

 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China

 Telephone:
 +86 (0) 21 6191 5666

 Fax:
 +86 (0) 21 6191 5678

 ee.shanghai@sgs.com

Report No.: SHEM170300167701 Page: 1 of 43

1 Cover Page

RF TEST REPORT

Application No.:	SHEM1703001677CR			
Applicant:	Zhejiang Dahua Vision Technology Co., Ltd.			
FCC ID:	SVNIPC-HFW1XXXS			
Equipment Under Test (EUT): NOTE: The following sample(s) was/were submitted and identified by the client as				
Product Name:	IP CAMERA			
Model No.(EUT):	DH-IPC-HFW1435SP-W			
Add Model No.:	IPC-HFW1235SP-W, IPC-HFW1235SN-W, DH-IPC-HFW1235SP-W, DH-IPC-HFW1235SN-W, IPC-HFW1435SP-W, IPC-HFW1435SN-W, DH-IPC-HFW1435SN-W			
Standards: FCC PART 15 Subpart C: 2016				
Date of Receipt: 2017-03-29				
Date of Test:	2017-05-19 to 2017-07-04			
Date of Issue:	2017-07-05			
Test Result:	Pass*			

*In the configuration tested, the EUT detailed in this report complied with the standards specified above.

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_edocument.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction. documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this tereport refer only to thesample(s) tested and such sample(s) are retained for 90 days only

Report No.: SHEM170300167701 Page: 2 of 43

Revision Record							
Version	Chapter	Date	Modifier	Remark			
00	/	2017-07-05	/	Original			

Authorized for issue by:		
Tested By	Vincent Zhu	2017-07-05
	Vincent Zhu /Project Engineer	Date
Checked By	Parlam zhan	2017-07-05
	Parlam Zhan /Reviewer	Date

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_edocument.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this tereport refer only to thesample(s) tested and such sample(s) are retained for 90 days only

Report No.: SHEM170300167701 Page: 3 of 43

2 **Test Summary**

Test Item	FCC Requirement	Test method	Result
Antenna Requirement	FCC Part 15, Subpart C Section 15.203/15.247 (c)		PASS
AC Power Line	FCC Part 15, Subpart C	ANSI C63.10 (2013)	PASS
Conducted Emission	Section 15.207	Section 6.2	
Minimum 6dB Bandwidth	FCC Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 (2013) Section 11.8.1	PASS
Conducted Peak Output	FCC Part 15, Subpart C	ANSI C63.10 (2013)	PASS
Power	Section 15.247 (b)(3)	Section 11.9.1.2	
Power Spectrum Density	FCC Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 (2013) Section 11.10.2	PASS
RF Conducted Spurious	FCC Part 15, Subpart C	ANSI C63.10 (2013)	PASS
Emissions and Band-edge	Section 15.247(d)	Section 11.11&11.13.3.2	
Radiated Spurious	FCC Part 15, Subpart C	ANSI C63.10 (2013)	PASS
Emissions and Band-edge	Section 15.209&15.205	Section 6.4&6.5&6.6&6.10	

Note: There are series models mentioned in this report, and they are the identical in electrical and electronic characters. Only the model DH-IPC-HFW1435SP-W was tested since their differences were the model number, trade name and appearance.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 4 of 43

3 Contents

		Page
1	COVER PAGE	
2	2 TEST SUMMARY	
3		4
4		
	4.1 CLIENT INFORMATION	-
	4.2 GENERAL DESCRIPTION OF E.U.T.	
	4.3 TECHNICAL SPECIFICATIONS	
	4.4 Test Mode	-
	4.5 TEST CHANNEL	
	4.6 DESCRIPTION OF SUPPORT UNITS	
	4.7 TEST LOCATION	
	4.8 TEST FACILITY	
	4.9 Measurement Uncertainty	
5	5 EQUIPMENTS USED DURING TEST	
6	5 TEST RESULTS	
	6.1 E.U.T. TEST CONDITIONS	9
	6.2 ANTENNA REQUIREMENT	
	6.3 CONDUCTED EMISSIONS ON MAINS TERMINALS	
	6.4 6DB OCCUPIED BANDWIDTH	
	6.5 CONDUCTED PEAK OUTPUT POWER	
	6.6 PEAK POWER SPECTRAL DENSITY	
	6.7 CONDUCTED SPURIOUS EMISSIONS AND BAND-EDGE	-
	6.7.1 Conducted spurious emission	
	6.7.2 Conducted Band-edge	
	6.8 RADIATED SPURIOUS EMISSIONS AND BAND-EDGE	
	6.8.1 Radiated Spurious Emissions	
	6.8.2 Radiated Band edge	
7	7 TEST SETUP PHOTOGRAPHS	
8	B EUT CONSTRUCTIONAL DETAILS	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations where the responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations. under the transaction

Report No.: SHEM170300167701 Page: 5 of 43

General Information 4

4.1 **Client Information**

Applicant:	Zhejiang Dahua Vision Technology Co., Ltd.
Address of Applicant:	No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China
Manufacturer:	Zhejiang Dahua Vision Technology Co., Ltd.
Address of Manufacturer:	No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China
Factory:	Zhejiang Dahua Vision Technology Co., Ltd.
Address of Factory:	No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China

4.2 General Description of E.U.T.

Product Des	Product Description:		Fixed product with 2.4G WiFi function		
Rated Input	Rated Input:		A		
Test Voltage	Test Voltage:		60Hz for Adapter		
	Manufacturer:	SHENZHE	SHENZHEN HONOR ELECTRONIC CO., LTD.		
	Model No.:	ADS-12AM-12 12012EPCU			
Adapter:	Rated Input:		AC 100~240V, 50/60Hz		
Adapter.	Rated Output:	DC 12V 1	.0A		
	Coble length	AC port:	2 wires		
	Cable length:	DC port:	300 cm		

4.3 Technical Specifications

Operation Frequency:	802.11 b/g/n(HT20): 2412MHz-2462MHz 802.11 n(HT40): 2422MHz-2452MHz
Modulation Technique:	02.11 b DSSS(CCK, DQPSK, DBPSK) 802.11 g/n(HT20)/n(HT40) OFDM(64QAM, 16QAM, QPSK, BPSK)
Data Rate:	802.11b: 1/2/5.5/11Mbps, 802.11g: 6/9/12/18/24/36/48/54Mbps 802.11n: MCS0-7
Number of Channel:	802.11 b/g/n(HT20): 11 802.11 n(HT40) 7
Antenna Type:	Monopole Antenna
Antenna Gain:	2 dBi

4.4 Test Mode

Test Mode	Description of Test Mode
Engineering mode	Using test software was control EUT work in continuous transmitter mode.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to thesample(s) tested and such sample(s) are retained for 90 days only

Report No.: SHEM170300167701 Page: 6 of 43

4.5 Test Channel

	802.11 b/g/n20(HT20)				80	2.11 n40(HT4	40)	
			Channel Fraguenau Data rate		Channel	Frequency	Doto roto	
	Channel	Frequency	b	g	n(HT20)	Charmer	Frequency	Data rate
lowest channel	CH01	2412MHz	1Mbps	6Mbps	MCS0	CH03	2422MHz	MCS0
Middle channel	CH06	2437MHz	1Mbps	6Mbps	MCS0	CH06	2437MHz	MCS0
Highest channel	CH11	2462MHz	1Mbps	6Mbps	MCS0	CH09	2452MHz	MCS0

Remark: Preliminary tests were performed in all tests in different data rata and antenna configurations at lowest channel, the data rates of worse case as above were chosen for final test.

