

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

IP CAMERA

MODEL NUMBER: DH-IPC-HFW1430DS-SAW

ADDITIONAL MODEL NUMBER: DH-IPC-HFW1230DS-SAW, DH-IPC-HFW1430DS-SAW, IPC-HFW1230DS-SAW, IPC-HFW1430DS-SAW, N21BD42-W, N21BD43-W, N41BD42-W, N41BD43-W, DH-IPC-HFW1230DS-SAW-0280B, IPC-HFW1230DS-SAW-0280B, DH-IPC-HFW1230DS-SAW-0360B, IPC-HFW1230DS-SAW-0360B, DH-IPC-HFW1430DS-SAW-0280B, IPC-HFW1430DS-SAW-0280B, DH-IPC-HFW1430DS-SAW-0360B, IPC-HFW1430DS-SAW-0360B

PROJECT NUMBER: 4790320707

REPORT NUMBER: 4790320707-1

FCC ID: SVNDH-IPC-HFW1X3

ISSUE DATE: Mar. 18, 2022

Prepared for

Zhejiang Dahua Vision Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China Tel: +86 512-6808 6400 Fax: +86 512-6808 4099 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	03/18/2022	Initial Issue	

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS 4	ł
2.	TES		5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAL	-IBRATION AND UNCERTAINTY	7
4	1.1.	MEASURING INSTRUMENT CALIBRATION	7
4	1.2.	MEASUREMENT UNCERTAINTY	7
5.	EQI	JIPMENT UNDER TEST	3
5	5.1.	DESCRIPTION OF EUT	3
Ę	5.2.	MAXIMUM OUTPUT POWER	9
5	5.3.	CHANNEL LIST	9
Ę	5.4.	TEST CHANNEL CONFIGURATION)
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER)
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	1
5	5.7.	THE WORSE CASE CONFIGURATIONS1	1
5	5.8.	TEST ENVIRONMENT	2
5	5.9.	DESCRIPTION OF TEST SETUP	2
5	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED14	4
6.	ME	ASUREMENT METHODS14	ł
7.		TENNA PORT TEST RESULTS16	5
7	7.1.	ON TIME AND DUTY CYCLE	3
7	7.2.	6 dB BANDWIDTH	9
7	7.3.	CONDUCTED OUTPUT POWER	7
7	7.4.	POWER SPECTRAL DENSITY	9
7	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	7
7	7.6. 7.6.	2. TEST ENVIRONMENT	3 9 9
8.	AC	POWER LINE CONDUCTED EMISSIONS142	2
9.		ENNA REQUIREMENTS145	5

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	Zhejiang Dahua Vision Technology Co., Ltd. No.1199, Bin'an road, Binjiang District, Hangzhou, P.R. China.
Manufacturer Information	
Company Name:	Zhejiang Dahua Vision Technology Co., Ltd.
Address:	No.1199, Bin'an road, Binjiang District, Hangzhou, P.R. China.
EUT Description	
Product Name:	IP CAMERA
Model Name:	DH-IPC-HFW1430DS-SAW
Additional No.:	DH-IPC-HFW1230DS-SAW, DH-IPC-HFW1430DS-SAW,
	IPC-HFW1230DS-SAW, IPC-HFW1430DS-SAW,
	N21BD42-W, N21BD43-W, N41BD42-W, N41BD43-W,
	DH-IPC-HFW1230DS-SAW-0280B, IPC-HFW1230DS-SAW-0280B,
	DH-IPC-HFW1230DS-SAW-0360B, IPC-HFW1230DS-SAW-0360B,
	DH-IPC-HFW1430DS-SAW-0280B, IPC-HFW1430DS-SAW-0280B,
Model Difference:	DH-IPC-HFW1430DS-SAW-0360B, IPC-HFW1430DS-SAW-0360B These models are only different from silkscreen and logo.
	,
Sample Number:	4725319 Mar 02 2022
Data of Receipt Sample:	Mar. 03, 2022
Test Date:	Mar. 03, 2022 ~ Mar. 17, 2022

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

PASS

	Summary of Test Results								
Clause	Test Items	FCC Rules	Test Results						
1	6db DTS Bandwidth	FCC 15.247 (a) (2)	PASS						
2	Conducted Power	FCC 15.247 (b) (3)	PASS						
3	Power Spectral Density	FCC 15.247 (e)	PASS						
4	Conducted Band edge And Spurious emission	FCC 15.247 (d)	PASS						
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	PASS						
6	Conducted Emission Test for AC Power Port	FCC 15.207	PASS						
7 Antenna Requirement FCC 15.203 PASS									
Remark: 1) The measurement result for the sample received is <pass> according to < ANSI C63.10-2013, FCC</pass>									

CFR 47 Part 2, FCC CFR 47 Part 15C> when <Accuracy Method> decision rule is applied.

