

MEASUREMENT REPORT

FCC PART 15.249

APPLICANT: Zhejiang Dahua Vision Technology Co., Ltd

Application Type: Certification

Product: Narrow Wave Tablet Radar

Model No.: DHI-ITARD-024SA-ST

Serial Model No.: ITARD-024SA-ST

Brand Name:

ahua

- FCC Classification: Part 15 Low Power Communication Device Transmitter (DXX)
- FCC Rule Part(s): FCC Part 15C (Section 15.249)
- Test Procedure(s): ANSI C63.10-2013
- **Test Date:** April 01 ~ July 21, 2020

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2001RSU035-U1	Rev. 01	Initial Report	07-21-2020	Valid

CONTENTS

Des	scription	n	Page
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	OUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Test Configuration	7
	2.3.	EMI Suppression Device(s)/Modifications	7
	2.4.	Labeling Requirements	7
3.	DESC	RIPTION of TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	AC Line Conducted Emissions	8
	3.3.	Radiated Emissions	9
4.	ANTE	NNA REQUIREMENTS	10
5.	TEST	EQUIPMENT CALIBRATION DATE	11
6.	MEAS	SUREMENT UNCERTAINTY	13
7.	TEST	RESULT	14
	7.1.	Summary	14
	7.2.	AC Conducted Emissions Measurement	15
	7.2.1.	Test Limit	15
	7.2.2.	Test Setup	15
	7.2.3.	Test Result	15
	7.3.	Radiated Emission	16
	7.3.1.	Test Limit	16
	7.3.2.	Test Setup	17
	7.3.3.	Test Result	18
	7.4.	Radiated Restricted Band Edge Measurement	23
	7.4.1.	Test Limit	23
	7.4.2.	Test Setup	24
	7.4.3.	Test Result	25
	7.5.	Emission Bandwidth Measurement	29
	7.5.1.	Test Limit	29
	7.5.2.	Test Procedure used	29

	7.5.3.	Test Setting	29
	7.5.4.	Test Setup	29
	7.5.5.	Test Result	30
8.	CONCLU	ISION	31
Арр	endix A -	Test Setup Photograph	32
Арр	endix B -	EUT Photograph	33

General Information

Applicant:	Zhejiang Dahua Vision Technology Co., Ltd	
Applicant Address:	No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China	
Manufacturer:	Zhejiang Dahua Vision Technology Co., Ltd	
Manufacturer Address:	No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China	
Test Site:	MRT Technology (Suzhou) Co., Ltd	
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development	
	Zone, Suzhou, China	
Test Device Serial No.:	Production Pre-Production Engineering	

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Designation No. CN1166) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

Ac	credited Laboratory
	A2LA has accredited
	INOLOGY (SUZHOU) CO., LTD. 50. Jiangsu, People's Republic of China
	for technical competence in the field of
	Electrical Testing
General requirements for the comp technical competence for a de	accordance with the recognized International Standard BO/IEC 17025:2017 etence of festing and colloration laboratorias. This accreditation demonstrated finder scope and the operation of a laboratory quality management system s joint 80-ILAC-IAF Communiqué dated April 2017).
	Presented this 24th day of July 2018.
	President and CED For the Accreditation Council
" Inner	Certificate Number 3628.01 Valid to August 31, 3920

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	Narrow Wave Tablet Radar
Model No.:	DHI-ITARD-024SA-ST
Serial Model No.:	ITARD-024SA-ST
Brand Name:	Cachua
Transmitting Frequency	24.15GHz
Modulation Type	FMCW