4.6 Description of Support Units

The EUT has been tested with support equipments as below.

Description	Manufacturer	Model No.	Supplied By
Laptop	Lenovo	ThinkPad X100e	SGS
Serial port adapter plate	/	Test plate 3	SGS

Software name	name Manufacturer Version		Supplied By
Secure CRT	VanDyke	V6.2.0	SGS

4.7 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC – Registration No.: 402683

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered and fully described in a report filed with the Federal Communications Commission (FCC). The acceptance letter from the FCC is maintained in our files. Registration No.: 402683.

• Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-3868, C-4336, T-2221, G-830 respectively.

No.	Parameter	Measurement Uncertainty
1	Radio Frequency	< ±1 x 10 ⁻⁵
2	Total RF power, conducted	< ±1.5 dB
3	RF power density, conducted	< ±3 dB
4	Spurious emissions, conducted	< ±3 dB
5	All emissions, radiated	< ±6 dB (Below 1GHz) < ±6 dB (Above 1GHz)
6	Temperature	< ±1°C
7	Humidity	< ±5 %
8	DC and low frequency voltages	< ±3 %

4.9 Measurement Uncertainty

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to thesample(s) tested and such sample(s) are retained for 90 days only

Report No.: SHEM170300167701 Page: 8 of 43

Equipments Used during Test 5

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
1	Power meter	Rohde & Schwarz	NRP	101641	2017-01-14	2018-01-13
2	Power Sensor	Rohde & Schwarz	NRP-Z22	101096	2016-08-06	2017-08-05
3	Spectrum Analyzer	Rohde & Schwarz	FSP-30	2705121009	2017-01-14	2018-01-13
4	EMI test receiver	Rohde & Schwarz	ESU40	100109	2017-02-13	2018-01-15
5	Active Loop Antenna (9kHz to 30MHz)	Rohde & Schwarz	FMZB1519	1519-034	2017-02-13	2018-01-15
6	Broadband UHF-VHF ANTENNA (25MHz to 2GHz)	SCHWARZBECK	VULB9168	9168-313	2017-02-13	2018-01-15
7	Ultra broadband antenna (25MHz to3GHz)	Rohde & Schwarz	HL562	100227	2016-08-30	2017-08-29
8	Horn Antenna (1GHz to 18GHz)	Rohde & Schwarz	HF906	100284	2017-02-13	2018-01-15
9	Horn Antenna (1GHz to 18GHz)	SCHWARZBECK	BBHA9120D	9120D-679	2017-02-13	2018-01-15
10	Horn Antenna(14GHz to 40GHz)	SCHWARZBECK	BBHA 9170	BBHA917-0373	2017-02-13	2018-01-15
11	Pre-amplifier (9KHz – 2GHz)	LNA6900	TESEQ	71033	/	/
12	Pre-amplifier (1GHz – 26.5GHz)	SCHWARZBECK	SCU-F0118- G40-BZ4- CSS(F)	10001	2017-01-14	2018-01-13
13	Pre-amplifie (14GHz – 40GHz)	SCHWARZBECK	SCU-F1840- G35-BZ3- CSS(F)	10001	2017-01-14	2018-01-13
14	Tunable Notch Filter	Wainwright instruments Gmbh	WRCT800.0/880	170397 169777 169780 192507	1	/
15	High pass Filter	FSCW	HP 12/2800- 5AA2	19A45-02	/	/
16	High-low temperature cabinet	Suzhou Zhihe	TL-40	50110050	2016-09-11	2017-09-10
17	AC power stabilizer	WOCEN	6100	51122	2017-01-14	2018-01-13
18	DC power	QJE	QJ30003SII	3573/4/3	2017-01-14	2018-01-13
19	Signal Generator (Interferer)	Rohde & Schwarz	SMR40	100555	2016-08-13	2017-08-12
20	Signal Generator (Blocker)	Rohde & Schwarz	SMJ100A	101394	2017-01-14	2018-01-13
21	Splitter	Anritsu	MA1612A	M12265	/	/
22	Coupler	e-meca	803-S-1	900-M01	/	/

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 9 of 43

6 Test Results

6.1 E.U.T. test conditions

Requirements:

15.31(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Operating	Temperature:	20.0 -25.0 °C
Environment:	Humidity:	35-75 % RH
	Atmospheric Pressure:	99.2 -102 kPa

Test frequencies: According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. if required. reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which	Number of	Location in the range of
device operates	frequencies	operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top. 1 near middle and 1 near bottom

Pursuant to Part 15.31(c) For swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.

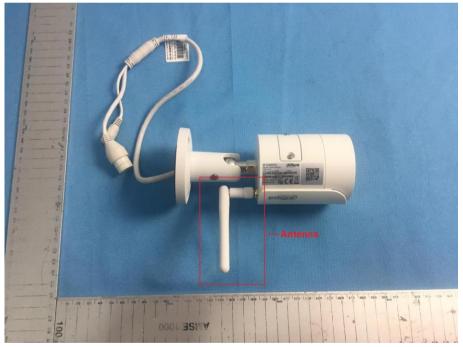
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 10 of 43

6.2 Antenna Requirement


Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Monopole Antenna and no consideration of replacement. The gain of the antenna is less than 2 dBi

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

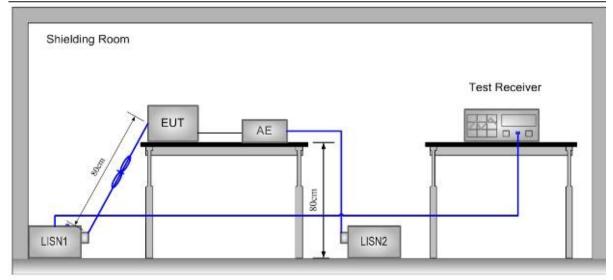
www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 11 of 43

6.3 Conducted Emissions on Mains Terminals

Frequency Range: 150 KHz to 30 MHz


Limit:


Frequency range	Class B Lim	nits: dB (μV)
MHz	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Note1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

Note2: The lower limit is applicable at the transition frequency.

Test Setup:

Test Procedure:

- 1) The mains terminal disturbance voltage was measured with the EUT in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN, which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN and the EUT. The mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m. All other units of the EUT and associated

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction.

documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to thesample(s) tested and such sample(s) are retained for 90 days only

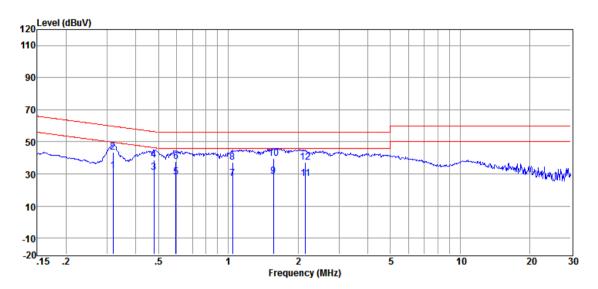
Report No.: SHEM170300167701 Page: 12 of 43

equipment were at least 0.8 m from the LISN.

Remark: Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected. Pretest under all modes; choose the worst case mode (802.11b in Middle channel) record on the report. Please see the attached Quasi-peak and Average test results.

