

CFR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

IP CAMERA

DH-IPC-WD42, DH-IPC-WD22, DH-IPC-WD42C, DH-IPC-WD22C, DH-IPC-HDW1230DT-STW, DH-IPC-HDW1430DT-STW, IPC-HDW1230DT-STW, N41BJ42-W, N21BJ42-W, IPC-HDW1230DT-STW-0280B, IPC-HDW1230DT-STW-0360B, IPC-HDW1430DT-STW-0280B

FCC ID: SVNDH-IPC-WDX2

REPORT NUMBER: 4790187159-1

ISSUE DATE: December 02, 2021

Prepared for

Zhejiang Dahua Vision Technology Co., Ltd No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 3

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	12/02/2021	Initial Issue	

Page 3 of 4

Summary of Test Results							
Clause	Test Items	FCC Rules	Test Results				
1	6dB Bandwidth	FCC Part 15.247 (a) (2)	Pass				
2	Conducted Output Power	FCC Part 15.247 (b) (3)	Pass				
3	Power Spectral Density	FCC Part 15.247 (e)	Pass				
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass				
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass				
6	Conducted Emission Test for AC Power Port	FCC Part 15.207	Pass				
7	Antenna Requirement	FCC Part 15.203	Pass				

Note:

^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	. AT	TESTATION OF TEST RESULTS	6
2.	. TE	ST METHODOLOGY	7
3.	. FA	CILITIES AND ACCREDITATION	7
4.	. CA	LIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	. EQ	UIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	CHANNEL LIST	9
	5.3.	MAXIMUM OUTPUT POWER	10
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	THE WORSE CASE CONFIGURATIONS	11
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	12
	5.8.	DESCRIPTION OF TEST SETUP	13
6.	. ME	ASURING INSTRUMENT AND SOFTWARE USED	14
7.	. AN	TENNA PORT TEST RESULTS	16
	7.1.	ON TIME AND DUTY CYCLE	16
	7.2.	6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	17
		0 db b 13 bandwid i i and 99 % OCCOFILD bandwid i i	
	7.3.	CONDUCTED OUTPUT POWER	
	7.3. 7.4.		19
	_	CONDUCTED OUTPUT POWER	19 20
8.	7.4. 7.5.	CONDUCTED OUTPUT POWERPOWER SPECTRAL DENSITY	19 20 21
8.	7.4. 7.5.	CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	19 20 21
8.	7.4. 7.5. RA 8.1. 8.1	CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE	20 21 22 28
8.	7.4. 7.5. RA 8.1. 8.1 8.1	CONDUCTED OUTPUT POWER	20 21 22 28 28
8.	7.4. 7.5. RA 8.1. 8.1	CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE	
8.	7.4. 7.5. RA 8.1. 8.1 8.1 8.1 8.2.	CONDUCTED OUTPUT POWER	19202128313535
8.	7.4. 7.5. RA 8.1. 8.1 8.1 8.1 8.2. 8.2	CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11n HT20 MIMO MODE	
8.	7.4. 7.5. RA 8.1. 8.1 8.1 8.1 8.2.	CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11n HT20 MIMO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)	
8.	7.4. 7.5. RA 8.1. 8.1 8.1 8.2. 8.2. 8.3. 8.3 8.3	CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE 5PURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11n HT20 MIMO MODE 5PURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE 2. 802.11g SISO MODE 2. 802.11g SISO MODE	
8.	7.4. 7.5. RA 8.1. 8.1 8.1 8.1 8.2. 8.2 8.3 8.3 8.3 8.3	CONDUCTED OUTPUT POWER. POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE 5PURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11n HT20 MIMO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE	

	Page 5 01 6
8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)	73 73
8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 8.5.1. 802.11b SISO MODE	
8.6. SPURIOUS EMISSIONS BELOW 30 MHz 8.6.1. 802.11b SISO MODE	
9. AC POWER LINE CONDUCTED EMISSIONS	
9.1.1. 802.11b MODE	82
10. ANTENNA REQUIREMENTS	86
11. Appendix	87
11.1. Appendix A: DTS Bandwidth	
11.1.1. Test Result	
11.2. Appendix B: Occupied Channel Bandwidth	
11.2.2. Test Graphs	
11.3. Appendix C: Maximum conducted output power	
11.3.1. Test Result	105
11.4. Appendix D: Maximum power spectral density	106
11.4.1. Test Result	
11.5. Appendix E: Band edge measurements	
11.5.2. Test Result	
11.6. Appendix F: Conducted Spurious Emission	118
11.6.1. Test Result	118
11.6.2. Test Graphs	119
11.7. Appendix G: Duty Cycle	
11.7.1. Test Result	
11.7.2. Test Graphs	138

Page 6 of 7

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd

Address: No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China

Manufacturer Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd

Address: No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China

EUT Information

EUT Name: IP CAMERA Model Name: DH-IPC-WD42

Series Model: DH-IPC-WD42, DH-IPC-WD22, DH-IPC-WD42C, DH-IPC-WD22C,

DH-IPC-HDW1230DT-STW, DH-IPC-HDW1430DT-STW, IPC-

HDW1230DT-STW,

IPC-HDW1430DT-STW, N41BJ42-W, N21BJ42-W,

IPC-HDW1230DT-STW-0280B, IPC-HDW1230DT-STW-0360B, IPC-HDW1430DT-STW-0280B, IPC-HDW1430DT-STW-0360B

Model difference: Only the model name is different.

Sample Received Date: November 13, 2021

Sample Status: Normal Sample ID: 4168477

Date of Tested: November 13 ~ 30, 2021

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS		

Prepared By:	Checked By:
kelo . shang.	Shemyles
Kebo Zhang Project Engineer	Shawn Wen Laboratory Leader
Approved By:	
Lephenbus	
Stephen Guo Laboratory Manager	

REPORT NO.: 4790187159-1 Page 7 of 8

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Accreditation Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED.
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4790187159-1 Page 8 of 9

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62 dB			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
DTS and 99% Occupied Bandwidth	±0.0196%			
Maximum Conducted Output Power	±0.686 dB			
Maximum Power Spectral Density Level	±0.743 dB			
Conducted Band-edge Compliance	±1.328 dB			
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)			
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)			
Note: This upportainty represents an expanded upportainty expressed at approximately the				

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 10

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

EUT Name	IP CAMERA
Model Name	DH-IPC-WD42
Series Model	DH-IPC-WD22, DH-IPC-WD42C, DH-IPC-WD22C, DH-IPC-HDW1230DT-STW, DH-IPC-HDW1430DT-STW, IPC-HDW1230DT-STW, N41BJ42-W, N21BJ42-W, IPC-HDW1230DT-STW-0280B, IPC-HDW1230DT-STW-0360B, IPC-HDW1430DT-STW-0360B
Model difference	Only the model name is different.
Radio Technology	IEEE802.11b/g/n HT20/HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Rating	12Vdc,1 A/0.5 A Via Adapter

5.2. **CHANNEL LIST**

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

	Channel List for 802.11n (40 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	/	/

Page 10 of 11

5.3. MAXIMUM OUTPUT POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)
b	2412 ~ 2462	1-11[11]	21.35
g	2412 ~ 2462	1-11[11]	17.84
n HT20	2412 ~ 2462	1-11[11]	20.30
n HT40	2422 ~ 2452	3-9[7]	18.40

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 1, CH 6, CH 11/ Low, Middle, High	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The V	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Softv	vare		SecureCRT					
NA LLC	Transmit		T	est Software	e setting val	ue		
Modulation Mode	Antenna	١	NCB: 20MH	z	N	ICB: 40MHz		
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
000 11h	1	Default	Default	Default				
802.11b	2	Default	Default	Default				
902 11a	1	Default	Default	Default				
802.11g	2	Default	Default	Default		/		
802.11n HT20	1	Default	Default	Default	1			
002.111111120		Default	Default	Default				
802.11n HT40	1	1 , Default Default				Default	Default	
002.111111140	2		/		Default	Default	Default	

Note: Antenna 1 and antenna 2 use the same power setting for both SISO and MIMO modes.

Page 11 of 12

THE WORSE CASE CONFIGURATIONS 5.6.

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst case Data Rates declared by the customer:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Conducted output power, power spectral density tests separately on each port with all supported SISO & MIMO port combinations.

Duty cycle and 6dB DTS bandwidth/occupied channel bandwidth tests, only SISO mode and one chain were tested since the duty cycle and bandwidth does not change depending on chains used.

Conducted bandedge and spurious emissions tests were performed with SISO mode, as this port was found to have the worst case in terms of power settings amongst all supported possible SISO & MIMO port combinations.

Radiated emissions tests were performed with the MIMO modes. These were found to be the worst modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest conducted output power level, it was deemed to be the worst case.

REPORT NO.: 4790187159-1 Page 12 of 13

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	IFA Antenna	2.84
2	2412-2462	IFA Antenna	2.84

Note: Directional gain= G_{ANT} + 10 log(NANT) =2.84+3.01=5.85

G_{ANT}: Average of the Antenna Gain

N_{ANT}: Antenna numbers

Note: The value of the antenna gain was declared by customer.

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.

REPORT NO.: 4790187159-1 Page 13 of 14

5.8. DESCRIPTION OF TEST SETUP

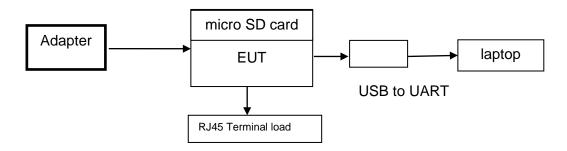
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	laptop	Lenovo	TP00094A	/
2	UART	/	/	/
3	RJ45 Terminal load	/	/	/
4	micro SD card	Kingston	/	32GB

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1m	/

ACCESSORIES


Item	Accessory	Brand Name	Model Name	Description
1	Switching Power Supply	ноюто	ADS-12AM-12 12012EPCU	Input: AC100~240V,50/60Hz,0.3A Output: 12Vdc,1A, 12W
2	Switching Power Supply	MASS	NBS05C120050VU	Input: AC100~240V,50/60Hz,0.15A Output: 12Vdc,0.5A

Note: Both adapters have been tested, only records the worst-case adapter (HOIOTO) data record in this report.

TEST SETUP

The EUT can work in engineering mode with a software through a laptop.

SETUP DIAGRAM FOR TESTS

REPORT NO.: 4790187159-1 Page 14 of 15

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
EMI Test Receiver	R&S	ESR3	101961	Oct.30, 2021	Oct.29, 2022		
Two-Line V- Network	R&S	ENV216	101983	Oct.30, 2021	Oct.29, 2022		
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.30, 2021	Oct.29, 2022		
	Software						
[Description		Manufacturer	Name	Version		
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1		

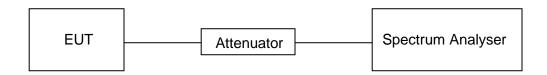
	Radiated Emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.30, 2021	Oct.29, 2022			
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024			
Preamplifier	HP	8447D	2944A09099	Oct.30, 2021	Oct.29, 2022			
EMI Measurement Receiver	R&S	ESR26	101377	Oct.30, 2021	Oct.29, 2022			
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.30, 2021	Oct.29, 2022			
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.31, 2021	Oct.30, 2022			
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.31, 2021	Oct.30, 2022			
Loop antenna	Schwarzbeck	1519B	80000	Jan.17, 2019	Jan.17,2022			
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.31, 2021	Oct.30, 2022			
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Oct.31, 2021	Oct.30, 2022			
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.31, 2021	Oct.30, 2022			
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.31, 2021	Oct.30, 2022			
		Sof	tware					

Page 15 of 16

Description	Manufacturer	Name	Version
Test Software for Radiated Emissions	Farad	EZ-EMC	Ver. UL-3A1

		Tor	nsend	RF Tes	st System			
Equipment	Mar	nufacturer	Mod	del No.	Serial No.	Last C	al.	Due. Date
Wideband Radio Communication Tester		R&S	CM	W500	155523	Oct.30, 2	2021	Oct.29, 2022
Wireless Connectivity Tester		R&S	CM	W270	1201.0002N75- 102	Sep.29,	2021	Sep.28, 2022
PXA Signal Analyzer	K	eysight	N9	030A	MY55410512	Oct.30, 2	2021	Oct.29, 2022
MXG Vector Signal Generator	K	eysight	N5	182B	MY56200284	Oct.30, 2	2021	Oct.29, 2022
MXG Vector Signal Generator	K	eysight	N5	172B	MY56200301	Oct.30, 2	2021	Oct.29, 2022
DC power supply	K	eysight	E3	642A	MY55159130	Oct.30, 2	2021	Oct.29, 2022
Temperature & Humidity Chamber	SA	NMOOD	SG-80-CC-2		2088	Nov.20,2	2020	Nov.19,2022
Software								
Description		Manufact	turer		Name			Version
Tonsend SRD Test Sys	tem	Tonser	nd	JS11	120-3 RF Test Sy	ystem	2	.6.77.0518

7. ANTENNA PORT TEST RESULTS
7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC120 V,60 Hz

RESULTS

Please refer to appendix G.

REPORT NO.: 4790187159-1 Page 17 of 18

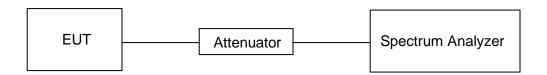
7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	2400-2483.5				
ISED RSS-Gen Clause 6.7 99 % Occupied Bandwidth For reporting purposes only. 2400-2483.5					

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC120 V,60 Hz

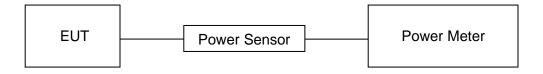
RESULTS

Please refer to appendix A & B.

Page 19 of 20

7.3. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	AVG Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the average output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	57 %
Atmosphere Pressure	101 kPa	Test Voltage	AC120 V,60 Hz

RESULTS

Please refer to appendix C.

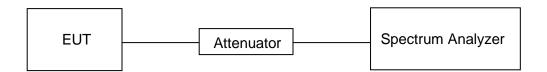
Page 20 of 21

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC120 V,60 Hz

RESULTS

Please refer to appendix D.

Page 21 of 22

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

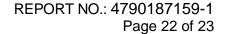
CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) Conducted Bandedge and Spurious Emissions Conducted at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level

Change the settings for emission level measurement:

Change the settings i	of chilosoffic verificasarchicht.
Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

EUT Attenuator Spectrum Analyzer

TEST ENVIRONMENT

Temperature	25.1 °C	Relative Humidity	58 %
Atmosphere Pressure	101 kPa	Test Voltage	AC120 V,60 Hz

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

LIMITS

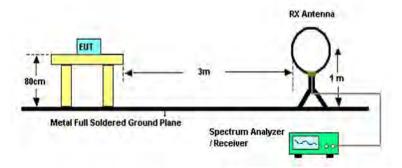
Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz						
Frequency Range	Field Strength Limit	Field Strength Limit				
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m			
		Quasi-Peak				
30 - 88	100	40				
88 - 216	150	43.5				
216 - 960	200	46				
Above 960	500	54				
Above 1000	500	Peak	Average			
Above 1000	500	74	54			

FCC Emissions radiated outside of the specified frequency bands below 30 MHz						
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters						
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				

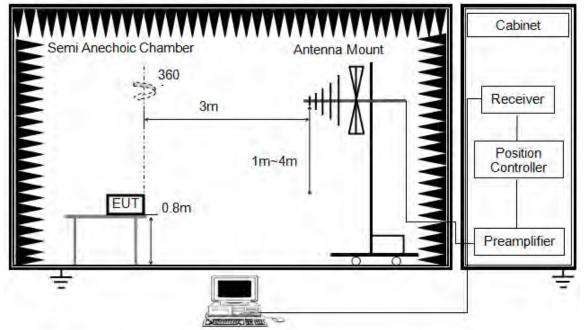
FCC Restricted bands of operation refer to FCC §15.205 (a):


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

TEST SETUP AND PROCEDURE

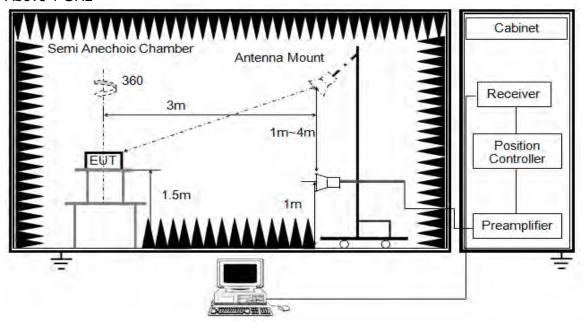
Below 30 MHz



The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz) / 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz) / 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit. Below 1 GHz and above 30 MHz

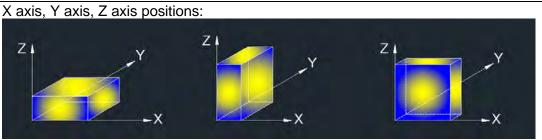


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz



The setting of the spectrum analyser

RBW	1 MHz
IVBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1. ON TIME AND DUTY CYCLE.

Yania Zania andiina

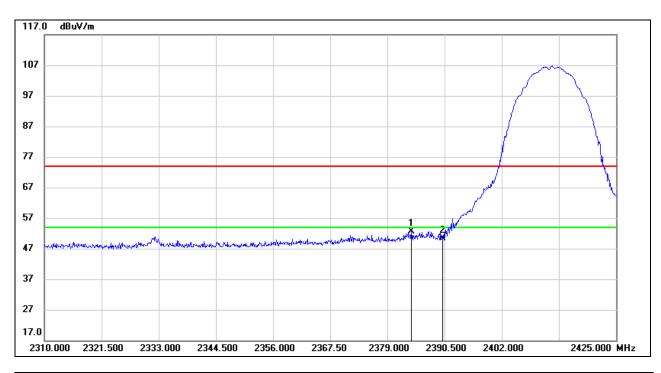
Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	22.5 °C	Relative Humidity	48 %
Atmosphere Pressure	101 kPa	Test Voltage	AC120 V,60 Hz

RESULTS

Page 28 of 29


8.1. RESTRICTED BANDEDGE

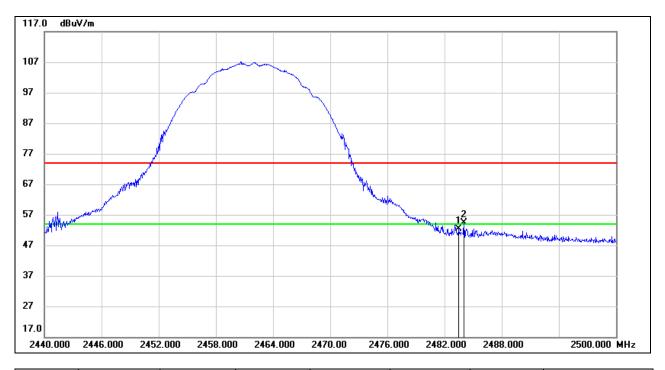
8.1.1. **802.11b SISO MODE**

ANTENNA 1 TEST RESULTS (WORST CASE)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

PEAK

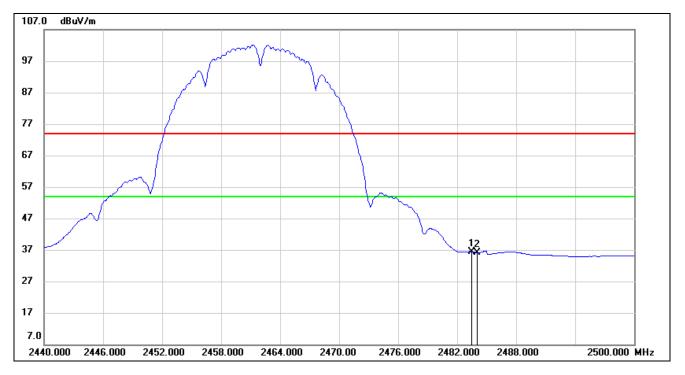
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2383.830	20.04	32.61	52.65	74.00	-21.35	peak
2	2390.000	17.63	32.66	50.29	74.00	-23.71	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 29 of 30

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	19.19	33.10	52.29	74.00	-21.71	peak
2	2484.040	21.39	33.10	54.49	74.00	-19.51	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

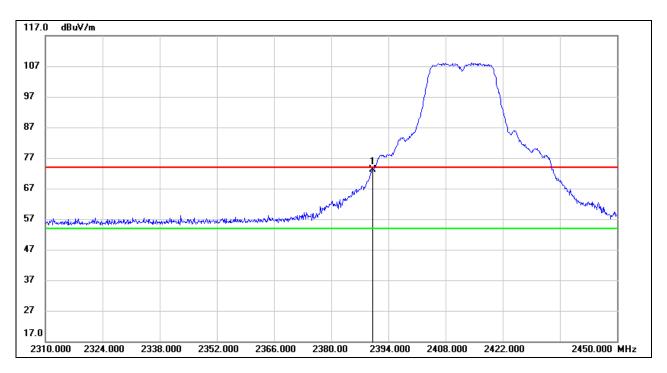
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	3.20	33.10	36.30	54.00	-17.70	AVG
2	2484.040	3.00	33.10	36.10	54.00	-17.90	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.