2.2. Test Configuration

The EUT was tested as described in this report is in compliance with the requirements limits of FCC Rules Part 15.207,15.209, 15.215 and 15.249. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.3. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.4. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the requirement provided in FCC 15.207, 15.209, 15.215 and 15.249 were used in the measurement of the EUT.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the unit is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2021/01/18
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2021/06/11
Thermal Hygrometer	testo	608-H1	MRTSUE06404	1 year	2020/08/08
Shielding Room	MIX-BEP	Chamber-SR2	MRTSUE06215	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7 (9kHz~7GHz)	MRTSUE06001	1 year	2021/01/18
PXA Signal Analyzer	Keysight	N9030B (3Hz-50GHz)	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519 (9KHz~30MHz)	MRTSUE06025	1 year	2020/11/13
Bilog Period Antenna	Schwarzbeck	VULB 9168 (30~1000MHz)	MRTSUE06172	1 year	2021/04/03
Horn Antenna	Schwarzbeck	BBHA 9120D (1~18GHz)	MRTSUE06023	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9170 (15~40GHz)	MRTSUE06597	1 year	2020/12/17
Micro-Wave Antenna	MI-WWAVE	261U-25 (40-60GHz)	MRTSUE06273	5 year	2021/12/26
Standard Gain Horn	A-INFOMW			Ever	2022/11/16
Antenna		LB-15-25-A (50~75GHz)	MRTSUE06409	5 year	2022/11/16
Standard Gain Horn	A-INFOMW			Ever	2022/11/16
Antenna		LB-10-25-A (75~110GHz)	MRTSUE06410	5 year	2022/11/10
Waveguide Harmonic Mixer	Keysight	M1970V (50~75GHz)	MRTSUE06271	5 year	2022/01/17
Waveguide Harmonic Mixer	Keysight	M1970W (75~110GHz)	MRTSUE06272	5 year	2021/12/07
Coaxial transmission line	Times Microwave	SLU18-SMSM-01.00M	N1/A	5 year	2022/01/17
Coaxial transmission line	Systems	(Serial #94197(TMC))	N/A		
Cooviel transmission line	Times Microwave	SLU18-SMSM-01.00M	N/A	5 year	2021/12/07
Coaxial transmission line	Systems	(Serial #94198(TMC))	IN/A		
Coaxial transmission line	UCWAVE	SPT67-1.85M1.85M-1.0M	N/A	5 year	2021/12/26
Microwave System					
Amplifier	Agilent	83017A (0.5~26.5GHz)	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721 (18~40GHz)	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	ТDК	Chamber-AC1	MRTSUE06212	1 year	2021/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A (20Hz~26.5GHz)	MRTSUE06125	1 year	2020/08/01
PXA Signal Analyzer	Keysight	N9030B (3Hz-50GHz)	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519 (9KHz~30MHz)	MRTSUE06025	1 year	2020/11/13
Bilog Period Antenna	Schwarzbeck	VULB 9162 (30MHz~7GHz)	MRTSUE06022	1 year	2020/10/13
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9120D (1~18GHz)	MRTSUE06171	1 year	2020/10/27
Horn Antenna	Schwarzbeck	BBHA9170 (15~40GHz)	MRTSUE06597	1 year	2020/12/17
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718 (1~18GHz)	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721 (18~40GHz)	MRTSUE06121	1 year	2020/06/11
Micro-Wave Antenna	MI-WWAVE	261U-25 (40-60GHz)	MRTSUE06273	5 year	2021/12/26
Standard Gain Horn Antenna	A-INFOMW	LB-15-25-A (50~75GHz)	MRTSUE06409	5 year	2022/11/16
Standard Gain Horn Antenna	A-INFOMW	LB-10-25-A (75~110GHz)	MRTSUE06410	5 year	2022/11/16
Waveguide Harmonic Mixer	Keysight	M1970V (50~75GHz)	MRTSUE06271	5 year	2022/01/17
Waveguide Harmonic Mixer	Keysight	M1970W (75~110GHz)	MRTSUE06272	5 year	2021/12/07
Coaxial transmission line	Times Microwave Systems	SLU18-SMSM-01.00M (Serial #94197(TMC))	N/A	5 year	2022/01/17
Coaxial transmission line	Times Microwave Systems	SLU18-SMSM-01.00M (Serial #94198(TMC))	N/A	5 year	2021/12/07
Coaxial transmission line	UCWAVE	SPT67-1.85M1.85M-1.0M	N/A	5 year	2021/12/26
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2020/12/15
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2021/04/30