Test Result: Pass

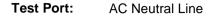
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

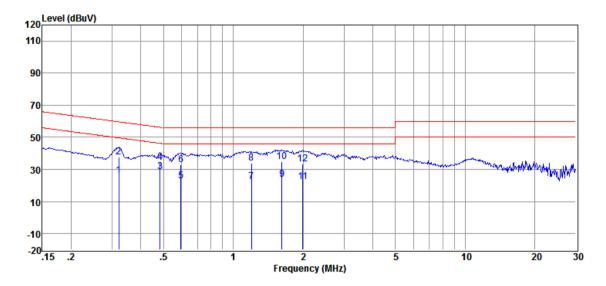

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 13 of 43

Test Data:			
Test Mode:	802.11b	Test Channel:	Middle
Test Port:	AC Live Line		




Item	Freq.	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)	
1	0.318	21.90	0.09	9.81	31.80	49.75	-17.95	Average
2	0.318	33.57	0.09	9.81	43.47	59.75	-16.28	QP
3	0.479	20.93	0.10	9.82	30.85	46.36	-15.51	Average
4	0.479	28.97	0.10	9.82	38.89	56.36	-17.47	QP
5	0.595	17.95	0.10	9.82	27.87	46.00	-18.13	Average
6	0.595	27.76	0.10	9.82	37.68	56.00	-18.32	QP
7	1.043	17.07	0.08	9.84	26.99	46.00	-19.01	Average
8	1.043	27.55	0.08	9.84	37.47	56.00	-18.53	QP
9	1.568	18.73	0.08	9.84	28.65	46.00	-17.35	Average
10	1.568	29.62	0.08	9.84	39.54	56.00	-16.46	QP
11	2.155	17.22	0.09	9.85	27.16	46.00	-18.84	Average
12	2.155	27.40	0.09	9.85	37.34	56.00	-18.66	QP

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 14 of 43

Item	Freq.	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)	
1	0.322	16.38	0.04	9.81	26.23	49.66	-23.43	Average
2	0.322	27.81	0.04	9.81	37.66	59.66	-22.00	QP
3	0.484	18.96	0.04	9.82	28.82	46.27	-17.45	Average
4	0.484	24.44	0.04	9.82	34.30	56.27	-21.97	QP
5	0.595	12.93	0.05	9.82	22.80	46.00	-23.20	Average
6	0.595	23.13	0.05	9.82	33.00	56.00	-23.00	QP
7	1.197	12.62	0.05	9.84	22.51	46.00	-23.49	Average
8	1.197	24.14	0.05	9.84	34.03	56.00	-21.97	QP
9	1.619	14.01	0.06	9.84	23.91	46.00	-22.09	Average
10	1.619	25.01	0.06	9.84	34.91	56.00	-21.09	QP
11	1.991	12.26	0.06	9.85	22.17	46.00	-23.83	Average
12	1.991	23.65	0.06	9.85	33.56	56.00	-22.44	QP

Remark: Level = Read Level + LISN/ISN Factor + Cable Loss.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 15 of 43

6.4 6dB Occupied Bandwidth

Test Configuration:		connected		1
-	EUT	cable	Spectrum	
	(Antenna Port		Analyzer	
Test Procedure:	1) Place the EUT on	the table and se	et it in transmitting mode.	1
	2) Remove the anten	na from the EU	T and then connect a low	loss RF cable
	from the antenna p	ort to the spect	rum analyzer.	
	3) Set the spectrum a	analyzer as RB	N=100KHz, VBW≥3* RB ^v	W, Detector=Peak,
	Trace mode= Max	hold, Sweep=A	uto couple.	
	4) Mark the peak freq	uency and –6d	B (upper and lower) frequ	uency.
	5) Repeat above proc	cedures until all	frequency measured wa	s complete.
Limit:	≥ 500 kHz			
Test Result:	Pass			

Test Data:

Refer to Appendix A for SHEM170300167701

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 16 of 43

6.5 Conducted Peak Output Power

Test Configuration:	connected
	EUT cable Spectrum (Antenna Port Analyzer
Test Procedure:	1) Place the EUT on the table and set it in transmitting mode.
	2) Remove the antenna from the EUT and then connect a low loss RF cable
	from the antenna port to the spectrum.
	 Set the spectrum analyzer as RBW=1MHz, VBW≥3* RBW, Detector=Peak,
	Span≥1.5 × DTS bandwidth, Trace mode= Max hold, Sweep=Auto couple
	4) Allow trace to fully stabilize.
	5) Use the instrument's band/channel power measurement function with the
	band limits set equal to the DTS bandwidth edges
	6) Record the max. Power channel reading.
	7) Repeat above procedures until all the frequency measured were complete.
Test Limit:	30dBm
Test Result:	Pass
Test Data:	

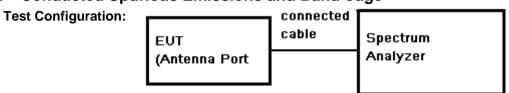
Refer to Appendix A for SHEM170300167701

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 17 of 43

6.6 Peak Power Spectral Density

Test Configuration:	connected
j	EUT Cable Spectrum (Antenna Port Analyzer
Test Procedure:	 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
	 2) Set the spectrum analyzer: Center Frequency= Channel Frequency, RBW = 3 kHz VBW = 10 kHz. Span= 1.5 times the DTS bandwidth, Sweep = auto; Detector = Peak; Trace mode=max hold, Trace=Max hold.
	3) Use the peak marker function to determine the maximum amplitude level within the RBW.
	4) Record the marker level for the particular mode.
	5) Repeat these steps for other channel and modes.
Test Limit:	8dBm/3kHz
Test Result:	Pass
Test Data:	


Refer to Appendix A for SHEM170300167701

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 18 of 43

6.7 Conducted Spurious Emissions and Band-edge

- Test Procedure:
 1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
 - Set the spectrum analyzer: RBW = 100KHz. VBW = 300KHz.
 Sweep = auto; Detector Function = Peak (Max. hold).
- Limit: (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the Highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Result:

6.7.1 Conducted spurious emission

Pass

Refer to Appendix A for SHEM170300167701

6.7.2 Conducted Band-edge

Refer to Appendix A for SHEM170300167701

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 19 of 43

6.8 Radiated Spurious Emissions and Band-edge

Frequency Range: 9KHz to 25GHz

Test site/setup:

Measurement Distance: 3m

Test instrumentation set-up:									
Frequency Range	Detector	RBW	VBW						
0.009MHz-0.090MHz	Peak	10kHz	30kHz						
0.009MHz-0.090MHz	Average	10kHz	30kHz						
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz						
0.110MHz-0.490MHz	Peak	10kHz	30kHz						
0.110MHz-0.490MHz	Average	10kHz	30kHz						
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz						
30MHz-1GHz	Quasi-peak	100kHz	300kHz						
Above 1GHz	Peak	RBW=1MHz	VBW≥RBW						
Above IGHZ	Average	RDVV=HVIHZ	VBW=10Hz						
Sweep=Auto									

15.209 Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)
0.009MHz-0.490MHz	2400/F(KHz)	128.5 ~ 93.8
0.490MHz-1.705MHz	24000/F(KHz)	73.8 ~63.0
1.705MHz-30MHz	30	69.5
30MHz-88MHz	100	40.0
88MHz-216MHz	150	43.5
216MHz-960MHz	200	46.0
960MHz-1GHz	500	54.0
Above 1GHz	500	54.0

