

588 West Jindu Road, Xinqiao, Soʻngjiang, 201612 Shanghai, China Telephone: +86 (0) 21 6191 5666 Fax: +86 (0) 21 6191 5678 ee.shanghai@sgs.com

Report No.: SHEM160300099002 Page: 1 of 72

1 Cover Page

FCC Part 15E TEST REPORT

Application No.:	SHEM1603000990CR				
Applicant:	Zhejiang Dahua Vision Technology Co., Ltd.				
FCC ID:	SVNDH-PFM88				
Equipment Under Tes NOTE: The following sa	t (EUT): ample(s) was/were submitted and identified by the client as				
Product Name:	5G Wireless Video Transmission Device CPE				
Model No.(EUT):	DH-PFM881				
Add Model No.:	PFM881, DHI-PFM881				
Standards:	FCC PART 15 Subpart E: 2015				
Date of Receipt:	2016-03-16				
Date of Test:	2016-04-12 to 2016-04-18				
Date of Issue:	2016-05-03				
Test Result:	Pass*				

*In the configuration tested, the EUT detailed in this report complied with the standards specified above.

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SHEM160300099002 Page: 2 of 72

2 Version

	Revision Record							
Version Chapter Date Modifier Remark								
00	/	/ 2016-05-03 / Original						

Authorized for issue by:		
Engineer	Eddy Zong	Eddy Zong
	Print Name	
Clerk	Susie Liu	Susse Lin
	Print Name	
Reviewer	Parlam Zhan	Parlam zhan
	Print Name	

Report No.: SHEM160300099002 Page: 3 of 72

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	15.203 & 15.407 a(1)&(3)	-	PASS
AC Power Line Conducted Emission	15.407 b(6)	ANSI C63.10 (2013) Clause 6.2	PASS
26 dB Emission bandwidth	15.403 i		PASS
Minimum 6 dB bandwidth (5.725-5.85 GHz band)	15.407 (e)		PASS
Maximum Conducted output power	15.407 a(1)&(3)		PASS
Transmitter Power Control	15.407 (h)(1)	KDB 789033 D02 KDB 644545	N/A
Peak Power spectrum density	15.407 a(1)&(3)	KDB 662911 D01 v02r01 KDB 662911 D02 v01	PASS
Radiated Spurious emissions and Band-edge	15.209 & 15.407		PASS
Transmission in the Absence of Data	15.407 (c)		PASS
Frequency Stability	15.407 (g)		PASS
Dynamic Frequency Selection	15.407 (h)(2)	KDB 905462 D02 KDB 905462 D03	N/A

Notes1: N/A: The device no DFS Band.

Note2: There are series models mentioned in this report, and they are the similar in electrical and electronic characters. Only the model DH-PFM881 was tested since their differences were the model number, trade name and appearance deviation.

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM160300099002 Page: 4 of 72

4 Contents

Page

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENTS	
5 GENERAL INFORMATION	
 5.1 CLIENT INFORMATION	5 5 6 6 6 7
5.9 MEASUREMENT UNCERTAINTY	
6 EQUIPMENTS USED DURING TEST	9
7 TEST RESULTS	10
 7.1 E.U.T. TEST CONDITIONS 7.2 ANTENNA REQUIREMENT. 7.3 CONDUCTED EMISSIONS ON MAINS TERMINALS 7.4 DUTY CYCLE 7.5 26DB EMISSION BANDWIDTH 7.6 MINIMUM 6 DB BANDWIDTH 7.7 MAXIMUM CONDUCTED OUTPUT POWER 7.8 PEAK POWER SPECTRAL DENSITY 7.9 RADIATED SPURIOUS EMISSIONS AND BAND-EDGE 7.10 TRANSMISSION IN THE ABSENCE OF DATA 7.11 FREQUENCY STABILITY 	11 12 16 18 27 36 36 56 70
8 TEST SETUP PHOTOGRAPHS	72

Report No.: SHEM160300099002 Page: 5 of 72

5 General Information

5.1 Client Information

Applicant:	Zhejiang Dahua Vision Technology Co., Ltd.		
Address of Applicant:	The 1st Floor, Building F, No.1199 Binan Road, Changhe Street, Binjiang District, Hangzhou, Zhejiang, P.R.China		
Manufacturer:	Zhejiang Dahua Vision Technology Co., Ltd.		
Address of Manufacturer:	The 1st Floor, Building F, No.1199 Binan Road, Changhe Street, Binjiang District, Hangzhou, Zhejiang, P.R.China		
Factory:	Zhejiang Dahua Vision Technology Co., Ltd.		
Address of Factory:	No.1199 Binan Road, Changhe Street, Binjiang District, Hangzhou, Zhejiang, P.R.China		

5.2 General Description of E.U.T.

Product Description:		Portable product with WiFi function			
Rated Input:		DC 24V 0.5A PoE			
	Model No.:	GRT-24005	50		
	Rated Input:	AC 100V-240V 50/60Hz			
Adapter:	Rated Output:	DC 24V 500mA			
	Cable langth:	AC port:	2 wires		
	Cable length:	DC port:	90 cm		
Test Voltage:	AC 120V 60Hz for adapter				

5.3 Technical Specifications

Operation Frequency:	5745-5825MHz
Modulation Technique:	OFDM(64QAM, 16QAM, QPSK, BPSK)
Data Rate:	802.11a: 6/9/12/18/24/36/48/54Mbps 802.11n: MCS0-15 up to 300Mbps
Antenna Type	Integral antenna (2Tx2R MIMO)
Antenna Gain	15dBi
Number of Channel:	802.11 a/n(HT20): 5 Channel 149, 153, 157, 161, 165 802.11 n(HT40): 2 Channel 151, 159

Report No.: SHEM160300099002 Page: 6 of 72

a. Operation Frequency of Each Channel:

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
149	5745	155	5775	161	5805	
151	5755	157	5785	165	5825	
153	5765	159	5795			

Note: The above Frequency and Channel in boldface were 40MHz bandwidth; in boldface and Italic were 80MHz bandwidth.

b. The device employs MIMO technology. Below are the possible configurations.

Antenna Configurations		Single Input Single Output		Spatial Diversity Multiplexing- MIMO function		
		Antenna A	na A Antenna B Antenna A		Antenna B	
5GHz	11a	\square	\square			
	11n(HT20)				\square	
	11n(HT40)	\square	\square	\square	\square	

Remark: Support; NOT Support

5.4 Test Mode

Test Mode	Description of Test Mode
Engineering mode	Using test software to control EUT working in continuous transmitting, and select channel and modulation type.

5.5 Test Channel

Preliminary tests were performed in all tests in different data rata and antenna configurations at lowest channel, the data rates of worse case as below were chosen for final test.

Band	802.11a			802.11 n(HT20)			802.11n(HT40)		
Danu	Channel	Freq	Rate	Channel	Freq	Rate	Channel	Freq	Rate
	149	5745	6Mbps	149	5745	MCS0	151	5755	MCS0
U-NII 3	157	5785	6Mbps	157	5785	MCS0	-	-	-
	165	5825	6Mbps	165	5825	MCS0	159	5795	MCS0

5.6 Description of Support Units

The EUT has been tested with support equipments as below.

Description Manufacturer		Model No.	Supplied By	
Laptop	Lenovo	ThinkPad X100e	SGS	

Software name	Manufacturer	Version	Supplied By
Atheros Radio Test2	Atheros	V 2.3	SGS

SGS

Report No.: SHEM160300099002 Page: 7 of 72

5.7 Test Location

All tests were performed at: SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

5.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC – Registration No.: 402683

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered and fully described in a report filed with the Federal Communications Commission (FCC). The acceptance letter from the FCC is maintained in our files. Registration No.: 402683.

Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-3868 and C-4336 respectively.

Report No.: SHEM160300099002 Page: 8 of 72

5.9 Measurement Uncertainty

No.	Parameter	Measurement Uncertainty		
1	Radio Frequency	< ±1 x 10 ⁻⁵		
2	Total RF power, conducted	< ±1.5 dB		
3	RF power density, conducted	< ±3 dB		
4	Spurious emissions, conducted	< ±3 dB		
5	All emissions, radiated	< ±6 dB (30MHz – 1GHz) < ±6 dB (above 1GHz)		
6	Temperature	< ±1°C		
7	Humidity	< ±5 %		
8	DC and low frequency voltages	< ±3 %		

Report No.: SHEM160300099002 Page: 9 of 72

6 Equipments Used during Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
1	EMI test receiver	Rohde & Schwarz	ESCS30	100086	2016-01-14	2017-01-13
2	Line impedance stabilization network	SCHWARZBECK	NSLK8127	8127490	2016-01-14	2017-01-13
3	Line impedance stabilization network	EMCO	3816/2	00034161	2016-01-14	2017-01-13
4	Spectrum Analyzer	Rohde & Schwarz	FSP-30	100324	2016-01-14	2017-01-13
5	EMI test receiver	Rohde & Schwarz	ESU40	100109	2016-01-14	2017-01-13
6	Active Loop Antenna (9kHz to 30MHz)	Schwarzbeck - Mess-Elektronik	FMZB 1519	1519-034	2016-01-14	2017-01-13
7	Broadband UHF-VHF ANTENNA (25MHz to 2GHz)	SCHWARZBECK	VULB9168	9168-313	2016-01-14	2017-01-13
8	Ultra broadband antenna (25MHz to3GHz)	Rohde & Schwarz	HL562	100227	2015-08-30	2016-08-29
9	Horn Antenna (1GHz to 18GHz)	Rohde & Schwarz	HF906	100284	2016-01-14	2017-01-13
10	Horn Antenna (1GHz to 18GHz)	SCHWARZBECK	BBHA9120D	9120D-679	2016-01-14	2017-01-13
11	Horn Antenna (14GHz to 40GHz)	SCHWARZBECK	BBHA 9170	BBHA9170373	2016-01-14	2017-01-13
12	Pre-amplifier (9KHz – 2GHz)	LNA6900	TESEQ	71033	2016-01-14	2017-01-13
13	Pre-amplifier (1GHz – 26.5GHz)	Rohde & Schwarz	SCU-F0118- G40-BZ4-CSS(F)	10001	2016-01-14	2017-01-13
14	Pre-amplifier (14GHz – 40GHz)	Rohde & Schwarz	SCU-F1840- G35-BZ3-CSS(F)	10001	2016-01-14	2017-01-13
15	Tunable Notch Filter	Wainwright instruments Gmbh	WRCT800.0/880. 0-0.2/40-5SSK	9170397	/	/
16	High pass Filter	FSCW	HP 12/2800- 5AA2	19A45-02	/	/
17	High-low temperature cabinet	Suzhou Zhihe	TL-40	50110050	2015-09-11	2016-09-10
18	AC power stabilizer	WOCEN	6100	51122	2016-01-14	2017-01-13
19	DC power	QJE	QJ30003SII	611145	2016-01-14	2017-01-13
20	Signal Generator (Interferer)	Agilent	SMR40	100555	2015-08-13	2016-08-12
21	Signal Generator (Blocker)	Rohde & Schwarz	SMJ100A	101394	2016-01-14	2017-01-13
22	Splitter	Anritsu	MA1612A	M12265	/	/
23	Coupler	e-meca	803-S-1	900-M01	/	/

Report No.: SHEM160300099002 Page: 10 of 72

7 Test Results

7.1 E.U.T. Test Conditions

Test Voltage: AC 120V, 50Hz

Requirements: 15.31(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Operating
Environment:

nt:	Temperature:	20.0 -25.0 °C
	Humidity:	35-75 % RH
	Atmospheric Pressure:	99.2 -102.0 kPa

Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. if required. reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which device operates	Number of frequencies	Location in the range of operation	
1 MHz or less	1	Middle	
1 to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top. 1 near middle and 1 near bottom	

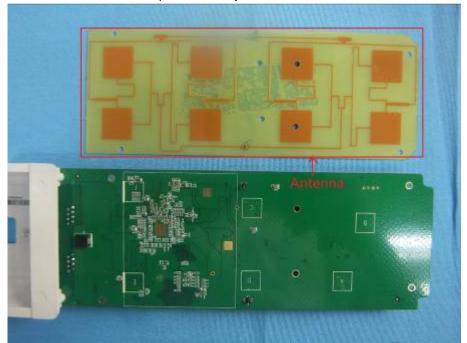
Pursuant to Part 15.31(c) For swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported

Report No.: SHEM160300099002 Page: 11 of 72

7.2 Antenna Requirement

Standard requirement:

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

This requirement does not apply to carrier current devices. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

EUT Antenna:

The antenna is 2Tx2R Spatial Multiplexing MIMO with Cross-Polarized Antenna. The gain is less than 15dBi.