Software	Version	Function
EMI Software	V3	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Emis	ssion Measurement - SR2		
The maxim	The maximum measurement uncertainty is evaluated as:		
9kHz~150k	9kHz~150kHz: 3.84dB		
150kHz~30	MHz: 3.46dB		
Radiated Emiss	ion Measurement - AC1		
The maxim	um measurement uncertainty is evaluated as:		
Horizontal:	30MHz~300MHz: 4.07dB		
	300MHz~1GHz: 3.63dB		
	1GHz~18GHz: 4.16dB		
	18GHz~40GHz: 4.98dB		
Vertical:	30MHz~300MHz: 4.18dB		
	300MHz~1GHz: 3.60dB		
	1GHz~18GHz: 4.76dB		
	18GHz~40GHz: 5.63dB		
Radiated Emiss	ion Measurement - AC2		
The maxim	um measurement uncertainty is evaluated as:		
Horizontal:	30MHz~300MHz: 3.75dB		
	300MHz~1GHz: 3.53dB		
	1GHz~18GHz: 4.28dB		
	18GHz~40GHz: 4.88dB		
Vertical:	30MHz~300MHz: 3.86dB		
	300MHz~1GHz: 3.53dB		
	1GHz~18GHz: 4.33dB		
	18GHz~40GHz: 5.06dB		

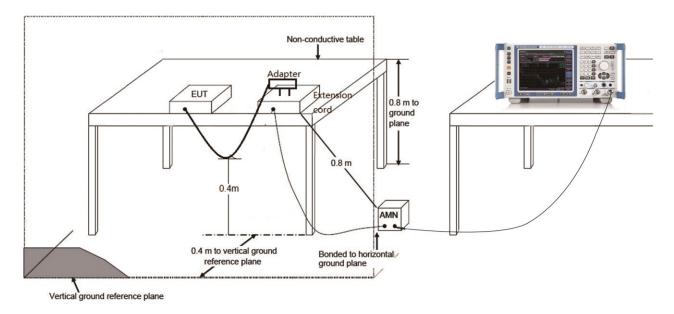
7. TEST RESULT

7.1. Summary

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.2
15.209 15.249	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 & clause 8.10	Radiated	Pass	Section 7.3 & 7.4
15.215(c)	20dB Spectrum Bandwidth	20 dB bandwidth of the emission in the specific band	Conducted	Pass	Section 7.5

Notes:

- 1. The test results shown in the following sections represent the worst-case emissions.
- 2. "N/A" means that this item is not applicable, and the detail information refer to relevant section.


7.2. AC Conducted Emissions Measurement

7.2.1.Test Limit

	FCC 15.207 Limits	
Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 ~ 0.50	66 ~ 56	56 ~ 46
0.50 ~ 5.0	56	46
5.0 ~ 30	60	50
Note 1: The lower limit shall apply	y at the transition frequencies.	

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.2.2.Test Setup

7.2.3.Test Result

The device is powered by DC source, so this item is not applicable.