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sqs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 20 of 43

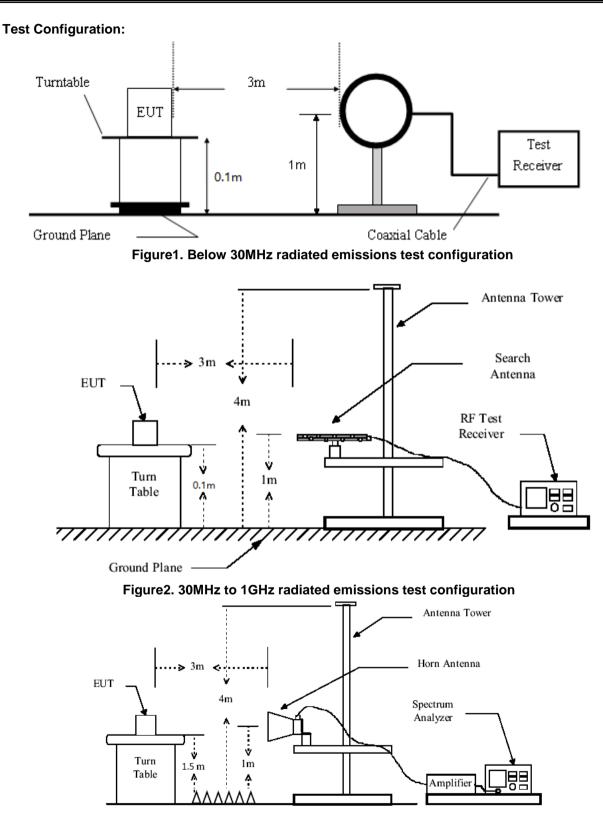


Figure3. Above 1GHz radiated emissions test configuration

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, under the transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 21 of 43

- **Test Procedure:** 1) The procedure used was ANSI Standard C63.10. The receiver was scanned from 9 KHz to 25GHz.When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.
 - 2) Low noise amplifier was used below 1GHz, High pass Filter was used above 3GHz. We did not use any amplifier or filter between 1G and 3GHz.
 - 3) Test were performed for their spatial orthogonal(X, Y, Z), the worst test data (X orthogonal) was submitted.
 - a) For this intentional radiator operates below 25 GHz. the spectrum shall be investigated to the tenth harmonic of the highest fundamental frequency. And above the third harmonic of this intentional radiator, the disturbance is very low. So the test result only displays to 5rd harmonic.
 - b) As shown in Section, for frequencies above 1000MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
 - 4) Pretest under all modes below 1GHz; choose the worst case mode (802.11b) record on the report.
 - 5) No spurious emissions were detected within 20dB of limit below 30MHz.

Test Result: Pass

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sqs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

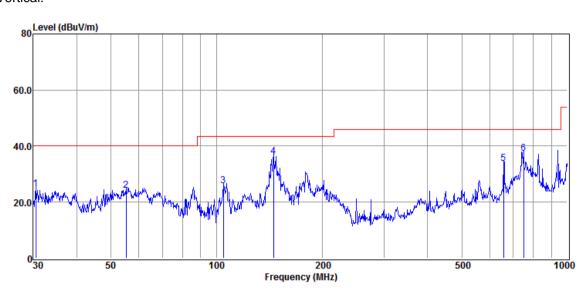
Report No.: SHEM170300167701 Page: 22 of 43

6.8.1 Radiated Spurious Emissions

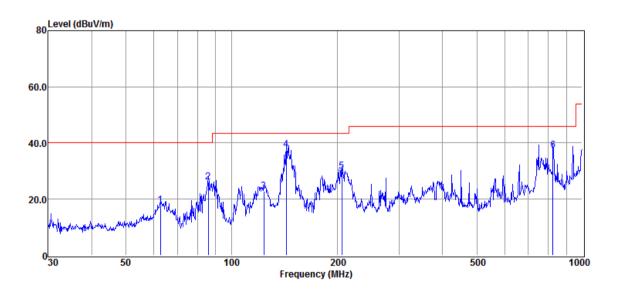
30MHz-1GHz:

Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	62.65	48.01	12.27	42.66	0.31	17.93	40.00	-22.07	QP	Horizontal
2	85.90	60.37	8.06	42.68	0.40	26.15	40.00	-13.85	QP	Horizontal
3	123.70	53.79	11.10	42.67	0.55	22.77	43.50	-20.73	QP	Horizontal
4	143.33	68.29	11.51	42.63	0.61	37.78	43.50	-5.72	QP	Horizontal
5	206.40	62.15	9.69	42.52	0.70	30.02	43.50	-13.48	QP	Horizontal
6	824.60	55.61	22.11	42.33	2.11	37.50	46.00	-8.50	QP	Horizontal
1	30.53	51.92	15.36	42.60	0.18	24.86	40.00	-15.14	QP	Vertical
2	55.22	54.93	11.68	42.65	0.28	24.24	40.00	-15.76	QP	Vertical
3	104.54	58.59	9.55	42.69	0.47	25.92	43.50	-17.58	QP	Vertical
4	145.35	66.79	11.63	42.62	0.61	36.41	43.50	-7.09	QP	Vertical
5	658.84	54.72	19.89	42.27	1.55	33.89	46.00	-12.11	QP	Vertical
6	750.11	57.05	21.09	42.57	1.88	37.45	46.00	-8.55	QP	Vertical

Result Level = Read Level + Antenna Factor + Cable loss - Preamp Factor


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this

document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction



Report No.: SHEM170300167701 Page: 23 of 43

Test plot as below: Vertical:

Horizontal:

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 24 of 43

Above 1GHz:

Tes	st mode: 802.1	11b				Ch	annel: 24	12
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4824	39.6	6.4	46	54	-8	peak	Horizontal
2	7236	38.57	10.76	49.33	54	-4.67	peak	Horizontal
3	9648	36.02	14.37	50.39	54	-3.61	peak	Horizontal
4	4824	41.01	6.4	47.41	54	-6.59	peak	Vertical
5	7236	38.25	10.76	49.01	54	-4.99	peak	Vertical
6	9648	35.61	14.37	49.98	54	-4.02	peak	Vertical

Test mode: 802.11b

Channel: 2437

Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4874	43.94	6.92	50.86	54	-3.14	peak	Horizontal
2	7311	34.26	11.08	45.34	54	-8.66	peak	Horizontal
3	9748	35.83	14.36	50.19	54	-3.81	peak	Horizontal
4	4874	38.64	6.92	45.56	54	-8.44	peak	Vertical
5	7311	37.36	11.08	48.44	54	-5.56	peak	Vertical
6	9748	34.92	14.36	49.28	54	-4.72	peak	Vertical

Test mode: 802.11b

Channel: 2462 **Over Limit** Frequency Reading Factor Emission Limit Detector Mark Polarization (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) 1 4924 7.31 Horizontal 43.89 51.2 54 -2.8 peak 2 7386 11.41 -7.08 Horizontal 35.51 46.92 54 peak 3 9848 35.79 14.38 50.17 54 -3.83 peak Horizontal 54 4 4924 39.94 7.31 47.25 -6.75 Vertical peak 5 11.41 7386 38.92 50.33 54 -3.67 Vertical peak 6 9848 35.91 14.38 50.29 54 -3.71 peak Vertical