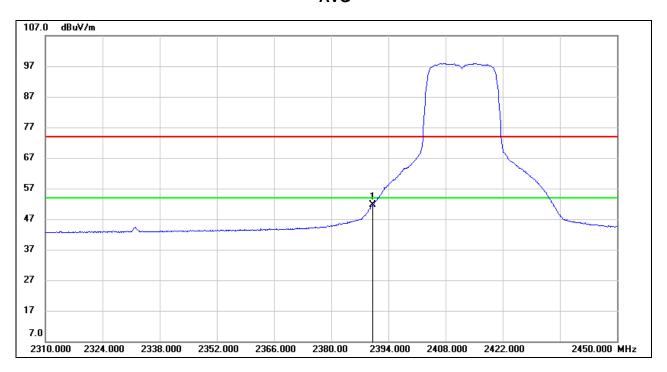
8.1.2. 802.11g SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	40.38	32.66	73.04	74.00	-0.96	peak

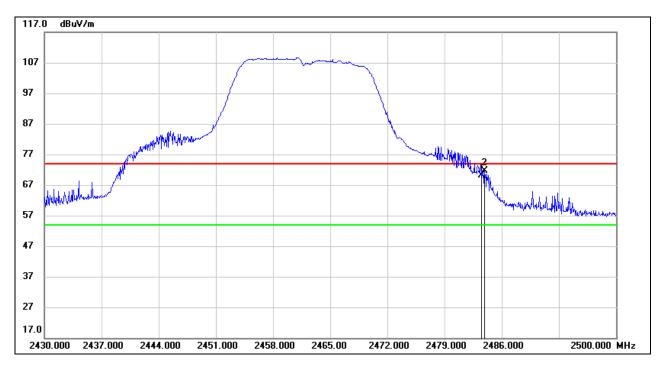

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Page 32 of 33

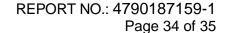


AVG

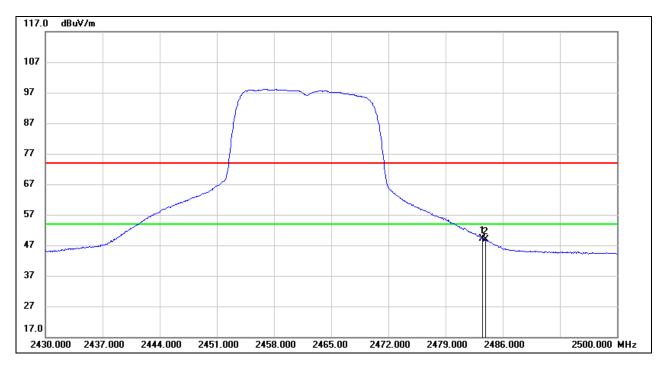
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	18.91	32.66	51.57	54.00	-2.43	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT NO.: 4790187159-1 Page 33 of 34


RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.14	33.10	70.24	74.00	-3.76	peak
2	2483.900	38.49	33.10	71.59	74.00	-2.41	peak

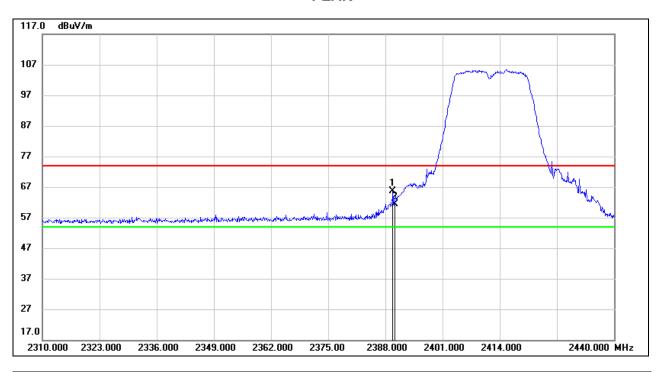
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.01	33.10	49.11	54.00	-4.89	AVG
2	2483.900	15.75	33.10	48.85	54.00	-5.15	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

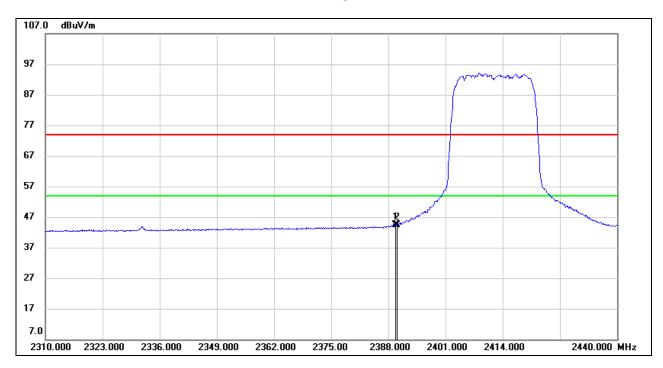
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.

8.1.3. 802.11n HT20 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

PEAK

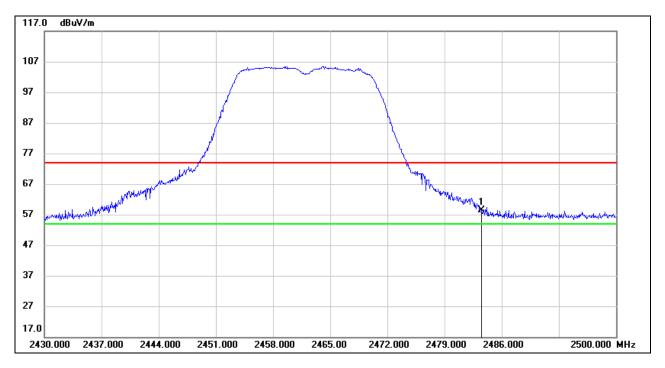

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.690	32.98	32.66	65.64	74.00	-8.36	peak
2	2390.000	28.80	32.66	61.46	74.00	-12.54	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT NO.: 4790187159-1 Page 36 of 37

AVG

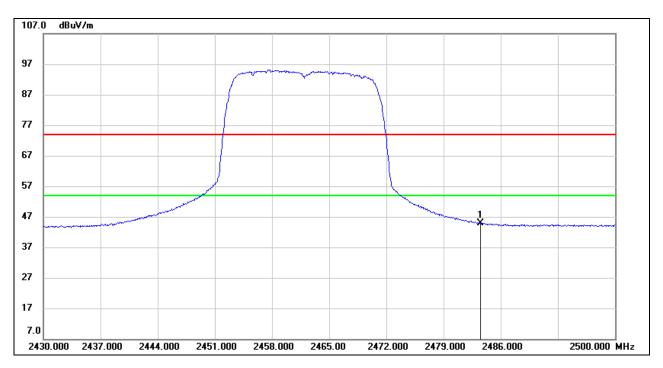
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.690	11.75	32.66	44.41	54.00	-9.59	AVG
2	2390.000	11.73	32.66	44.39	54.00	-9.61	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT NO.: 4790187159-1 Page 37 of 38

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	25.25	33.10	58.35	74.00	-15.65	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

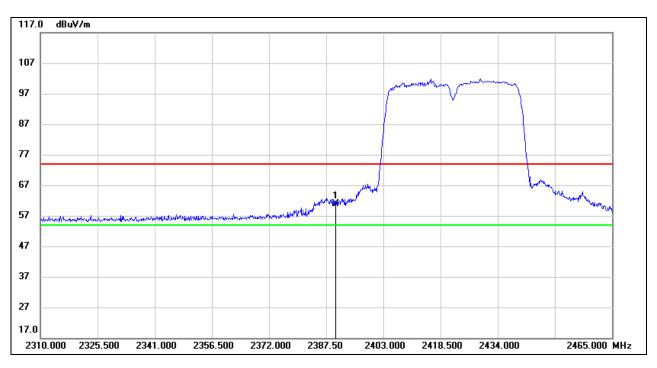
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483,500	11.85	33.10	44.95	54.00	-9.05	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

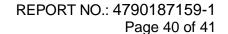
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.

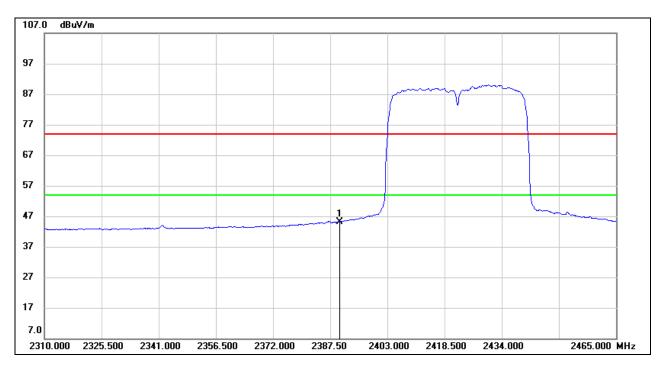

REPORT NO.: 4790187159-1

Page 39 of 40

8.1.4. **802.11n HT40 MIMO MODE**


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

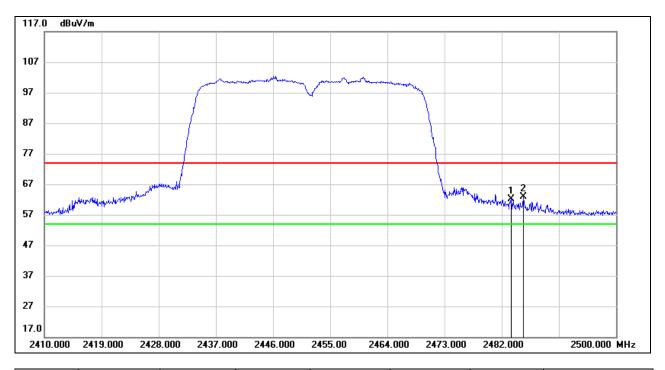
PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	28.16	32.66	60.82	74.00	-13.18	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

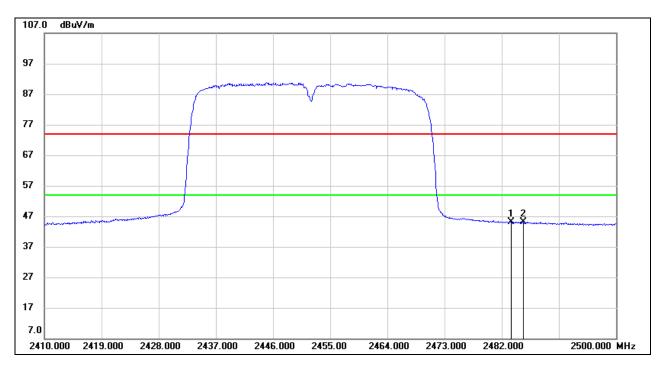
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	12.59	32.66	45.25	54.00	-8.75	AVG


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT NO.: 4790187159-1 Page 41 of 42

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	28.93	33.10	62.03	74.00	-11.97	peak
2	2485.420	29.85	33.10	62.95	74.00	-11.05	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

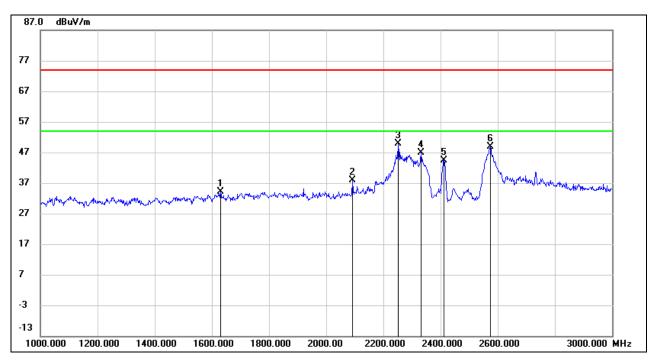
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	11.98	33.10	45.08	54.00	-8.92	AVG
2	2485.420	11.98	33.10	45.08	54.00	-8.92	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.1.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.

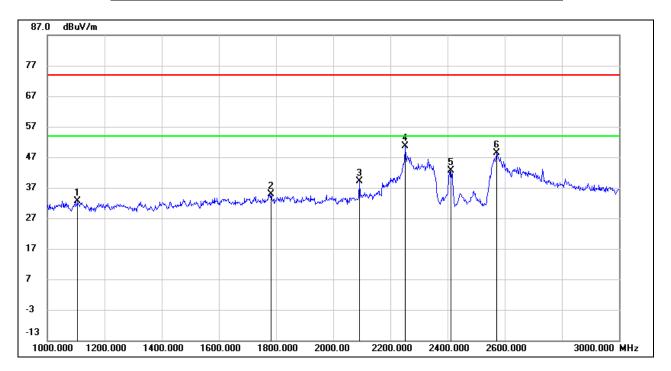

REPORT NO.: 4790187159-1

Page 43 of 44

SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 8.2.

8.2.1. **802.11n HT20 MIMO MODE**

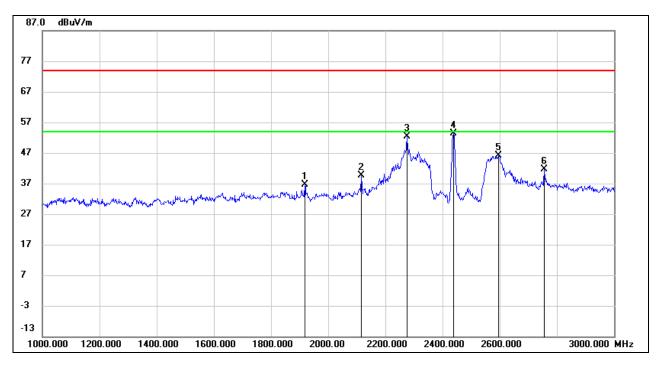
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1630.000	45.86	-11.81	34.05	74.00	-39.95	peak
2	2092.000	48.47	-10.59	37.88	74.00	-36.12	peak
3	2252.000	59.52	-9.67	49.85	74.00	-24.15	peak
4	2332.000	56.25	-9.35	46.90	74.00	-27.10	peak
5	2412.000	53.31	-9.04	44.27	/	/	Fundamental
6	2574.000	57.60	-8.69	48.91	74.00	-25.09	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

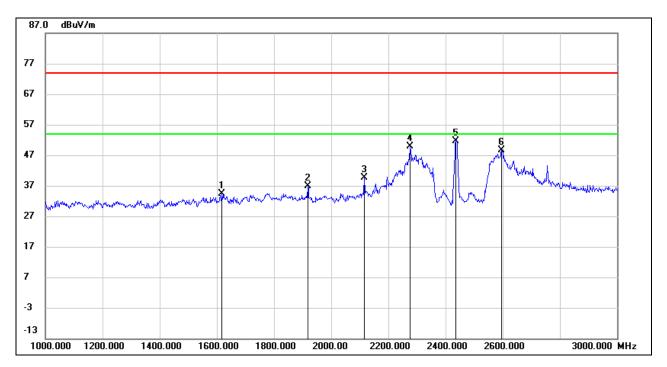
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1106.000	46.90	-14.39	32.51	74.00	-41.49	peak
2	1782.000	45.85	-10.87	34.98	74.00	-39.02	peak
3	2092.000	49.67	-10.59	39.08	74.00	-34.92	peak
4	2252.000	60.39	-9.67	50.72	74.00	-23.28	peak
5	2412.000	51.73	-9.04	42.69	/	/	Fundamental
6	2572.000	57.01	-8.69	48.32	74.00	-25.68	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

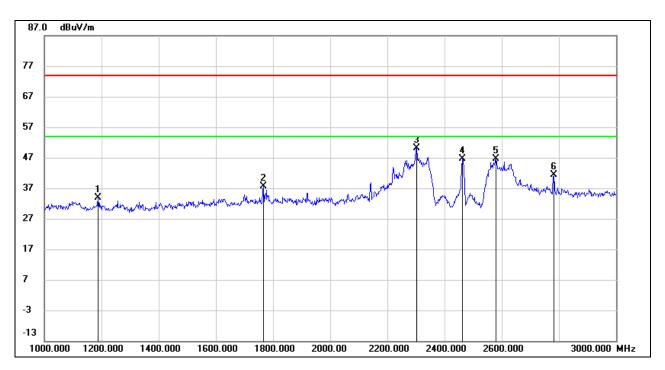
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1919.750	47.55	-11.01	36.54	74.00	-37.46	peak
2	2116.750	49.95	-10.44	39.51	74.00	-34.49	peak
3	2277.000	61.96	-9.57	52.39	74.00	-21.61	peak
4	2437.000	62.33	-8.98	53.35	/	/	Fundamental
5	2597.500	54.81	-8.65	46.16	74.00	-27.84	peak
6	2757.250	49.52	-7.90	41.62	74.00	-32.38	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

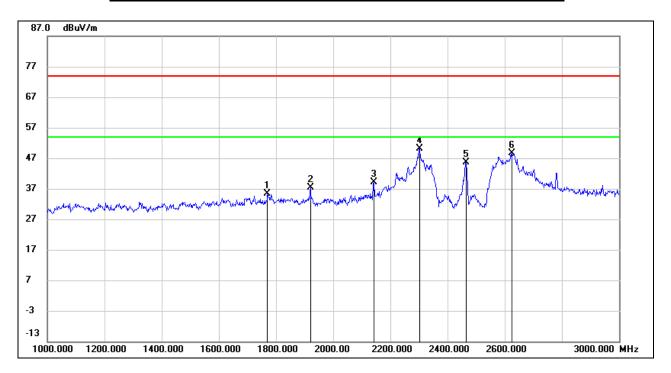
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1619.500	46.36	-11.87	34.49	74.00	-39.51	peak
2	1919.750	47.90	-11.01	36.89	74.00	-37.11	peak
3	2117.250	49.99	-10.43	39.56	74.00	-34.44	peak
4	2277.000	59.47	-9.57	49.90	74.00	-24.10	peak
5	2437.000	60.72	-8.98	51.74	/	/	Fundamental
6	2597.250	57.35	-8.65	48.70	74.00	-25.30	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1188.500	47.85	-13.85	34.00	74.00	-40.00	peak
2	1766.000	48.53	-10.97	37.56	74.00	-36.44	peak
3	2302.500	59.72	-9.47	50.25	74.00	-23.75	peak
4	2462.000	55.58	-8.92	46.66	/	/	Fundamental
5	2581.500	55.18	-8.67	46.51	74.00	-27.49	peak
6	2782.500	49.09	-7.78	41.31	74.00	-32.69	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

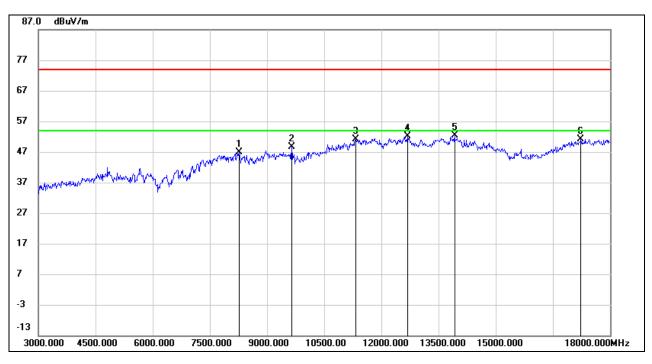
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1771.750	46.22	-10.94	35.28	74.00	-38.72	peak
2	1920.250	48.29	-11.02	37.27	74.00	-36.73	peak
3	2142.000	49.43	-10.26	39.17	74.00	-34.83	peak
4	2302.000	59.72	-9.47	50.25	74.00	-23.75	peak
5	2462.000	54.53	-8.91	45.62	/	/	Fundamental
6	2627.750	57.16	-8.51	48.65	74.00	-25.35	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All the modes and channels had been tested, but only the worst data was recorded in the report.