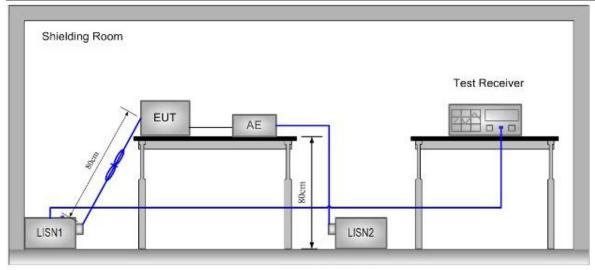
The intentional radiators that must be professionally installed.

Report No.: SHEM160300099002 Page: 12 of 72

7.3 Conducted Emissions on Mains Terminals

Frequency Range:	1
Class/Severity:	(
Limit:	

150 KHz to 30 MHz


Class B					
Frequency range	Class B Limits: dB (µV)				
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Note1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

Note2: The lower limit is applicable at the transition frequency.

Test site/setup:

Test instrumentation set-up:					
Frequency Range	Detector	RBW	VBW		
9KHz to 150Hz	Quasi-peak	200Hz	500Hz		
150KHz to 30MHz	Quasi-peak	9kHz	30kHz		

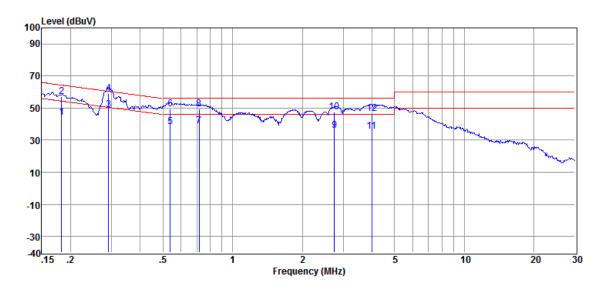
Ground Reference Plane

Test Procedure:

- a) The mains terminal disturbance voltage was measured with the EUT in a shielded room.
- b) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN, which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded
- c) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- d) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to

Report No.: SHEM160300099002 Page: 13 of 72

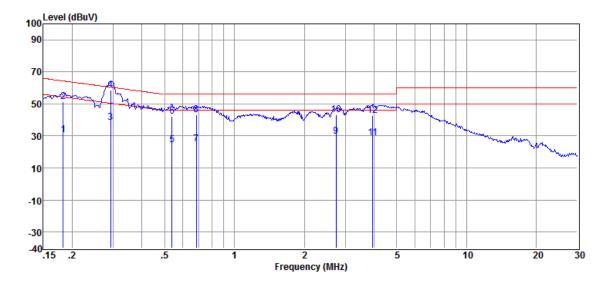
the horizontal ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN and the EUT. The mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m. All other units of the EUT and associated equipment were at least 0.8 m from the LISN.


Remark: Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected. Pretest under all modes; choose the worst case mode (802.11a in Middle channel) record on the report. Please see the attached Quasi-peak and Average test results.

Test Result: Pass

Report No.: SHEM160300099002 Page: 14 of 72

Test Data:			
Test Mode:	802.11a	Test Channel:	Channel 157
Test Port:	AC Live Line		


Item	Freq.	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)	
1	0.183	34.04	0.28	9.86	44.18	54.35	-10.17	Average
2	0.183	47.17	0.28	9.86	57.31	64.35	-7.04	QP
3	0.292	38.82	0.26	9.86	48.94	50.47	-1.53	Average
4	0.292	49.02	0.26	9.86	59.14	60.47	-1.33	QP
5	0.538	28.53	0.24	9.86	38.63	46.00	-7.37	Average
6	0.538	39.31	0.24	9.86	49.41	56.00	-6.59	QP
7	0.717	29.05	0.22	9.86	39.13	46.00	-6.87	Average
8	0.717	39.47	0.22	9.86	49.55	56.00	-6.45	QP
9	2.752	25.70	0.37	9.87	35.94	46.00	-10.06	Average
10	2.752	37.37	0.37	9.87	47.61	56.00	-8.39	QP
11	3.982	25.04	0.38	9.89	35.31	46.00	-10.69	Average
12	3.982	36.41	0.38	9.89	46.68	56.00	-9.32	QP

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM160300099002 Page: 15 of 72

Test Port: AC Neutral Line

ltem	Freq.	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)	
1	0.183	20.36	0.31	9.86	30.53	54.34	-23.81	Average
2	0.183	41.39	0.31	9.86	51.56	64.34	-12.78	QP
3	0.293	28.38	0.29	9.86	38.53	50.43	-11.90	Average
4	0.293	48.40	0.29	9.86	58.55	60.43	-1.88	QP
5	0.538	14.31	0.28	9.86	24.45	46.00	-21.55	Average
6	0.538	32.24	0.28	9.86	42.38	56.00	-13.62	QP
7	0.685	15.03	0.20	9.86	25.09	46.00	-20.91	Average
8	0.685	32.98	0.20	9.86	43.04	56.00	-12.96	QP
9	2.742	19.32	0.80	9.87	29.99	46.00	-16.01	Average
10	2.742	32.51	0.80	9.87	43.18	56.00	-12.82	QP
11	3.935	18.20	0.57	9.89	28.66	46.00	-17.34	Average
12	3.935	32.30	0.57	9.89	42.76	56.00	-13.24	QP

Remark: Level = Read Level + LISN/ISN Factor + Cable Loss.

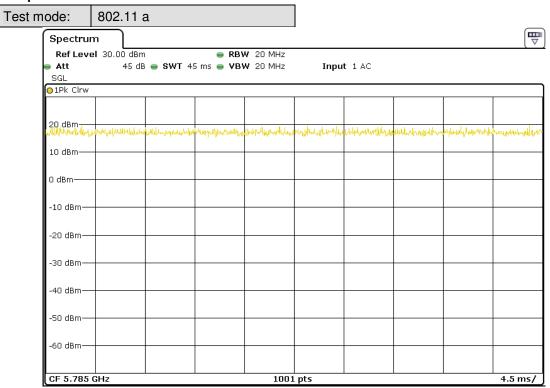
7.4 Duty Cycle

In order to assist with the determination of the average level of fundamental and spurious emissions field strength, measurements were made of duty cycle to determine the transmission duration and the silent period time of the transmitter. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

Duty cycle= T on time / Period

Duty factor = 10 * log (1/Duty cycle)

If duty cycle of test signal is > 98%, duty factor is not required.


If duty cycle of test signal is < 98%, duty factor shall be considered.

Test Data:

Test Mode	T on time(ms)	Period(ms)	Duty Cycle	Duty Factor
802.11a	10	10	100%	0
802.11n(HT20)	10	10	100%	0
802.11n(HT40)	10	10	100%	0

Test Result: All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level. So duty factor is not required.

Test plot as follows:

Report No.: SHEM160300099002 Page: 17 of 72

Spectru	802.11 ו	,			1				
			- DD1	N 00 MU-					
Ref Levi	el 30.00 dBm 45 dP		5 ms 👄 VBN	₩ 20 MHz	Innu	t 1 AC			
SGL		•••••							
⊖1Pk Clrw	_				-				
20 dBm									
philliphicipal	Janob grannalling	den stander and the	an a	Methologian and	બાહ્યાના આ ગામના આ ગામ આ ગામના આ	Muranalphur	hilpeterenser	hala panahanana	(phukhull)
10 dBm—									
0 dBm									
-10 dBm—									
20 dBm									
-20 dBm—									
-30 dBm—									<u> </u>
-40 dBm—									
-50 dBm—	+						-		
-60 dBm—									
i i	1		1	1		1	1	1	1
CF 5.785	GHz			1001	. pts				4.5 ı
CF 5.785 Ode:	_{GHz} 802.11 і	n(HT40)		1001	. pts				4.5 I
ode:	802.11	ו(HT40)		1001	. pts				4.5 ı
ode: Spectru	802.11 ı m		– P1		. pts				4.5
ode: Spectru	802.11 I m el 30.00 dBm		● RB\ 5 ms ● VB\	₩ 40 MHz		t 1 AC			4.51
Ode: Spectru Ref Lev Att	802.11 I m el 30.00 dBm			₩ 40 MHz		t 1 AC			4.51
Ode: Spectru Ref Lev Att	802.11 I m el 30.00 dBm			₩ 40 MHz		t 1 AC			4.5 1
Ode: Spectru Ref Lev Att	802.11 I m el 30.00 dBm			₩ 40 MHz		t 1 AC			4.5 1
Ode: Spectru Ref Lev Att SGL	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu				
Spectru Ref Lev Att SGL 1Pk Clrw	802.11 I m el 30.00 dBm	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		ltown of low of regarding		
Ode: Spectru Ref Lev Att SGL 1Pk Clrw	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		Brocher (for the set)	Longerter	
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		the share for a factor of the second se	n	4.5 r
Ode: Spectru Ref Lev • Att SGL • 1Pk Clrw	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		ltown of the state	a-andaketek-vantuk	
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 10 dBm 0 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		to a stand of the	c	
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		J.		
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		l ll _{ab} ab ⁱ ra djenel regerlje	a	
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		the straight of the states	nm.lakytykanutty	
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		the share for a solar	n_m_hk+y/k_n/u/da	
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		the scherolde and the scherolde scherold	n_m_shiph_public	
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		the straid for the sola		
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		(P ₁₀ , 10 ⁴ 42, ([p ₁₀ , 1], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24, 24], 24]		
Ode: Spectru Ref Lev Att SGL 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu		 P ₁₂ ,53 ¹ 41, (jj,04),64,94), 		
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu				
Ode: Spectru Ref Lev Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	802.11 I m el 30.00 dBm 45 dE	● SWT 4.	5 ms 👄 VB1	₩ 40 MHz ₩ 40 MHz	Inpu				

Report No.: SHEM160300099002 Page: 18 of 72

7.5 26dB Emission Bandwidth

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

Test Data:

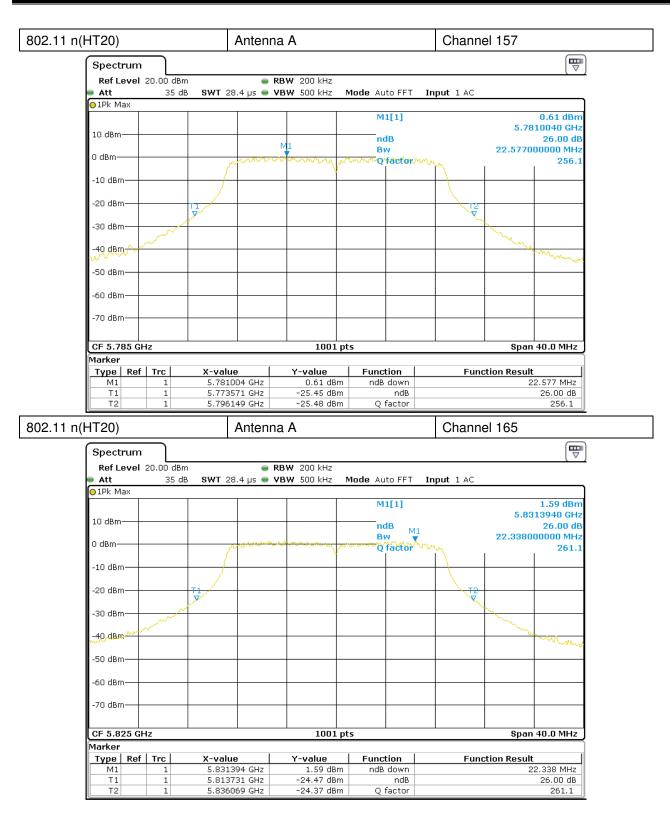
For Antenna A:

802.11a			802.11 n(HT20)			802.11n(HT40)		
CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)
149	5745	22.298	149	5745	22.657	151	5755	43.796
157	5785	22.418	157	5785	22.577			
165	5825	21.898	165	5825	22.338	159	5795	44.276

For Antenna B:

802.11a			802.11 n(HT20)			802.11n(HT40)		
CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)
149	5745	22.178	149	5745	22.737	151	5755	43.956
157	5785	22.338	157	5785	23.177			
165	5825	21.898	165	5825	23.137	159	5795	43.956

Report No.: SHEM160300099002 Page: 19 of 72

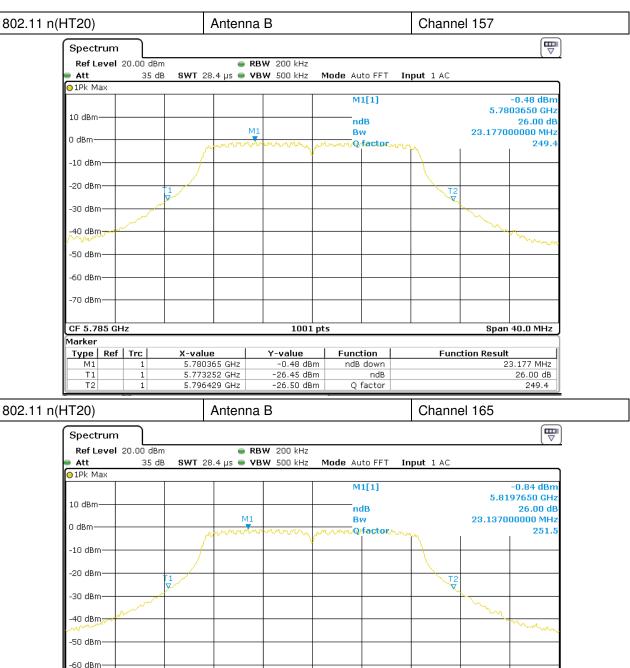


Report No.: SHEM160300099002 Page: 20 of 72

Report No.: SHEM160300099002 Page: 21 of 72

Report No.: SHEM160300099002 Page: 22 of 72

Report No.: SHEM160300099002 Page: 23 of 72



Report No.: SHEM160300099002 Page: 24 of 72

Report No.: SHEM160300099002 Page: 25 of 72

-70 dBm-Span 40.0 MHz CF 5.825 GHz 1001 pts Marker Trc Function Function Result Туре Ref | X-value Y-value 23.137 MHz 5.819765 GHz Μ1 -0.84 dBm ndB down 1 Τ1 1 5.813292 GHz -26.71 dBm ndB 26.00 dB O factor Τ2 1 5.836429 GHz -26.75 dBm 251.5

Report No.: SHEM160300099002 Page: 26 of 72

Report No.: SHEM160300099002 Page: 27 of 72

7.6 Minimum 6 dB bandwidth

Test Configuration:

Test Configuration:	EUT (Antenna Port	connected cable	Spectrum Analyzer	
Test Procedure:	 b) Remove the anten from the antenna p c) Set the spectru Span=40/80/160M d) Mark the peak freq e) Repeat above proce 	na from the EU ort to the spect m analyzer Hz, Sweep=aut uency and –6d ædures until all	as RBW=100KHz, W to couple B (upper and lower) freq frequency measured wa	w loss RF cable ′BW≥3* RBW, uency.
Limit:	≥ 500 kHz (For 5.725	-5.85 GHz ban	d)	
Test Result:	Pass			

Test Data:

For Antenna A:

802.11a			802.11 n(HT20)			802.11n(HT40)		
CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)
149	5745	16.613	149	5745	17.742	151	5755	36.603
157	5785	16.623	157	5785	17.742			
165	5825	16.543	165	5825	17.742	159	5795	36.523

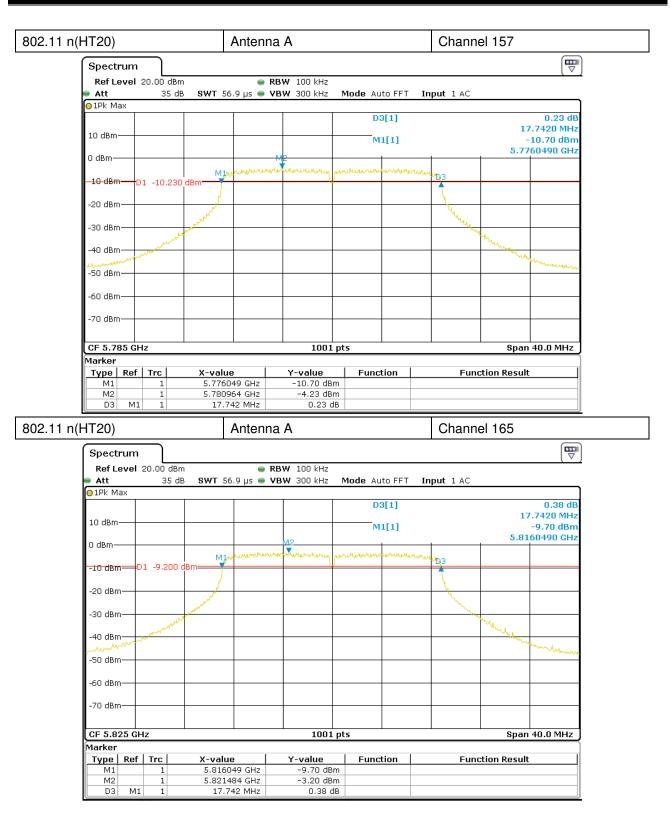

For Antenna B:

	802.11a			802.11 n(HT20)			802.11n(HT40)		
CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)	CH No.	Freq(MHz)	BW (MHz)	
149	5745	16.623	149	5745	17.742	151	5755	36.613	
157	5785	16.623	157	5785	17.702				
165	5825	16.623	165	5825	17.742	159	5795	36.603	

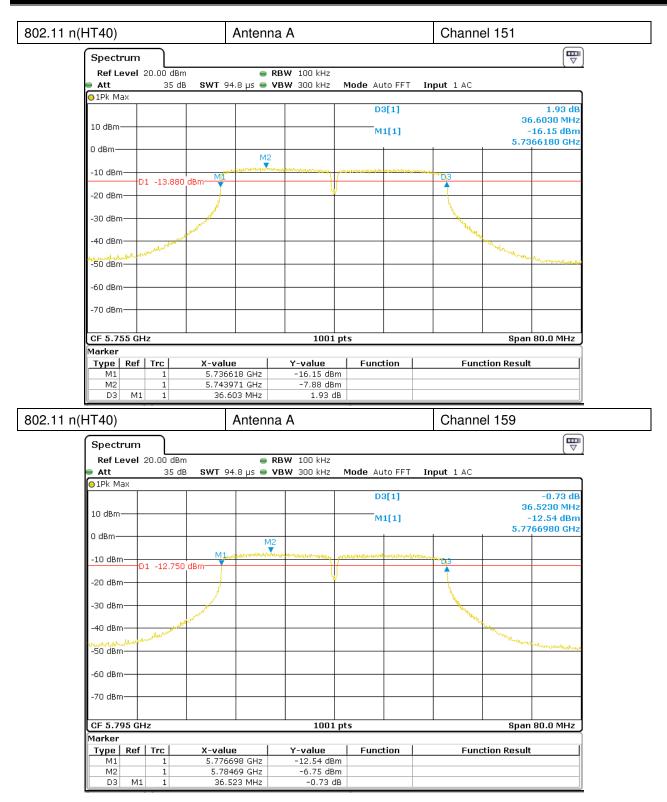
TEST RESULTS: The unit does meet the requirements.



Report No.: SHEM160300099002 Page: 28 of 72



Report No.: SHEM160300099002 Page: 29 of 72

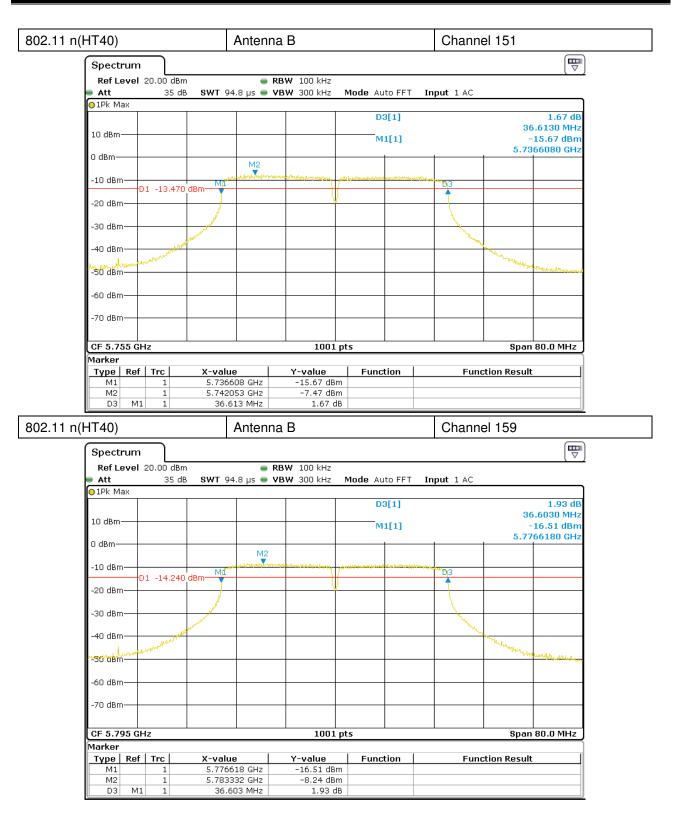


Report No.: SHEM160300099002 Page: 30 of 72

Report No.: SHEM160300099002 Page: 31 of 72

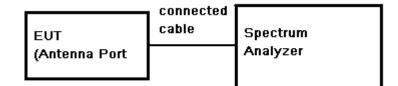
Report No.: SHEM160300099002 Page: 32 of 72

Report No.: SHEM160300099002 Page: 33 of 72



Report No.: SHEM160300099002 Page: 34 of 72

Report No.: SHEM160300099002 Page: 35 of 72



Report No.: SHEM160300099002 Page: 36 of 72

7.7 Maximum Conducted output power

Test Setup:

Test Procedure:

- dure: a) Place the EUT on the table and set it in transmitting mode.
 - b) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.
 - c) Set the spectrum analyzer as RBW=1MHz, VBW≥3* RBW, Span=40/80MHz, Sweep=auto, Detector = RMS
 - d) Set the occur band to the entire emission 26dB bandwidth of the signal.
 - e) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
 - f) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 26dB occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges.
 - g) Record the max. Power channel reading.
 - h) Repeat above procedures until all the frequency measured were complete.