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 25 of 43

Test mode: 802.11g Channel: 2412								112
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4824	40.38	6.4	46.78	54	-7.22	peak	Horizontal
2	7236	37.7	10.76	48.46	54	-5.54	peak	Horizontal
3	9648	31.56	14.37	45.93	54	-8.07	peak	Horizontal
4	4824	40.66	6.4	47.06	54	-6.94	peak	Vertical
5	7236	34.39	10.76	45.15	54	-8.85	peak	Vertical
6	9648	33.63	14.37	48	54	-6	peak	Vertical

Tes	st mode: 802. ²	11g		Channel: 2437				
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4874	39.39	6.92	46.31	54	-7.69	peak	Horizontal
2	7311	37.3	11.08	48.38	54	-5.62	peak	Horizontal
3	9748	34.39	14.36	48.75	54	-5.25	peak	Horizontal
4	4874	38.46	6.92	45.38	54	-8.62	peak	Vertical
5	7311	39.54	11.08	50.62	54	-3.38	peak	Vertical
6	9748	32.37	14.36	46.73	54	-7.27	peak	Vertical

Tes	st mode: 802. ²	l1g		Channel: 2462				
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4924	41.79	7.31	49.1	54	-4.9	peak	Horizontal
2	7386	39.33	11.41	50.74	54	-3.26	peak	Horizontal
3	9848	34.5	14.38	48.88	54	-5.12	peak	Horizontal
4	4924	43.42	7.31	50.73	54	-3.27	peak	Vertical
5	7386	37.44	11.41	48.85	54	-5.15	peak	Vertical
6	9848	32.17	14.38	46.55	54	-7.45	peak	Vertical

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations where the responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations. under the transaction

documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to thesample(s) tested and such sample(s) are retained for 90 days only

Report No.: SHEM170300167701 Page: 26 of 43

Test	Test mode: 802.11 n(HT20) Channel: 2412									
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization		
1	4824	39.25	6.4	45.65	54	-8.35	peak	Horizontal		
2	7236	37.7	10.76	48.46	54	-5.54	peak	Horizontal		
3	9648	33.49	14.37	47.86	54	-6.14	peak	Horizontal		
4	4824	43.5	6.4	49.9	54	-4.1	peak	Vertical		
5	7236	34.77	10.76	45.53	54	-8.47	peak	Vertical		
6	9648	32.63	14.37	47	54	-7	peak	Vertical		

Test mode: 802.11 n(HT20)

Test	mode: 802.11	n(HT20)		Channel: 2437				
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	4874	38.48	6.92	45.4	54	-8.6	peak	Horizontal
2	7311	36.71	11.08	47.79	54	-6.21	peak	Horizontal
3	9748	33.95	14.36	48.31	54	-5.69	peak	Horizontal
4	4874	41.96	6.92	48.88	54	-5.12	peak	Vertical
5	7311	36.76	11.08	47.84	54	-6.16	peak	Vertical
6	9748	36.52	14.36	50.88	54	-3.12	peak	Vertical

Test mode: 802.11 n(HT20)

Channel: 2462

Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization	
1	4924	41.95	7.31	49.26	54	-4.74	peak	Horizontal	
2	7386	34.3	11.41	45.71	54	-8.29	peak	Horizontal	
3	9848	35.81	14.38	50.19	54	-3.81	peak	Horizontal	
4	4924	42.87	7.31	50.18	54	-3.82	peak	Vertical	
5	7386	39.84	11.41	51.25	54	-2.75	peak	Vertical	
6	9848	36.3	14.38	50.68	54	-3.32	peak	Vertical	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 27 of 43

Test mode: 8	302.11 n(HT4		Channe	l: 2412			
Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
4844	39.03	6.6	45.63	54	-8.37	peak	Horizontal
7266	38.13	10.89	49.02	54	-4.98	peak	Horizontal
9688	33.26	14.35	47.61	54	-6.39	peak	Horizontal
4844	41.83	6.6	48.43	54	-5.57	peak	Vertical
7266	37.94	10.89	48.83	54	-5.17	peak	Vertical
9688	33.26	14.35	47.61	54	-6.39	peak	Vertical

Test mode: 802.11 n(HT40)

Test mode: 8	Test mode: 802.11 n(HT40)								
Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization		
4874	38.09	6.92	45.01	54	-8.99	peak	Horizontal		
7311	34.13	11.08	45.21	54	-8.79	peak	Horizontal		
9748	36.18	14.36	50.54	54	-3.46	peak	Horizontal		
4874	40.78	6.92	47.7	54	-6.3	peak	Vertical		
7311	36.77	11.08	47.85	54	-6.15	peak	Vertical		
9748	31.02	14.36	45.38	54	-8.62	peak	Vertical		

Test mode: 802.11 n(HT40)

Channel: 2452 Frequency Reading Factor **Over Limit** Emission Limit Detector Polarization (MHz) (dBuV) (dBuV/m) (dB) (dB) (dBuV/m) 4904 41.19 7.22 Horizontal 48.41 54 -5.59 peak 7356 37.03 11.28 48.31 54 -5.69 peak Horizontal Horizontal 9808 35.69 14.37 50.06 -3.94 54 peak 4904 38.78 7.22 46 54 -8 Vertical peak 11.28 7356 34.29 45.57 54 -8.43 peak Vertical 9808 36.54 14.37 50.91 54 -3.09 Vertical peak

Remark: 1) Emission = Receiver Reading + Factor

2) Factor = Antenna Factor + Cable Loss + Pre-amplifier Factor.

3) If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

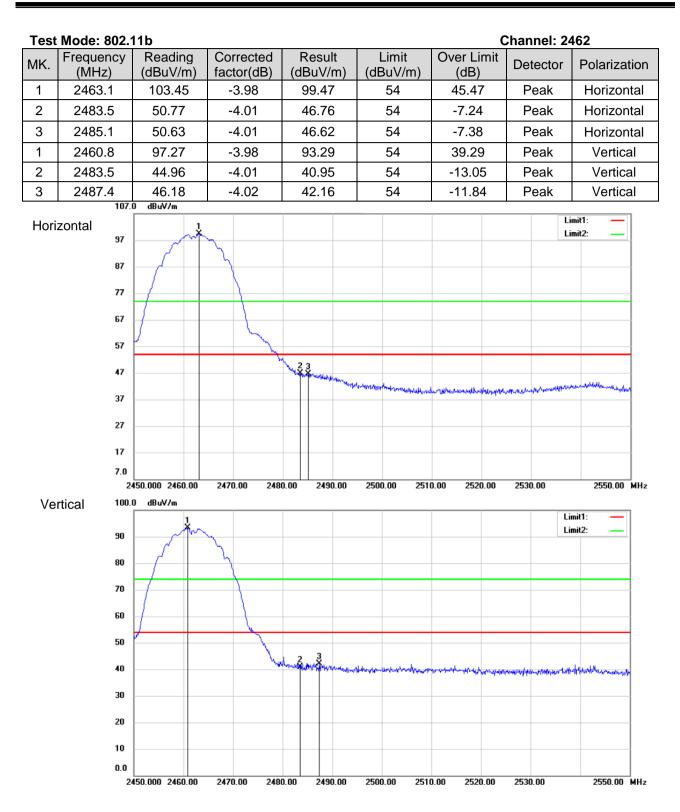
www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at

