000	49.78	-3.26	46.52	74.00	-27.48	peak
3	6015.000	48.55	2.11	50.66	74.00	-23.34	peak
4	6389.000	45.70	3.11	48.81	74.00	-25.19	peak
5	11659.000	34.37	14.82	49.19	74.00	-24.81	peak
6	13529.000	32.80	19.26	52.06	74.00	-21.94	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.


Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 59 of 71

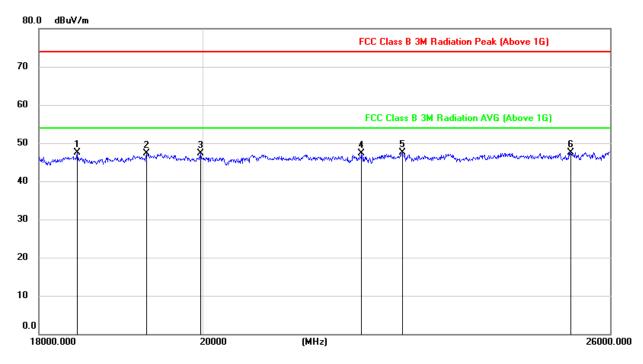
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.4.1. 802.11n HT20 MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

	()	(((()	
1	18612.524	51.74	-5.34	46.40	74.00	-27.60	peak
2	19900.814	51.46	-5.37	46.09	74.00	-27.91	peak
3	20578.021	50.52	-5.28	45.24	74.00	-28.76	peak
4	22609.295	49.83	-3.80	46.03	74.00	-27.97	peak
5	24307.936	49.33	-2.71	46.62	74.00	-27.38	peak
6	25990.441	47.81	-1.04	46.77	74.00	-27.23	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

Page 60 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	18448.984	52.77	-5.32	47.45	74.00	-26.55	peak
2	19295.497	52.86	-5.58	47.28	74.00	-26.72	peak
3	19974.129	52.70	-5.42	47.28	74.00	-26.72	peak
4	22156.619	51.63	-4.32	47.31	74.00	-26.69	peak
5	22742.711	51.11	-3.70	47.41	74.00	-26.59	peak
6	25348.601	49.19	-1.71	47.48	74.00	-26.52	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 61 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

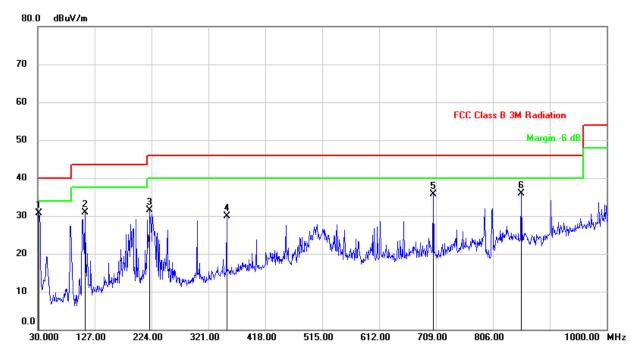
9.5. SPURIOUS EMISSIONS 30M ~ 1 GHz

9.5.1. 802.11n HT20 MODE

80.0 dBuV/m 70 60 FCC Class B 3M Radiation Margin -6 dB 50 40 30 20 10 0.0 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (MHz) (dBuV/m) dB/m (dBuV/m) (dBuV/m) (dB) 1 31.9400 48.38 -14.53 33.85 40.00 -6.15 QP 2 110.5100 50.25 -16.78 33.47 43.50 -10.03 QP 3 224.9700 53.15 -13.08 40.07 46.00 -5.93 QP 4 429.6400 41.94 -9.48 32.46 46.00 -13.54 QP 5 704.1500 41.94 -5.69 36.25 46.00 -9.75 QP QP 6 854.5000 42.29 -3.48 38.81 46.00 -7.19

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Result Level = Read Level + Correct Factor.


2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Page 62 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

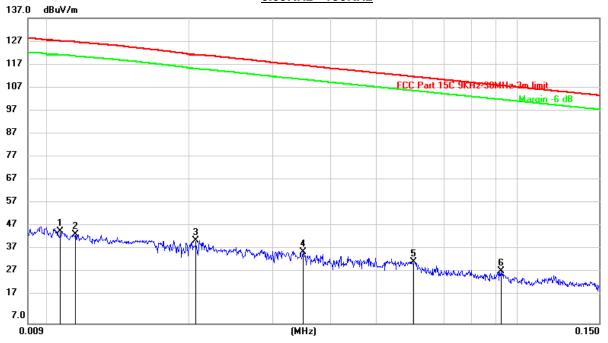
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	31.9400	45.33	-14.53	30.80	40.00	-9.20	QP
2	110.5100	47.75	-16.78	30.97	43.50	-12.53	QP
3	221.0900	44.48	-13.05	31.43	46.00	-14.57	QP
4	352.0400	41.03	-11.05	29.98	46.00	-16.02	QP
5	704.1500	13.20	22.47	35.67	46.00	-10.33	QP
6	854.5000	11.50	24.43	35.93	46.00	-10.07	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.