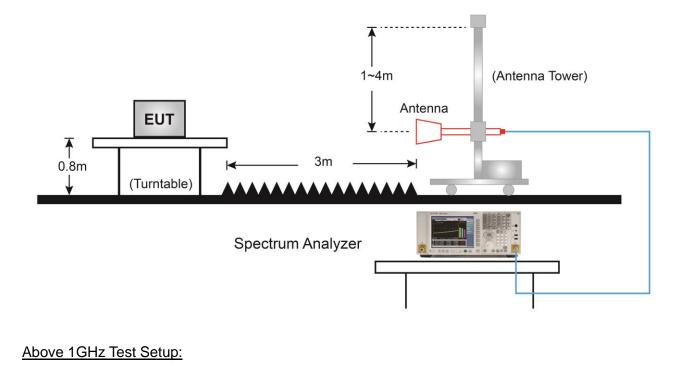
7.3. Radiated Emission

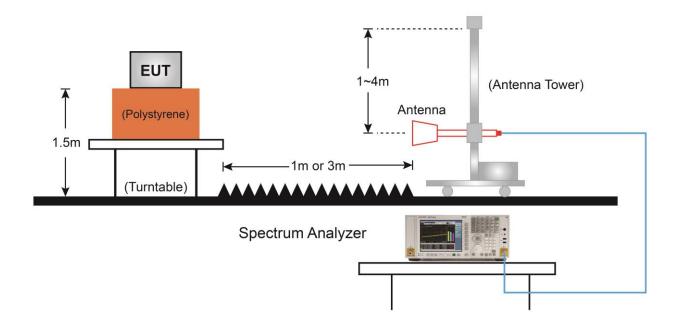
7.3.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.249									
Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics							
(MHz)	(mV/m)	(uV/m)							
902 ~ 908	50	500							
2400 ~ 2483.5	50	500							
5725 ~ 5875	50	500							
24000 ~ 24250	250	2500							
Note: FCC Part 15.249 (d), Emis	sions radiated outside of the speci	fied frequency bands, except for							
harmonics, shall be attenuated b	y at least 50 dB below the level of	the fundamental or to the general							
radiated emission limits in §15.20	09, whichever is the lesser attenua	tion.							

FCC Part 15 Subpart C Paragraph 15.209								
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)						
0.009 ~ 0.490	2400/F(kHz)	300						
0.490 ~ 1.705	24000/F(kHz)	30						
1.705 ~ 30.0	30	30						
30 ~ 88	100**	3						
88 ~ 216	150**	3						
216 ~ 960	200**	3						
Above 960	500	3						
Note 1: The lower limit shall apr		5						

Note 1: The lower limit shall apply at the transition frequency.


Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.


Note 3: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m).

7.3.2.Test Setup

Below 1GHz Test Setup:

7.3.3.Test Result

Product	Narrow Wave Tablet Radar	Temperature	25°C
Test Engineer	Milo Li	Relative Humidity	56%
Test Site	AC2	Test Date	2020/05/07
Remark:	Fundamental Radiated Emissi	on	

Frequency (GHz)	Reading Level (dBµV)	Factor (dB)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
	90.6	-9.8	80.8	128.0	-47.2	Peak	Horizontal
04.45	65.9	-9.8	56.1	108.0	-51.9	Average	Horizontal
24.15	107.6	-9.8	97.8	128.0	-30.2	Peak	Vertical
	79.1	-9.8	69.3	108.0	-38.7	Average	Vertical
Note 1: Peal	K Measure Leve	el (dBµV/	/m) = Reading L	evel (dBµV)	+ Factor (dB	3)	

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Note 2: Average Limit $(dB\mu V/m) = 20 * log(250mV/m) = 108.0dB\mu V/m$

Peak Limit (dBµV/m) = Average Limit (dBµV/m) + 20dB = 128.0 dBµV/m

Product	Narrow Wave Tablet Radar	Temperature	25°C
Test Engineer	Milo Li	Relative Humidity	56%
Test Site	AC2	Test Date	2020/04/17 ~2020/07/21
Remark:	Harmonics Radiated Emission		

Mark	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
Maga	uramant Diate	(dBµV)		(dBµV/m)				
Meas	urement Dista	ance = $3m$ (1GHZ ~ 18	3 GHZ)	Γ			
	6040.5	34.7	6.3	41.0	74.0	-33.0	Peak	Horizontal
	7001.0	33.6	10.7	44.3	74.0	-29.7	Peak	Horizontal
	7545.0	35.5	12.3	47.8	74.0	-26.2	Peak	Horizontal
	11191.5	30.6	18.4	49.0	74.0	-25.0	Peak	Horizontal
	5505.0	35.8	4.4	40.2	74.0	-33.8	Peak	Vertical
	6448.5	34.2	8.4	42.6	74.0	-31.4	Peak	Vertical
	10809.0	31.2	17.5	48.7	74.0	-25.3	Peak	Vertical
	11506.0	28.9	19.3	48.2	74.0	-25.8	Peak	Vertical
Meas	urement Dista	ance = 3m (18 GHz ~	40 GHz)				
	22565.0	58.5	-10.0	48.5	74.0	-25.5	Peak	Horizontal
	23852.0	58.2	-9.8	48.4	74.0	-25.6	Peak	Horizontal
	26800.0	58.5	-8.6	49.9	74.0	-24.1	Peak	Horizontal
	28934.0	60.5	-9.9	50.6	74.0	-23.4	Peak	Horizontal
	22312.0	58.2	-10.3	47.9	74.0	-26.1	Peak	Vertical
	22818.0	58.5	-9.8	48.7	74.0	-25.3	Peak	Vertical
	26591.0	58.9	-8.9	50.0	74.0	-24.0	Peak	Vertical
	28714.0	60.6	-10.0	50.6	74.0	-23.4	Peak	Vertical
Note 1:					IV) + Factor (d r (dB/m) - Pre_		Gain (dB)	