www.sqs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

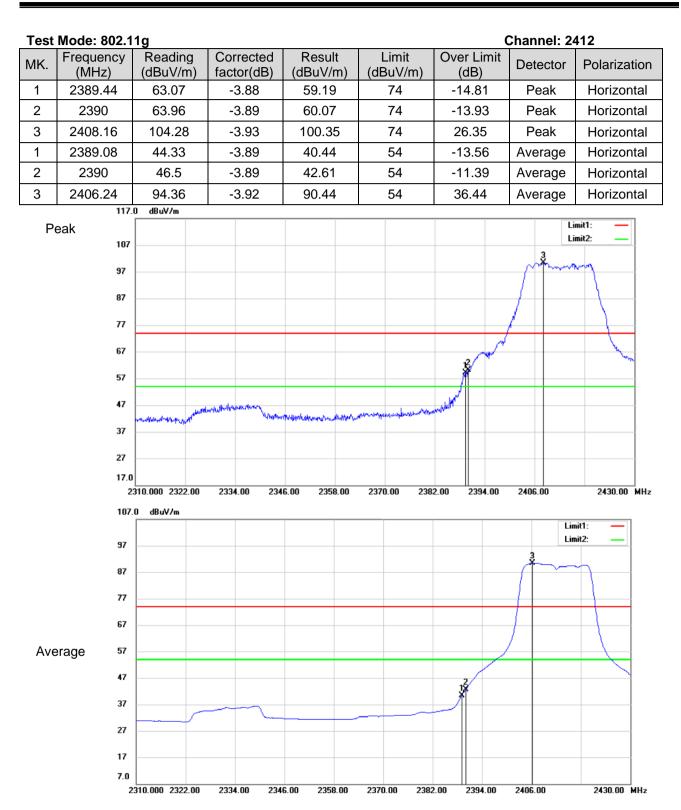
Report No.: SHEM170300167701 Page: 28 of 43


6.8.2 Radiated Band edge

CMH2 Coburt/m Pactor(cab) Coburt/m	Те	st Mode: 80	2.11b				C	hannel: 24	412	
CMH2 Coburt/m Pactor(cab) Coburt/m	MK.							Detector	Polarization	
2 2390 49.76 -3.89 45.87 54 -8.13 Peak Horizontal 3 2413.2 104.39 -3.92 100.47 54 46.47 Peak Horizontal 1 2375.16 45.74 -3.83 41.91 54 -12.09 Peak Vertical 2 2390 44.66 -3.89 40.77 54 -13.23 Peak Vertical 3 2411.04 94.99 -3.93 91.06 54 37.06 Peak Vertical Note: State			· · · · · · · · · · · · · · · · · · ·		<i>iii</i> _ <i>i</i>					
3 2413.2 104.39 -3.92 100.47 54 46.47 Peak Horizontal 1 2375.16 45.74 -3.83 41.91 54 -12.09 Peak Vertical 2 2390 44.66 -3.89 40.77 54 -13.23 Peak Vertical 3 2411.04 94.99 -3.93 91.06 54 37.06 Peak Vertical Horizontal Horizontal 107 97.99 -3.93 91.06 54 37.06 Peak Vertical Horizontal 107 Horizontal 107 107 441.91 54 -13.23 Peak Vertical 107 107 Limit: 107 Limit: 107 Limit: 107 Limit: 107 <td colspa="4</</td"><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1 2375.16 45.74 -3.83 41.91 54 -12.09 Peak Vertical 2 2390 44.66 -3.89 40.77 54 -13.23 Peak Vertical 3 2411.04 94.99 -3.93 91.06 54 37.06 Peak Vertical Horizontal 107 97										
2 2390 44.66 -3.89 40.77 54 -13.23 Peak Vertical 3 2411.04 94.99 -3.93 91.06 54 37.06 Peak Vertical Horizontal 107 ##w/m 97 <	3	2413.2	104.39	-3.92	100.47	54	46.47	Peak	Horizontal	
3 2411.04 94.99 -3.93 91.06 54 37.06 Peak Vertical Horizontal 107 48.47/m 97	1	2375.16	45.74	-3.83	41.91	54	-12.09	Peak	Vertical	
Horizontal 107 97 97 97 97 97 97 97 97 97 97 97 97 97	2	2390	44.66	-3.89	40.77	54	-13.23	Peak	Vertical	
Horizontal	3			-3.93	91.06	54	37.06	Peak	Vertical	
Invite			D dBuV/m							
Vertical	Hori									
Vertical		107								
Vertical 100 d8w/m		97						\sim		
Vertical		87								
Vertical		77								
Vertical		67								
Vertical 27 17.0 2310.000 2322.00 2334.00 2346.00 2358.00 2370.00 2382.00 2394.00 2406.00 2430.00 MHz 110.0 dBuV/m 90 90 90 90 90 90 90 90 90 90		57					~~	<i>u</i>	wy	
Vertical 27 17.0 2310.000 2322.00 2334.00 2346.00 2358.00 2370.00 2382.00 2394.00 2406.00 2430.00 MHz 110.0 dBuV/m 90 90 90 90 90 90 90 90 90 90		47								
Vertical 27 17.0 2310.000 2322.00 2334.00 2346.00 2358.00 2370.00 2382.00 2394.00 2406.00 2430.00 MHz 110.0 dBuV/m 90 90 90 90 90 90 90 90 90 90		37	have planeter to be and	proprimations approximate	whether a superior and a superior	-personal particular and a second sec				
2310.000 2322.00 2334.00 236.00 2370.00 2382.00 2394.00 2406.00 2430.00 MHz Vertical 100 0		27								
Vertical 10.0 dBuV/m		17.0								
Vertical		23	310.000 2322.00	2334.00 2340	6.00 2358.00	2370.00 238	2.00 2394.00	2406.00	2430.00 MHz	
100 Image: I	.,		0 dBuV/m							
	Ve									
								3		
								~~~	$\mathbf{x}$	
		70						1		
		60								
40		50					1		- 64	
20 10.0		40	and the grant second and the lot	handkreaten an analyte	ang the second and the	-pershar waters and the	marshall and the second of the second of the second s		- WA	
10.0		30								
		20								
				2334.00 234	6.00 2358.00	2370.00 238	2.00 2394.00	2406.00	2430.00 MHz	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction




Report No.: SHEM170300167701 Page: 29 of 43



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, under the transaction from exercising all their rights and obligations under the transaction