Page 63 of 71

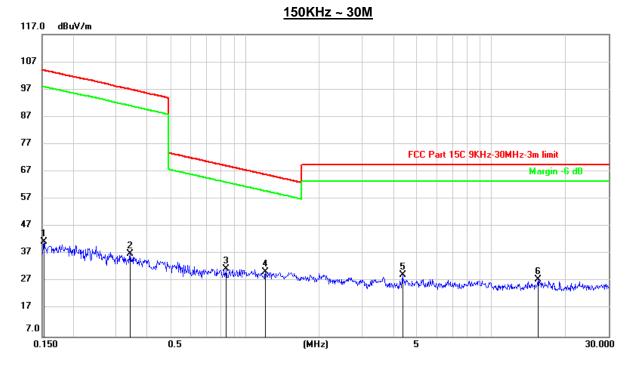
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.6. SPURIOUS EMISSIONS BELOW 30M

9.6.1. 802.11n HT20 MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

0.09KHz~ 150KHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0106	25.89	20.22	46.11	127.24	-81.13	peak
2	0.0114	24.71	20.22	44.93	126.76	-81.83	peak
3	0.0206	21.95	20.31	42.26	121.37	-79.11	peak
4	0.0349	17.17	20.31	37.48	116.84	-79.36	peak
5	0.0601	12.94	20.31	33.25	112.03	-78.78	peak
6	0.0926	8.95	20.25	29.20	108.28	-79.08	peak

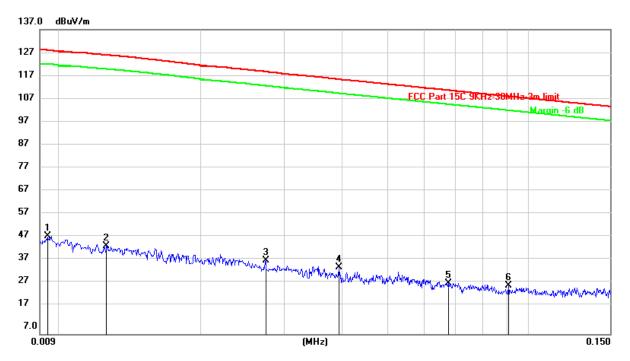
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

Page 64 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1524	21.16	20.42	41.58	103.95	-62.37	peak
2	0.3410	16.95	20.29	37.24	97.03	-59.79	peak
3	0.8393	11.16	20.36	31.52	69.14	-37.62	peak
4	1.2096	10.20	20.44	30.64	65.95	-35.31	peak
5	4.3605	8.43	20.97	29.40	69.54	-40.14	peak
6	15.4701	6.82	20.94	27.76	69.54	-41.78	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

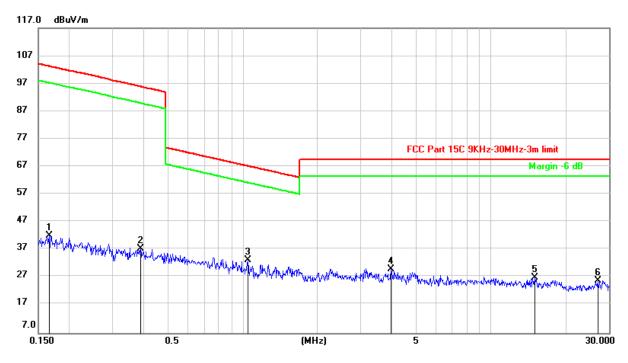
Page 65 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

<u>0.09KHz~ 150KHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0094	28.40	20.26	48.66	128.06	-79.40	peak
2	0.0125	24.41	20.23	44.64	126.09	-81.45	peak
3	0.0274	18.10	20.31	38.41	118.98	-80.57	peak
4	0.0393	15.01	20.31	35.32	115.73	-80.41	peak
5	0.0675	8.45	20.31	28.76	111.03	-82.27	peak
6	0.0908	7.35	20.26	27.61	108.45	-80.84	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

Page 66 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1658	21.53	20.40	41.93	103.22	-61.29	peak
2	0.3870	17.15	20.27	37.42	95.89	-58.47	peak
3	1.0483	12.89	20.38	33.27	67.20	-33.93	peak
4	3.9639	8.90	21.06	29.96	69.54	-39.58	peak
5	15.0655	6.01	20.93	26.94	69.54	-42.60	peak
6	26.9832	4.19	21.74	25.93	69.54	-43.61	peak

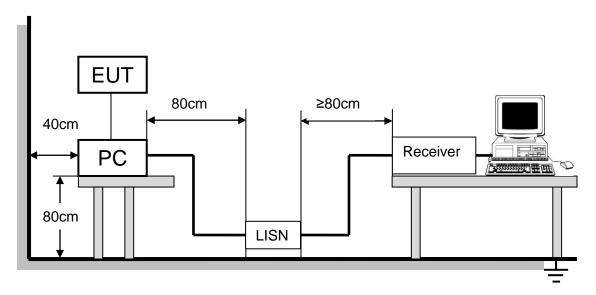
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 67 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


10. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

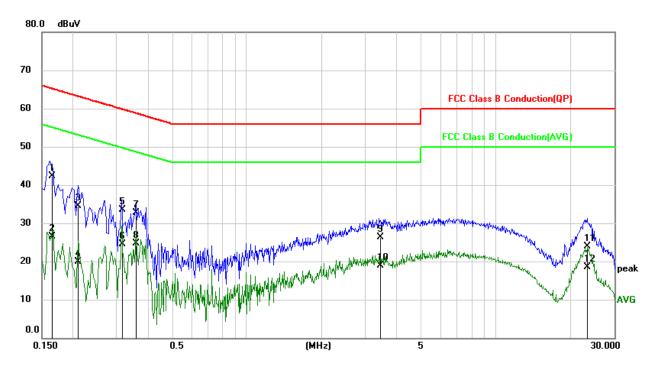
Please refer to FCC §15.207 (a)

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCT (IVITZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10 -2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST RESULTS

Page 68 of 71

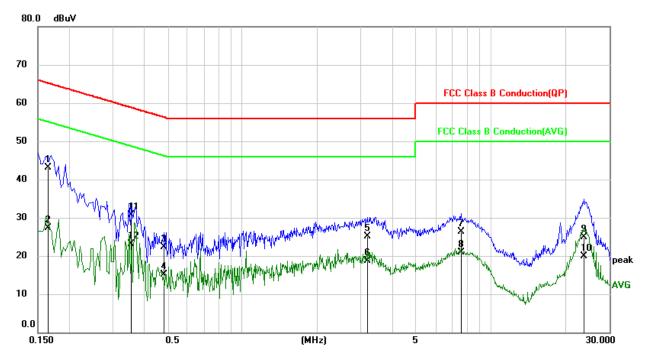
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

10.1.1. 802.11n20 MODE

LINE N RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1652	32.68	9.66	42.34	65.20	-22.86	QP
2	0.1652	16.93	9.66	26.59	55.20	-28.61	AVG
3	0.2097	24.85	9.65	34.50	63.22	-28.72	QP
4	0.2097	10.20	9.65	19.85	53.22	-33.37	AVG
5	0.3159	23.82	9.65	33.47	59.81	-26.34	QP
6	0.3159	14.85	9.65	24.50	49.81	-25.31	AVG
7	0.3578	23.11	9.64	32.75	58.78	-26.03	QP
8	0.3578	15.10	9.64	24.74	48.78	-24.04	AVG
9	3.4548	16.60	9.70	26.30	56.00	-29.70	QP
10	3.4548	9.29	9.70	18.99	46.00	-27.01	AVG
11	23.2774	14.13	9.86	23.99	60.00	-36.01	QP
12	23.2774	8.69	9.86	18.55	50.00	-31.45	AVG


Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Page 69 of 71

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

LINE L RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1651	33.39	9.64	43.03	65.20	-22.17	QP
2	0.1651	17.68	9.64	27.32	55.20	-27.88	AVG
3	0.4825	12.62	9.65	22.27	56.30	-34.03	QP
4	0.4825	5.51	9.65	15.16	46.30	-31.14	AVG
5	3.1807	15.45	9.70	25.15	56.00	-30.85	QP
6	3.1807	8.95	9.70	18.65	46.00	-27.35	AVG
7	7.6245	16.60	9.76	26.36	60.00	-33.64	QP
8	7.6245	11.06	9.76	20.82	50.00	-29.18	AVG
9	23.6963	15.06	9.93	24.99	60.00	-35.01	QP
10	23.6963	10.06	9.93	19.99	50.00	-30.01	AVG
11	0.3557	21.05	9.65	30.70	58.83	-28.13	QP
12	0.3557	13.52	9.65	23.17	48.83	-25.66	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Page 70 of 71

11. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ANTENNA CONNECTOR

EUT has an external antenna with antenna connector.

ANTENNA GAIN

The antenna gain of EUT is less than 6 dBi.

END OF REPORT

Page 71 of 71