Test Limit:

Frequency E	Band	EUT Category	Limit					
		Outdoor Access Point	1W(30dBm) The maximum e.i.r.p≤125 mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon.					
U-NII-1		Fixed Point-to-point Access Point Indoor Access Point	1W(30dBm)					
		Mobile and Portable client device	250mW (24dBm)					
U-NII-2a	a		Lesser of 250mW (24dBm) or 11dBm +					
U-NII-2c)	-	10log B*					
U-NII-3			1W (30dBm)					
Note: *Whe	Note: *Where B is the 26dB emission bandwidth in MHz.							

Test Result:

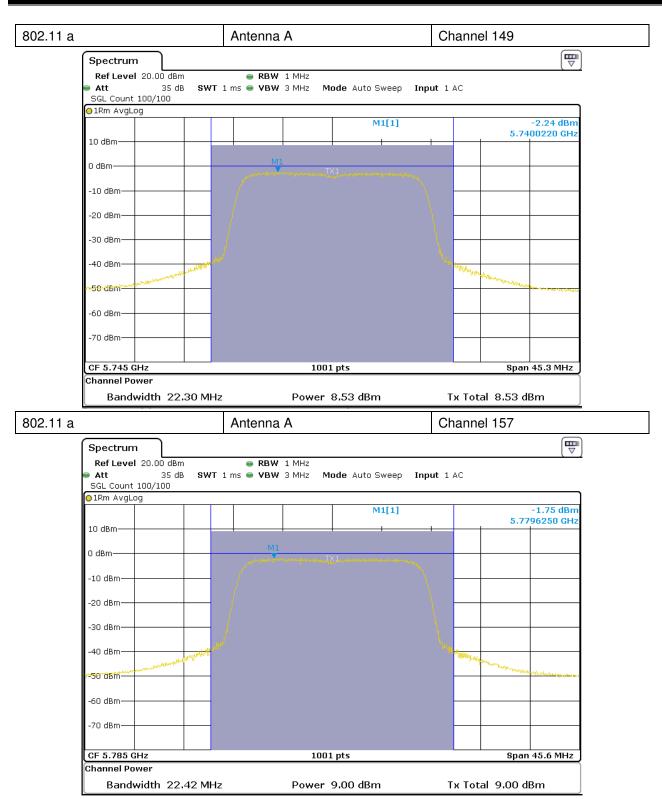
Pass

Report No.: SHEM160300099002 Page: 37 of 72

Test Data:									
Test Mode	CH No.	Freq	Reading	g (dBm)	Conduc	cted Power	(dBm)	Limit	Result
Test Mode	OTTNO.	(MHz)	Ant A	Ant B	Ant A	Ant B	MIMO	(dBm)	nesuit
	149	5745	8.53	8.47	9.03	8.97	12.01		Pass
802.11a	157	5785	9.00	8.01	9.50	8.51	12.04	30	Pass
	165	5825	10.21	8.06	10.71	8.56	12.78]	Pass
	149	5745	8.38	8.60	8.88	9.10	12.00		Pass
802.11n	157	5785	8.89	7.74	9.39	8.24	11.86	30	Pass
(HT20)	165	5825	10.16	7.91	10.66	8.41	12.69		Pass
802.11n	151	5755	9.74	7.99	10.24	8.49	12.46	20	Pass
(HT40)	159	5795	9.68	8.45	10.18	8.95	12.62	30	Pass
Romark:		•	•		•		•		

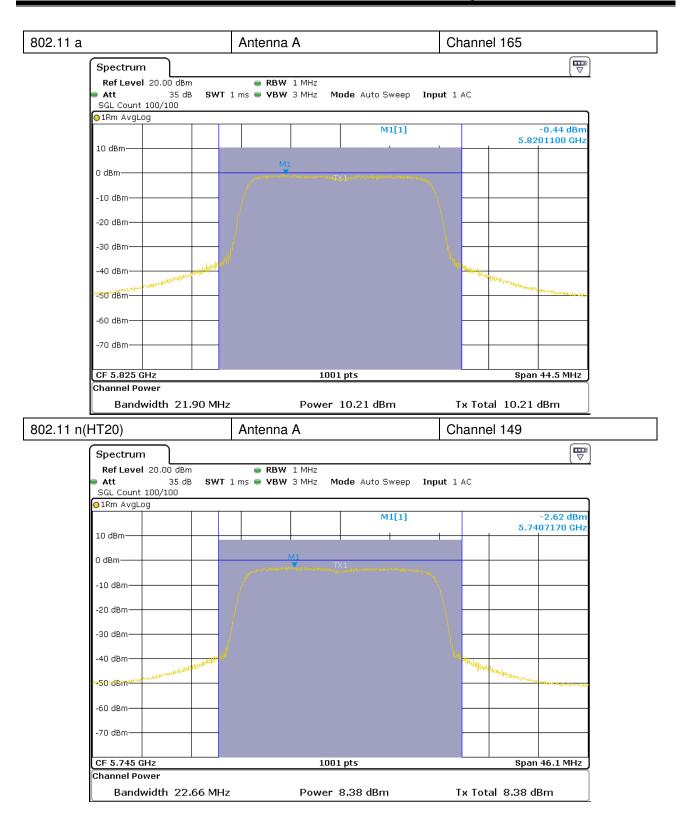
Remark:

1) Output Peak Power = Reading Power + Cable loss+ Duty Cycle Correction Factor

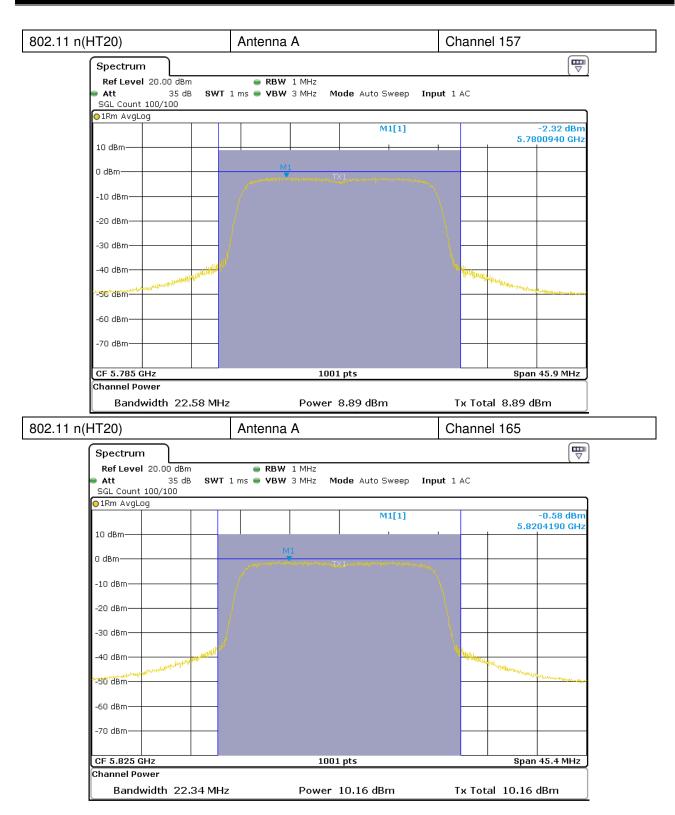

2) Cable loss= 0.5dB. Duty cycle of test signal is > 98%, duty factor is not required, reference Section 7.4

3) Per KDB 662911, the conducted powers at Antenna A and Antenna B were first measured separately during MIMO transmission as shown in section above. The measured values were then summed in linear power units then converted back to dBm.

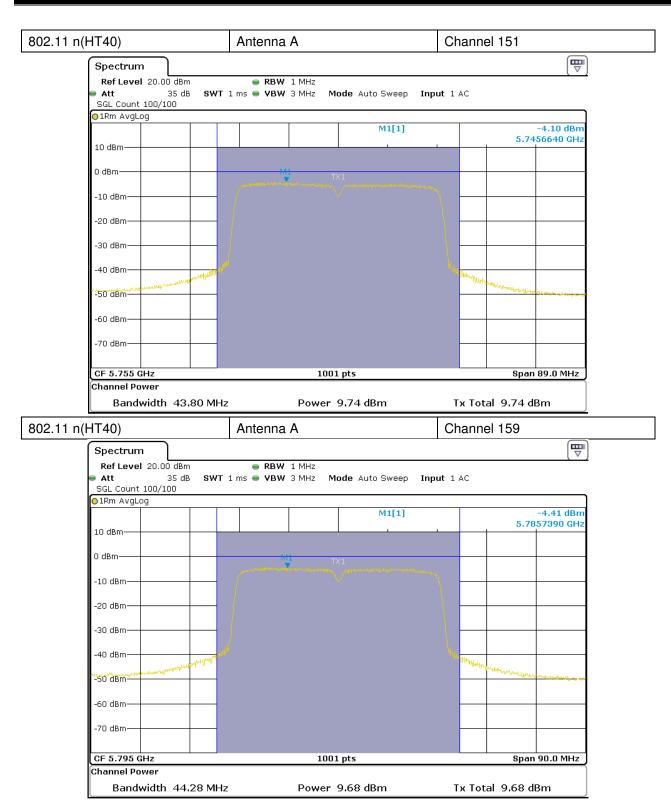
Test plot as below:



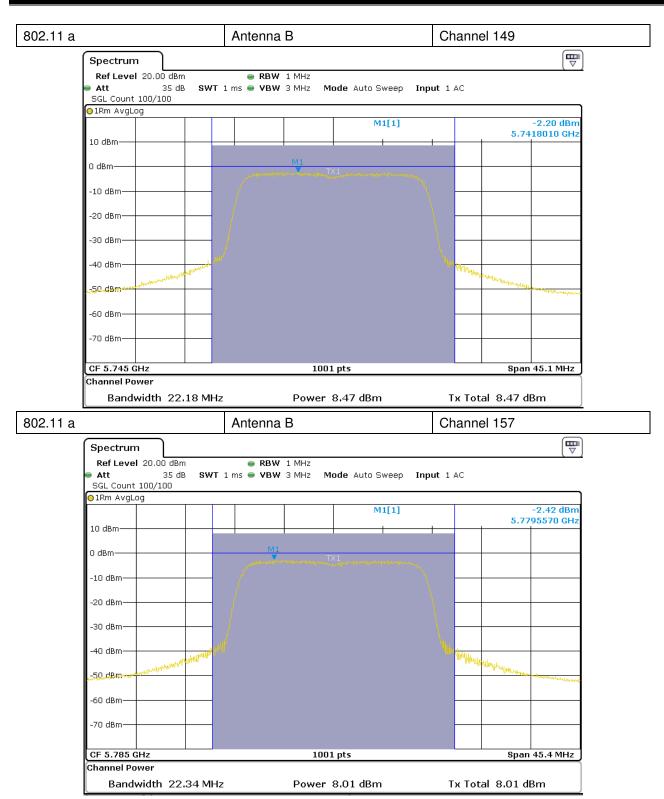
Report No.: SHEM160300099002 Page: 38 of 72