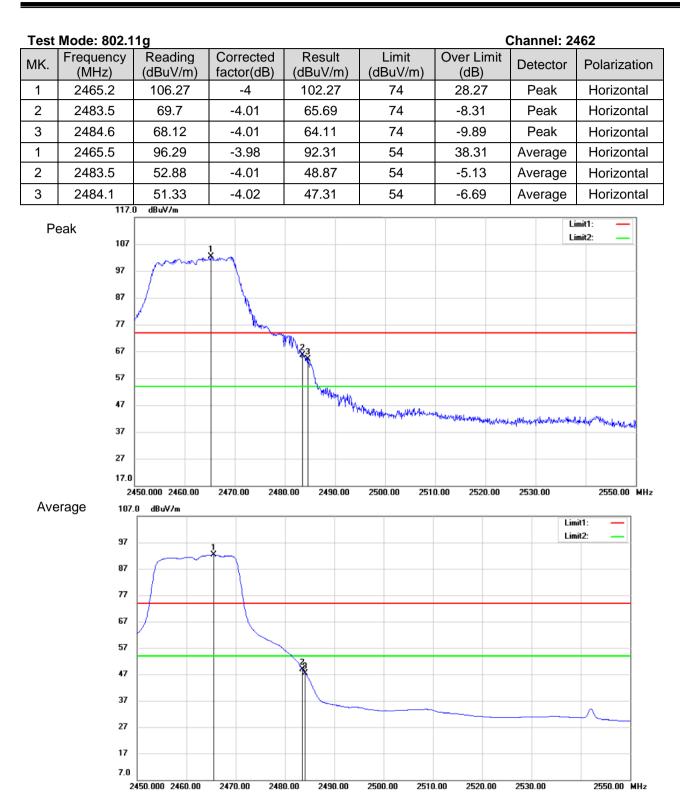


Report No.: SHEM170300167701 Page: 30 of 43



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction




Report No.: SHEM170300167701 Page: 31 of 43

Test	Mode: 802.1	1g				C	Channel: 24	412
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	2378.28	47.13	-3.85	43.28	54	-10.72	Peak	Vertical
2	2390	44.26	-3.89	40.37	54	-13.63	Peak	Vertical
3	2415.48	95.84	-3.92	91.92	54	37.92	Peak	Vertical
	110.	0 dBuV/m						
Pe	eak 100							Limit1: — Limit2: —
	90						jb-shipdation.cov	3
	80							
	70						/	
	60						/	
	50				J			
	40	and an and a second and a second s	water and a standard a	nounairraidebaurraitebaupr	all and a start and the second the second	lad million and a start		
	30							
	20							
	10.0	310.000 2322.00	2334.00 234	16.00 2358.00	2370.00 23	82.00 2394.00	2406.00	2430.00 MH
	Ζ.	310.000 2322.00	2334.00 234	10.00 2338.00	2370.00 23	02.00 2334.00	2400.00	243U.UU MH

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations where the responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations. under the transaction

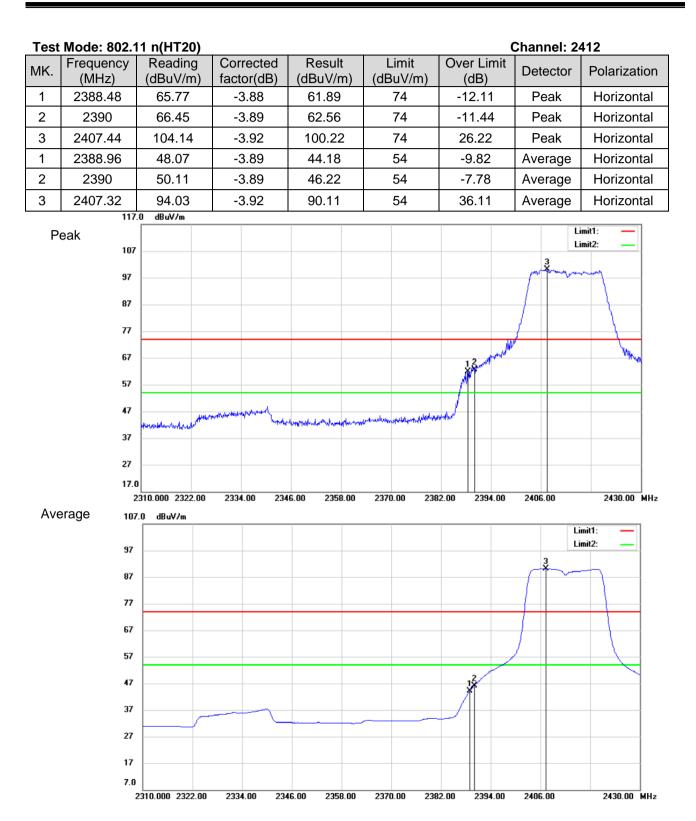


Report No.: SHEM170300167701 Page: 32 of 43



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction




Report No.: SHEM170300167701 Page: 33 of 43

Test Mode: 802.1	1 g				C	Channel: 24	462
MK. Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1 2465.3	98.98	-3.99	94.99	54	40.99	Peak	Vertical
2 2483.5	50.29	-4.01	46.28	54	-7.72	Peak	Vertical
3 2484.7	52.1	-4.01	48.09	54	-5.91	Peak	Vertical
110. Peak 100 90 80 70 60 50 40 30 20 10.0				MMM MANA	utility and the second se		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations where the responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations. under the transaction

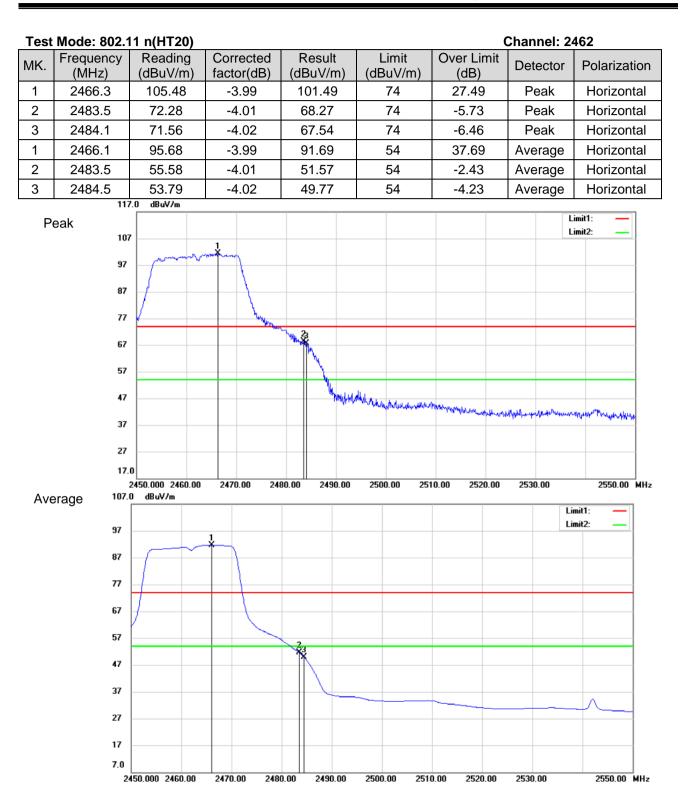


Report No.: SHEM170300167701 Page: 34 of 43



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, under the transaction from exercising all their rights and obligations under the transaction




Report No.: SHEM170300167701 Page: 35 of 43

Test	Mode: 802.1	1 n(HT20)				(	Channel: 24	412
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	2380.8	45.69	-3.86	41.83	54	-12.17	Peak	Vertical
2	2390	43.74	-3.89	39.85	54	-14.15	Peak	Vertical
3	2408.88	93.86	-3.93	89.93	54	35.93	Peak	Vertical
	110.	.0 dBuV/m						
P	eak							mit1: —
	100						L	mit2:
	90						per a grand grand	Alman
	80							
	70							
	60					1	/	
	50							
	40	and man when a particular	on any of which and a second of the	-	1 Hele of the stand of the stan	marting Senamet		<u> </u>
	30							
	20							
	10.0							
	2	310.000 2322.00	2334.00 234	6.00 2358.00	2370.00 238	2.00 2394.00	2406.00	2430.00 MHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations where the responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations. under the transaction