Note 2: Average measurement was not performed when the peak level lower than average limit.

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
Meas	urement Dista	ance = 1m (40GHz ~ 7	75GHz)				
	48300.0	24.9	46.0	70.9	97.5	-26.6	Peak	Horizontal
	48300.0	24.8	46.0	70.8	97.5	-26.7	Peak	Vertical
	72450.0	38.9	42.4	81.3	97.5	-16.2	Peak	Horizontal
	72450.0	27.7	42.4	70.1	77.5	-7.4	Average	Horizontal
	72450.0	39.5	42.4	81.9	97.5	-15.6	Peak	Vertical
	72450.0	24.7	42.4	67.1	77.5	-10.4	Average	Vertical
	: According to Average Lim Peak Limit (o FCC Part ´ hit (dBµV/m) dBµV/m) @	15.205(d)(@1m = 2 1m = Aver	9) and Part 1 0*log(2500µ\ age Limit (dB	r (dB/m) - Pre_ 5.249(a) requir //m) + 20 * log µV/m) + 20dB n the peak leve	ements, (3/1) = 77 = 97.5 dB	.5dBµV/m µV/m	
Mark	Frequency (MHz)	Reading Level (dBµV)	Factor (dB)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
Measu	rement Dista	nce = 0.25m	n (75GHz -	~ 100GHz)				
	96600.0	39.1	44.5	83.6		-12.0	Peak	
			11.0	03.0	95.6	-12.0	1 Out	Horizontal
	96600.0	27.9	44.5	72.4	95.6 75.6	-3.2	Average	Horizontal Horizontal
	96600.0 96600.0							
		27.9	44.5	72.4	75.6	-3.2	Average	Horizontal

The worst case of Radiated Emission below 1GHz

Site	: AC2				Т	Time: 2020/04/15 - 18:44				
Limi	.imit: FCC_Part15.209_RSE(3m)					Engineer: Tyler Yuan				
Prob	obe: AC2_VULB 9168 _20-2000MHz-yuanqu					Polarity: Horizontal				
EUT	UT: Narrow Wave Tablet Radar Power: DC 12V					V				
Note	e: Tran	smit at 2	24.15GHz							
	90									
	80									
	70			a						
	60									
6										
uV/n								4	1 5 6	
	(H)							1		
hild	40						2	3 *		
Level(dBuV/m)	30	1				1	2	3 *		
Level(d	40 30 20 V~	wh		C. L. Ju	ul	why I troubles, la				
Level(d		mty	mmmm	and Mariad	WM.malmanud Who	w. lange and the state				
Leveltd	20 0~	with		an Aliman and	Werne ward who	walkanda ang ang ang ang ang ang ang ang ang an				
Leveld	20 vvv 10	with		Aman A Addano	Willing warmend the	nm. June of June of March				
Leveld	20 v~, 10 0	with	mmmm	۲۰۰۰ (۱۰۰۰) ۱00	ц(ульчуу тоороон) Дуульчуу тоороон	ncy(MHz)			1000	
No	20 vvv 10	Mark	Frequency	Aman A Addano	ц(ульчуу тоороон) Дуульчуу тоороон	anuality of a first firs	Limit	Factor	туре	
8	20 vvv 10 -10 30	Mark	Frequency (MHz)	100	Freque	ncy(MHz)				
8	20 vvv 10 -10 30	Mark		100 Measure	Frequer	ncy(MHz)	Limit	Factor		
8	20 vvv 10 -10 30	Mark		100 Measure Level	Frequer Reading Level	ncy(MHz)	Limit	Factor		
No	20 vvv 10 -10 30	Mark	(MHz)	100 Measure Level (dBuV/m)	Frequer Reading Level (dBuV)	ncy(MHz) Margin (dB)	Limit (dBuV/m)	Factor (dB)	Туре	
No 1	20 vvv 10 -10 30	Mark	(MHz) 38.596	100 Measure Level (dBuV/m) 23.908	Frequer Reading Level (dBuV) 9.660	ncy(MHz) Margin (dB) -16.092	Limit (dBuV/m) 40.000	Factor (dB) 14.248	Type QP	