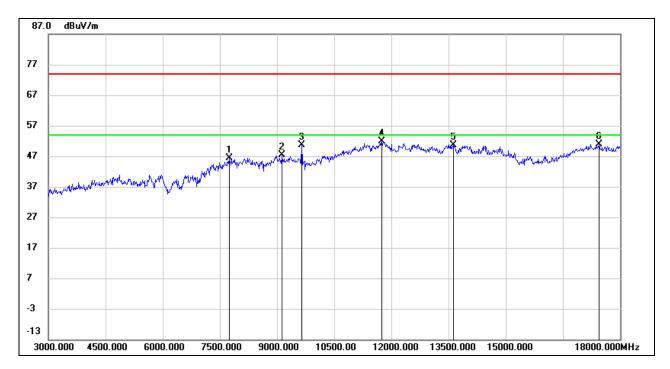


8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

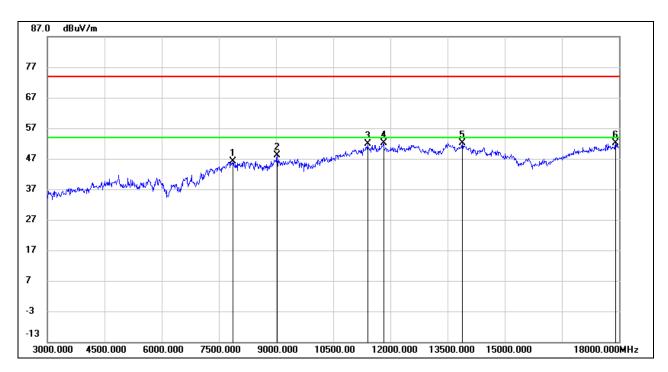
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8265.000	38.39	8.45	46.84	74.00	-27.16	peak
2	9645.000	38.04	10.47	48.51	74.00	-25.49	peak
3	11325.000	35.60	15.48	51.08	74.00	-22.92	peak
4	12690.000	35.21	16.83	52.04	74.00	-21.96	peak
5	13920.000	33.70	18.64	52.34	74.00	-21.66	peak
6	17235.000	31.47	19.76	51.23	74.00	-22.77	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

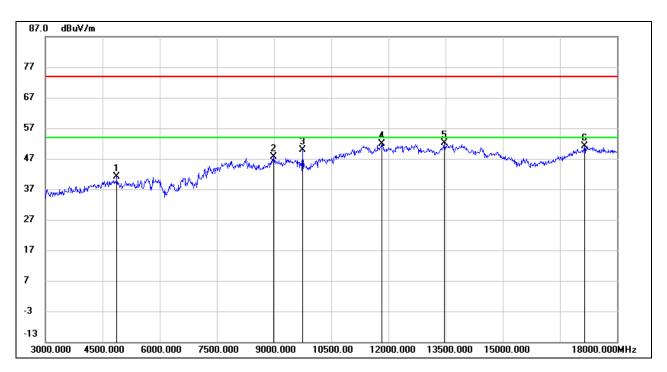
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7740.000	38.92	7.36	46.28	74.00	-27.72	peak
2	9135.000	38.11	9.34	47.45	74.00	-26.55	peak
3	9645.000	40.23	10.47	50.70	74.00	-23.30	peak
4	11745.000	34.79	17.07	51.86	74.00	-22.14	peak
5	13620.000	32.31	18.40	50.71	74.00	-23.29	peak
6	17445.000	31.00	19.97	50.97	74.00	-23.03	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

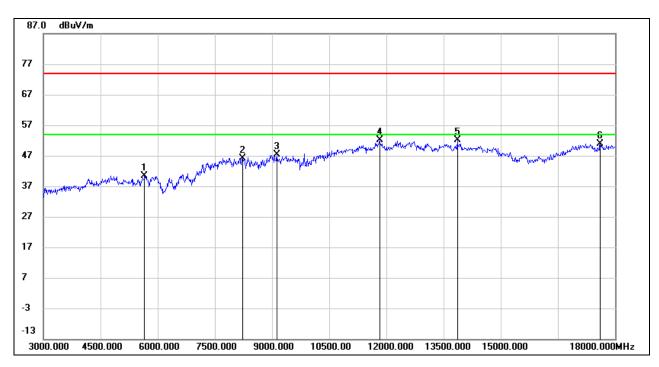
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7875.000	38.71	7.40	46.11	74.00	-27.89	peak
2	9030.000	38.18	9.96	48.14	74.00	-25.86	peak
3	11400.000	35.93	15.84	51.77	74.00	-22.23	peak
4	11820.000	34.93	17.32	52.25	74.00	-21.75	peak
5	13890.000	33.48	18.67	52.15	74.00	-21.85	peak
6	17910.000	28.88	23.14	52.02	74.00	-21.98	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

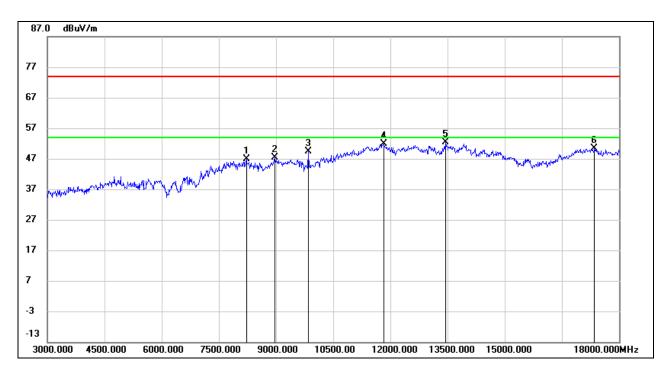
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	41.67	-0.59	41.08	74.00	-32.92	peak
2	8985.000	37.69	9.96	47.65	74.00	-26.35	peak
3	9750.000	39.43	10.34	49.77	74.00	-24.23	peak
4	11835.000	34.68	17.29	51.97	74.00	-22.03	peak
5	13470.000	33.87	18.35	52.22	74.00	-21.78	peak
6	17145.000	31.66	19.41	51.07	74.00	-22.93	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



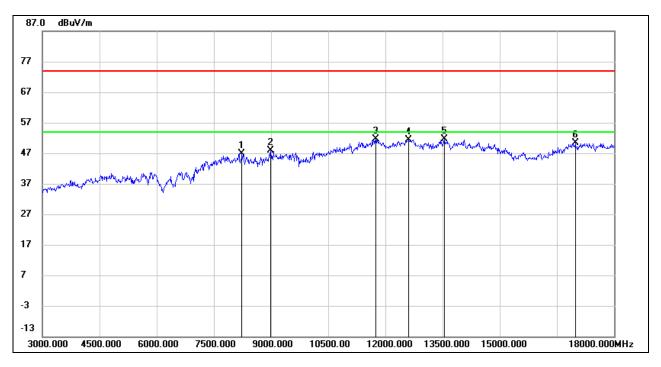
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.04	1.44	40.48	74.00	-33.52	peak
2	8220.000	37.56	8.64	46.20	74.00	-27.80	peak
3	9120.000	38.02	9.42	47.44	74.00	-26.56	peak
4	11820.000	34.87	17.32	52.19	74.00	-21.81	peak
5	13860.000	33.40	18.71	52.11	74.00	-21.89	peak
6	17610.000	30.06	20.85	50.91	74.00	-23.09	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8220.000	38.25	8.64	46.89	74.00	-27.11	peak
2	8970.000	37.48	9.80	47.28	74.00	-26.72	peak
3	9840.000	38.94	10.39	49.33	74.00	-24.67	peak
4	11820.000	34.68	17.32	52.00	74.00	-22.00	peak
5	13440.000	33.97	18.29	52.26	74.00	-21.74	peak
6	17355.000	30.69	19.81	50.50	74.00	-23.50	peak

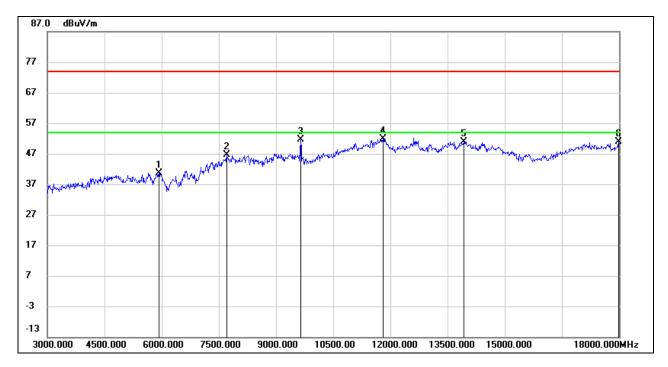
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



REPORT NO.: 4790187159-1 Page 55 of 56

8.3.2. 802.11g SISO MODE

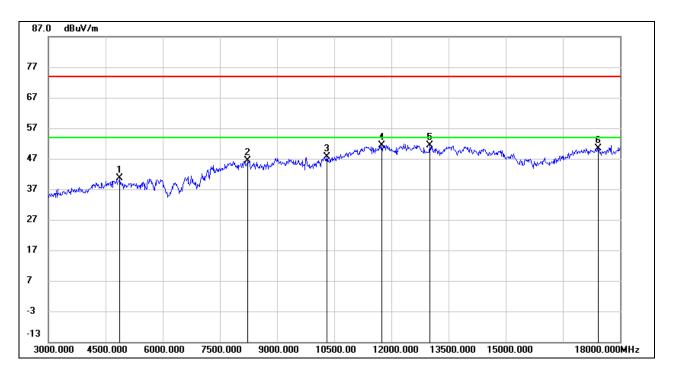
ANTENNA 1 TEST RESULTS (WORST CASE)


HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8235.000	38.35	8.58	46.93	74.00	-27.07	peak
2	8985.000	37.83	9.96	47.79	74.00	-26.21	peak
3	11745.000	34.52	17.07	51.59	74.00	-22.41	peak
4	12600.000	34.81	16.63	51.44	74.00	-22.56	peak
5	13545.000	33.16	18.39	51.55	74.00	-22.45	peak
6	16980.000	31.96	18.45	50.41	74.00	-23.59	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

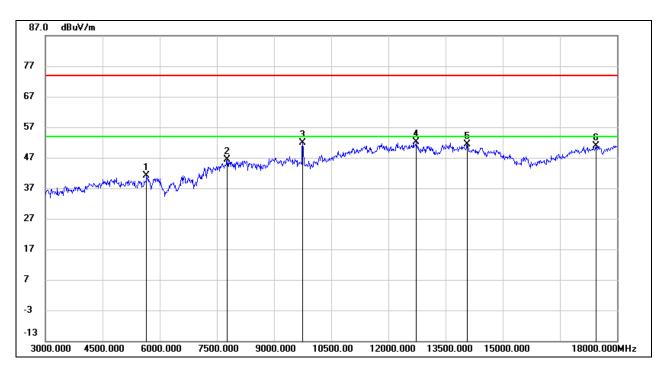
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5925.000	38.70	1.93	40.63	74.00	-33.37	peak
2	7710.000	39.32	7.25	46.57	74.00	-27.43	peak
3	9645.000	41.12	10.47	51.59	74.00	-22.41	peak
4	11805.000	34.63	17.34	51.97	74.00	-22.03	peak
5	13920.000	32.30	18.64	50.94	74.00	-23.06	peak
6	17985.000	27.53	23.33	50.86	74.00	-23.14	peak

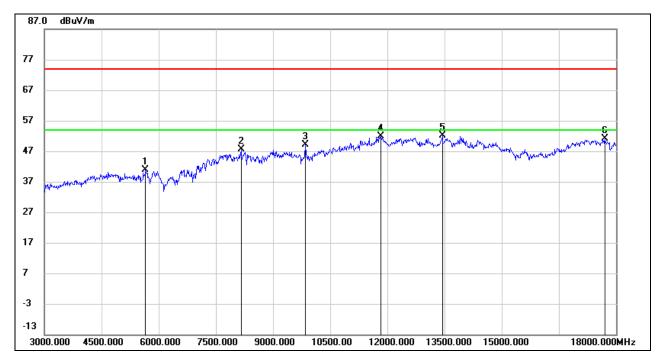
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



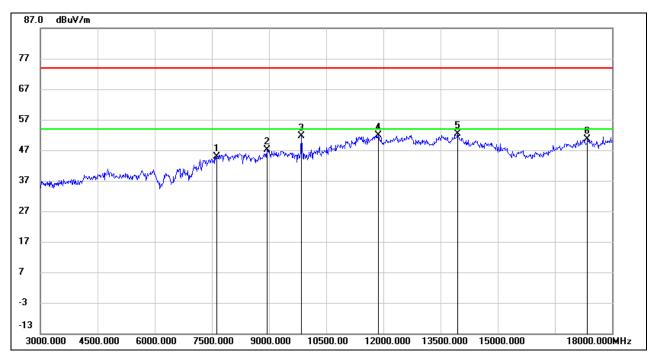
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	41.19	-0.59	40.60	74.00	-33.40	peak
2	8235.000	37.80	8.58	46.38	74.00	-27.62	peak
3	10305.000	35.92	11.65	47.57	74.00	-26.43	peak
4	11745.000	34.35	17.07	51.42	74.00	-22.58	peak
5	13005.000	34.39	16.90	51.29	74.00	-22.71	peak
6	17430.000	30.57	19.92	50.49	74.00	-23.51	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.74	1.44	41.18	74.00	-32.82	peak
2	7770.000	38.83	7.49	46.32	74.00	-27.68	peak
3	9750.000	41.65	10.34	51.99	74.00	-22.01	peak
4	12735.000	35.09	16.92	52.01	74.00	-21.99	peak
5	14070.000	33.07	18.30	51.37	74.00	-22.63	peak
6	17445.000	31.01	19.97	50.98	74.00	-23.02	peak

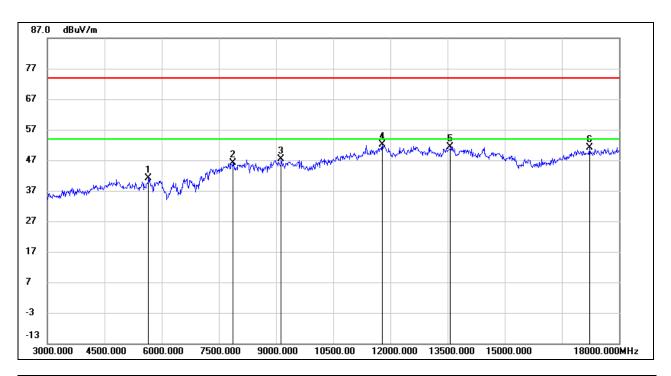
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.40	1.44	40.84	74.00	-33.16	peak
2	8160.000	39.22	8.39	47.61	74.00	-26.39	peak
3	9840.000	38.80	10.39	49.19	74.00	-24.81	peak
4	11820.000	34.48	17.32	51.80	74.00	-22.20	peak
5	13440.000	33.87	18.29	52.16	74.00	-21.84	peak
6	17700 000	29 27	21.80	51.07	74 00	-22.93	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

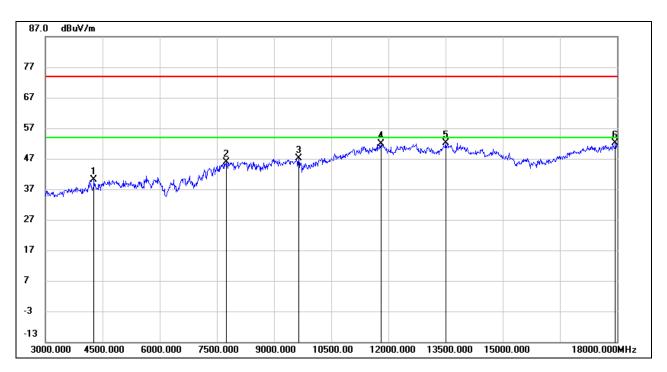

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7620.000	37.91	6.87	44.78	74.00	-29.22	peak
2	8940.000	37.57	9.47	47.04	74.00	-26.96	peak
3	9840.000	41.14	10.39	51.53	74.00	-22.47	peak
4	11865.000	34.59	17.24	51.83	74.00	-22.17	peak
5	13950.000	33.87	18.61	52.48	74.00	-21.52	peak
6	17355.000	30.79	19.81	50.60	74.00	-23.40	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

REPORT NO.: 4790187159-1 Page 61 of 62

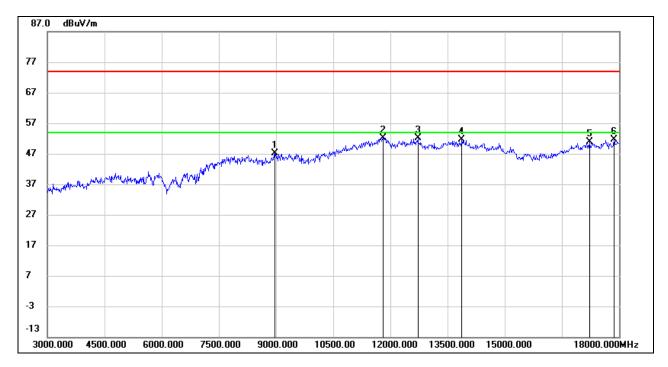
8.3.3. 802.11n HT20 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.81	1.44	41.25	74.00	-32.75	peak
2	7875.000	38.70	7.40	46.10	74.00	-27.90	peak
3	9135.000	38.05	9.34	47.39	74.00	-26.61	peak
4	11790.000	34.76	17.30	52.06	74.00	-21.94	peak
5	13575.000	32.91	18.38	51.29	74.00	-22.71	peak
6	17220.000	31.30	19.75	51.05	74.00	-22.95	peak

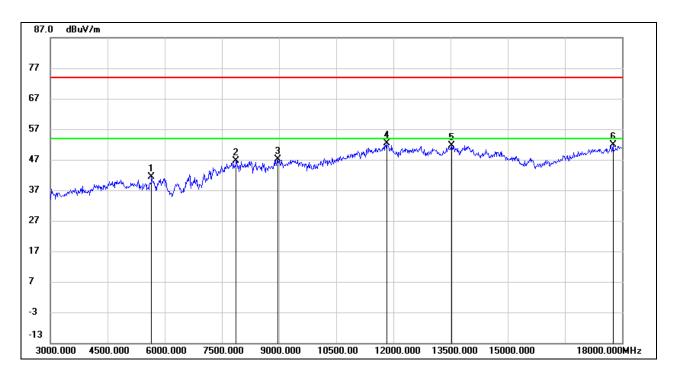
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4275.000	42.97	-2.79	40.18	74.00	-33.82	peak
2	7755.000	38.47	7.42	45.89	74.00	-28.11	peak
3	9645.000	36.73	10.47	47.20	74.00	-26.80	peak
4	11805.000	34.57	17.34	51.91	74.00	-22.09	peak
5	13500.000	33.67	18.41	52.08	74.00	-21.92	peak
6	17955.000	28.78	23.26	52.04	74.00	-21.96	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

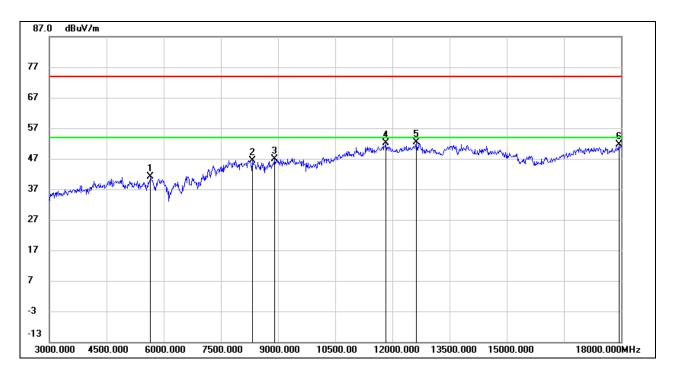
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8970.000	37.24	9.80	47.04	74.00	-26.96	peak
2	11805.000	34.74	17.34	52.08	74.00	-21.92	peak
3	12720.000	35.25	16.89	52.14	74.00	-21.86	peak
4	13875.000	33.02	18.69	51.71	74.00	-22.29	peak
5	17220.000	31.19	19.75	50.94	74.00	-23.06	peak
6	17865.000	28.56	23.03	51.59	74.00	-22.41	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

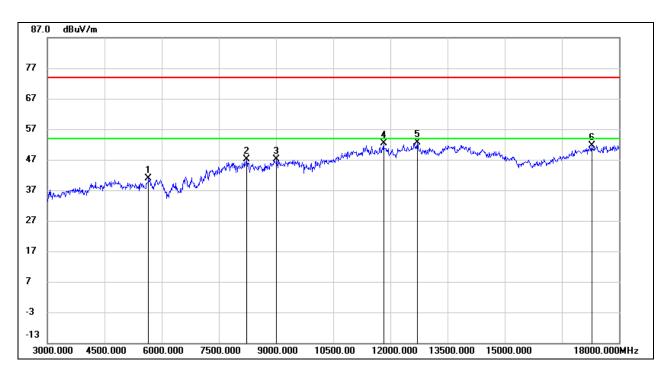
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.91	1.44	41.35	74.00	-32.65	peak
2	7875.000	39.17	7.40	46.57	74.00	-27.43	peak
3	8970.000	37.28	9.80	47.08	74.00	-26.92	peak
4	11820.000	34.97	17.32	52.29	74.00	-21.71	peak
5	13530.000	33.16	18.40	51.56	74.00	-22.44	peak
6	17760.000	29.44	22.44	51.88	74.00	-22.12	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.70	1.44	41.14	74.00	-32.86	peak
2	8325.000	38.20	8.21	46.41	74.00	-27.59	peak
3	8910.000	37.64	9.14	46.78	74.00	-27.22	peak
4	11820.000	34.90	17.32	52.22	74.00	-21.78	peak
5	12630.000	35.58	16.69	52.27	74.00	-21.73	peak
6	17940.000	28.33	23.22	51.55	74.00	-22.45	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

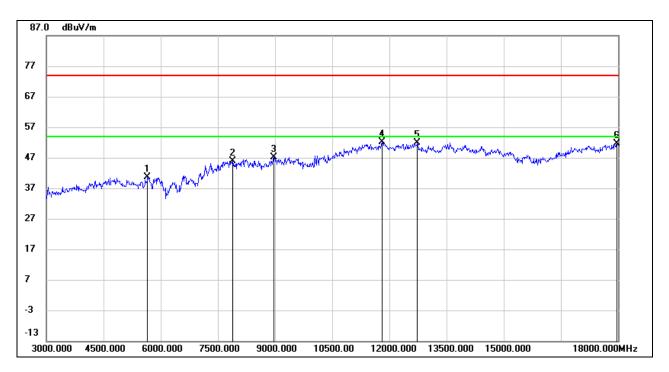
REPORT NO.: 4790187159-1

Page 66 of 67

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.46	1.44	40.90	74.00	-33.10	peak
2	8235.000	38.51	8.58	47.09	74.00	-26.91	peak
3	9015.000	37.00	10.04	47.04	74.00	-26.96	peak
4	11820.000	35.12	17.32	52.44	74.00	-21.56	peak
5	12705.000	35.84	16.87	52.71	74.00	-21.29	peak
6	17280.000	31.97	19.78	51.75	74.00	-22.25	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

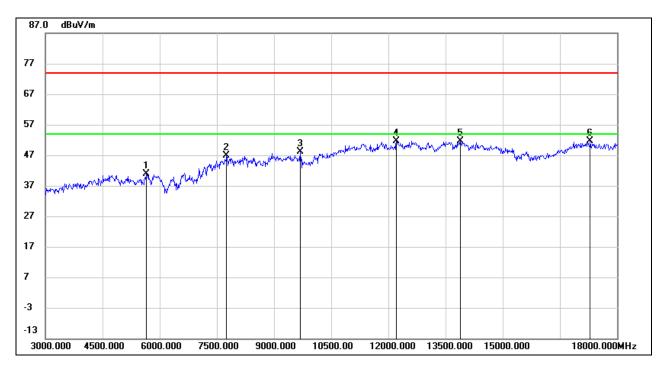

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All the modes and channels had been tested, but only the worst data was recorded in the report.

REPORT NO.: 4790187159-1 Page 67 of 68

8.3.4. 802.11n HT40 MIMO MODE

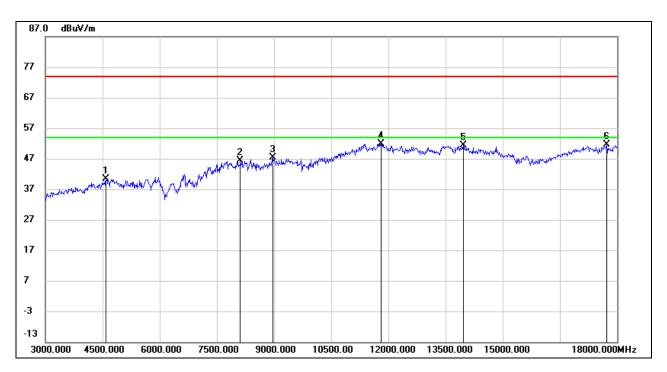
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.13	1.44	40.57	74.00	-33.43	peak
2	7890.000	38.54	7.36	45.90	74.00	-28.10	peak
3	8970.000	37.45	9.80	47.25	74.00	-26.75	peak
4	11805.000	34.68	17.34	52.02	74.00	-21.98	peak
5	12735.000	34.98	16.92	51.90	74.00	-22.10	peak
6	17970.000	28.25	23.29	51.54	74.00	-22.46	peak

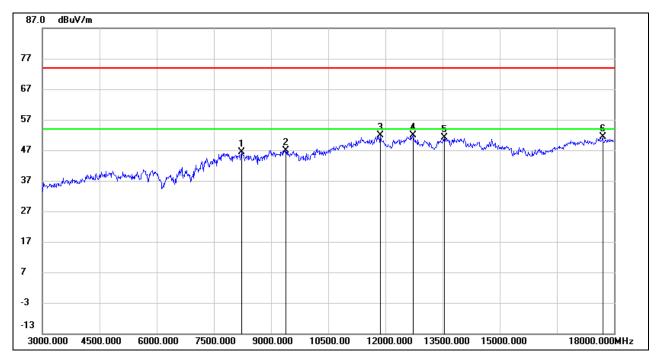
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5640.000	39.39	1.44	40.83	74.00	-33.17	peak
2	7755.000	39.41	7.42	46.83	74.00	-27.17	peak
3	9690.000	37.61	10.40	48.01	74.00	-25.99	peak
4	12210.000	35.08	16.65	51.73	74.00	-22.27	peak
5	13890.000	32.99	18.67	51.66	74.00	-22.34	peak
6	17295.000	31.88	19.79	51.67	74.00	-22.33	peak

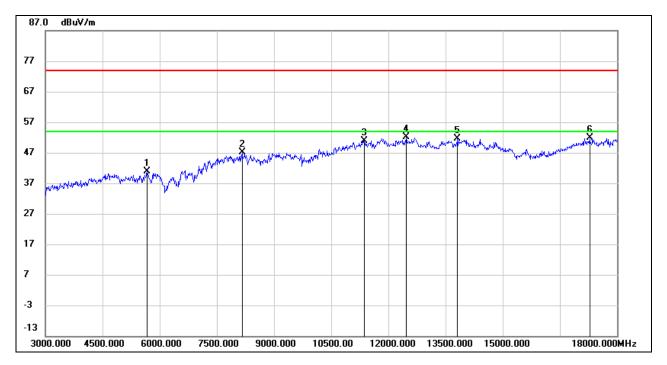
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4590.000	42.01	-1.70	40.31	74.00	-33.69	peak
2	8115.000	38.29	8.01	46.30	74.00	-27.70	peak
3	8970.000	37.47	9.80	47.27	74.00	-26.73	peak
4	11805.000	34.64	17.34	51.98	74.00	-22.02	peak
5	13965.000	32.83	18.58	51.41	74.00	-22.59	peak
6	17730.000	29.55	22.11	51.66	74.00	-22.34	peak

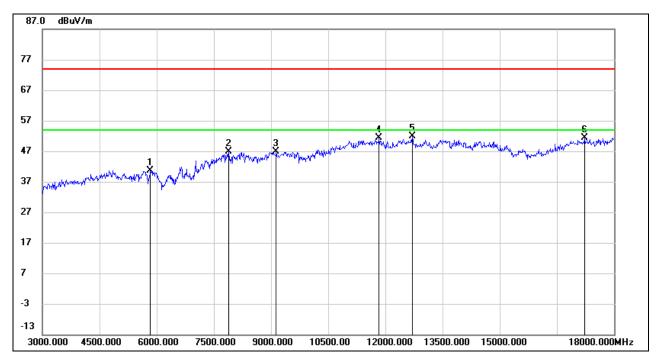
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8235.000	37.72	8.58	46.30	74.00	-27.70	peak
2	9390.000	36.88	10.07	46.95	74.00	-27.05	peak
3	11865.000	34.68	17.24	51.92	74.00	-22.08	peak
4	12720.000	34.90	16.89	51.79	74.00	-22.21	peak
5	13545.000	32.64	18.39	51.03	74.00	-22.97	peak
6	17700.000	29.50	21.80	51.30	74.00	-22.70	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5670.000	39.38	1.44	40.82	74.00	-33.18	peak
2	8160.000	38.73	8.39	47.12	74.00	-26.88	peak
3	11370.000	35.30	15.70	51.00	74.00	-23.00	peak
4	12465.000	35.29	16.75	52.04	74.00	-21.96	peak
5	13815.000	32.92	18.75	51.67	74.00	-22.33	peak
6	17280.000	32.07	19.78	51.85	74.00	-22.15	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

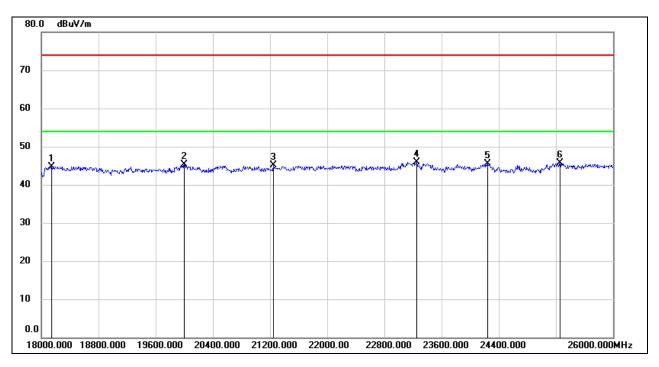
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5835.000	38.97	1.59	40.56	74.00	-33.44	peak
2	7890.000	39.47	7.36	46.83	74.00	-27.17	peak
3	9135.000	37.54	9.34	46.88	74.00	-27.12	peak
4	11835.000	34.15	17.29	51.44	74.00	-22.56	peak
5	12705.000	35.09	16.87	51.96	74.00	-22.04	peak
6	17220.000	31.60	19.75	51.35	74.00	-22.65	neak

Note: 1. Peak Result = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All the modes and channels had been tested, but only the worst data was recorded in the report.



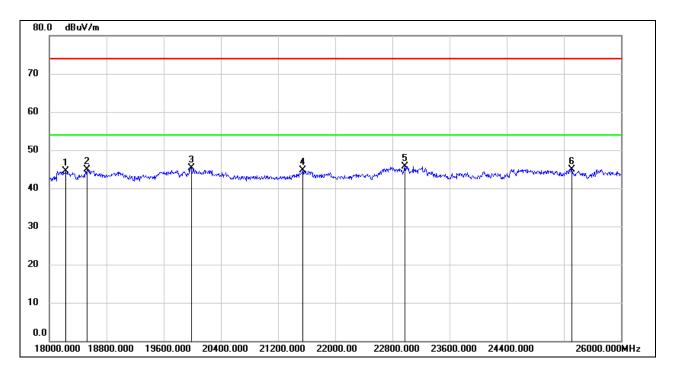
8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18144.000	50.27	-5.48	44.79	74.00	-29.21	peak
2	20000.000	50.81	-5.45	45.36	74.00	-28.64	peak
3	21248.000	49.79	-4.77	45.02	74.00	-28.98	peak
4	23256.000	49.22	-3.35	45.87	74.00	-28.13	peak
5	24248.000	48.32	-2.83	45.49	74.00	-28.51	peak
6	25256.000	47.29	-1.67	45.62	74.00	-28.38	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

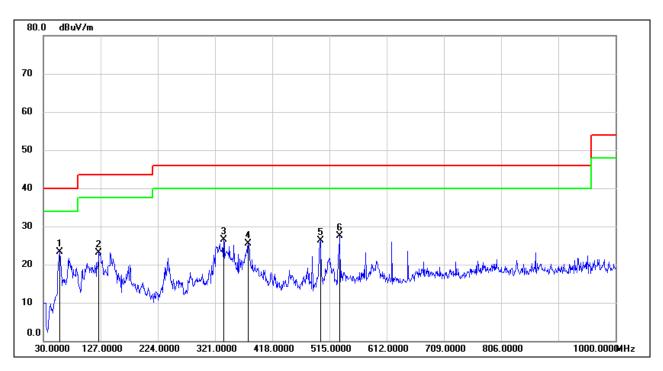
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18224.000	50.08	-5.53	44.55	74.00	-29.45	peak
2	18528.000	50.11	-5.26	44.85	74.00	-29.15	peak
3	19984.000	50.71	-5.44	45.27	74.00	-28.73	peak
4	21544.000	49.26	-4.63	44.63	74.00	-29.37	peak
5	22976.000	49.26	-3.46	45.80	74.00	-28.20	peak
6	25312.000	46.70	-1.70	45.00	74.00	-29.00	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

Note: All the modes and channels have been tested, but only the worst data was recorded in the report.

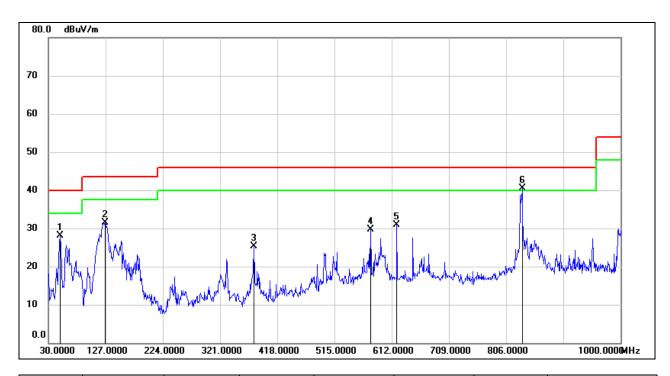

REPORT NO.: 4790187159-1 Page 75 of 76

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.5.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	58.1300	43.77	-20.55	23.22	40.00	-16.78	QP
2	124.0900	42.69	-19.65	23.04	43.50	-20.46	QP
3	335.5500	41.01	-14.54	26.47	46.00	-19.53	QP
4	377.2600	39.24	-13.72	25.52	46.00	-20.48	QP
5	499.4800	37.75	-11.48	26.27	46.00	-19.73	QP
6	532.4600	38.18	-10.73	27.45	46.00	-18.55	OP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

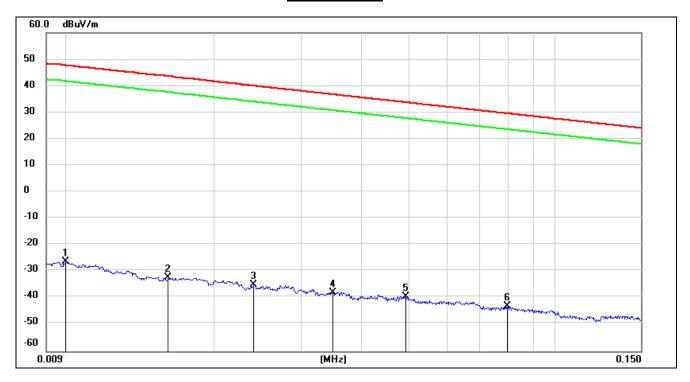
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	49.4000	48.76	-20.72	28.04	40.00	-11.96	QP
2	126.0300	51.03	-19.56	31.47	43.50	-12.03	QP
3	378.2300	38.99	-13.70	25.29	46.00	-20.71	QP
4	576.1100	39.76	-10.02	29.74	46.00	-16.26	QP
5	620.7300	40.25	-9.42	30.83	46.00	-15.17	QP
6	833.1599	47.02	-6.61	40.41	46.00	-5.59	QP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modes and channels have been tested, but only the worst data was recorded in the report.

REPORT NO.: 4790187159-1 Page 77 of 78

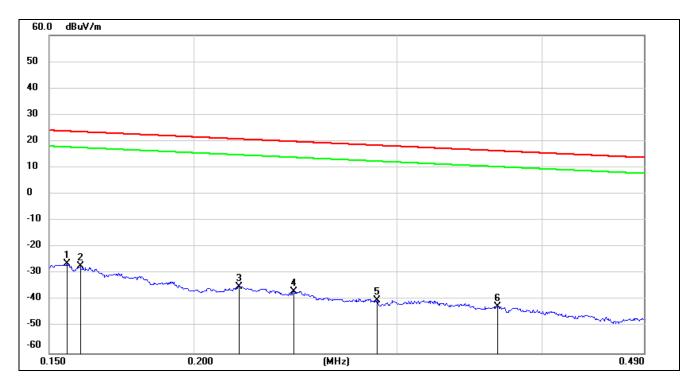

8.6. SPURIOUS EMISSIONS BELOW 30 MHz

8.6.1. 802.11b SISO MODE

ANTENNA 1 TEST RESULTS (WORST CASE)

SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

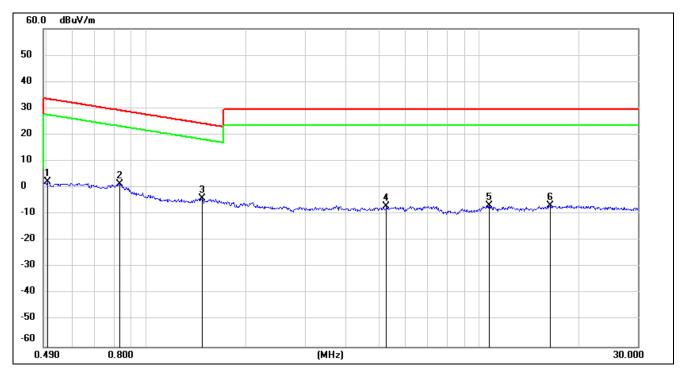
9 kHz~ 150 kHz


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.6	-73.78	peak
2	0.0160	68.97	-101.37	-32.4	43.52	-75.92	peak
3	0.0240	66.32	-101.36	-35.04	40	-75.04	peak
4	0.0349	63.53	-101.41	-37.88	36.75	-74.63	peak
5	0.0492	62.05	-101.47	-39.42	33.76	-73.18	peak
6	0.0796	58.53	-101.63	-43.1	29.58	-72.68	peak

Note: 1. Measurement = Reading Level + Correct Factor

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150 kHz ~ 490 kHz


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	75.27	-101.65	-26.38	23.77	-50.15	peak
2	0.1595	74.36	-101.65	-27.29	23.55	-50.84	peak
3	0.2190	66.77	-101.75	-34.98	20.79	-55.77	peak
4	0.2442	65.03	-101.79	-36.76	19.85	-56.61	peak
5	0.2878	61.72	-101.85	-40.13	18.42	-58.55	peak
6	0.3662	59.58	-101.93	-42.35	16.33	-58.68	peak

Note: 1. Measurement = Reading Level + Correct Factor

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

REPORT NO.: 4790187159-1

Page 79 of 80

490 kHz ~ 30 MHz

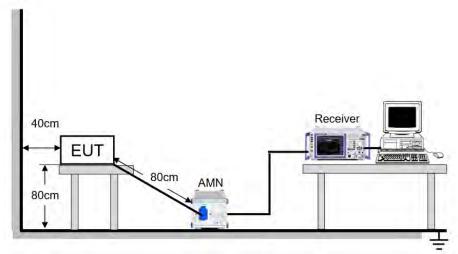
No.	Frequency	Reading	Correct	FCC Result	FCC Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5040	64.44	-62.07	2.37	33.56	-31.19	peak
2	0.8296	63.44	-62.17	1.27	29.23	-27.96	peak
3	1.4700	57.89	-62.05	-4.16	24.26	-28.42	peak
4	5.2705	54.54	-61.45	-6.91	29.54	-36.45	peak
5	10.7300	53.98	-60.83	-6.85	29.54	-36.39	peak
6	16.3959	54.17	-60.96	-6.79	29.54	-36.33	neak

Note: 1. Measurement = Reading Level + Correct Factor

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and channels had been tested, but only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a).

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

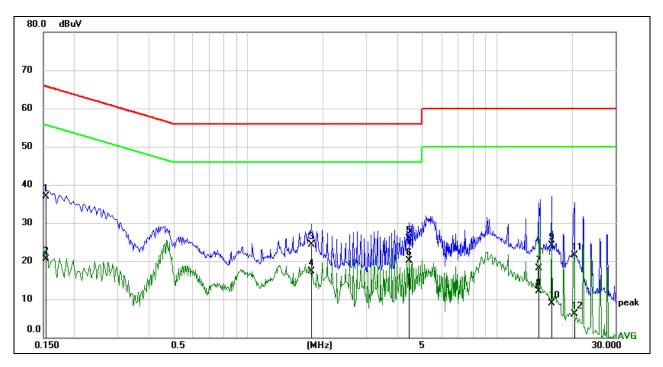
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

REPORT NO.: 4790187159-1

Page 81 of 82

TEST ENVIRONMENT

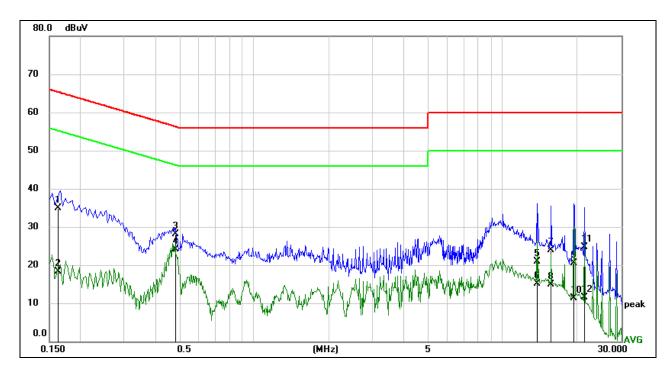

Temperature	23.4 °C	Relative Humidity	58.6 %
Atmosphere Pressure	101 kPa	Test Voltage	AC120 V,60 Hz

RESULTS

REPORT NO.: 4790187159-1 Page 82 of 83

9.1.1. 802.11b MODE WITH ADAPTER (HOIOTO)

LINE L RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1536	37.29	-0.41	36.88	65.80	-28.92	QP
2	0.1536	20.82	-0.41	20.41	55.80	-35.39	AVG
3	1.8004	24.31	-0.08	24.23	56.00	-31.77	QP
4	1.8004	17.32	-0.08	17.24	46.00	-28.76	AVG
5	4.4535	26.24	-0.28	25.96	56.00	-30.04	QP
6	4.4535	20.29	-0.28	20.01	46.00	-25.99	AVG
7	14.8765	19.12	-0.94	18.18	60.00	-41.82	QP
8	14.8765	13.00	-0.94	12.06	50.00	-37.94	AVG
9	16.6777	25.18	-1.00	24.18	60.00	-35.82	QP
10	16.6777	9.94	-1.00	8.94	50.00	-41.06	AVG
11	20.4671	22.56	-1.06	21.50	60.00	-38.50	QP
12	20.4671	7.26	-1.06	6.20	50.00	-43.80	AVG

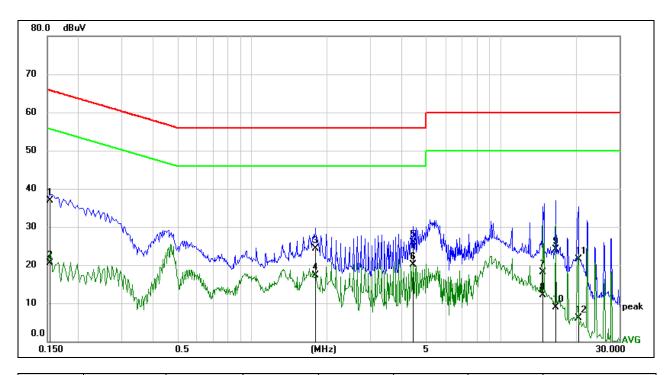
Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1621	35.29	-0.41	34.88	65.36	-30.48	QP
2	0.1621	18.63	-0.41	18.22	55.36	-37.14	AVG
3	0.4800	28.42	-0.40	28.02	56.34	-28.32	QP
4	0.4800	24.55	-0.40	24.15	46.34	-22.19	AVG
5	13.7404	21.81	-0.89	20.92	60.00	-39.08	QP
6	13.7404	16.04	-0.89	15.15	50.00	-34.85	AVG
7	15.6350	24.79	-0.98	23.81	60.00	-36.19	QP
8	15.6350	15.85	-0.98	14.87	50.00	-35.13	AVG
9	19.2612	21.56	-1.04	20.52	60.00	-39.48	QP
10	19.2612	12.44	-1.04	11.40	50.00	-38.60	AVG
11	21.3217	25.75	-1.06	24.69	60.00	-35.31	QP
12	21.3217	12.60	-1.06	11.54	50.00	-38.46	AVG

Note: 1. Result = Reading +Correct Factor.

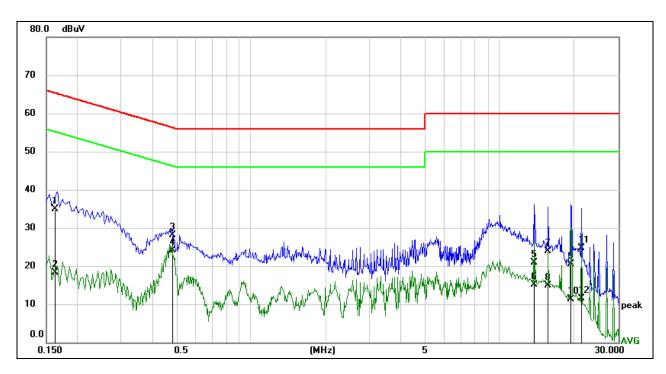

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

Note: All the modes and channels have been tested, but only the worst data was recorded in the report.

REPORT NO.: 4790187159-1 Page 84 of 85

9.1.1. 802.11b MODE WITH ADAPTER (MASS)

LINE L RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1536	37.29	-0.41	36.88	65.80	-28.92	QP
2	0.1536	20.82	-0.41	20.41	55.80	-35.39	AVG
3	1.8004	24.31	-0.08	24.23	56.00	-31.77	QP
4	1.8004	17.32	-0.08	17.24	46.00	-28.76	AVG
5	4.4535	26.24	-0.28	25.96	56.00	-30.04	QP
6	4.4535	20.29	-0.28	20.01	46.00	-25.99	AVG
7	14.8765	19.12	-0.94	18.18	60.00	-41.82	QP
8	14.8765	13.00	-0.94	12.06	50.00	-37.94	AVG
9	16.6777	25.18	-1.00	24.18	60.00	-35.82	QP
10	16.6777	9.94	-1.00	8.94	50.00	-41.06	AVG
11	20.4671	22.56	-1.06	21.50	60.00	-38.50	QP
12	20.4671	7.26	-1.06	6.20	50.00	-43.80	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz \sim 150 kHz), 9 kHz (150 kHz \sim 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1621	35.29	-0.41	34.88	65.36	-30.48	QP
2	0.1621	18.63	-0.41	18.22	55.36	-37.14	AVG
3	0.4800	28.42	-0.40	28.02	56.34	-28.32	QP
4	0.4800	24.55	-0.40	24.15	46.34	-22.19	AVG
5	13.7404	21.81	-0.89	20.92	60.00	-39.08	QP
6	13.7404	16.04	-0.89	15.15	50.00	-34.85	AVG
7	15.6350	24.79	-0.98	23.81	60.00	-36.19	QP
8	15.6350	15.85	-0.98	14.87	50.00	-35.13	AVG
9	19.2612	21.56	-1.04	20.52	60.00	-39.48	QP
10	19.2612	12.44	-1.04	11.40	50.00	-38.60	AVG
11	21.3217	25.75	-1.06	24.69	60.00	-35.31	QP
12	21.3217	12.60	-1.06	11.54	50.00	-38.46	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

Note: All the modes and channels have been tested, but only the worst data was recorded in the report.

REPORT NO.: 4790187159-1

Page 86 of 87

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

REPORT NO.: 4790187159-1

Page 87 of 88

11. Appendix

11.1. Appendix A: DTS Bandwidth 11.1.1. Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2412	10.080	2406.960	2417.040	0.5	PASS
	Ant2	2412	10.040	2407.000	2417.040	0.5	PASS
11B	Ant1	2437	10.040	2431.960	2442.000	0.5	PASS
ПБ	Ant2	2437	10.040	2431.960	2442.000	0.5	PASS
	Ant1	2462	10.080	2456.960	2467.040	0.5	PASS
	Ant2	2462	10.080	2456.960	2467.040	0.5	PASS
	Ant1	2412	16.320	2403.840	2420.160	0.5	PASS
	Ant2	2412	16.320	2403.840	2420.160	0.5	PASS
110	Ant1	2437	16.320	2428.840	2445.160	0.5	PASS
11G	Ant2	2437	16.320	2428.840	2445.160	0.5	PASS
	Ant1	2462	16.320	2453.840	2470.160	0.5	PASS
	Ant2	2462	16.320	2453.840	2470.160	0.5	PASS
	Ant1	2412	17.280	2403.240	2420.520	0.5	PASS
	Ant2	2412	16.920	2403.600	2420.520	0.5	PASS
11N20MIMO	Ant1	2437	17.240	2428.240	2445.480	0.5	PASS
1 TINZUIVIIIVIO	Ant2	2437	17.280	2428.240	2445.520	0.5	PASS
	Ant1	2462	17.280	2453.240	2470.520	0.5	PASS
	Ant2	2462	17.280	2453.240	2470.520	0.5	PASS
	Ant1	2422	35.120	2404.400	2439.520	0.5	PASS
	Ant2	2422	35.280	2404.240	2439.520	0.5	PASS
448140841840	Ant1	2437	35.280	2419.240	2454.520	0.5	PASS
11N40MIMO	Ant2	2437	35.280	2419.240	2454.520	0.5	PASS
	Ant1	2452	35.360	2434.240	2469.600	0.5	PASS
	Ant2	2452	35.120	2434.400	2469.520	0.5	PASS

11.1.2. Test Graphs

Center Freq 2.41200000 GHz

NFE PNO; Wale 19 Fair Low Alter: 30 dB kr3 16,32 MHz -0.25 dE Ref Offset 22.09 dB Ref 20.00 dBm enter 2.41200 GHz Res BW 100 kHz CF Ste Span 40.00 MHz Sweep 1.533 ms (1001 pts 2.07 dBm 7.23 dBm -0.25 dB Freq Offse Scale Typ 11G_Ant1_2412 Center Freq 2.412000000 GHz Ref Offset 22.09 dB Ref 20.00 dBm Center Free 2.412000000 GH enter 2.41200 GHz Res BW 100 kHz Span 40.00 MH Sweep 1.533 ms (1001 pts CF Ste 1 N 1 1 2 N 1 1 3 Δ1 1 1 (Δ) Scale Typ 11G_Ant2_2412 Center Freq 2.437000000 GHz Trig: Free Run Ref Offset 22.2 dB Ref 20.00 dBm Center Free Start Free Center 2.43700 GHz Span 40.00 MH: Sweep 1.533 ms (1001 pts **#VBW 300 kHz** 11G_Ant1_2437

ΔMkr3 16.32 MHz -0.71 dB Ref Offset 22.2 dB Ref 20.00 dBm 01-0 CF Step Span 40.00 MHz Sweep 1.533 ms (1001 pts 2.10 dBm 7.17 dBm -0.71 dB Freq Offse Scale Typ 11G_Ant2_2437 Center Freq 2.462000000 GHz Ref Offset 22.36 dB Ref 20.00 dBm Center Free enter 2.46200 GHz Res BW 100 kHz CF Ste 1 N 1 1 2 N 1 1 3 Δ1 1 1 (Δ) Scale Typ 11G_Ant1_2462 ALL BE JAID INC.
Center Freq 2.462000000 GHz
NEE PNO: Waster to the property of the property o Trig: Free Run Ref Offset 22.35 dB Ref 20.00 dBm Center Free enter 2.46200 GHz Res BW 100 kHz Span 40.00 MH: Sweep 1.533 ms (1001 pts **#VBW 300 kHz** 11G_Ant2_2462

Center Freq 2.41200000 GHz

NE PNO: Wide Land Market State S ΔMkr3 17.28 MHz 0.67 dB Ref Offset 22.09 dB Ref 20.00 dBm enter 2.41200 GHz Res BW 100 kHz CF Ste Span 40.00 MH: Sweep 1.533 ms (1001 pts Freq Offse Scale Typ 11N20MIMO_Ant1_2412 Center Freq 2.412000000 GHz

NFE PNO; Wide Anter 30 dB Ref Offset 22.09 dB Ref 20.00 dBm Center Free enter 2.41200 GHz Res BW 100 kHz Span 40.00 MH Sweep 1.533 ms (1001 pts CF Ste 1 N 1 1 2 N 1 1 3 Δ1 1 1 (Δ) Scale Typ 11N20MIMO_Ant2_2412 Center Freq 2.437000000 GHz

NFE PNO; Wide La MARTER: 30 dB TYPE NAMED OF PPPP Ref Offset 22.2 dB Ref 20.00 dBm Center Free Start Free Center 2.43700 GHz Span 40.00 MH: Sweep 1.533 ms (1001 pts **#VBW 300 kHz** 1.30 dBm 7.17 dBm -0.13 dB

11N20MIMO_Ant1_2437

AL BE SHOWN OF THE ΔMkr3 17.28 MHz 0.16 dE Ref Offset 22.2 dB Ref 20.00 dBm Span 40.00 MHz Sweep 1.533 ms (1001 pts CF Step Freq Offse Scale Typ 11N20MIMO_Ant2_2437 Center Freq 2.462000000 GHz

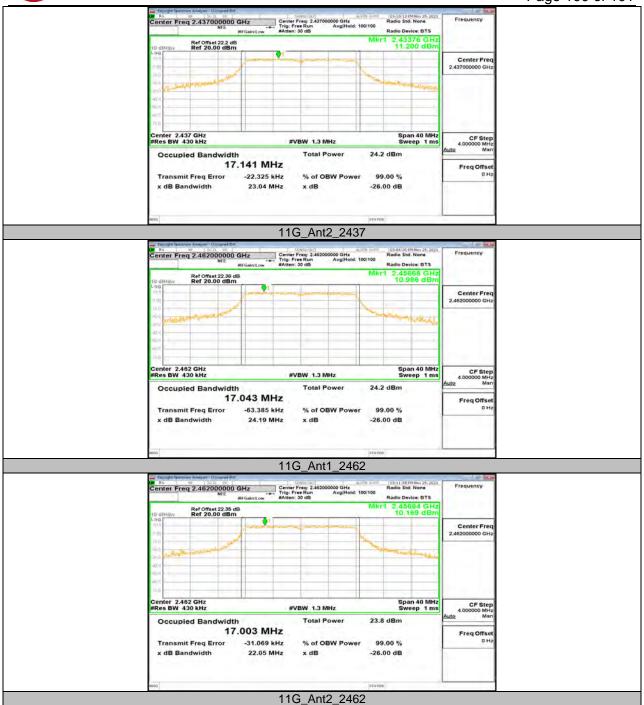
NFE PNO; Wide Anten: 30 dB Ref Offset 22.36 dB Ref 20.00 dBm Center Free enter 2.46200 GHz Res BW 100 kHz Span 40.00 MH Sweep 1.533 ms (1001 pts CF Ste 1 N 1 1 2 N 1 1 (A) Scale Typ 11N20MIMO_Ant1_2462 Center Freq 2.462000000 GHz

N/E PNO; Wide La Address 3 of BATTER 1 of BATTER CACE TURN IN WORLD Ref Offset 22.35 dB Ref 20.00 dBm Center Free Start Free enter 2.46200 GHz Res BW 100 kHz Span 40.00 MH: Sweep 1.533 ms (1001 pts #VBW 300 kHz 11N20MIMO_Ant2_2462

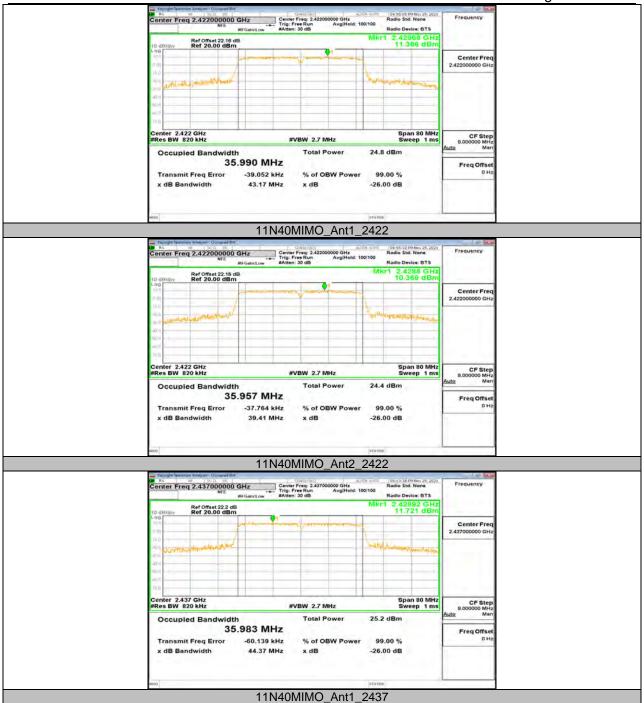
11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
	Ant1	2412	15.044	2404.430	2419.474	PASS
	Ant2	2412	14.984	2404.446	2419.430	PASS
445	Ant1	2437	15.049	2429.376	2444.425	PASS
11B	Ant2	2437	14.982	2429.403	2444.385	PASS
	Ant1	2462	15.054	2454.360	2469.414	PASS
	Ant2	2462	14.971	2454.413	2469.384	PASS
	Ant1	2412	17.078	2403.479	2420.557	PASS
	Ant2	2412	17.115	2403.443	2420.558	PASS
440	Ant1	2437	17.208	2428.314	2445.522	PASS
11G	Ant2	2437	17.141	2428.407	2445.548	PASS
	Ant1	2462	17.043	2453.415	2470.458	PASS
	Ant2	2462	17.003	2453.467	2470.470	PASS
	Ant1	2412	18.128	2402.942	2421.070	PASS
	Ant2	2412	18.046	2402.972	2421.018	PASS
11N20MIMO	Ant1	2437	18.135	2427.914	2446.049	PASS
I IINZUIVIIIVIO	Ant2	2437	18.021	2427.964	2445.985	PASS
	Ant1	2462	18.062	2452.972	2471.034	PASS
	Ant2	2462	18.062	2452.952	2471.014	PASS
	Ant1	2422	35.990	2403.966	2439.956	PASS
	Ant2	2422	35.957	2403.984	2439.941	PASS
11N40MIMO	Ant1	2437	35.983	2418.948	2454.931	PASS
i i i i i i i i i i i i i i i i i i i	Ant2	2437	35.983	2418.968	2454.951	PASS
	Ant1	2452	36.038	2433.912	2469.950	PASS
	Ant2	2452	35.988	2433.939	2469.927	PASS

11.2.2. Test Graphs


Page 98 of 99

enter Freq 2.412000000 GHz Radio Device: BTS Mkr1 2,40788 GHz 11,740 dBm Span 40 MHz Sweep 1 ms CF Step 4,000000 MHz **#VBW 1.3 MHz** 24.3 dBm Occupied Bandwidth 17.078 MHz Freq Offse Transmit Freq Error 17.920 kHz 99.00 % x dB Bandwidth 22.07 MHz x dB -26.00 dB 11G_Ant1_2412 Center Freq 2.412000000 GHz Radio Device: BTS
Mkr1 2.40868 GHz
10.622 dBm Ref Offset 22.09 dB Ref 20.00 dBm Center Freq 2.412000000 GHz enter 2.412 GHz Res BW 430 kHz Span 40 MHz Sweep 1 ms CF Step 24.0 dBm Occupied Bandwidth Total Power 17.115 MHz Transmit Freq Error 549 Hz % of OBW Power 99.00 % -26.00 dB 21.89 MHz x dB Bandwidth x dB 11G_Ant2_2412 Center Freq 2.437000000 GHz Radio Device: BTS 2.43368 GH: 11.090 dBm Ref Offset 22.2 dB Ref 20.00 dBm Center Fred 2.437000000 GHz CF Step 4,000000 MH #VBW 1.3 MHz Total Power 24.2 dBm Occupied Bandwidth 17.208 MHz Transmit Freq Error -81.681 kHz 99.00 % x dB Bandwidth 24.45 MHz x dB -26,00 dB 11G_Ant1_2437

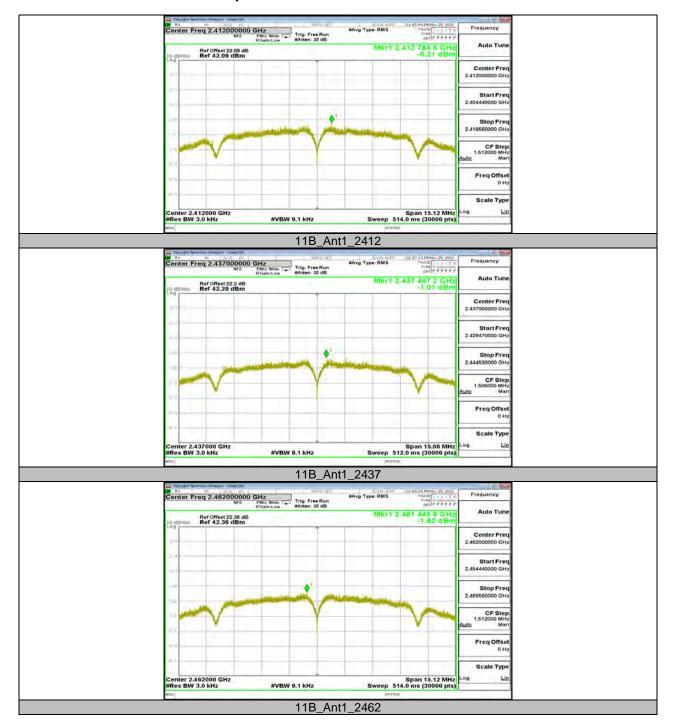


11.3. Appendix C: Maximum conducted output power 11.3.1. Test Result

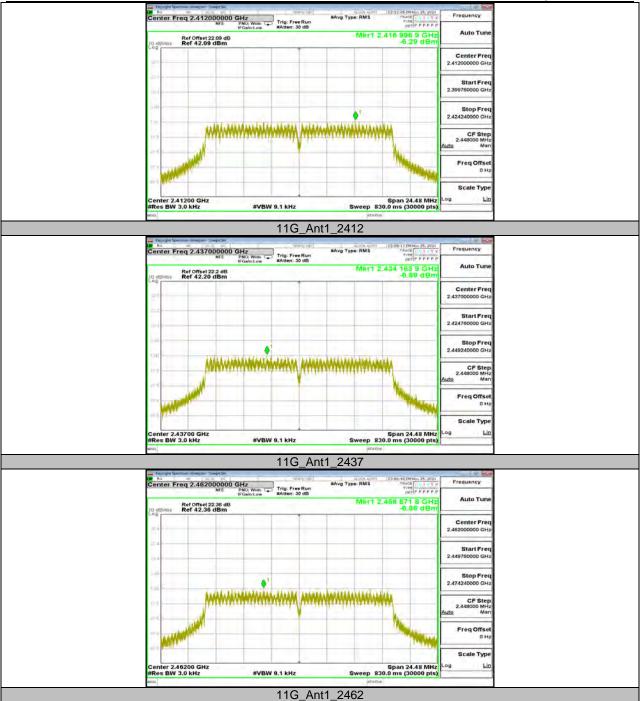
Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2412	21.35	≤30	PASS
	Ant2	2412	20.83	≤30	PASS
11B	Ant1	2437	20.95	≤30	PASS
IID	Ant2	2437	20.61	≤30	PASS
	Ant1	2462	20.75	≤30	PASS
	Ant2	2462	20.22	≤30	PASS
	Ant1	2412	17.72	≤30	PASS
	Ant2	2412	17.82	≤30	PASS
11G	Ant1	2437	17.76	≤30	PASS
110	Ant2	2437	17.64	≤30	PASS
	Ant1	2462	17.84	≤30	PASS
	Ant2	2462	17.27	≤30	PASS
	Ant1	2412	17.64	≤30	PASS
	Ant2	2412	17.00	≤30	PASS
	total	2412	20.3	≤30	PASS
	Ant1	2437	17.31	≤30	PASS
11N20MIMO	Ant2	2437	17.10	≤30	PASS
	total	2437	20.2	≤30	PASS
	Ant1	2462	16.67	≤30	PASS
	Ant2	2462	16.68	≤30	PASS
	total	2462	19.7	≤30	PASS
	Ant1	2422	15.65	≤30	PASS
	Ant2	2422	14.75	≤30	PASS
	total	2422	18.2	≤30	PASS
	Ant1	2437	14.84	≤30	PASS
11N40MIMO	Ant2	2437	15.88	≤30	PASS
	total	2437	18.4	≤30	PASS
	Ant1	2452	15.32	≤30	PASS
	Ant2	2452	14.50	≤30	PASS
	total	2452	17.9	≤30	PASS

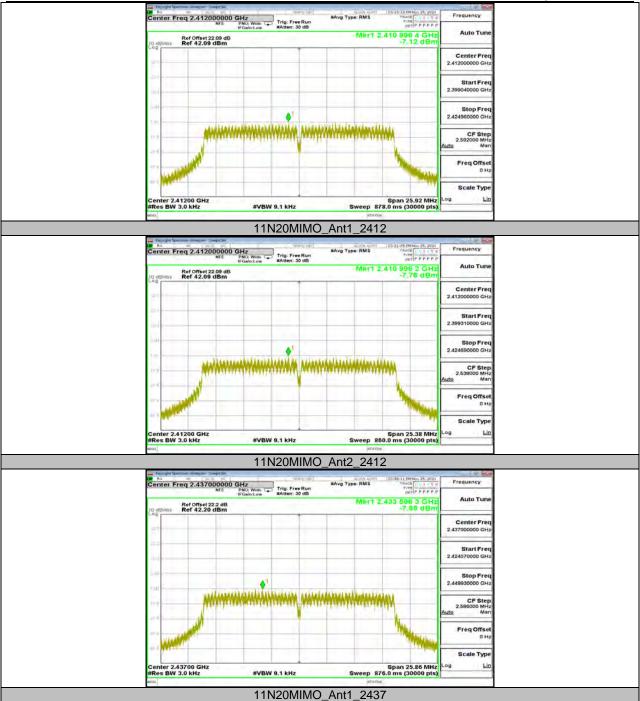
Note: 1. Conducted Power=Meas. Level+ Correction Factor

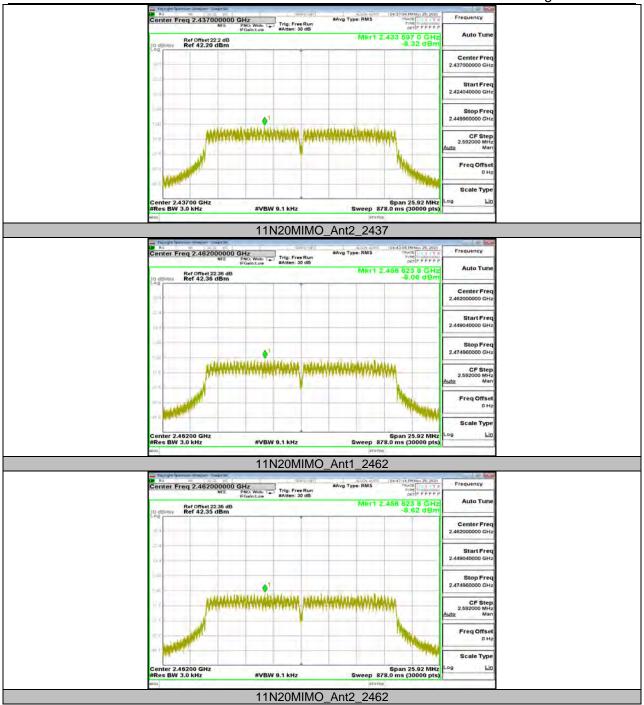
^{2.} The Duty Cycle Factor (refer to section 7.1) had already compensated to the test data.

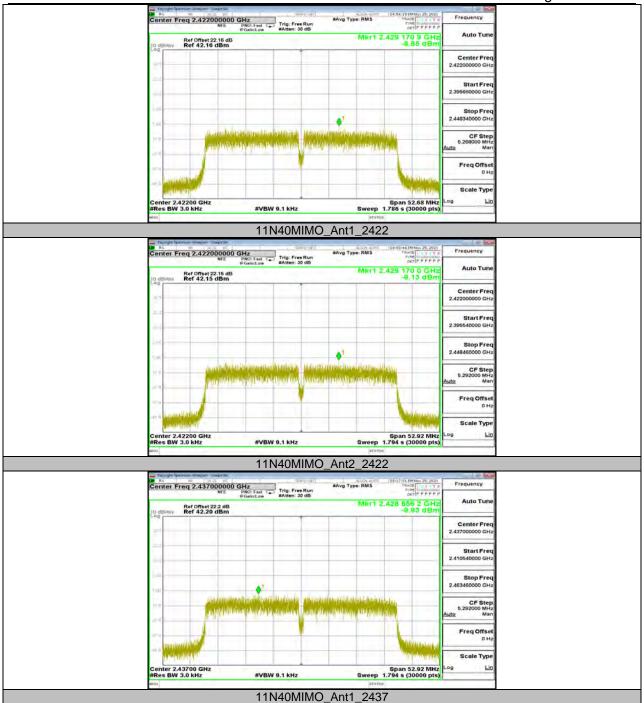

11.4. Appendix D: Maximum power spectral density 11.4.1. Test Result

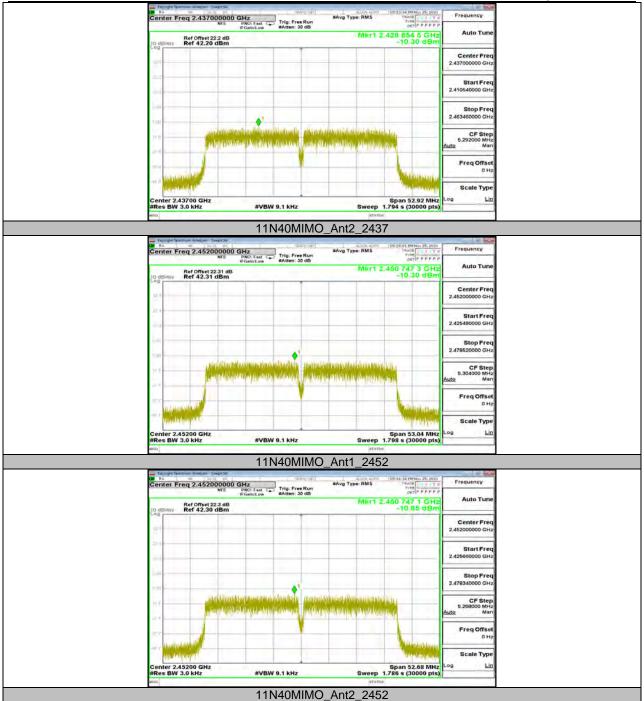
Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-0.21	≤8	PASS
11B	Ant1	2437	-1.01	≤8	PASS
		2462	-1.82	≤8	PASS
		2412	-6.29	≤8	PASS
11G	Ant1	2437	-6.89	≤8	PASS
		2462	-6.86	≤8	PASS
	Ant1	2412	-7.12	≤8	PASS
	Ant2	2412	-7.76	≤8	PASS
	total	2412	-4.42	≤8	PASS
	Ant1	2437	-7.88	≤8	PASS
11N20MIMO	Ant2	2437	-8.32	≤8	PASS
	total	2437	-5.08	≤8	PASS
	Ant1	2462	-8.06	≤8	PASS
	Ant2	2462	-8.62	≤8	PASS
	total	2462	-5.32	≤8	PASS
	Ant1	2422	-8.85	≤8	PASS
	Ant2	2422	-9.13	≤8	PASS
	total	2422	-5.98	≤8	PASS
	Ant1	2437	-9.93	≤8	PASS
11N40MIMO	Ant2	2437	-10.3	≤8	PASS
	total	2437	-7.10	≤8	PASS
	Ant1	2452	-10.3	≤8	PASS
	Ant2	2452	-10.85	≤8	PASS
	total	2452	-7.56	≤8	PASS

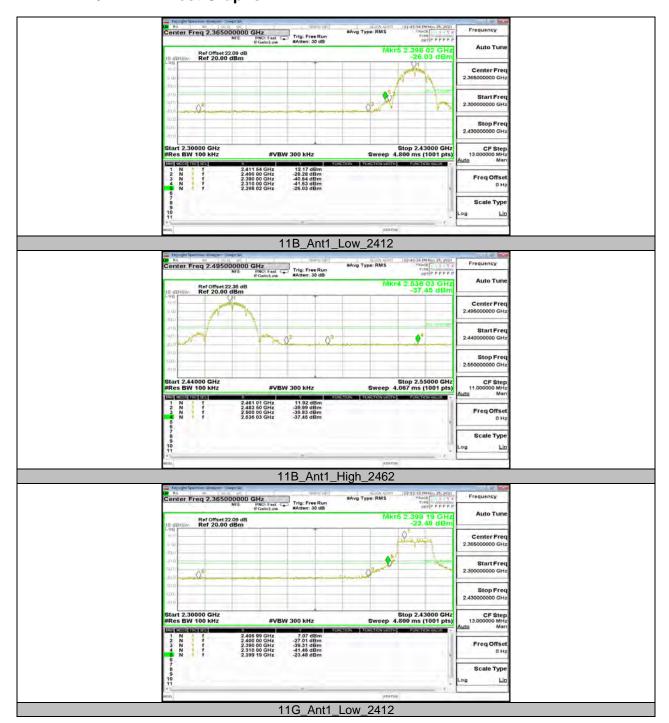

Note: For 802.11b & g modes, both antennas had been tested, only the worst data was recorded in the report.


11.4.2. Test Graphs





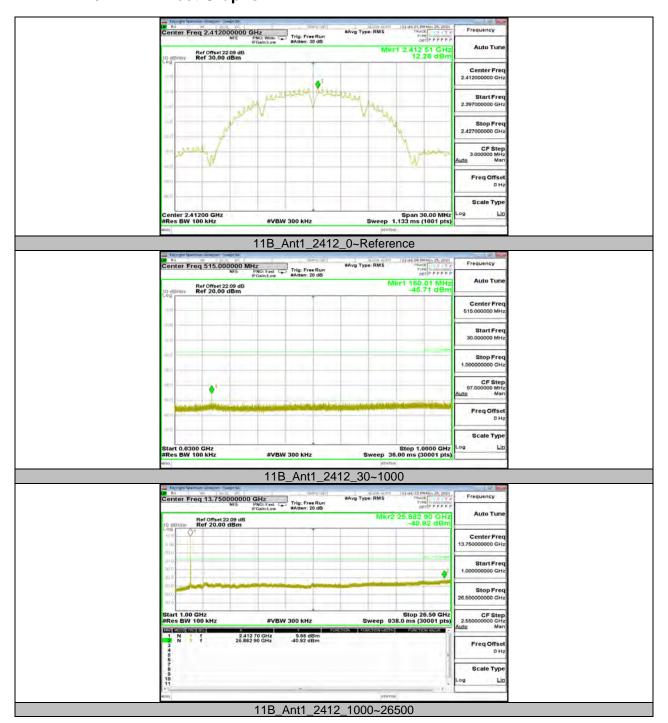



11.5. Appendix E: Band edge measurements 11.5.1. Test Result

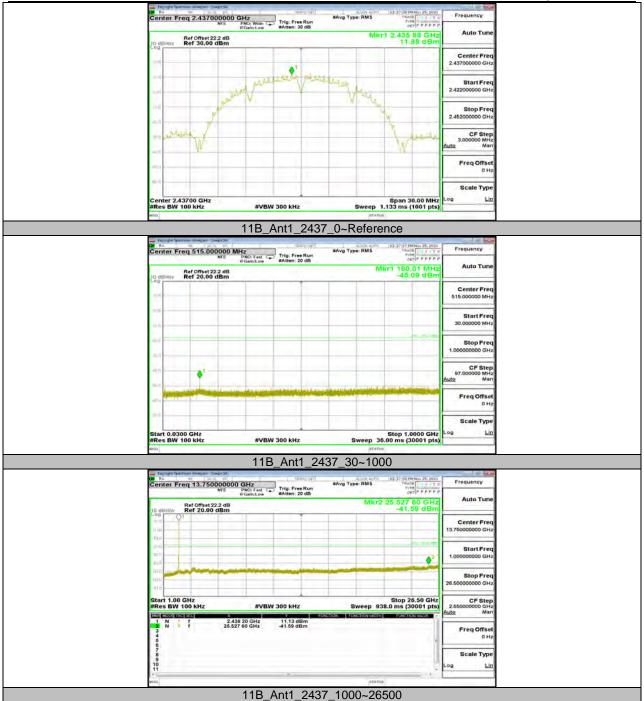
Test Mode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	Low	2412	12.17	-26.03	≤-17.83	PASS
		High	2462	11.92	-37.45	≤-18.08	PASS
11G	Ant1	Low	2412	7.07	-23.48	≤-22.93	PASS
		High	2462	7.32	-35.4	≤-22.68	PASS
11N20MIMO	Ant1	Low	2412	6.73	-24.36	≤-23.27	PASS
	Ant2	Low	2412	6.69	-26.6	≤-23.31	PASS
	Ant1	High	2462	6.72	-35.05	≤-23.28	PASS
	Ant2	High	2462	5.85	-33.96	≤-24.15	PASS
11N40MIMO	Ant1	Low	2422	4.44	-26.41	≤-25.56	PASS
	Ant2	Low	2422	4.01	-27.22	≤-25.99	PASS
	Ant1	High	2452	4.67	-27.95	≤-25.33	PASS
	Ant2	High	2452	4.08	-30.25	≤-25.92	PASS

Note: For 802.11b & g modes, both antennas had been tested, only the worst data was recorded in the report.

11.5.2. Test Graphs


11.6. Appendix F: Conducted Spurious Emission 11.6.1. Test Result

Reference 12.26	Test Mode	Antenna	Channel	FreqRange	Result	Limit	Verdict
11B	1 est Mode	Antenna	Charine		[dBm]	[dBm]	
11B							
Reference			2412	30~1000	-45.71	≤-17.74	PASS
118				1000~26500	-40.92	≤-17.74	PASS
1000-26500				Reference	11.88		PASS
Reference	11B	Ant1	2437	30~1000	-45.09	≤-18.12	PASS
2462 30-1000 45.49 \$\inst{-18.3} PASS 1000-26500 41.12 \$\inst{-18.3} PASS 1000-26500 41.12 \$\inst{-18.3} PASS PASS 1000-26500 41.12 \$\inst{-18.3} PASS 1000-26500 42.34 \$\inst{-23.24} PASS 1000-26500 42.34 \$\inst{-23.24} PASS 1000-26500 41.33 \$\inst{-22.53} PASS 1000-26500 41.33 \$\inst{-22.53} PASS 1000-26500 41.33 \$\inst{-22.53} PASS 1000-26500 41.07 \$\inst{-23.06} PASS 1000-26500 40.5 \$\inst{-23.39} PASS 1000-26500 40.5 \$\inst{-23.39} PASS 1000-26500 40.5 \$\inst{-23.39} PASS 1000-26500 40.5 \$\inst{-23.39} PASS 1000-26500 49.33 \$\inst{-23.25} PASS 1000-26500 49.5 \$\inst{-23.11} PASS 1000-26500 49.5 \$\inst{-23.11} PASS 1000-26500 49.5 \$\inst{-23.48} PASS 1000-26500 41.05				1000~26500	-41.59	≤-18.12	PASS
1000-26500 41.12 \$-18.3 PASS			2462	Reference	11.70		PASS
Reference				30~1000	-45.49	≤-18.3	PASS
11G Ant1 2437 30-1000 -46.57 5-23.24 PASS Reference 6.94 -2.34 5-22.53 PASS 1000-26500 -41.33 5-22.53 PASS 1000-26500 -41.33 5-22.53 PASS 1000-26500 -41.33 5-22.53 PASS 1000-26500 -41.37 5-22.53 PASS 1000-26500 -41.37 5-22.53 PASS 1000-26500 -41.07 5-23.06 PASS 1000-26500 -41.07 5-23.06 PASS 1000-26500 -41.07 5-23.06 PASS 1000-26500 -41.07 5-23.09 PASS 1000-26500 -40.5 5-23.39 PASS 1000-26500 -42.34 5-23.25 PASS 1000-26500 -42.34 5-23.25 PASS 1000-26500 -42.34 5-23.25 PASS 1000-26500 -43.31 5-23.11 PASS 1000-26500 -43.31 5-23.11 PASS 1000-26500 -43.31 5-23.11 PASS 1000-26500 -41.05 5-23.48 PASS 1000-26500 -41.05 5-23.89 PASS 1000-26500 -41.05 5-23.49				1000~26500	-41.12	≤-18.3	PASS
11G Ant1 Ant1 2437 Ant1 2438 Reference 6.94 Reference 6.94 Reference 6.81 Ant1 Ant1 2412 30-1000 -46.50 Ant2 Ant2 2412 Ant2 Ant1 2412 Ant2 Ant1 2412 Ant2 Ant1 Ant2 Ant2 Ant2 Ant2 Ant3 Ant3 Ant3 Ant4 Ant4 Ant4 Ant4 Ant5 Ant5 Ant6 Ant7 Ant7 Ant7 Ant8 Ant8 Ant8 Ant9 Ant8 Ant9 Ant9 Ant9 Ant9 Ant9 Ant1			2437	Reference	6.76		PASS
1100				30~1000	-46.57	≤-23.24	PASS
Reference							
11G Ant1 2437 30-1000 45.7 \$\frac{\sqrt{2.53}}{1000-26500} \$-41.33\$ \$\frac{\sqrt{2.2.53}}{\sqrt{2.53}} \$PASS\$ Reference 6.94 PASS 2462 30-1000 4.6.54 \$\frac{\sqrt{2.3.06}}{\sqrt{2.3.06}} \$PASS\$ 2462 30-1000 4.6.54 \$\frac{\sqrt{2.3.06}}{\sqrt{2.3.06}} \$PASS\$ Ant1 2412 30-1000 4.6.64 \$\frac{\sqrt{2.3.39}}{\sqrt{2.3.39}} \$PASS\$ Ant2 2412 30-1000 4.6.42 \$\frac{\sqrt{2.3.39}}{\sqrt{2.3.39}} \$PASS\$ Ant2 2412 30-1000 4.9.33 \$\frac{\sqrt{2.3.25}}{\sqrt{2.3.25}} \$PASS\$ Ant1 2437 30-1000 4.9.33 \$\frac{\sqrt{2.3.25}}{\sqrt{2.3.25}} \$PASS\$ Ant1 2437 30-1000 4.9.33 \$\frac{\sqrt{2.3.25}}{\sqrt{2.3.25}} \$PASS\$ Ant2 2437 30-1000 4.9.33 \$\frac{\sqrt{2.3.25}}{\sqrt{2.3.11}} \$PASS\$ Ant2 2437 30-1000 4.9.30 \$\frac{\sqrt{2.3.11}}{\sqrt{2.3.11}} \$PASS\$ Ant2 2437 30-1000 4.9.5 \$\frac{\sqrt{2.3.11}}{\sqrt{2.3.11}} \$PASS\$ Ant2 2437 30-1000 4.9.5 \$\frac{\sqrt{2.3.48}}{\sqrt{2.3.21}} \$PASS\$ Ant2 2462 30-1000 4.9.5 \$\frac{\sqrt{2.3.48}}{\sqrt{2.3.21}} \$PASS\$ Ant2 2462 30-1000 4.9.5 \$\frac{\sqrt{2.3.48}}{\sqrt{2.3.21}} \$PASS\$ Ant2 2462 30-1000 4.9.6 \$\frac{\sqrt{2.3.48}}{\sqrt{2.3.21}} \$PASS\$ Ant2 2462 30-1000 4.9.6 \$\frac{\sqrt{2.3.49}}{\sqrt{2.3.21}} \$PASS\$ Ant2 2462 30-1000 4.9.6 \$\frac{\sqrt{2.3.89}}{\sqrt{2.3.89}} \$PASS\$ Ant3 2422 30-1000 4.9.6 \$\frac{\sqrt{2.3.89}}{\sqrt{2.3.89}} \$PASS\$ Ant4 2422 30-1000 4.9.6 \$\frac{\sqrt{2.3.89}}{\sqrt{2.3.89}} \$PASS\$ Ant2 2422 30-1000 4.9.6 \$\frac{\sqrt{2.3.89}}{\sqrt{2.3.89}} \$PASS\$ Ant3 2437 \$\frac{\sqrt{3.0-1000}}{\sqrt{2.0.6500}} \$\frac{41.99}{\sqrt{41.83}} \$\sqrt{2.5.63} \$\pass{2.89} \$PASS\$ Ant3 2437 \$\frac{\sqrt{3.0-1000}}{\sqrt{3.0-1000}} \$\frac{43.65}{\sqrt{3.6}} \$\sqrt{2.5.44} \$\pass{2.8}\$ Ant3 2437 \$\frac{\sqrt{3.0-1000}}{\sqrt{3.0-1000}} \$\frac{43.60}{\sqrt{3.60}} \$\frac{\sqrt{2.5.44}}{\sqrt{3.83}} \$\pass{2.5.44} \$\pass{3.65}\$ Ant3 2437 \$\frac{\sqrt{3.0-1000}}{\sqrt{3.0-1000}} \$\frac{43.60}{\sqrt{3.60}} \$\frac{\sqrt{2.5.44}}{\sqrt{3.83}} \$\pass{2.5.63} \$\pass{3.65}\$ Ant3 2437 \$\frac{\sqrt{3.0-1000}}{\sqrt{3.0-1000}} \$\frac{43.60}{\sqrt{3.60}} \$\sqrt{2.							
1000-26500	11G	Ant1				<-22 53	
Reference 6.94	110						
2462 30-1000 -46.54 \$\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
1000-26500							
Ant1 2412 30-1000 -46.42 5-23.39 PASS 1000-26500 -40.5 5-23.39 PASS 1000-26500 -40.5 5-23.39 PASS Ant2 2412 30-1000 -49.33 5-23.25 PASS 1000-26500 -49.33 5-23.25 PASS 1000-26500 -49.33 5-23.25 PASS 1000-26500 -49.33 5-23.25 PASS 1000-26500 -42.34 5-23.25 PASS 1000-26500 -42.34 5-23.25 PASS 1000-26500 -40.606 5-23.11 PASS 1000-26500 -39.71 5-23.11 PASS 1000-26500 -39.71 5-23.11 PASS 1000-26500 -39.71 5-23.11 PASS 1000-26500 -41.05 5-23.48 PASS 1000-26500 -41.05 5-23.48 PASS 1000-26500 -41.05 5-23.48 PASS 1000-26500 -41.05 5-23.49 PASS 1000-26500 -41.43 5-23.21 PASS 1000-26500 -41.55 5-23.89 PASS 1000-26500 -41.99 5-25.4 PASS 1000-26500 -41.99 5-25.4 PASS 1000-26500 -41.83 5-25.63 PASS 1000-26500 -41.99 5-25.74 PASS 1000-26500 -41.99 5-							
Ant1 2412 30-1000 -46.42 \$-23.39 PASS 1000-26500 -40.5 \$-23.39 PASS PASS Reference 6.75 PASS 1000-26500 -40.33 \$-23.25 PASS 1000-26500 -42.34 \$-23.25 PASS 1000-26500 -42.34 \$-23.25 PASS PASS PASS 1000-26500 -42.34 \$-23.25 PASS P						•	
1000~26500			0.440			ļ	
Reference 6.75		Anti	2412				
Ant2 2412 30-1000 49.33 \$\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
11N20MIMO		Ant2	2412				
Reference 6.89						•	
Ant1 2437 30-1000 -46.06						•	
11N20MIMO		Ant1	2437				
Reference							
Ant2 2437	1112011110			1000~26500		≤-23.11	
Ant1 2462 30-1000 -41.05	I IINZUIVIIIVIO			Reference	6.52		PASS
Ant1 2462 30~1000 -45.70 ≤-23.21 PASS 1000~26500 -41.43 ≤-23.21 PASS Ant2 2462 30~1000 -49.6 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS Ant1 2422 30~1000 -49.6 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS Ant1 2422 30~1000 -45.08 ≤-25.4 PASS 1000~26500 -41.99 ≤-25.4 PASS 1000~26500 -41.99 ≤-25.4 PASS 1000~26500 -41.99 ≤-25.4 PASS 1000~26500 -41.83 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS Ant1 2437 30~1000 -43.65 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.79 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS Ant2 2437 30~1000 -48.34 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS Ant1 2452 30~1000 -44.87 ≤-25.23 PASS Reference 4.36		Ant2	2437	30~1000	-49.5	≤-23.48	PASS
Ant1 2462 30~1000 -45.70 ≤-23.21 PASS 1000~26500 -41.43 ≤-23.21 PASS Reference 6.11 PASS 1000~26500 -41.43 ≤-23.21 PASS Reference 6.11 PASS 1000~26500 -41.55 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS PASS 1000~26500 -41.55 ≤-23.89 PASS PASS 1000~26500 -41.55 ≤-23.89 PASS PASS PASS PASS PASS PASS PASS PAS				1000~26500	-41.05	≤-23.48	PASS
Ant2 2462 Reference 6.11		Ant1	2462	Reference	6.79		PASS
Ant2 2462				30~1000	-45.70	≤-23.21	PASS
Ant2 2462 30~1000 -49.6 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS PASS Reference 4.60 PASS 1000~26500 -41.99 ≤-25.4 PASS 1000~26500 -41.99 ≤-25.4 PASS 2422 30~1000 -48.1 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS 2427 30~1000 -48.1 ≤-25.63 PASS 2437 30~1000 -43.65 ≤-25.4 PASS 2437 30~1000 -43.65 ≤-25.74 PASS 2437 30~1000 -43.45 ≤-25.74 PASS 2437 30~1000 -43.45 ≤-25.74 PASS 2437 30~1000 -43.47 ≤-25.74 PASS 2437 30~1000 -43.487 ≤-25.74 PASS 2457 30~1000 -43.65 ≤-25.64 PASS 2457 30~1000 -43.6				1000~26500	-41.43	≤-23.21	PASS
Ant2 2462 30~1000 -49.6 ≤-23.89 PASS 1000~26500 -41.55 ≤-23.89 PASS PASS Reference 4.60 PASS 1000~26500 -41.99 ≤-25.4 PASS 1000~26500 -41.99 ≤-25.4 PASS 2422 30~1000 -48.1 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS 2427 30~1000 -48.1 ≤-25.63 PASS 2437 30~1000 -43.65 ≤-25.4 PASS 2437 30~1000 -43.65 ≤-25.74 PASS 2437 30~1000 -43.45 ≤-25.74 PASS 2437 30~1000 -43.45 ≤-25.74 PASS 2437 30~1000 -43.47 ≤-25.74 PASS 2437 30~1000 -43.487 ≤-25.74 PASS 2457 30~1000 -43.65 ≤-25.64 PASS 2457 30~1000 -43.6		Ant2	2462	Reference	6.11		PASS
1000~26500				30~1000	-49.6	≤-23.89	PASS
Ant1 2422 30~1000 -45.08 ≤-25.4 PASS 1000~26500 -41.99 ≤-25.4 PASS Reference 4.37 PASS 1000~26500 -41.83 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS Reference 4.60 PASS 1000~26500 -41.83 ≤-25.4 PASS 1000~26500 -41.83 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.79 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.23 PASS 1000~26500 -41.03 ≤-25.24 PASS 1000~26500 -41.03 ≤-25.64 PASS 1000~26500 -48.98 ≤-25.64 PASS 10000~26500 -48.98 ≤-25.64 PASS 10000~26500					-41.55		PASS
Ant1 2422 30~1000 -45.08 ≤-25.4 PASS 1000~26500 -41.99 ≤-25.4 PASS Reference 4.37 PASS 1000~26500 -41.83 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS Reference 4.60 PASS 1000~26500 -41.83 ≤-25.4 PASS 1000~26500 -41.83 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.79 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.23 PASS 1000~26500 -41.03 ≤-25.24 PASS 1000~26500 -41.03 ≤-25.64 PASS 1000~26500 -48.98 ≤-25.64 PASS 10000~26500 -48.98 ≤-25.64 PASS 10000~26500		Ant1	2422				
1000~26500						≤-25.4	
Ant2						•	
Ant2 2422 30~1000 -48.1 ≤-25.63 PASS 1000~26500 -41.83 ≤-25.63 PASS Reference 4.60 PASS 1000~26500 -41.865 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS 2437 30~1000 -48.34 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS 2452 30~1000 -44.87 ≤-25.23 PASS 1000~26500 -41.03 ≤-25.23 PASS Reference 4.36 PASS 2452 30~1000 -48.98 ≤-25.64 PASS		Ant2	2422	+			_
1000~26500							
Ant1 2437 Reference 4.60 PASS							
Ant1 2437 30~1000 -43.65 ≤-25.4 PASS 1000~26500 -41.56 ≤-25.4 PASS Reference 4.26 PASS 1000~26500 -41.79 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS 2452 30~1000 -44.87 ≤-25.23 PASS 1000~26500 -41.03 ≤-25.23 PASS Reference 4.36 PASS Reference 4.36 PASS 2452 30~1000 -48.98 ≤-25.64 PASS							
11N40MIMO Ant2 Ant3 Ant3 Ant3 Ant3 Ant3 Ant4 Ant4 Ant5 Ant5 Ant5 Ant6 Ant6 Ant7 Ant7 Ant7 Ant7 Ant8 Ant8 Ant9		Ant1	2437				
Reference 4.26 PASS							
Ant2 2437 30~1000 -48.34 ≤-25.74 PASS 1000~26500 -41.79 ≤-25.74 PASS Reference 4.77 PASS 30~1000 -44.87 ≤-25.23 PASS 1000~26500 -41.03 ≤-25.23 PASS Reference 4.36 PASS Ant2 2452 30~1000 -48.98 ≤-25.64 PASS	11N40MIMO	Ant2	2437				
1000~26500							
Ant1 2452 Reference 4.77 PASS 30~1000 -44.87 ≤-25.23 PASS 1000~26500 -41.03 ≤-25.23 PASS Reference 4.36 PASS Ant2 2452 30~1000 -48.98 ≤-25.64 PASS							_
Ant1 2452 30~1000 -44.87 ≤-25.23 PASS 1000~26500 -41.03 ≤-25.23 PASS Reference 4.36 PASS Ant2 2452 30~1000 -48.98 ≤-25.64 PASS		Ant1	2452			_	
1000~26500 -41.03 ≤-25.23 PASS Reference 4.36 PASS Ant2 2452 30~1000 -48.98 ≤-25.64 PASS							
Reference 4.36 PASS Ant2 2452 30~1000 -48.98 ≤-25.64 PASS							
Ant2 2452 30~1000 -48.98 ≤-25.64 PASS							
1000~26500 -41.87 ≤-25.64 PASS		Ant2	2452		-48.98		
		<u> </u>		1000~26500	-41.87	≤-25.64	PASS

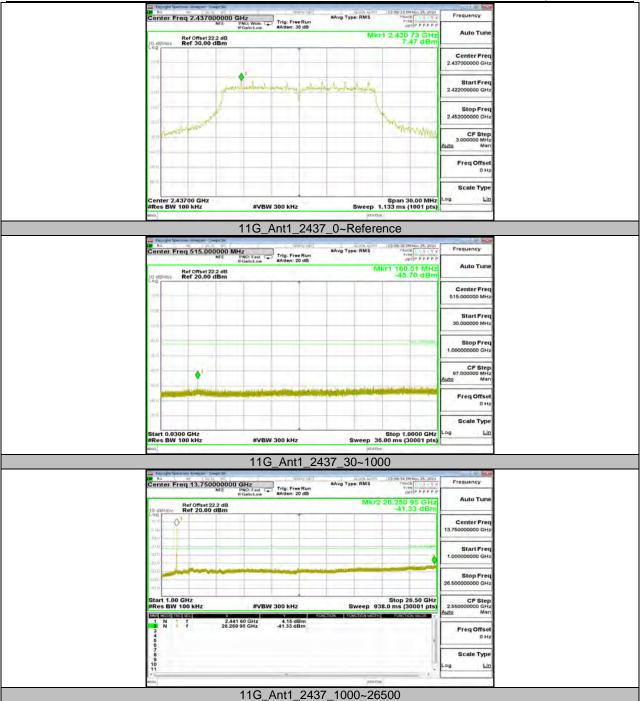

Note: For 802.11b & g modes, both antennas had been tested, only the worst data was recorded in the report.

11.6.2. Test Graphs

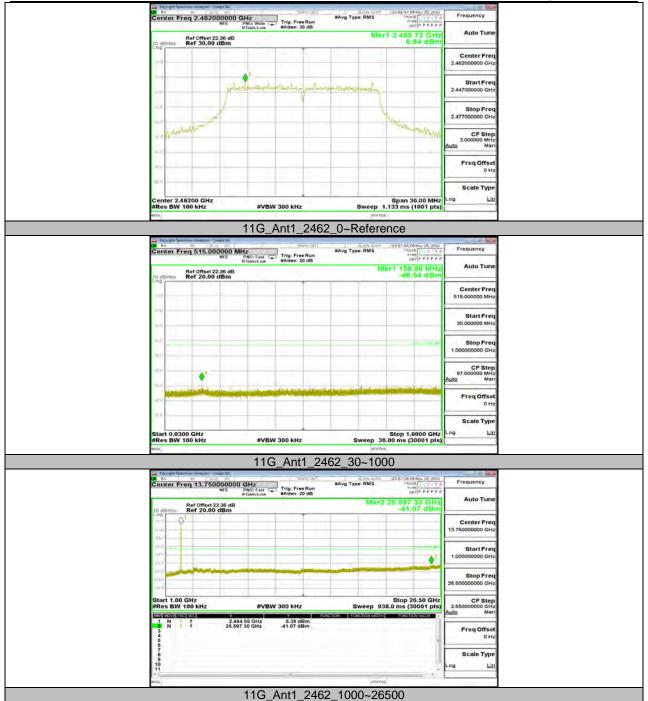
Center Freq 2.462000000 GHz
NFE PNO; Wide Trig: Free Run
Akter: 30 dB Ref Offset 22.36 dB Ref 30,00 dBm CF Step Freq Offse Scale Typ Span 30.00 MHz Sweep 1.133 ms (1001 pts) #VBW 300 kHz 11B_Ant1_2462_0~Reference Center Freq 515.000000 MHz

NFE PRO: Feat Company of the Property of the Prope TRACE TORRESTANDO Mkr1 160.01 MHz -45.49 dBm Ref Offset 22.36 dB Ref 20,00 dBm Center Free Scale Typ Start 0.0300 GHz Res BW 100 kHz #VBW 300 kHz 11B_Ant1_2462_30~1000 Center Freq 13.75000000 GHz

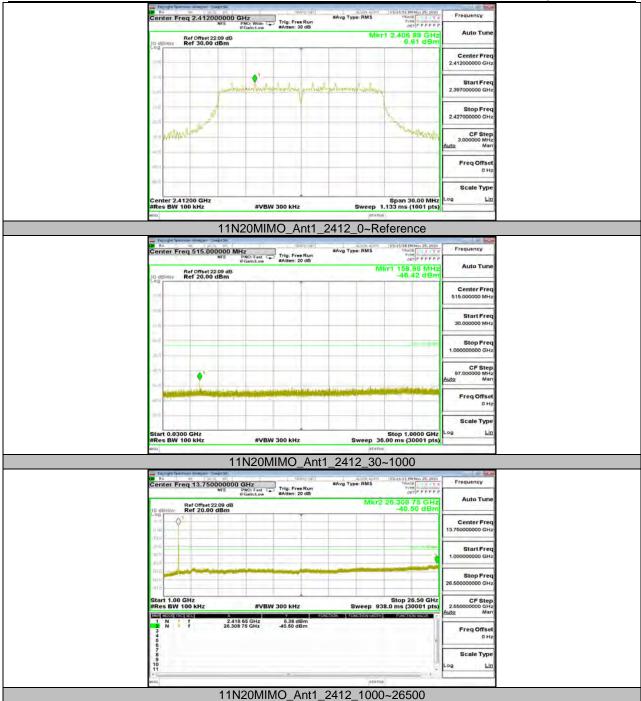
NFE PNO: Fast Capable Low Matter: 20 dB Ref Offset 22.36 dB Ref 20.00 dBm Center Free Stop 26.50 GHz Sweep 938.0 ms (30001 pts) #VBW 300 kHz 11.75 dBr -41.12 dBr 11B_Ant1_2462_1000~26500

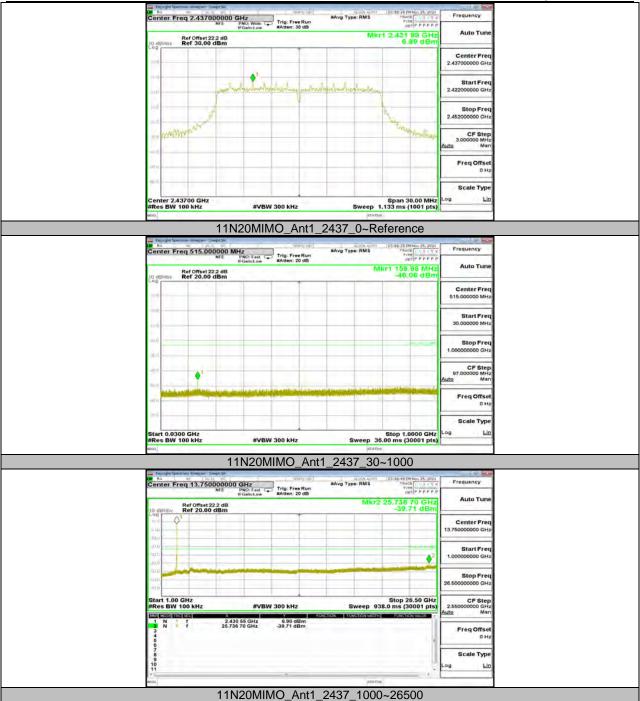


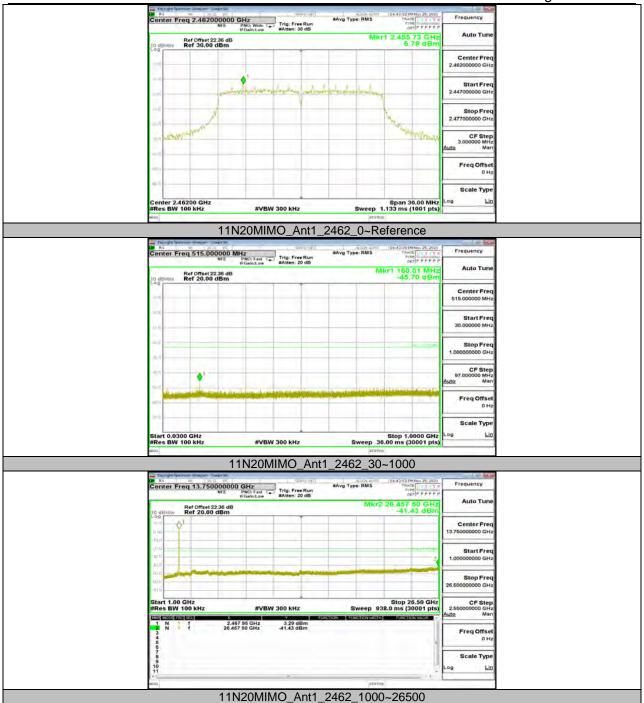
Center Freq 2.412000000 GHz
NFE PNO; Wide Content of the Content o MAVE Type: RMS Ref Offset 22.09 dB Ref 30,00 dBm Start Free CF Step Freq Offse Scale Typ Span 30.00 MHz Sweep 1.133 ms (1001 pts) #VBW 300 kHz 11G_Ant1_2412_0~Reference Center Freq 515.000000 MHz

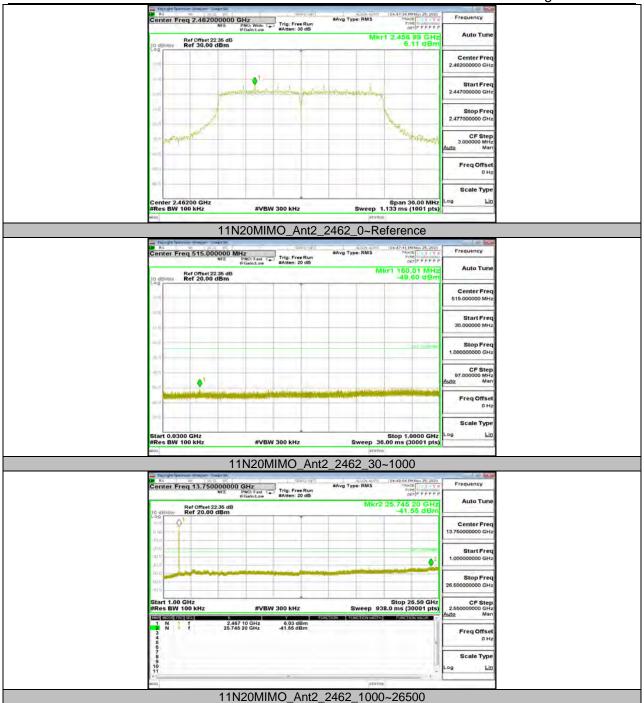

NFE PRO: Feat Company of March 1997 Free Run
Matten: 20 dB THACE THE LAWY OFF PPPPP Ref Offset 22.09 dB Ref 20.00 dBm Center Free CF Step Scale Typ #VBW 300 kHz 11G_Ant1_2412_30~1000 Center Freq 13.75000000 GHz

NFE PNO: Fast Capable Low Matter: 20 dB Ref Offset 22.09 dB Ref 20.00 dBm Center Free Stop 26.50 GHz Sweep 938.0 ms (30001 pts) #VBW 300 kHz 5.22 dBn -42.34 dBn 11G_Ant1_2412_1000~26500

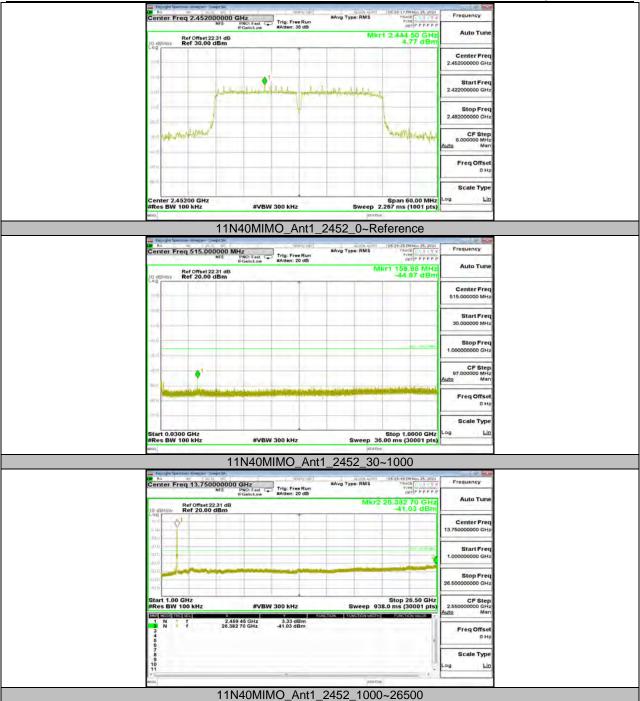




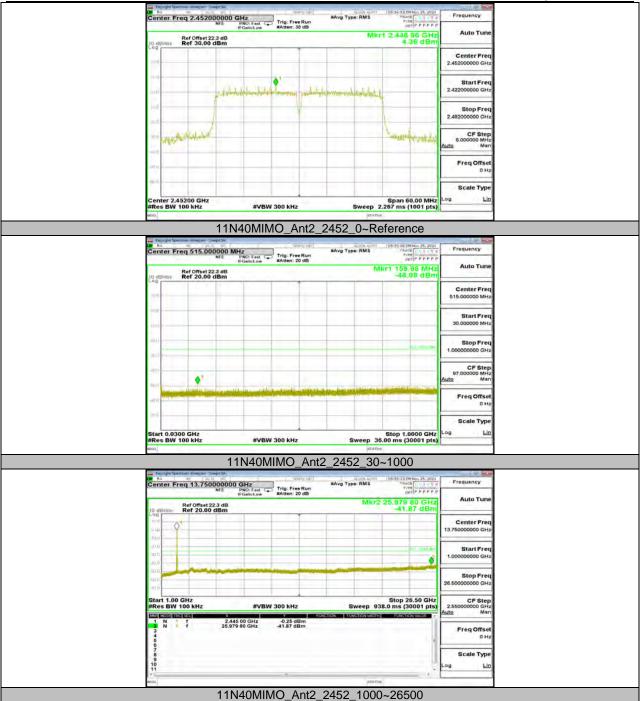




Center Freq 2.437000000 GHz


NFE PNO: Fast Address on BAtter: 30 db MAVE Type: RMS Start Fre CF Step Freq Offse Scale Typ #VBW 300 kHz 11N40MIMO_Ant1_2437_0~Reference Center Freq 515.000000 MHz
NFE PNO: Fast Free Run
RAtten: 20 dB PER PER PER PER Mkr1 30,03 MHz -43,65 dBm Ref Offset 22.2 dB Ref 20,00 dBm Center Free CF Step Scale Typ #VBW 300 kHz 11N40MIMO_Ant1_2437_30~1000 Center Freq 13.75000000 GHz

NFE PND: Fast Annual Price Free Run Arten: 20 db Arten: 20 db Arten: 20 db Ref Offset 22.2 dB Ref 20.00 dBm Center Fre Stop 26.50 GHz Sweep 938.0 ms (30001 pts) #VBW 300 kHz 11N40MIMO_Ant1_2437_1000~26500



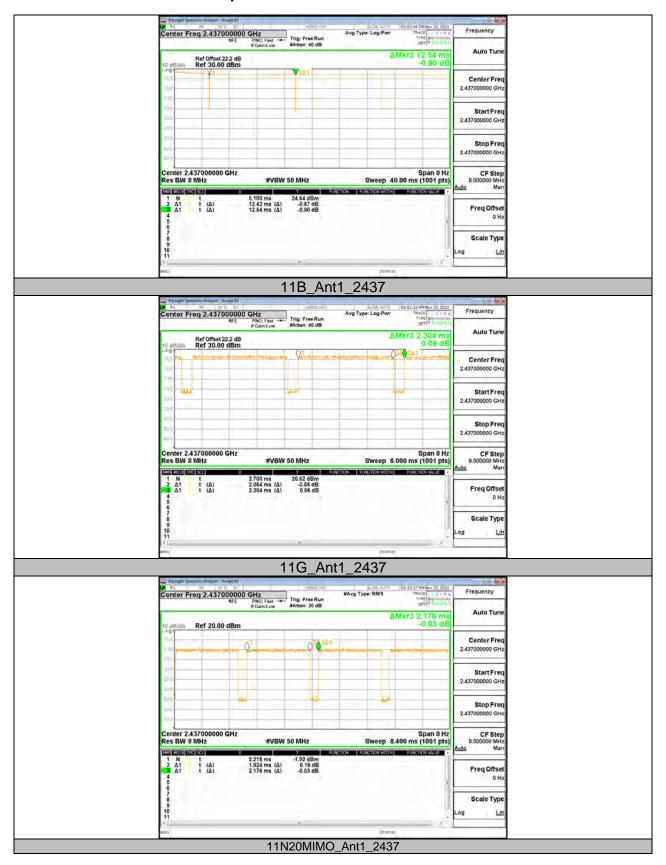
11.7. Appendix G: Duty Cycle 11.7.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
11B	12.42	12.54	0.9904	99.04	0.04	0.08	0.01
11G	2.06	2.30	0.8957	89.57	0.48	0.49	0.5
11N20MIMO	1.92	2.18	0.8807	88.07	0.55	0.52	1
11N40MIMO	3.73	10.01	0.3726	37.26	4.29	0.27	0.5

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)


Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be

used.

11.7.2. Test Graphs

Scale Type

PRIL SP 30 G DC CENTER FROM THE PROJEST TIES: Free Run FGaint ow #Atten: 30 dB ΔMkr3 10.01 ms 2.45 dB Ref 20.00 dBm Center Free Start Freq 2.437000000 GH Stop Fred 2.437000000 GHz Span 0 Hz Sweep 30.00 ms (1001 pts) Center 2.437000000 GHz Res BW 8 MHz #VBW 50 MHz 1.798 ms 933.6 μs (Δ) 10.01 ms (Δ) 4.09 dB 2.45 dB t (Δ) Freq Offset

11N40MIMO_Ant1_2437

END OF REPORT