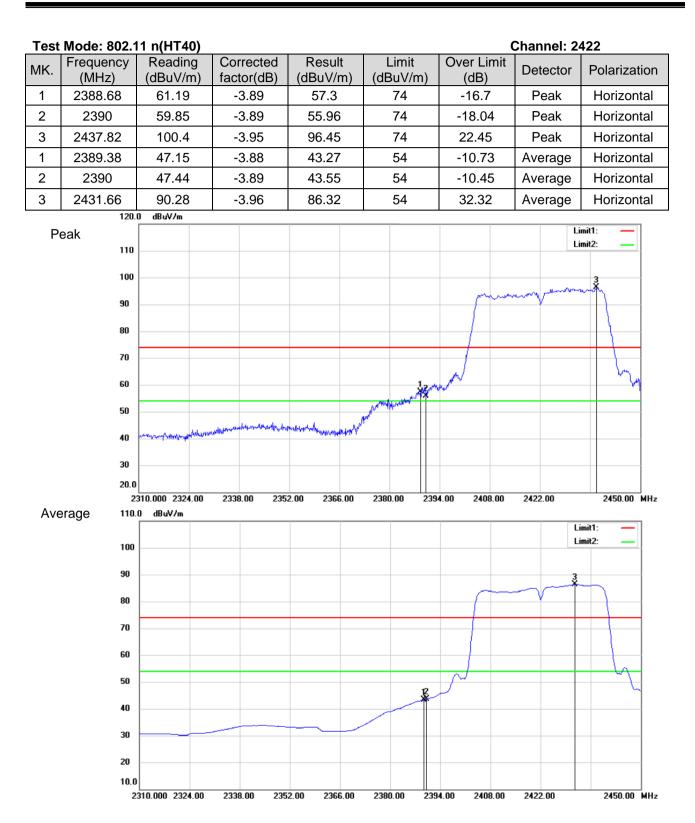


Report No.: SHEM170300167701 Page: 36 of 43



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction




Report No.: SHEM170300167701 Page: 37 of 43

Test	Mode: 802.1	l1 n(HT20)				C	Channel: 24	462
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	2458.6	96.67	-3.98	92.69	54	38.69	Peak	Vertical
2	2483.5	44.81	-4.01	40.8	54	-13.2	Peak	Vertical
3	2492.8	44.95	-4.03	40.92	54	-13.08	Peak	Vertical
	100.0	0 dBuV/m						
P	eak	month						imit1: — imit2: —
	90	Mananana	eren and a second					
	80		-					
	70	/						
	60		$\rightarrow$					
	50							
	40		<i>y</i>	Will and the second states	NY Hammer courses and the second	er and the second second	M.huylankinakanakahi	record attandements and a standard and
	30							
	20							
	10							
	0.0							
	24	450.000 2460.00	2470.00 248	0.00 2490.00	2500.00 251	0.00 2520.00	2530.00	2550.00 MHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations where the responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations. under the transaction

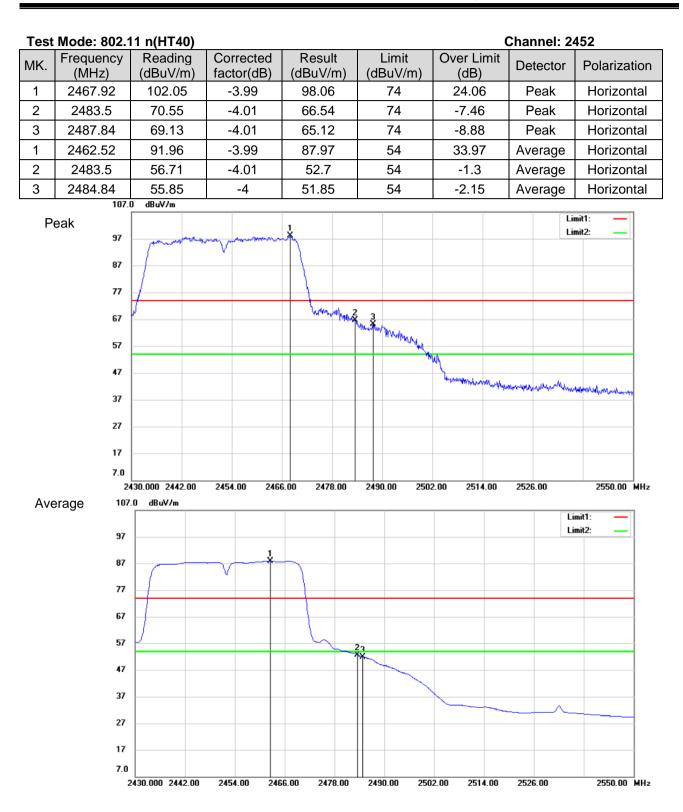


Report No.: SHEM170300167701 Page: 38 of 43



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction




Report No.: SHEM170300167701 Page: 39 of 43

Test	Mode: 802.1	l1 n(HT40)				(	Channel: 24	422
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	2340.1	44.56	-3.74	40.82	54	-13.18	Peak	Vertical
2	2390	41.51	-3.89	37.62	54	-16.38	Peak	Vertical
3	2429.56	87.87	-3.95	83.92	54	29.92	Peak	Vertical
	100.	0 dBuV/m	•					
P	eak							mit1: —
	90						3	imit2:
	80					mon	mvm	my
	70							
	60							
	50					1		M
	40	- martin the state of the state	Langer Marting and Area	and the second state of th	way while was	wh -		- La
	30							
	20							
	10							
	0.0							
	2	310.000 2324.00	2338.00 235	2.00 2366.00	2380.00 239	4.00 2408.00	2422.00	2450.00 MHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations where the responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations. under the transaction



Report No.: SHEM170300167701 Page: 40 of 43



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction



Report No.: SHEM170300167701 Page: 41 of 43

Test	Mode: 802.1	l1 n(HT40)				(	Channel: 24	452
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	2467.8	87.4	-4	83.4	54	29.4	Peak	Vertical
2	2483.5	42.75	-4.01	38.74	54	-15.26	Peak	Vertical
3	2499.12	45.26	-4.02	41.24	54	-12.76	Peak	Vertical
	100	.0 dBuV/m	•			•		
P	eak 90							mit1: — mit2: —
	80	mon	my	- <b>X</b>				
	70	1						
	60							
	50			- M				
	40			Lohans	Concernance and a strategy a	ablegativetawareareate	unimuchathanthind	material and
	30							
	20							
	10							
	0.0							
Rom	ark: 1). Test	2430.000 2442.00 Lovel – Rece		6.00 2478.00 + ∆ntenna F		2.00 2514.00 Aloss-Prea	2526.00 molifier Fac	2550.00 MHz

2). If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction

Report No.: SHEM170300167701 Page: 42 of 43

All frequencies within the "Restricted bands" have been evaluated to compliance. Except as shown in paragraph of this section, only spurious emissions are permitted in any of the frequency bands listed below:

a. FCC Part 15, Subpart C Section 15.205 Restricted bands of operation.
-------------------------------------------------------------------------

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.5 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">www.sgs.com/terms_and_conditions.htm</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/terms_e-document.htm">www.sgs.com/terms_e-document.htm</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction



Report No.: SHEM170300167701 Page: 43 of 43

#### **Test Setup Photographs** 7

Refer to the < Test Setup photos-FCC>.

#### 8 **EUT Constructional Details**

Refer to the < External Photos > & <Internal Photos >.

--End of the Report--

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction