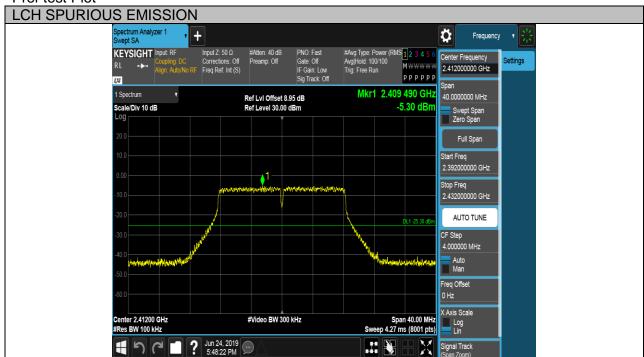
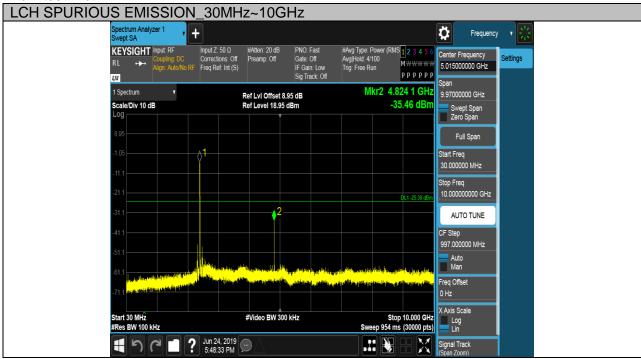


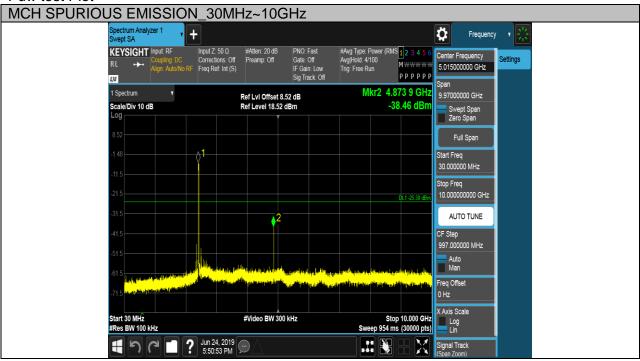
Page 51 of 127

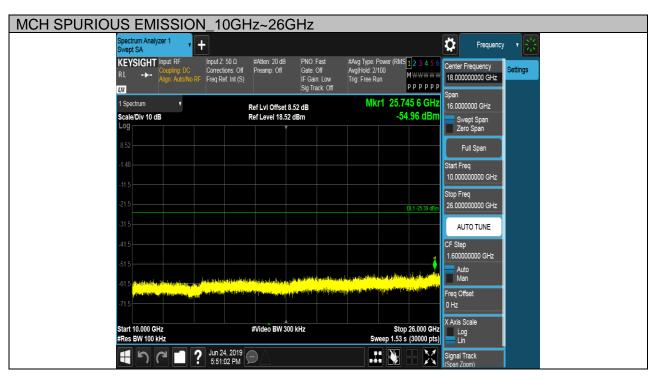



Page 52 of 127

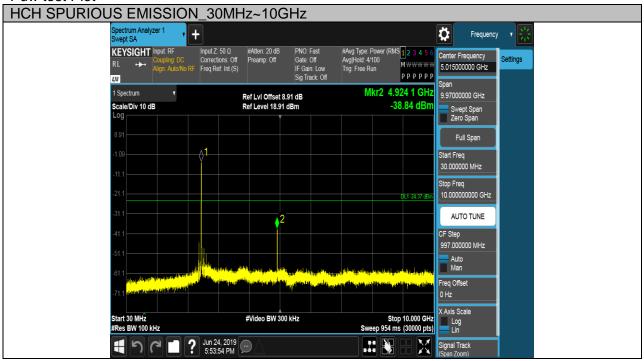
Test Mode	Channel	Verdict
11G	LCH	PASS

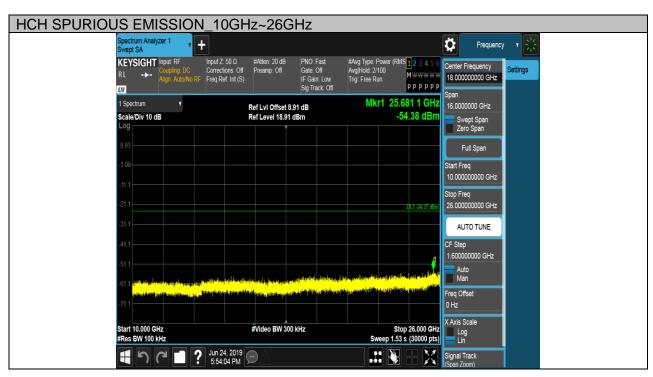
Page 53 of 127


Page 54 of 127

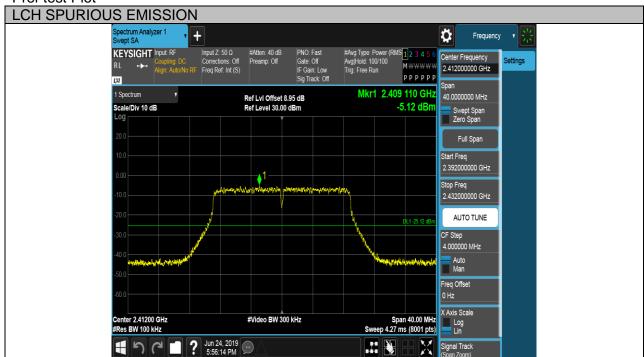

Test Mode	Channel	Verdict
11G	MCH	PASS

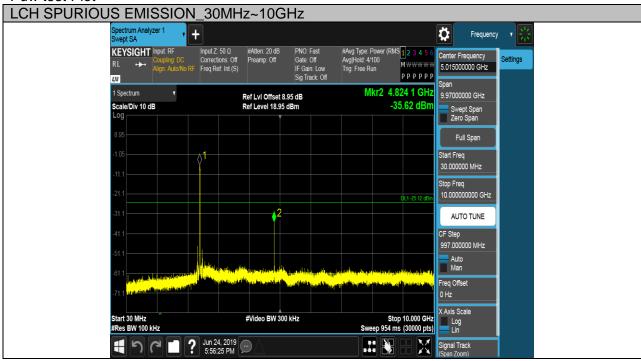
Page 55 of 127

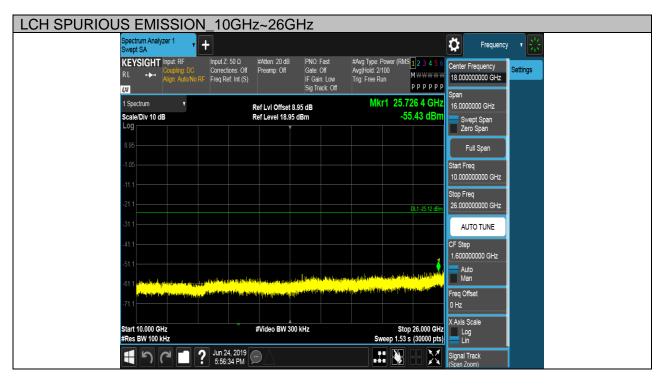

Page 56 of 127


Test Mode	Channel	Verdict
11G	HCH	PASS

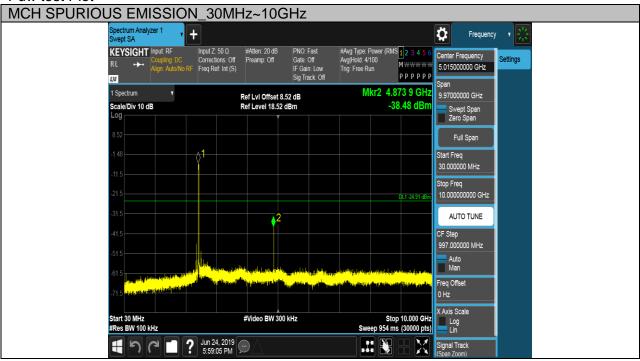
Page 57 of 127

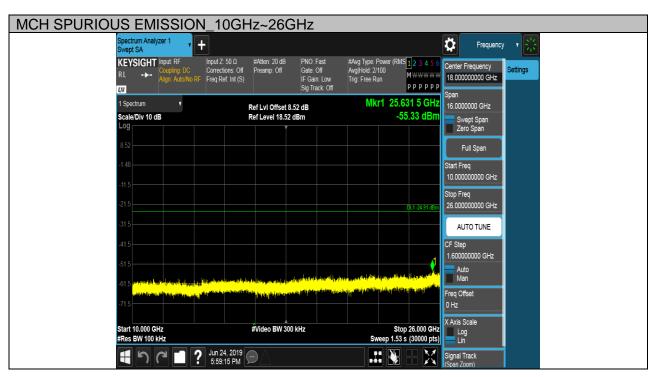



Page 58 of 127

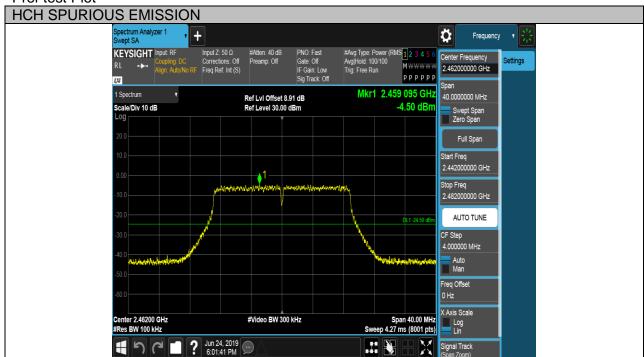

Test Mode	Channel	Verdict
11N HT20	LCH	PASS

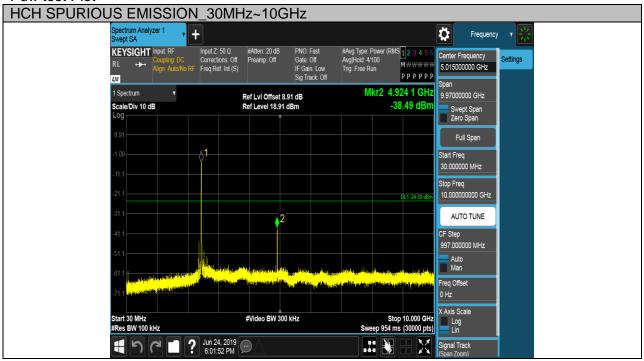
Page 59 of 127

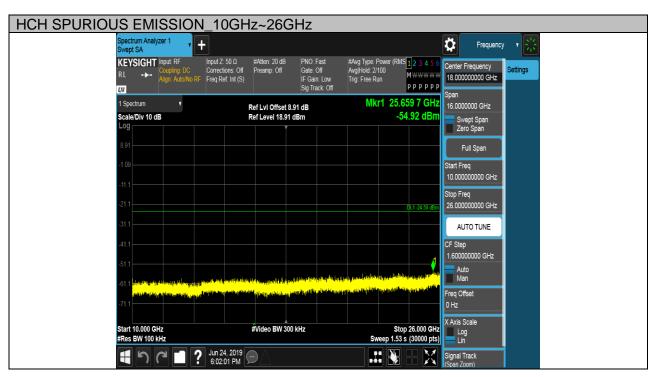

Page 60 of 127


Test Mode	Channel	Verdict
11N HT20	MCH	PASS

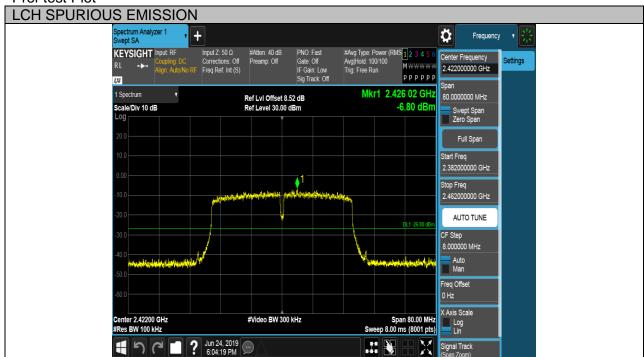
Page 61 of 127

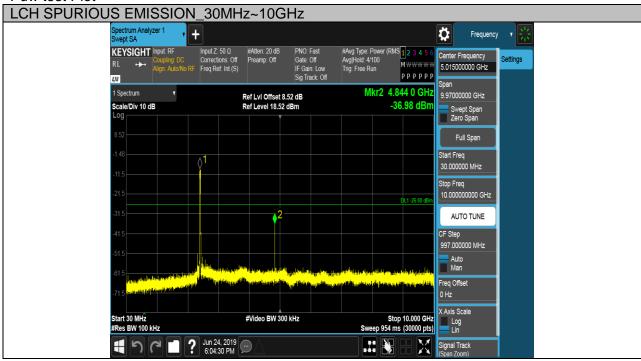



Page 62 of 127


Test Mode	Channel	Verdict
11N HT20	HCH	PASS

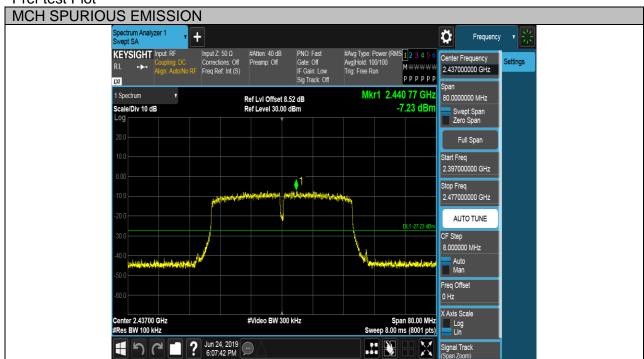
Page 63 of 127

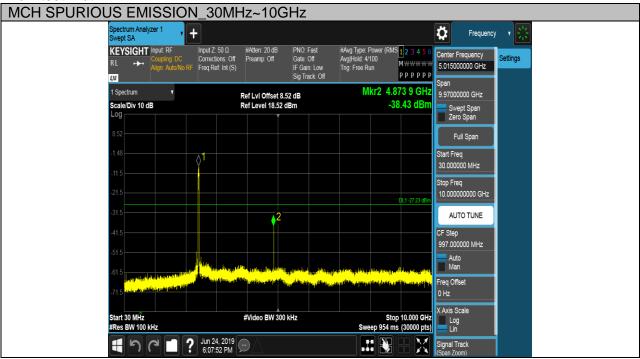


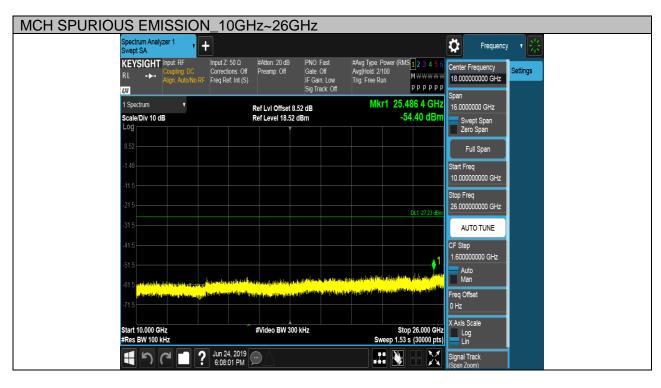

Page 64 of 127

Test Mode	Channel	Verdict
11N HT40	LCH	PASS

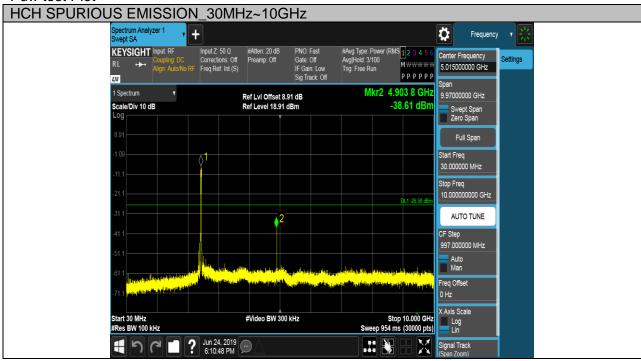
Page 65 of 127

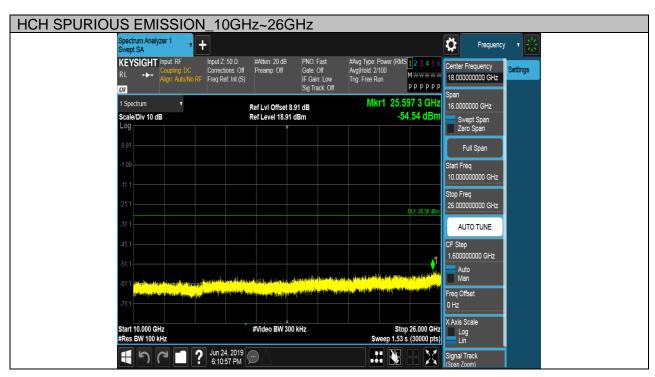



Page 66 of 127


Test Mode	Channel	Verdict
11N HT40	MCH	PASS

Page 67 of 127


Page 68 of 127


Test Mode	Channel	Verdict
11N HT40	HCH	PASS

Page 69 of 127

Page 70 of 127

7.6. RADIATED TEST RESULTS

7.6.1. LIMITS AND PROCEDURE

LIMITS

Please refer to FCC §15.205 and §15.209

Please refer to FCC KDB 558074

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

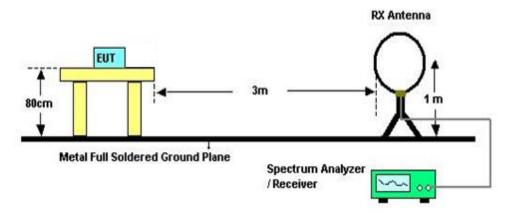
Page 71 of 127

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)	
Frequency (Miriz)	Peak	Average
Above 1000	74	54

Restricted bands of operation

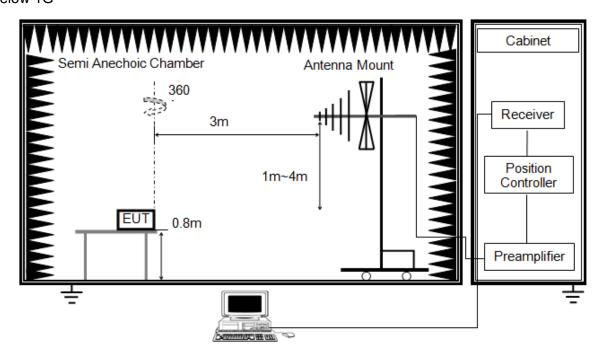
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

Page 72 of 127

TEST SETUP AND PROCEDURE

Below 30MHz

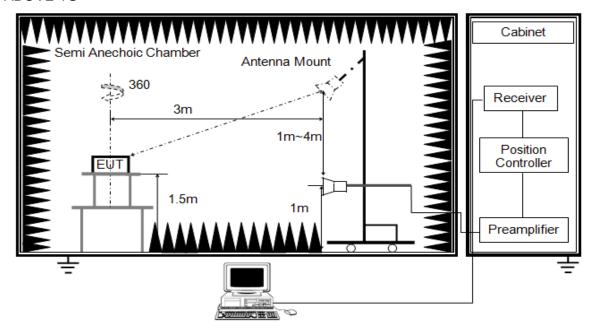

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

REPORT No.: 4788923488-1 Page 73 of 127

Below 1G



The setting of the spectrum analyser

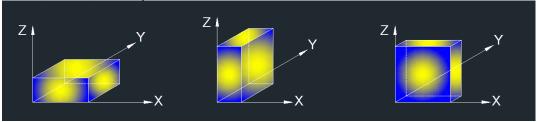
RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

ABOVE 1G

The setting of the spectrum analyser

RBW	1M			
IV/RW/	PEAK:3M AVG: See note6			
Sweep	Auto			
Detector	Peak/Average(10Hz)			
Trace	Max hold			


- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with set VBW ≤RBW/100, but not less than 10Hz video bandwidth with peak detector, max hold to be run for at least 50 traces for average measurements.
- 8. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

REPORT No.: 4788923488-1 Page 75 of 127

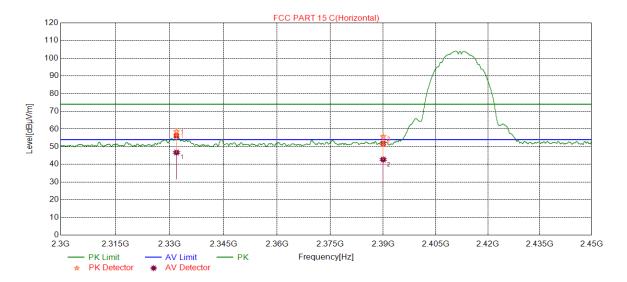
Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

7.6.2. TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

7.6.3. RESTRICTED BANDEDGE

Test Result Table

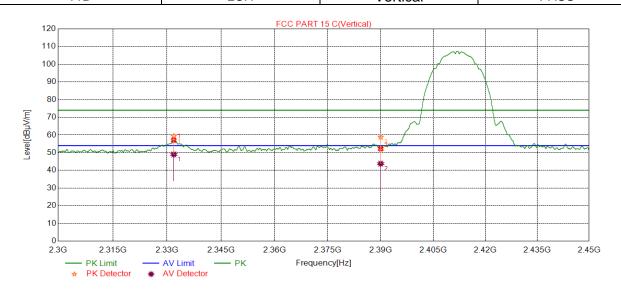

Test Mode	Test Antenna	Channel	Puw(dBm)	Verdict
		LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11B	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS
_		LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11G	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS
		LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS
		LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS

Page 76 of 127

Test Graphs:

Test Mode	Channel	Polarization	Verdict
11B	LCH	Horizontal	PASS

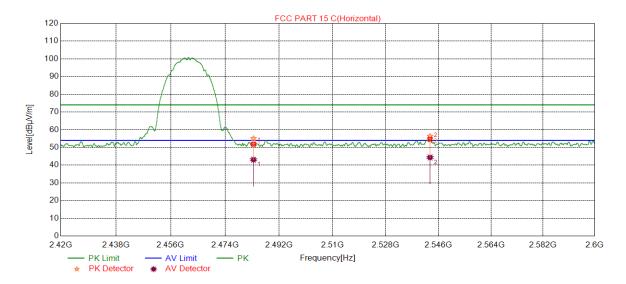
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4	1 2331.8977	42.66	13.49	56.15	74.00	-17.85	peak
1		33.23	13.49	46.72	54.00	-7.28	average
2	2 2390.0000	37.75	14.09	51.84	74.00	-22.16	peak
2		28.64	14.09	42.73	54.00	-11.27	average


- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

REPORT No.: 4788923488-1 Page 77 of 127

Test Mode Channel Polarization Verdict

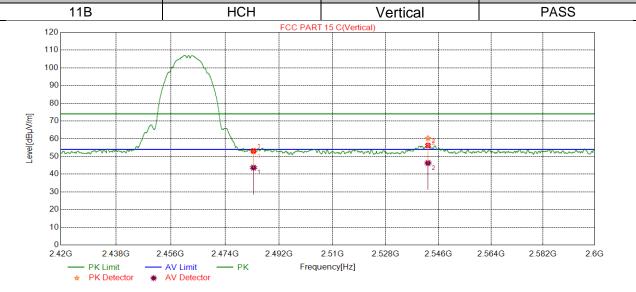
11B LCH Vertical PASS


	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
	1 2331.8602	1	43.55	13.49	57.04	74.00	-16.96	peak
			35.51	13.49	49.00	54.00	-5.00	average
Г	2	2 2200 0000	38.08	14.09	52.17	74.00	-21.83	peak
	2 2390.0000	29.70	14.09	43.79	54.00	-10.21	average	

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 78 of 127

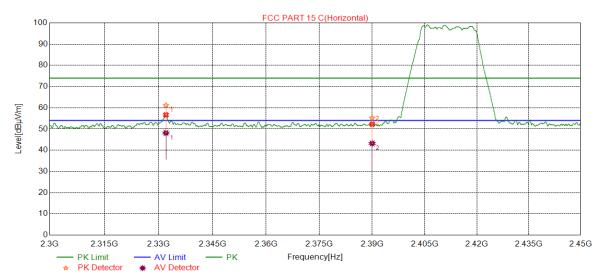
Test Mode	Channel	Polarization	Verdict
11B	HCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4	1 2483.5000	37.92	13.88	51.80	74.00	-22.20	peak
'		29.20	13.88	43.08	54.00	-10.92	average
2 2542,0062	40.26	14.35	54.61	74.00	-19.39	peak	
	2 2543.0963	30.01	14.35	44.36	54.00	-9.64	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

REPORT No.: 4788923488-1 Page 79 of 127

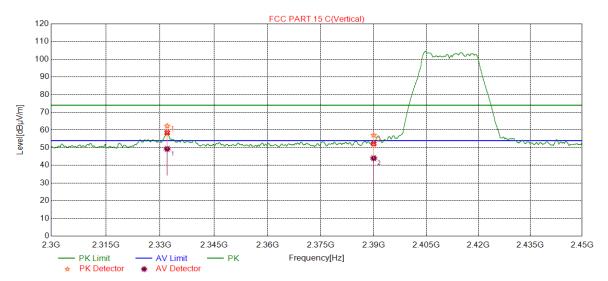
Test Mode Channel Polarization Verdict


	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Ī	1 2483.5000	39.30	13.88	53.18	74.00	-20.82	peak	
		ı	29.77	13.88	43.65	54.00	-10.35	average
ĺ	2 2542.3942	41.84	14.34	56.18	74.00	-17.82	peak	
		31.94	14.34	46.28	54.00	-7.72	average	

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 80 of 127

Test Mode	Channel	Polarization	Verdict
11G	LCH	Horizontal	PASS


	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Γ	1	2332.0478	43.14	13.49	56.63	74.00	-17.37	peak
	ı		34.65	13.49	48.14	54.00	-5.86	average
Γ	2 2390.0000	38.15	14.09	52.24	74.00	-21.76	peak	
		2390.0000	29.13	14.09	43.22	54.00	-10.78	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 81 of 127

Test Mode	Test Mode Channel		Verdict	
11G	LCH	Vertical	PASS	

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2221 0727	44.94	13.49	58.43	74.00	-15.57	peak
1	2331.9727	35.81	13.49	49.30	54.00	-4.70	average
2 2390,0000	38.12	14.09	52.21	74.00	-21.79	peak	
2	2390.0000	29.96	14.09	44.05	54.00	-9.95	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

10

2.42G

2.438G

PK Limit

★ PK Detector

2.456G

- AV Limit

AV Detector

2.474G

2.492G

REPORT No.: 4788923488-1

Page 82 of 127

Test Mode		C	hannel	Polarization	1	Verdict		
11G			HCH	Horizontal		PASS		
1	00		FCC PART	15 C(Horizontal)	1			
	90	m						
	80							
	70							
[m//m]	60		* ,			<u>∳</u> 2		
g B	50		my man man man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mannana.	mannon	~~~~~	
Level[dBµV/m]	40		*-			*2		
	30				<u> </u>			
	20							

	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2483.5000	38.13	13.88	52.01	74.00	-21.99	peak
	1		28.29	13.88	42.17	54.00	-11.83	average
	2 2564.7345	2564 7245	39.50	14.48	53.98	74.00	-20.02	peak
		2504.7345	28.75	14.48	43.23	54.00	-10.77	average

2.51G

Frequency[Hz]

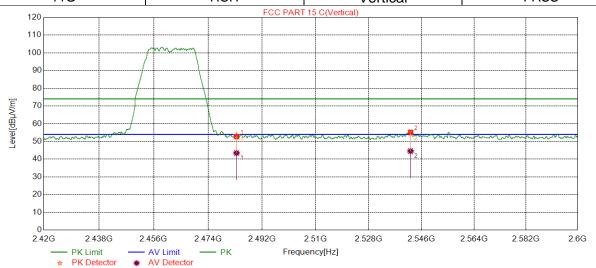
2.528G

2.546G

2.564G

2.582G

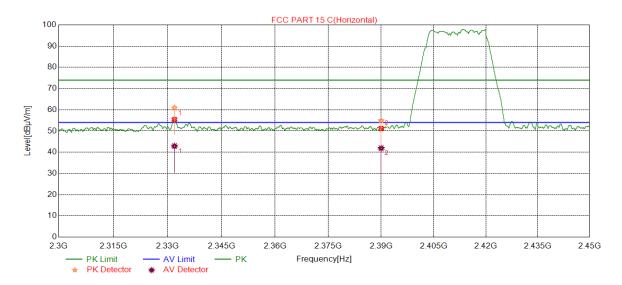
2.6G


- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

REPORT No.: 4788923488-1 Page 83 of 127

Test Mode Channel Polarization Verdict

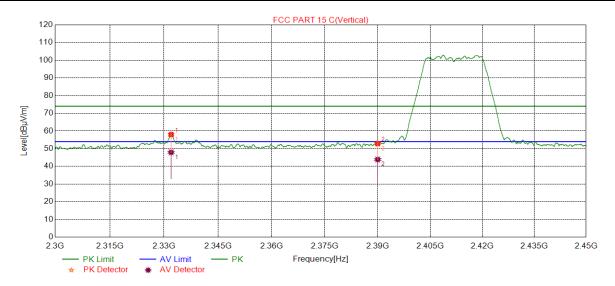
11G HCH Vertical PASS



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	peak average peak
1	2483.5000	38.75	13.88	52.63	74.00	-21.37	peak
'		29.59	13.88	43.47	54.00	-10.53	average
2	2542.2502	40.91	14.34	55.25	74.00	-18.75	peak
		30.22	14.34	44.56	54.00	-9.44	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

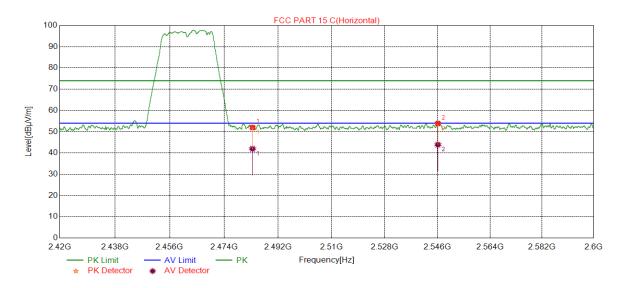
Test Mode	Test Mode Channel		Verdict	
11N HT20	LCH	Horizontal	PASS	


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4	2331.9165	41.91	13.49	55.40	74.00	-18.60	peak
1		29.39	13.49	42.88	54.00	-11.12	average
2	2 2390.0000	37.09	14.09	51.18	74.00	-22.82	peak
	2390.0000	27.81	14.09	41.90	54.00	-12.10	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 85 of 127

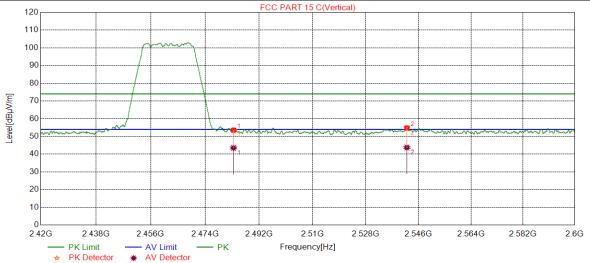
Test Mode	Channel	Polarization	Verdict
11N HT20	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2224 0540	44.45	13.49	57.94	74.00	-16.06	peak
I	2331.9540	34.45	13.49	47.94	54.00	-6.06	peak average peak
2	2390.0000	38.79	14.09	52.88	74.00	-21.12	peak
	2390.0000	29.79	14.09	43.88	54.00	-10.12	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 86 of 127

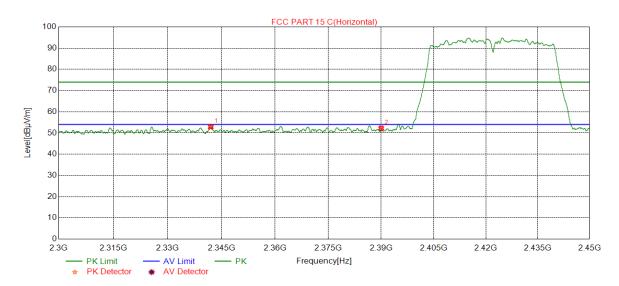
Test Mode	Test Mode Channel		Verdict	
11N HT20	HCH	Horizontal	PASS	


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4	2483.5000	38.08	13.88	51.96	74.00	-22.04	peak
'		28.08	13.88	41.96	54.00	-12.04	average
2	2546.1206	39.53	14.36	53.89	74.00	-20.11	peak
	2540.1200	29.53	14.36	43.89	54.00	-10.11	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

REPORT No.: 4788923488-1 Page 87 of 127

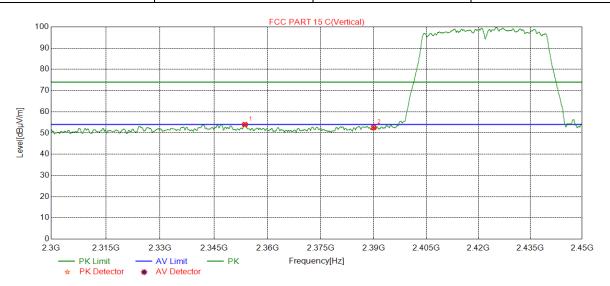
Test Mode Channel Polarization Verdict
11N HT20 HCH Vertical PASS


	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Ī	1 2483.500	2483.5000	39.65	13.88	53.53	74.00	-20.47	peak
			29.65	13.88	43.53	54.00	-10.47	average
ĺ	2 2542.0162	40.43	14.34	54.77	74.00	-19.23	peak	
		2542.0162	29.43	14.34	43.77	54.00	-10.23	average

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. For average power measurement, set the VBW to Minimum VBW=10 Hz.
- 4. Measurement = Reading Level + Correct Factor.
- 5. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 88 of 127

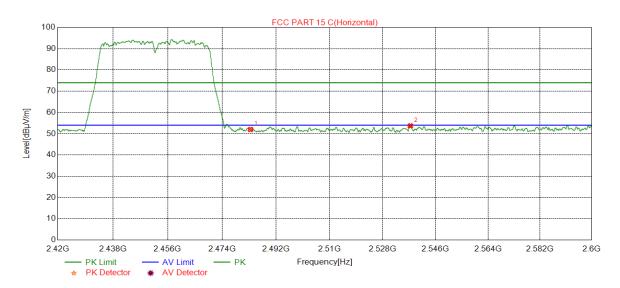
Test Mode	Channel	Polarization	Verdict
11N HT40	LCH	Horizontal	PASS


	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2342.0053	39.25	13.60	52.85	74.00	-21.15	peak
Ī	2	2390.0000	38.17	14.09	52.26	74.00	-21.74	peak

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 89 of 127

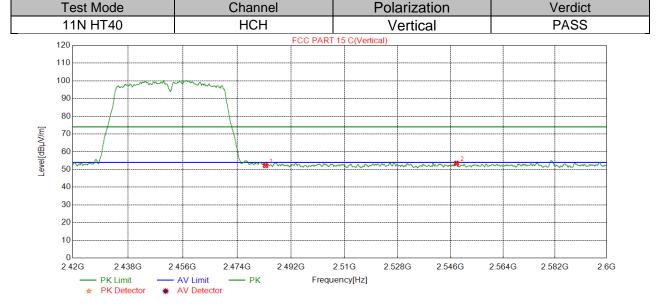
Test Mode	Channel	Polarization	Verdict
11N HT40	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2353.6505	40.26	13.70	53.96	74.00	-20.04	peak
2	2390.0000	38.47	14.09	52.56	74.00	-21.44	peak

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 90 of 127

Test Mode	Channel	Polarization	Verdict
11N HT40	HCH	Horizontal	PASS



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	38.11	13.88	51.99	74.00	-22.01	peak
2	2537.4077	39.42	14.27	53.69	74.00	-20.31	peak

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 91 of 127

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	38.32	13.88	52.20	74.00	-21.80	peak
2	2548.0108	39.05	14.39	53.44	74.00	-20.56	peak

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor.
- 4. only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit

Page 92 of 127

7.6.4. SPURIOUS EMISSIONS

Test Result Table:

1) For 1GHz~18GHz

Test Mode	Test Antenna	Channel	Puw(dBm)	Verdict
		LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11B	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS
_		LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11G	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	A - 1 4	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	Antonoad	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	Antenna1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
		HCH	<limit< td=""><td>PASS</td></limit<>	PASS

2) For 9KHz~30MHz

Test Mode	Test Antenna	Channel	Puw(dBm)	Verdict
1B	Antenna1	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

Remark:

1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.

3) For 30MHz~1GHz

Test Mode	Test Antenna	Channel	Puw(dBm)	Verdict
1B	Antenna1	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

Remark:

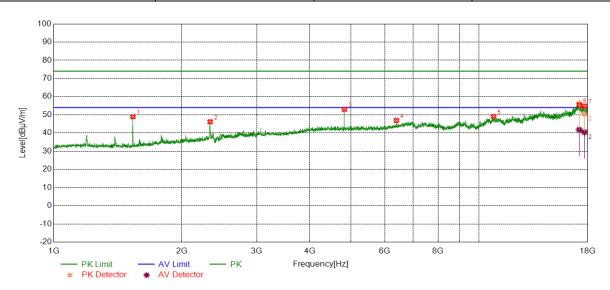
1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.

4) For 18GHz~26.5GHz

Test Mode	Test Antenna	Channel	Puw(dBm)	Verdict
1B	Antenna1	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

Remark:

1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.



Page 93 of 127

Part I: 1GHz~18GHz

HARMONICS AND SPURIOUS EMISSIONS

Test Mode	Channel	Polarization	Verdict
11B	LCH	Horizontal	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	54.63	-5.69	48.94	74.00	-25.06	peak
2	2331.7773	47.98	-1.82	46.16	74.00	-27.84	peak
3	4822.8038	48.05	4.94	52.99	74.00	-21.01	peak
4	6390.5651	39.32	7.55	46.87	74.00	-27.13	peak
5	10806.3011	36.16	12.93	49.09	74.00	-24.91	peak
6	17182.3637	35.79	19.58	55.37	74.00	-18.63	peak
0	0 1/102.303/	22.26	19.58	41.84	54.00	-12.16	average
7	17669.9450	35.11	19.70	54.81	74.00	-19.19	peak
	17009.9400	20.75	19.70	40.45	54.00	-13.55	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode Verdict Channel Polarization 11B LCH Vertical **PASS** 100 80 70 60 Level[dBµV/m] 50 40 20 10 -20 6G 18G 2G 3G 4G

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	54.49	-5.69	48.80	74.00	-25.20	peak
2	1796.9323	46.71	-3.91	42.80	74.00	-31.20	peak
3	2331.7773	50.89	-1.82	49.07	74.00	-24.93	peak
4	4822.8038	46.40	4.94	51.34	74.00	-22.66	peak
5	14021.8370	36.41	15.77	52.18	74.00	-21.82	peak
	47000 0000	35.51	20.22	55.73	74.00	-18.27	peak
ь	6 17029.8383	22.38	20.22	42.60	54.00	-11.40	average
7 470040440	35.73	19.51	55.24	74.00	-18.76	peak	
7	17664.9442	20.66	19.51	40.17	54.00	-13.83	average

Frequency[Hz]

Note: 1. Measurement = Reading Level + Correct Factor.

AV Limit

AV Detector

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.

PK Limit

- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode

11B

REPORT No.: 4788923488-1

Verdict

PASS

Page 95 of 127

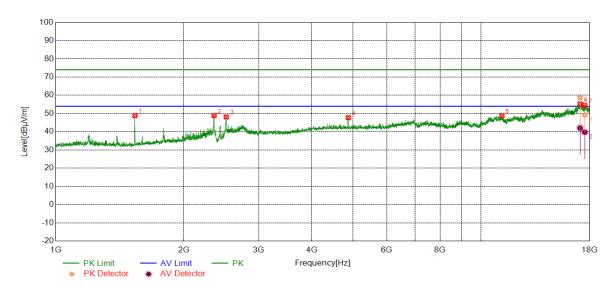
Polarization

Horizontal

Channel

MCH

70									
60				5					
50	* * * * * * * * * * * * * * * * * * *	4	8		n Jake Linder	, dinaktable.	الاستان الاستان	elli salis.	and the first part of the part
40		Name of the state	e principal de la principal de	alesydy, de Alleddd	Marketon	Maria I. Wali	ea Mighte	. 4976	
30	og po politica politica ju sa sinte dilla ministratori della								
20									
10									
0									
1	G 2G	3G 4	G	60	3	8	G		

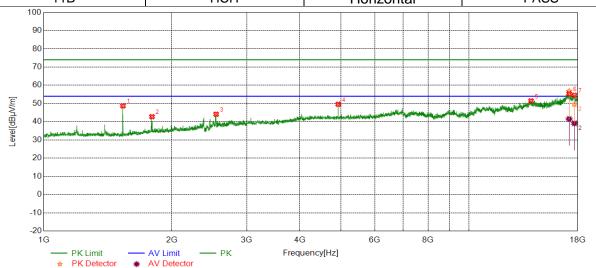

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	54.21	-5.69	48.52	74.00	-25.48	peak
2	1794.2648	44.34	-3.94	40.40	74.00	-33.60	peak
3	2357.1190	48.20	-1.67	46.53	74.00	-27.47	peak
4	2517.1724	44.26	-0.70	43.56	74.00	-30.44	peak
5	4872.8121	46.76	5.21	51.97	74.00	-22.03	peak
6	16020 0222	35.16	20.07	55.23	74.00	-18.77	peak
0	6 16939.8233	25.18	20.07	45.25	54.00	-8.75	average
7	7 47540,0000	35.38	19.89	55.27	74.00	-18.73	peak
7	17519.9200	22.29	19.89	42.18	54.00	-11.82	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4788923488-1 Page 96 of 127

Test Mode	Channel	Polarization	Verdict
11B	MCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	54.55	-5.69	48.86	74.00	-25.14	peak
2	2357.1190	50.52	-1.67	48.85	74.00	-25.15	peak
3	2517.1724	48.80	-0.70	48.10	74.00	-25.90	peak
4	4872.8121	42.54	5.21	47.75	74.00	-26.25	peak
5	11186.3644	36.19	12.64	48.83	74.00	-25.17	peak
6	17074.8458	35.24	20.02	55.26	74.00	-18.74	peak
0	17074.0436	22.04	20.02	42.06	54.00	-11.94	average
7 17517 4196	34.89	19.59	54.48	74.00	-19.52	peak	
/	17517.4196	20.16	19.59	39.75	54.00	-14.25	average

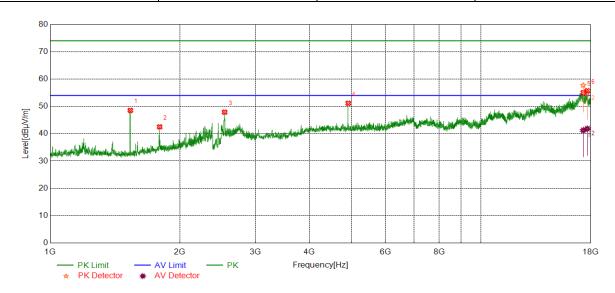

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4788923488-1 Page 97 of 127

Test Mode Channel Polarization Verdict

11B HCH Horizontal PASS

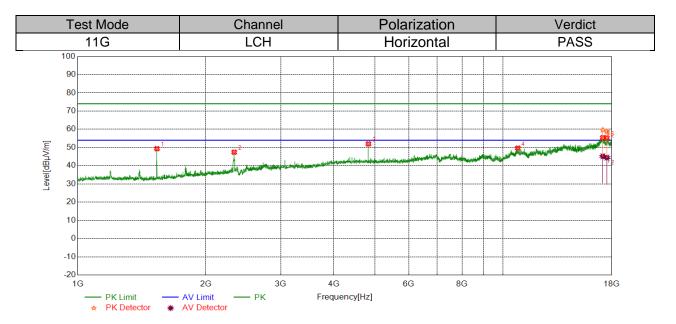
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	54.37	-5.69	48.68	74.00	-25.32	peak
2	1796.9323	46.67	-3.91	42.76	74.00	-31.24	peak
3	2542.5142	45.19	-1.08	44.11	74.00	-29.89	peak
4	4922.8205	44.34	5.24	49.58	74.00	-24.42	peak
5	13974.3291	35.25	16.20	51.45	74.00	-22.55	peak
6	17170 2621	35.93	19.47	55.40	74.00	-18.60	peak
0	6 17172.3621	22.05	19.47	41.52	54.00	-12.48	average
7	17674 0450	35.29	19.26	54.55	74.00	-19.45	peak
'	17674.9458	19.82	19.26	39.08	54.00	-14.92	average


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4788923488-1 Page 98 of 127

Test Mode Channel Polarization Verdict

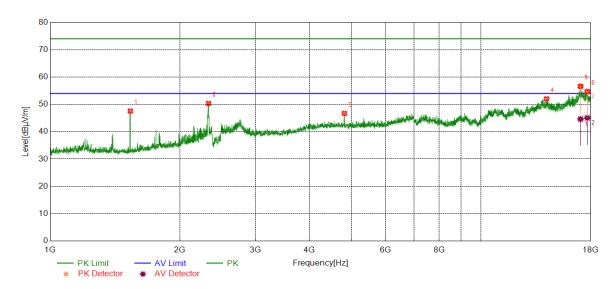
11B HCH Vertical PASS



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	54.23	-5.69	48.54	74.00	-25.46	peak
2	1795.5985	46.43	-3.92	42.51	74.00	-31.49	peak
3	2541.8473	48.98	-1.09	47.89	74.00	-26.11	peak
4	4922.8205	45.91	5.24	51.15	74.00	-22.85	peak
5	17207 2012	36.19	18.84	55.03	74.00	-18.97	peak
5	17287.3812	22.39	18.84	41.23	54.00	-12.77	average
0 47007 4440	36.13	19.60	55.73	74.00	-18.27	peak	
6	17667.4446	22.21	19.60	41.81	54.00	-12.19	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

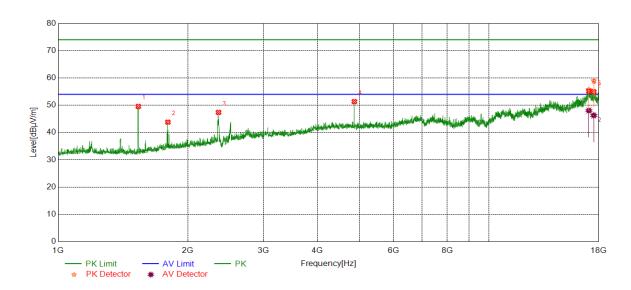
Page 99 of 127


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	55.03	-5.69	49.34	74.00	-24.66	peak
2	2332.4441	49.24	-1.82	47.42	74.00	-26.58	peak
3	4822.8038	47.06	4.94	52.00	74.00	-22.00	peak
4	10821.3036	36.95	12.71	49.66	74.00	-24.34	peak
E	17111 0575	35.86	19.52	55.38	74.00	-18.62	peak
5	5 17144.8575	25.66	19.52	45.18	54.00	-8.82	average
6	6 17504.0000	36.01	19.23	55.24	74.00	-18.76	peak
0	17524.9208	25.20	19.23	44.43	54.00	-9.57	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4788923488-1 Page 100 of 127

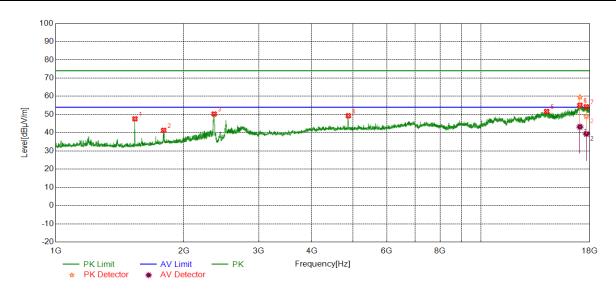
Test Mode	Channel	Polarization	Verdict
11G	LCH	Vertical	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	53.26	-5.69	47.57	74.00	-26.43	peak
2	2331.7773	52.18	-1.82	50.36	74.00	-23.64	peak
3	4822.8038	41.77	4.94	46.71	74.00	-27.29	peak
4	14206.8678	36.53	15.50	52.03	74.00	-21.97	peak
E	17024 0204	36.83	19.77	56.60	74.00	-17.40	peak
5	5 17034.8391	24.84	19.77	44.61	54.00	-9.39	average
0 47000 0450	35.01	19.70	54.71	74.00	-19.29	peak	
6	17669.9450	25.38	19.70	45.08	54.00	-8.92	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4788923488-1 Page 101 of 127

Test Mode	Channel	Polarization	Verdict
11G	MCH	Horizontal	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	55.24	-5.69	49.55	74.00	-24.45	peak
2	1798.2661	47.69	-3.90	43.79	74.00	-30.21	peak
3	2357.1190	49.04	-1.67	47.37	74.00	-26.63	peak
4	4872.8121	46.13	5.21	51.34	74.00	-22.66	peak
5 1706	17067.3446	34.65	20.52	55.17	74.00	-18.83	peak
	17067.3446	27.52	20.52	48.04	54.00	-5.96	average
6	17519.9200	35.05	19.89	54.94	74.00	-19.06	peak
		26.35	19.89	46.24	54.00	-7.76	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4788923488-1 Page 102 of 127

Test Mode	Channel	Polarization	Verdict
11G	MCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1535.5118	53.32	-5.69	47.63	74.00	-26.37	peak
2	1793.5979	45.30	-3.95	41.35	74.00	-32.65	peak
3	2357.1190	51.94	-1.67	50.27	74.00	-23.73	peak
4	4872.8121	44.09	5.21	49.30	74.00	-24.70	peak
5	14254.3757	35.88	15.81	51.69	74.00	-22.31	peak
6 170	17062 2427	34.56	20.52	55.08	74.00	-18.92	peak
	17062.3437	22.71	20.52	43.23	54.00	-10.77	average
7	17667.4446	34.68	19.60	54.28	74.00	-19.72	peak
		19.72	19.60	39.32	54.00	-14.68	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. AVG: VBW=10 Hz.
- 6. Confirm that the test have added the BRF losses during the testing. Proper operation of the transmitter prior to adding the filter to the measurement chain. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 7. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.