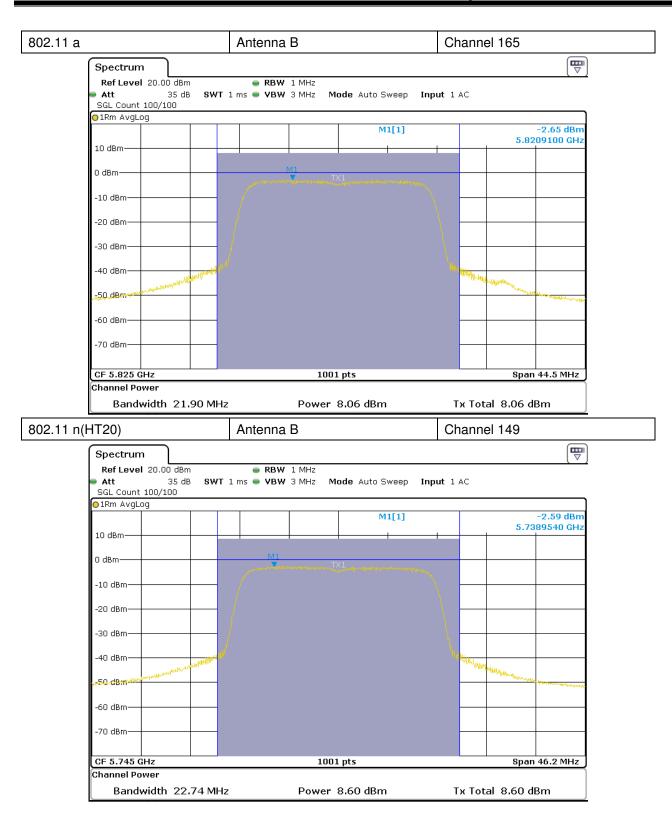
Report No.: SHEM160300099002 Page: 39 of 72



Report No.: SHEM160300099002 Page: 40 of 72

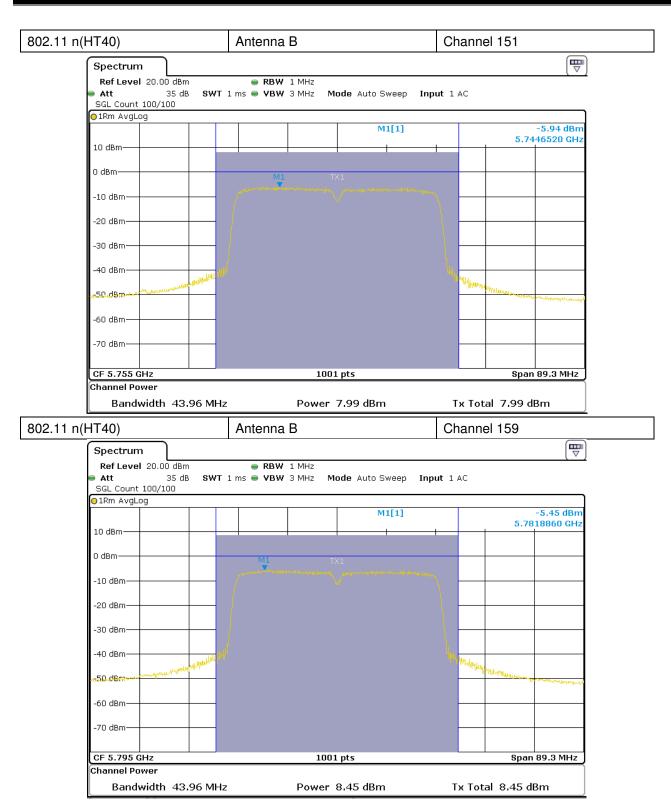


Report No.: SHEM160300099002 Page: 41 of 72



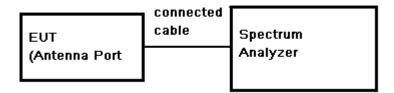
Report No.: SHEM160300099002 Page: 42 of 72

Report No.: SHEM160300099002 Page: 43 of 72



Report No.: SHEM160300099002 Page: 44 of 72

Report No.: SHEM160300099002 Page: 45 of 72



Report No.: SHEM160300099002 Page: 46 of 72

7.8 Peak Power Spectral Density

Test Setup:

- **Test Procedure**: a) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
 - b) Set span 40/80/160MHz; RBW = 1 MHz; VBW \ge 3 MHz.
 - c) Number of points in sweep \geq 2 Span / RBW; Sweep time = auto.
 - d) Detector = RMS, Trigger = Free run Record the marker level for the particular mode.
 - e) Use the peak search function on the instrument to find the peak of the spectrum and record its value.
 - f) Repeat these steps for other channel and device modes.

Test Limit:

Frequency Band	EUT Category	Limit
	Outdoor Access Point	17dBm/MHz
U-NII-1	Fixed Point-to-point Access Point	11 dBm/MHz
0-1111-1	Indoor Access Point	
	Mobile and Portable client device	11 dBm/MHz
U-NII-2a		11 dBm/MHz
U-NII-2c	-	
U-NII-3		30 dBm/500KHz

Test Result:

Pass

Report No.: SHEM160300099002 Page: 47 of 72

Test Data:

Test Mode	CH No.	Freq	Reading (dBm)		Р	PSD (dBn	n)	Limit	Result
Test Mode	CH NO.	(MHz)	Ant A	Ant B	Ant A	Ant B	MIMO	(dBm/500KHz)	nesuit
	149	5745	-3.32	-9.67	-2.82	-9.17	-1.91		Pass
802.11a	157	5785	-5.02	-10.52	-4.52	-10.02	-3.44	30	Pass
	165	5825	-6.79	-11.05	-6.29	-10.55	-4.91		Pass
000 11	149	5745	-4.01	-9.31	-3.51	-8.81	-2.39		Pass
802.11n (HT20)	157	5785	-6.04	-10.73	-5.54	-10.23	-4.27	30	Pass
(11120)	165	5825	-7.23	-11.57	-6.73	-11.07	-5.37		Pass
802.11n (HT40)	151	5755	-7.85	-11.34	-7.35	-10.84	-5.74	30	Pass
	159	5795	-8.54	-11.72	-8.04	-11.22	-6.33		Pass

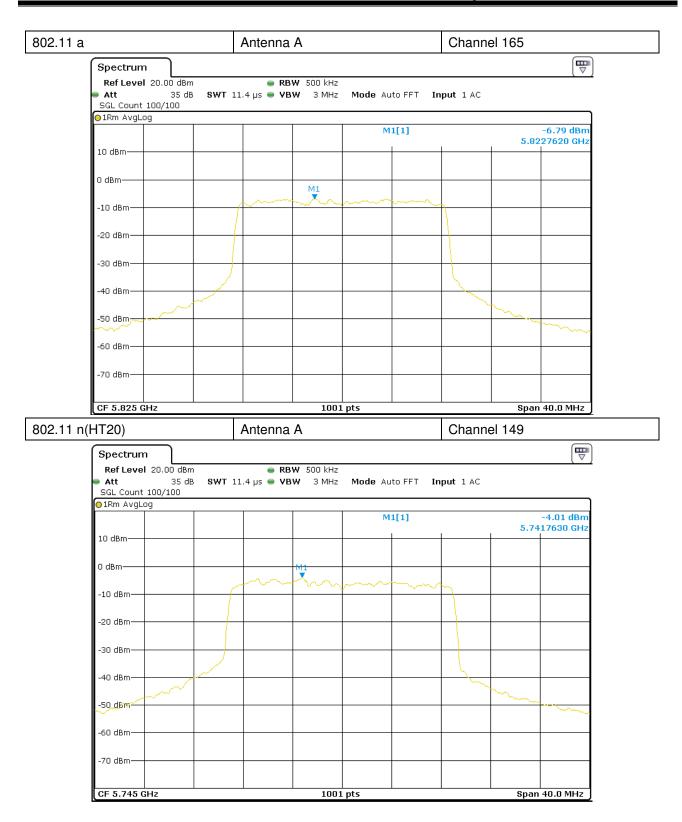
Remark:

1) Peak Power Spectral Density = Reading + Cable loss+ Duty Cycle Correction Factor

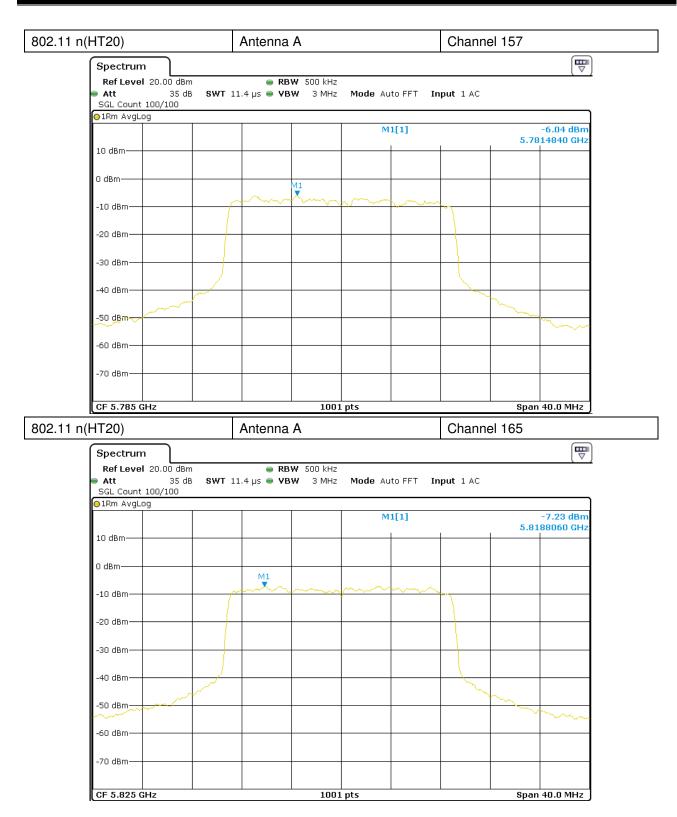
2) Cable loss= 0.5dB. Duty cycle of test signal is > 98%, duty factor is not required, reference Section 7.4

3) Per KDB 662911, the conducted powers at Antenna A and Antenna B were first measured separately during MIMO transmission as shown in section above. The measured values were then summed in linear power units then converted back to dBm.

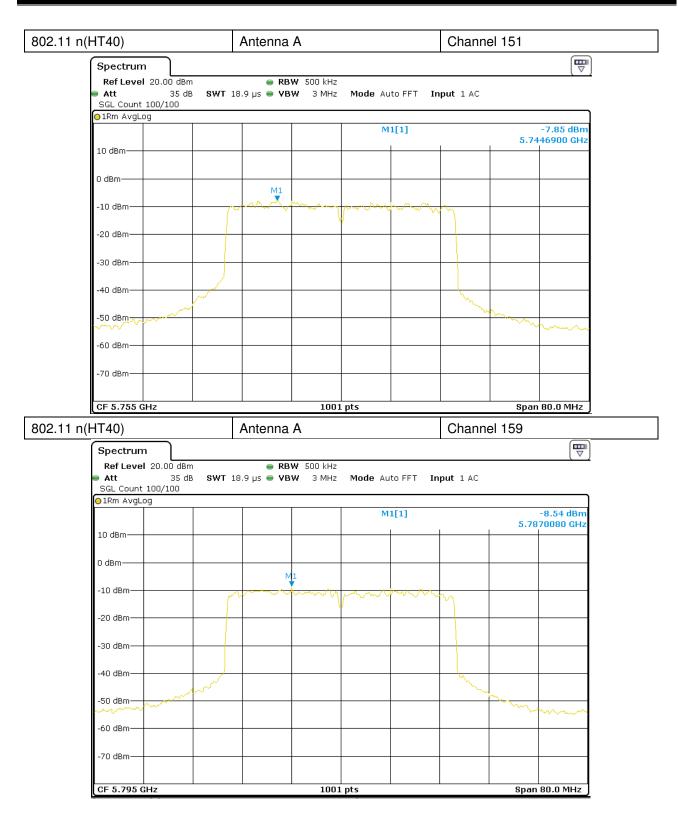
Test plot as below:



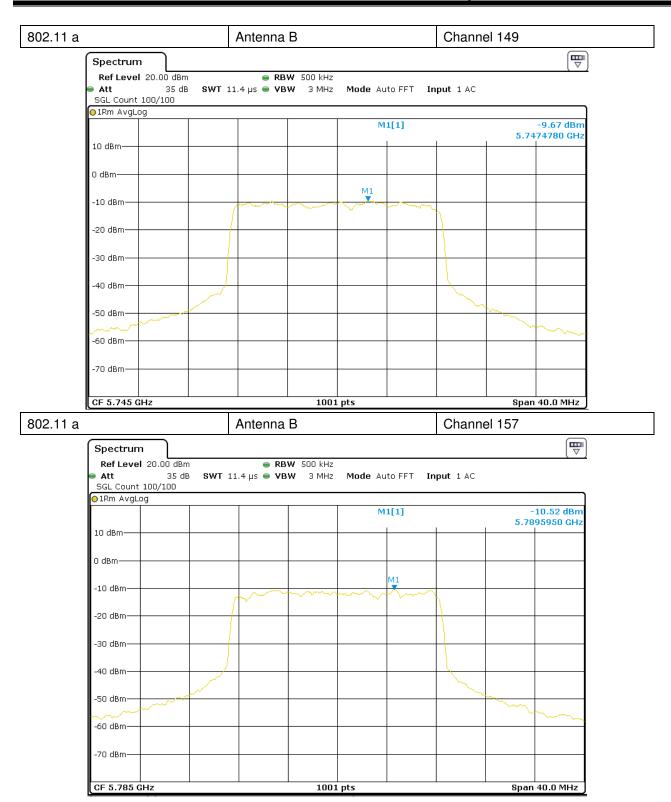
Report No.: SHEM160300099002 Page: 48 of 72



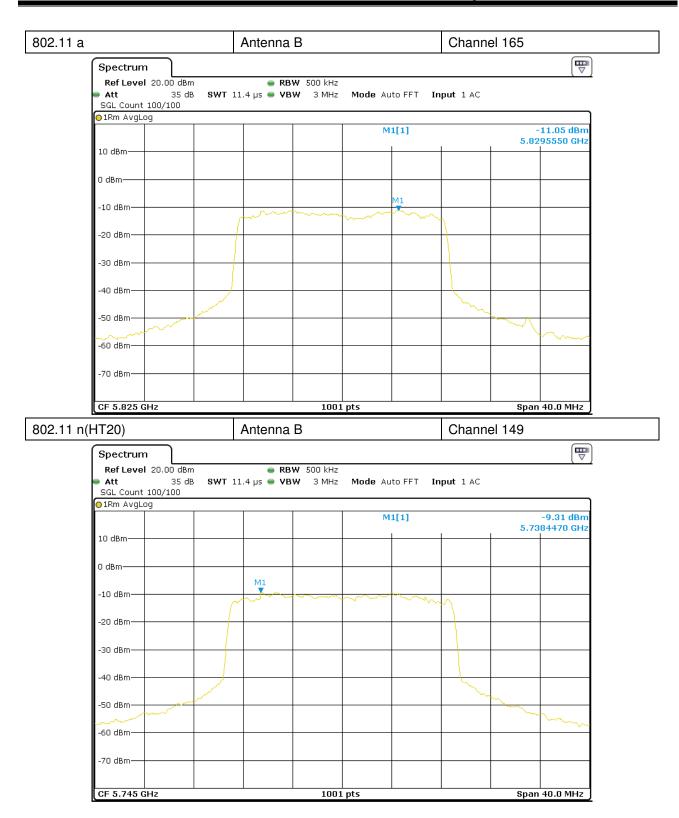
Report No.: SHEM160300099002 Page: 49 of 72



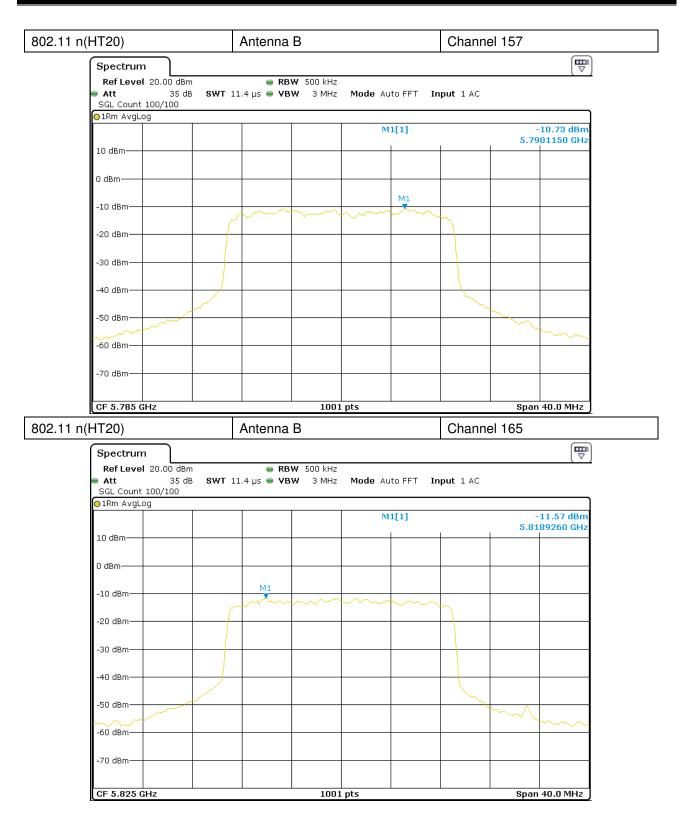
Report No.: SHEM160300099002 Page: 50 of 72



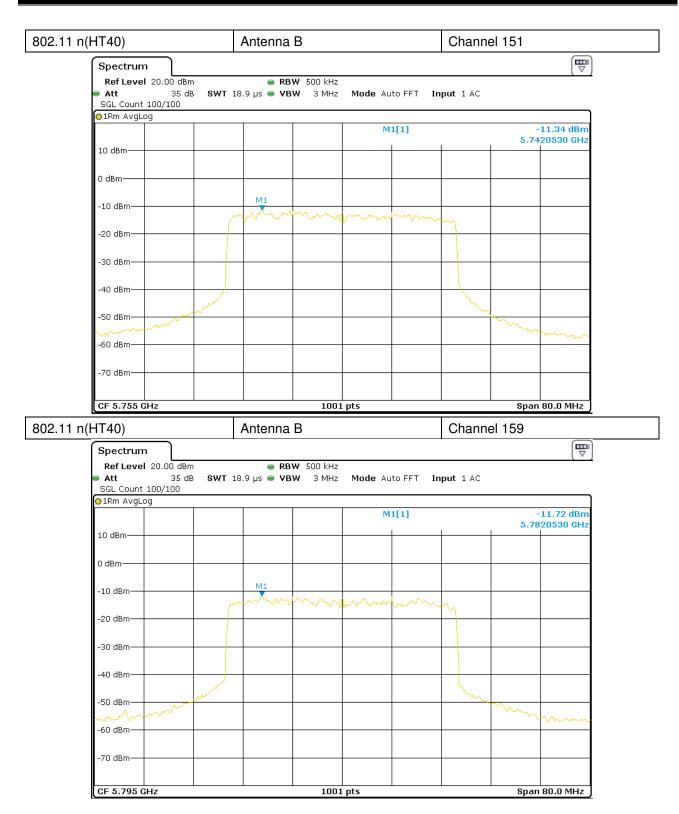
Report No.: SHEM160300099002 Page: 51 of 72



Report No.: SHEM160300099002 Page: 52 of 72



Report No.: SHEM160300099002 Page: 53 of 72



Report No.: SHEM160300099002 Page: 54 of 72

Report No.: SHEM160300099002 Page: 55 of 72

Report No.: SHEM160300099002 Page: 56 of 72

7.9 Radiated Spurious Emissions and Band-edge

Test site/setup:

Measurement Distance: 3m (Semi-Anechoic Chamber)

Test instrumentation set-up:

Frequency Range(MHz)	Detector	RBW	VBW						
0.009-0.090	Peak	10kHz	30kHz						
0.009-0.090	Average	10kHz	30kHz						
0.090-0.110	Quasi-peak	10kHz	30kHz						
0.110-0.490MHz	Peak	10kHz	30kHz						
0.110-0.490	Average	10kHz	30kHz						
0.490 -30	Quasi-peak	10kHz	30kHz						
30-1000	Quasi-peak	100kHz	300kHz						
Above 1000	Peak	RBW=1MHz	VBW≥RBW						
	Average		VBW=10Hz						

Sweep=Auto

15.209 Limit:

Frequency(MHz)	Limit (dBuV/m)
0.009-0.490	128.5 ~ 93.8
0.490-1.705	73.8 ~63.0
1.705-30	69.5
30-88	40.0
88-216	43.5
216-960	46.0
960-1000	54.0
Above 1000	54.0

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

15.407 Limit:

Operation Frequency (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength (dBμV/m)	
5150-5250			
5250-5350	-27	68.3	
5470-5725			
	-27* ¹	68.3* ¹	
5725-5850	-17* ²	78.3 ^{*2}	

Note: The following formula is used to convert the EIRP to field strength $E = \frac{1000000\sqrt{30P}}{2} \text{ uV/m, where P is the EIRP (Watts).}$

Remark: *¹ Without 10MHz of band edge; *² Within 10MHz of band edge

Report No.: SHEM160300099002 Page: 57 of 72

Test Setup:

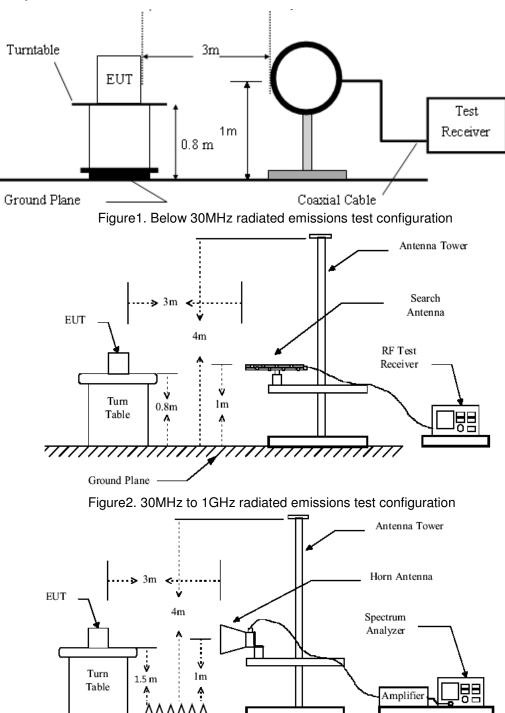


Figure3. Above 1GHz radiated emissions test configuration

Report No.: SHEM160300099002 Page: 58 of 72

- **Test Procedure:** 1) The procedure used was ANSI Standard C63.10. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.
 - Low noise amplifier was used below 1GHz, High pass Filter and amplifier was used above 3GHz. We did not use any amplifier or filter between 1G and 3GHz.
 - 3) Test were performed for their spatial orthogonal(X, Y, Z), the worst test data (X orthogonal) was submitted.
 - a) For this intentional radiator operates below 25 GHz. the spectrum shall be investigated to the tenth harmonic of the highest fundamental frequency. And above the third harmonic of this intentional radiator, the disturbance is very low. So the test result only displays to 5rd harmonic.
 - b) As shown in Section, for frequencies above 1000MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
 - 4) Radiated spurious emissions were investigated while operating in SISO mode, however, it was determined that single antenna operation produced the worst emissions. Since the emissions produced from SISO operation were found to be more than 20 dB below the limit, the SISO emissions are not report.
 - 5) Pretest under all modes during 30MHz to 1GHz; choose the worst case mode (Middle channel of 802.11a on band 3) record on the report.
 - 6) No spurious emissions were detected within 20dB of limit below 30MHz.

Test Result: Pass

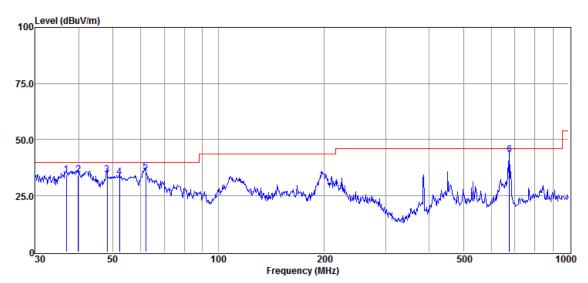
Report No.: SHEM160300099002 Page: 59 of 72

Channel: 1/0

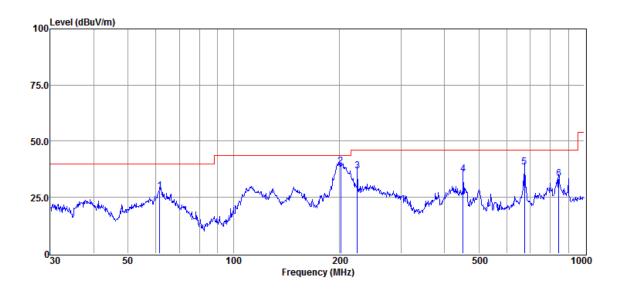
7.9.1 Radiated Spurious Emissions

30MHz-1GHz:

802.11 a


802.11	a					Channel: 149					
Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization	
(Mark)	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
1	61.56	58.35	12.29	43.72	0.80	27.72	40.00	-12.28	QP	Horizontal	
2	202.10	69.85	10.67	43.41	1.61	38.72	43.50	-4.78	QP	Horizontal	
3	225.31	68.33	10.05	43.38	1.75	36.75	46.00	-9.25	QP	Horizontal	
4	451.14	59.33	16.68	43.20	2.58	35.39	46.00	-10.61	QP	Horizontal	
5	675.21	58.57	19.81	43.10	3.28	38.56	46.00	-7.44	QP	Horizontal	
6	845.09	49.11	23.60	43.04	3.74	33.41	46.00	-12.59	QP	Horizontal	
1	36.84	64.54	12.95	43.85	0.58	34.22	40.00	-5.78	QP	Vertical	
2	39.78	64.09	13.48	43.83	0.60	34.34	40.00	-5.66	QP	Vertical	
3	48.17	63.73	13.89	43.78	0.68	34.52	40.00	-5.48	QP	Vertical	
4	52.19	62.99	13.54	43.76	0.72	33.49	40.00	-6.51	QP	Vertical	
5	62.12	66.33	12.35	43.71	0.80	35.77	40.00	-4.23	QP	Vertical	
6	677.01	63.51	19.77	43.10	3.29	43.47	46.00	-2.53	QP	Vertical	

Remark: 1. Result Level = Read Level + Antenna Factor + Cable loss - Preamp Factor



Report No.: SHEM160300099002 Page: 60 of 72

Below is the plot of worst case: Vertical:

Horizontal:

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM160300099002 Page: 61 of 72

Above 1GHz

802. 1	l1a			Channel: 149				
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	7180	38.14	10.52	48.66	54	-5.34	peak	Horizontal
2	8656	38.44	12.63	51.07	54	-2.93	peak	Horizontal
3	11490	36.82	14.41	51.23	54	-2.77	peak	Horizontal
4	8380	38.78	11.93	50.71	54	-3.29	peak	Vertical
5	9172	36.64	14.03	50.67	54	-3.33	peak	Vertical
6	11490	37.09	14.41	51.5	54	-2.5	peak	Vertical

802.11a Channel: 157 Frequency Reading Factor Emission Limit **Over Limit** Mark Detector Polarization (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) 1 38.44 12.63 51.07 -2.93 Horizontal 8656 54 peak 2 36.97 13.93 50.9 54 -3.1 Horizontal 9112 peak 3 11570 39.35 14.25 53.6 54 -0.4 peak Horizontal -2.47 4 9280 37.32 14.21 51.53 54 Vertical peak 5 -2.53 10288 37.09 14.38 51.47 54 Vertical peak 6 11570 38.16 14.25 52.41 54 -1.59 peak Vertical

802.1	11a			Channel: 165					
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization	
1	8656	38.44	12.63	51.07	54	-2.93	peak	Horizontal	
2	9256	37.18	14.17	51.35	54	-2.65	peak	Horizontal	
3	11650	38.42	14.06	52.48	54	-1.52	peak	Horizontal	
4	7192	39.22	10.56	49.78	54	-4.22	peak	Vertical	
5	8800	38.55	13.07	51.62	54	-2.38	peak	Vertical	
6	11650	40.19	14.06	54.25	54	0.25	peak	Vertical	

802.11 n(HT20)

Channel: 149

Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	8944	37.55	13.55	51.1	54	-2.9	peak	Horizontal
2	10420	37.06	14.17	51.23	54	-2.77	peak	Horizontal
3	11490	37.29	14.41	51.7	54	-2.3	peak	Horizontal
4	8932	36	13.52	49.52	54	-4.48	peak	Vertical
5	9892	37.46	14.39	51.85	54	-2.15	peak	Vertical
6	11490	36.87	14.41	51.28	54	-2.72	peak	Vertical

Report No.: SHEM160300099002 Page: 62 of 72

802. 1	l1 n(HT20)				Channel: 157				
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization	
1	8428	38.85	12.03	50.88	54	-3.12	peak	Horizontal	
2	9040	36.82	13.81	50.63	54	-3.37	peak	Horizontal	
3	11570	37.52	14.25	51.77	54	-2.23	peak	Horizontal	
4	9100	35.35	13.91	49.26	54	-4.74	peak	Vertical	
5	10372	35.96	14.26	50.22	54	-3.78	peak	Vertical	
6	11570	35.77	14.25	50.02	54	-3.98	peak	Vertical	

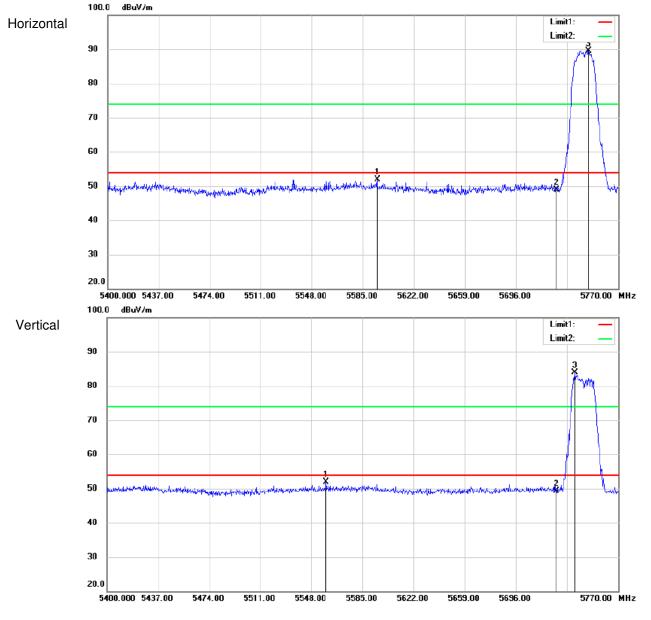
802.1	11 n(HT20)					Ch	annel: 165	
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	9040	36.82	13.81	50.63	54	-3.37	peak	Horizontal
2	9976	37.02	14.42	51.44	54	-2.56	peak	Horizontal
3	11650	37.36	14.06	51.42	54	-2.58	peak	Horizontal
4	8236	38.41	11.65	50.06	54	-3.94	peak	Vertical
5	8932	36	13.52	49.52	54	-4.48	peak	Vertical
6	11650	36.87	14.06	50.93	54	-3.07	peak	Vertical

802.1	11 n(HT40)				Channel: 151				
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization	
1	8284	39.92	11.74	51.66	54	-2.34	peak	Horizontal	
2	8932	37.29	13.52	50.81	54	-3.19	peak	Horizontal	
3	11510	38.09	14.4	52.49	54	-1.51	peak	Horizontal	
4	7512	38.78	11.92	50.7	54	-3.3	peak	Vertical	
5	8755	36.87	12.94	49.81	54	-4.19	peak	Vertical	
6	11510	35.19	14.4	49.59	54	-4.41	peak	Vertical	

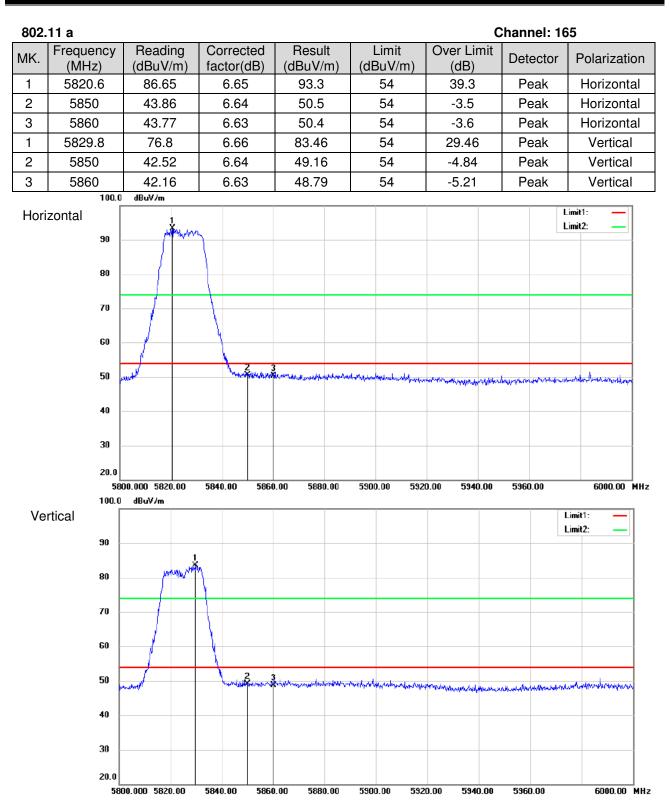
802.11 n(HT40)

0 02.	і і II(ПТ40)			Channel, 159				
Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
		· · · · ·		, , ,	· · · · · · · · · · · · · · · · · · ·			
1	8536	39.11	12.27	51.38	54	-2.62	peak	Horizontal
2	10384	38.36	14.23	52.59	54	-1.41	peak	Horizontal
3	11590	38.12	14.2	52.32	54	-1.68	peak	Horizontal
4	8755	36.87	12.94	49.81	54	-4.19	peak	Vertical
5	10152	36.75	14.4	51.15	54	-2.85	peak	Vertical
6	11590	36.31	14.2	50.51	54	-3.49	peak	Vertical

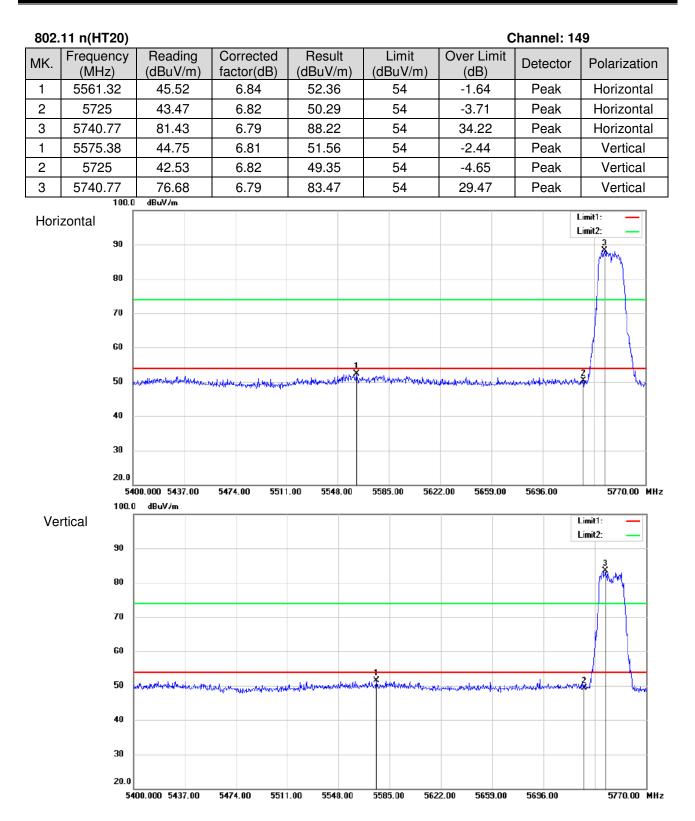
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to thesample(s) tested and such sample(s) are retained for 90 days only


Channel: 159

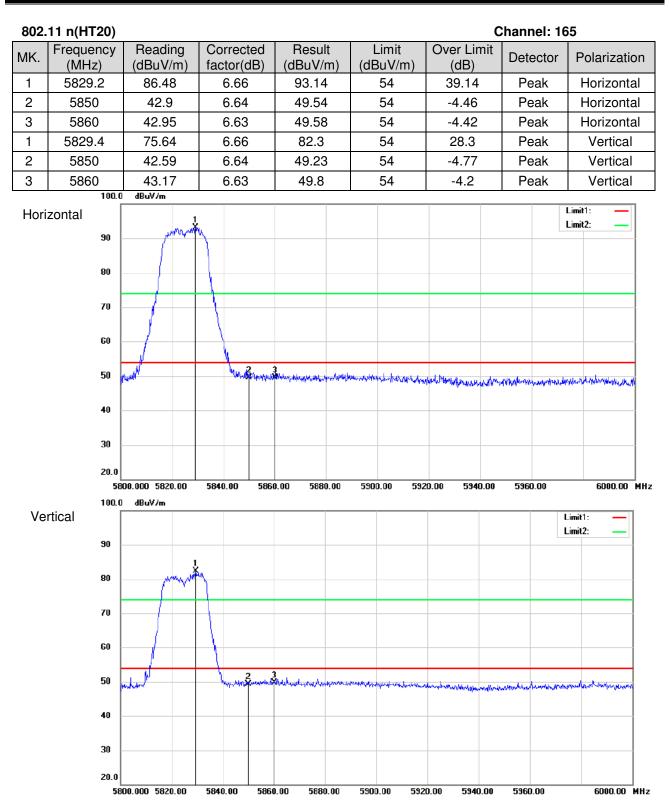
Report No.: SHEM160300099002 Page: 63 of 72


7.9.2 Radiated Band-edge

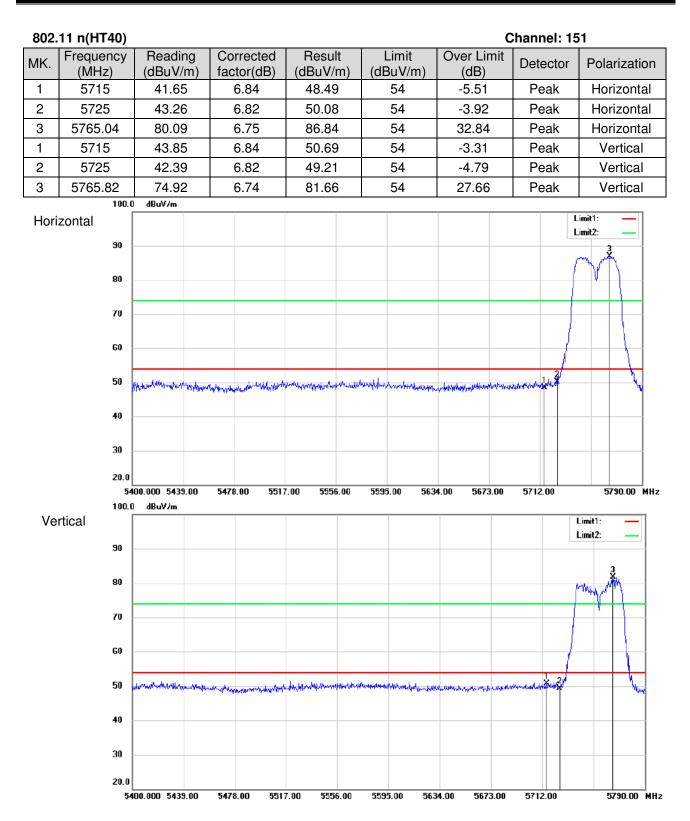
802.	802.11 a						Channel: 149		
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization	
1	5595.36	45.2	6.78	51.98	54	-2.02	Peak	Horizontal	
2	5725	42.1	6.82	48.92	54	-5.08	Peak	Horizontal	
3	5748.54	82.79	6.77	89.56	54	35.56	Peak	Horizontal	
1	5558.73	45.15	6.84	51.99	54	-2.01	Peak	Vertical	
2	5725	42.56	6.82	49.38	54	-4.62	Peak	Vertical	
3	5738.55	77.14	6.8	83.94	54	29.94	Peak	Vertical	



Report No.: SHEM160300099002 Page: 64 of 72



Report No.: SHEM160300099002 Page: 65 of 72



Report No.: SHEM160300099002 Page: 66 of 72

Report No.: SHEM160300099002 Page: 67 of 72

Report No.: SHEM160300099002 Page: 68 of 72

802.	11 n(HT40)					c	hannel: 15	59
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Polarization
1	5785.2 80.67 6.7		87.37	54	33.37	Peak	Horizontal	
2	5850	44.03	6.64	50.67	54	-3.33	Peak	Horizontal
3	5860	43.25	6.63	49.88	54	-4.12	Peak	Horizontal
1	5779.44	72.7	6.72	79.42	54	25.42	Peak	Vertical
2	5850	43.54	6.64	50.18	54	-3.82	Peak	Vertical
3	5860	43.31	6.63	49.94	54	-4.06	Peak	Vertical
Hori	100. zontal 90 80 70 60 50 40 30 20.0 5 100 rtical 90 80 70 60	0 dBuV/m					5352.00	Limit1:
	50 40	well	Hranner	and the second	nenenen presidenten fenten fenten en presidenten presidenten presidenten presidenten presidenten presidente pre	n fallen en fan fan fan fan fan fan fan fan fan fa	endmaateriseiseiseiseiseiseiseiseiseiseiseiseisei	dfadhaman fallalhara
	30 20.0	760.000 5784.00	5808.00 583	2.00 5856.00	5880.00 590	04.00 5928.00	5952.00	6000.00 MHz

SGS

Report No.: SHEM160300099002 Page: 69 of 72

Remark: 1. Test Level = Receiver Reading + Antenna Factor + Cable Loss- Preamplifier Factor

2. No any other emission which falls in restricted bands can be detected and be reported.

3. If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

All frequencies within the "Restricted bands" have been evaluated to compliance. Section 15.205 Restricted bands of operation.

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.5 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			

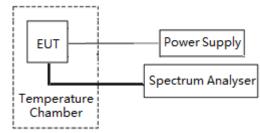
Report No.: SHEM160300099002 Page: 70 of 72

7.10 Transmission in the Absence of Data

7.10.1 Standard Applicable

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

7.10.2 Test Result


While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Report No.: SHEM160300099002 Page: 71 of 72

7.11 Frequency stability

Test setup:

Test Procedure:

- a) The EUT was place in the temperature chamber, the DC leads and RF output cable exited the chamber though an opening made for that purpose.
- b) After operate the equipment in standby conditions for 15 minutes before proceeding. The temperature was varied from -20 ℃ to +55 ℃ at intervals of not more than 10 ℃. The frequency stability was read from the spectrum analyzer and the frequency stability and input voltage was record.

Test Limit: The frequency of carrier signal shall be maintained within the band of operation

Test Data:

Test Co	onditions	Operation	Test Frequency	Freq. Dev.	Limit (GHz)	Result
Volt (V AC)	Temp (℃)	Frequency(MHz)	(MHz)	(Hz)		nesuit
	Extreme(-20)		5824.9741	0.0259	5.725-5.85	Pass
	Extreme(-10)		5824.9752	0.0248		Pass
	Extreme(0)		5824.9772	0.0228		Pass
Normal(120)	Extreme(+10)		5824.9761	0.0239		Pass
Normai(120)	Extreme(+20)	5825	5824.9778	0.0222		Pass
	Extreme(+30)		5824.9721	0.0279		Pass
	Extreme(+40)		5824.9756	0.0244		Pass
	Extreme(+55)		5824.9735	0.0265		Pass
Extreme(102)	Norma(20)		5824.9778	0.0222		Pass
Extreme(138)	Nomia(20)	-	5824.9973	0.0027		Pass

Remark: Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

Report No.: SHEM160300099002 Page: 72 of 72

8 Test Setup Photographs

Refer to the < DH-PFM881_Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < DH-PFM881 _External Photos > & < DH-PFM881 _Internal Photos >.

--End of the Report--