 6
 835.162
 37.617
 14.950
 -8.383
 46.000

 Note 1: Measure Level (dBμV/m) = Reading Level (dBμV) + Factor (dB)

38.060

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

720.160

5

Note 2: The amplitude of Radiated emissions (the test frequency range: 9kHz ~ 30MHz), is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

16.550

-7.940

46.000

QP

QP

21.510

22.667

Site	: AC2				Ţ	Time: 2020/04/15 - 18:47			
Limi	imit: FCC_Part15.209_RSE(3m)					Engineer: Tyler Yuan			
Prol	robe: AC2_VULB 9168 _20-2000MHz-yuanqu					Polarity: Vertical			
EUT	JT: Narrow Wave Tablet Radar					Power: DC 12V			
Note	e: Trans	smit at 2	24.15GHz		·				
Level(dBuV/m)	90 80 70 60 50 40							3	
	30 20 10 -10 30	WA	unn M	2 4 100	Manna Long Partilling	ncy(MHz)			1000
No	20 ~~ 10 -10	Mark	Frequency		Freque Reading	incy(MHz)	Limit	Factor	1000
	20 10 -10 30	Mark	Frequency (MHz)	100			Limit (dBuV/m)	Factor (dB)	
	20 10 -10 30	Mark		100 Measure	Reading	Margin			
	20 10 -10 30	Mark		100 Measure Level	Reading Level	Margin			
No	20 10 -10 30	Mark	(MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	(dBuV/m)	(dB)	Туре
No 1	20 10 -10 30	Mark	(MHz) 38.260	Measure Level (dBuV/m) 27.190	Reading Level (dBuV) 12.990	Margin (dB) -12.810	(dBuV/m) 40.000	(dB) 14.201	Type QP
No 1 2	20 10 -10 30	Mark	(MHz) 38.260 81.326	100 Measure Level (dBuV/m) 27.190 24.876	Reading Level (dBuV) 12.990 15.030	Margin (dB) -12.810 -15.124	(dBuV/m) 40.000 40.000	(dB) 14.201 9.846	Type QP QP
No 1 2 3	20 10 -10 30	Mark	(MHz) 38.260 81.326 547.626	100 Measure Level (dBuV/m) 27.190 24.876 31.732	Reading Level (dBuV) 12.990 15.030 12.990	Margin (dB) -12.810 -15.124 -14.268	(dBuV/m) 40.000 40.000 46.000	(dB) 14.201 9.846 18.742	Type QP QP QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

36.697

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

835.165

6

Note 2: The amplitude of Radiated emissions (the test frequency range: 9kHz ~ 30MHz), is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

-9.303

46.000

22.667

QP

14.030

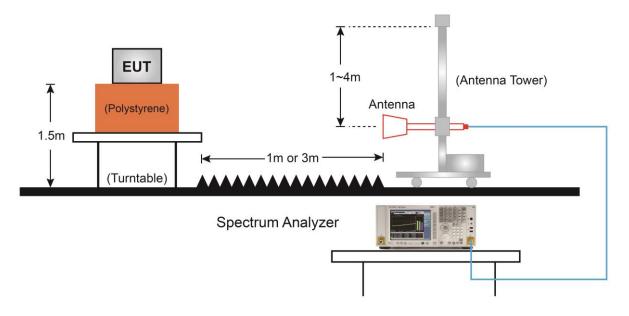
7.4. Radiated Restricted Band Edge Measurement

7.4.1.Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 – 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

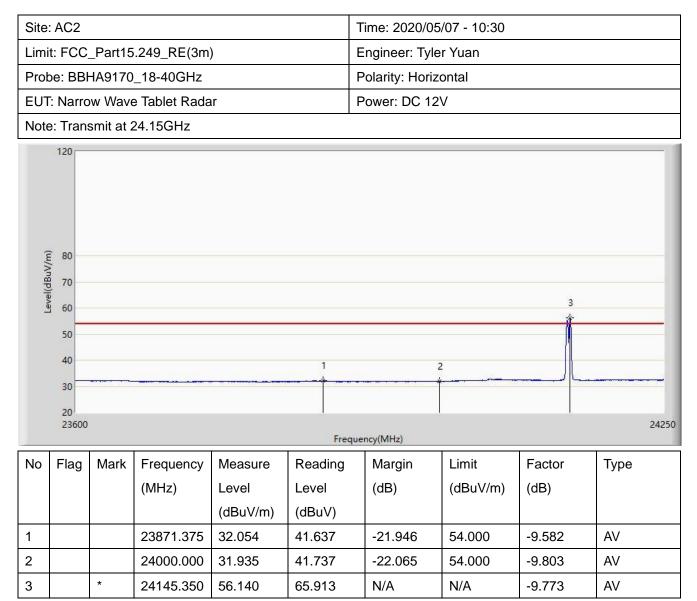


All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209						
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meter]				
0.009 ~ 0.490	2400/F (kHz)	300				
0.490 ~ 1.705	24000/F (kHz)	30				
1.705 ~ 30	30	30				
30 ~ 88	100	3				
88 ~ 216	150	3				
216 ~ 960	200	3				
Above 960	500	3				

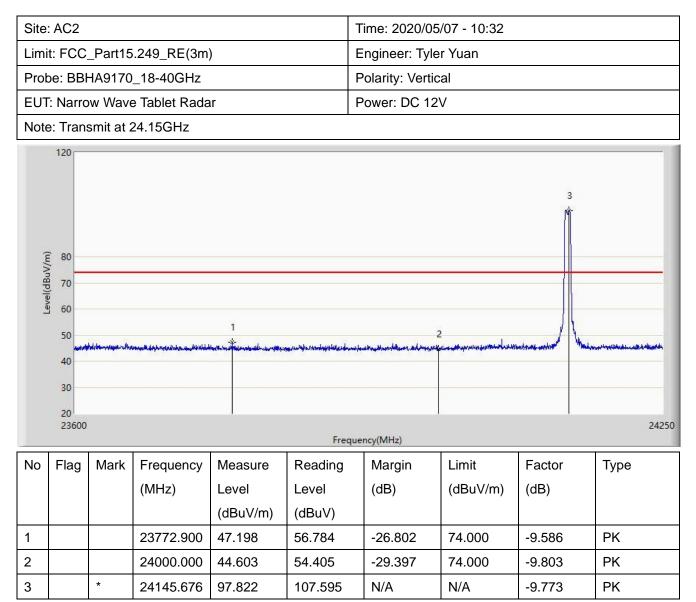
7.4.2.Test Setup

Above 1GHz Test Setup:



7.4.3.Test Result

Site: AC2					г	Time: 2020/05/07 - 10:26				
Limit: FCC_Part15.249_RE(3m)					E	Engineer: Tyler Yuan				
Probe: BBHA9170_18-40GHz					F	olarity: Horiz	ontal			
EUT	: Narro	w Wave	e Tablet Rada	ır	F	ower: DC 12	V			
Note: Transmit at 24.15GHz										
Level(cfRuV/m)	50	1	نود، روز ۲۰۰ او در وار روا روا روا روا روا روا روا روا رو	tigter giffer de algerradie que de de junio	4850000-4970-4878h-09445-0-4-4-49	tedar (Michic yers off Jacky March Spice)	the second s	3 19 ⁶ 	ndely despected of the July - Addressed	
20 23600 Frequency(MHz)								24250		
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
	5		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1			23644.525	49.172	58.622	-24.828	74.000	-9.450	РК	
2			24000.000	45.183	54.985	-28.817	74.000	-9.803	РК	
3		*	24146.324	80.856	90.628	N/A	N/A	-9.773	PK	


Note: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Note: Peak Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Note: Peak Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

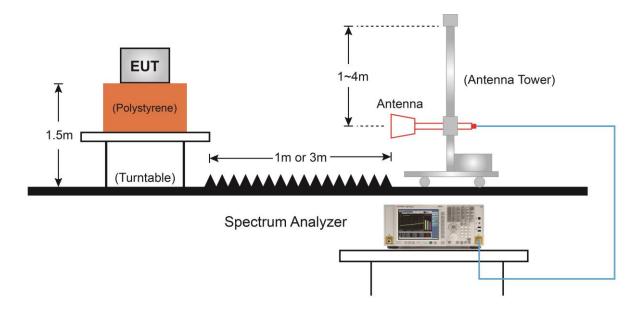
Site	Site: AC2						Time: 2020/05/07 - 10:35				
Limi	.imit: FCC_Part15.249_RE(3m)					Engineer: Tyler Yuan					
Prot	Probe: BBHA9170_18-40GHz					Polarity: Vertic	al				
EUT	: Narro	w Wave	e Tablet Rada	ar	F	Power: DC 12	V				
Note	Note: Transmit at 24.15GHz										
Level(cHR, V/m)											
23600 24250 Frequency(MHz)											
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)			
				(dBuV/m)	(dBuV)						
1			23991.949	28.745	38.517	-25.255	54.000	-9.773	AV		
2			24000.000	28.702	38.504	-25.298	54.000	-9.803	AV		
3		*	24145.676	69.364	79.137	N/A	N/A	-9.773	AV		

Note: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

7.5. Emission Bandwidth Measurement

7.5.1.Test Limit

20 dB bandwidth of the emission shall be contained within the frequency band 24.00 ~ 24.25 GHz.

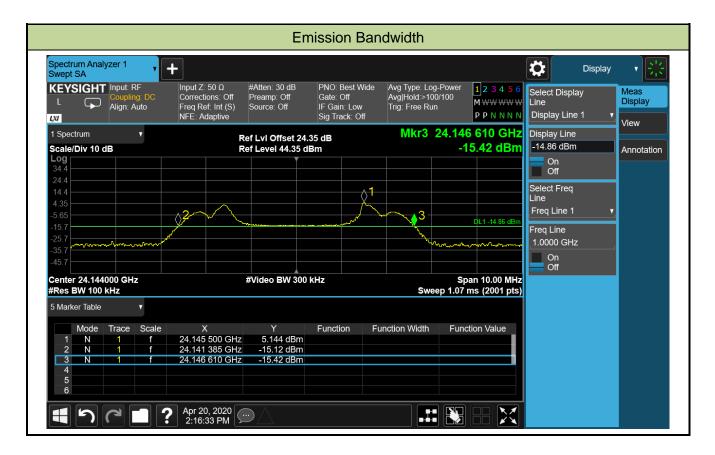

7.5.2. Test Procedure used

ANSI C63.10 Section 6.9.2 and Section 6.9.3

7.5.3. Test Setting

- The analyzers' automatic bandwidth measurement capability was used to perform the 99% or 20dB bandwidth measurement. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% to 5% of the OBW.
- 3. VBW \geq 3 × RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

7.5.4. Test Setup



7.5.5. Test Result

Product Narrow Wave Tablet Radar		Temperature	25°C
Test Engineer	Milo Li	Relative Humidity	56%
Test Site	AC2	Test Date	2020/04/20

Frequency	20dB Bandwidth	Frequency Range	Limit	Result
(MHz)	(MHz)	(MHz)	(MHz)	
0.4450	5.225	24141.39	> 24000	Pass
24150		24146.61	< 24250	Pass

8. CONCLUSION

The data collected relate only the item(s) tested and show that the unit is in compliance with Part 15C of the FCC Rules.

The End

Appendix A - Test Setup Photograph

Refer to "2001RSU035-UT" file.

Appendix B - EUT Photograph

Refer to "2001RSU035-UE" file.