Prepared By:

Li

Reviewed By:

Leon Wu

Leon Wu

Senior Project Engineer

Kitty Li Engineer

Authorized By:

Chris Zhong

Chris Zhong Laboratory Leader

> UL-CCIC COMPANY LIMITED This report shall not be reproduced except in full, without the written approval of UL-CCIC COMPANY LIMITED.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056 CAB No.: CN0073) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty				
Conduction emission	3.1dB				
Radiation Emission test (include Fundamental emission) (9kHz-30MHz)	3.4dB				
Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	3.4dB				
Radiation Emission test (1GHz to 26.5GHz) (include Fundamental	3.9dB (1GHz-18GHz)				
emission)	4.2dB (18GHz-26.5GHz)				
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.					

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	IP CAMERA
Model No.:	DH-IPC-HFW1430DS-SAW
Operating Frequency:	IEEE 802.11B/G/N(HT20): 2412MHz to 2462MHz IEEE 802.11N(HT40): 2422MHz to 2452MHz
Type of Modulation:	IEEE for 802.11B: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11G: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11N(HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)
Channels Step:	Channels with 5MHz step
Sample Type:	Fixed production
Test power grade:	1
Test software of EUT:	Secure CRT (manufacturer declare)
Antenna Type:	Rod Antenna
Antenna Gain:	4.01 dBi
Test Voltage	AC 120V

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max AVG Conducted Power (dBm)
1	IEEE 802.11B	1-11[11]	13.61
1	IEEE 802.11G	1-11[11]	10.05
1	IEEE 802.11N HT20	1-11[11]	9.94
1	IEEE 802.11N HT40	3-9[7]	7.45

5.3. CHANNEL LIST

	Channel List for 802.11B/G/N(20 MHz)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452				

	Channel List for 802.11N (40 MHz)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
3	2422	5	2432	7	2442	9	2452		
4	2427	6	2437	8	2447				

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel (MHz)
	LCH: CH01 2412
IEEE 802.11B	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH01 2412
IEEE 802.11G	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH01 2412
IEEE 802.11N HT20	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH03 2422
IEEE 802.11N HT40	MCH: CH06 2437
	HCH: CH09 2452

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	/are			Secu	reCRT			
	Transmit			Test C	Test Channel			
Modulation Mode	Antenna Number	1	NCB: 20MF	łz	NCB: 40MH		z	
Mode		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11B	1	N/A	N/A	N/A				
802.11G 1		N/A	N/A	N/A] /			
802.11N HT20	1	N/A	N/A	N/A				
802.11N HT40 1 / 46 46 46						46		

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	Rod Antenna	4.01

Note: This data is provided by customer and our lab isn't responsible for this data.

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11B	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11G	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N HT20	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N HT40	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.

5.7. THE WORSE CASE CONFIGURATIONS

For WIFI module, the worst-case data rates as provided by the client were:

802.11B mode: 1 Mbps 802.11G mode: 6 Mbps 802.11N HT20 mode: MCS0 802.11N HT40 mode: MCS0

5.8. DESCRIPTION OF TEST SETUP

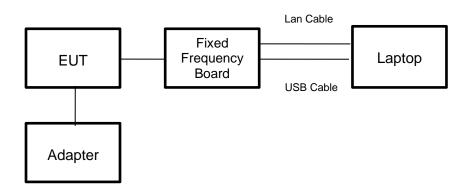
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E550c	/
2	Power Adapter	MASS POWER	NBS05C12005 0VU	INPUT: 100-240V~50/60Hz, 0.15A OUTPUT: 12.0V=0.5A

<u>I/O PORT</u>

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB to TTL	USB to TTL	100cm Length	/
2	LAN	LAN	Lan Cable	100cm Length	/

ACCESSORY


Item	Accessory	Brand Name	Model Name	Description
1	Micro SD Card	Western Digital	WD Purple QD101	32GB

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

5.9. MEASURING INSTRUMENT AND SOFTWARE USED

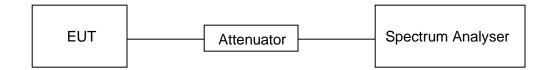
	Conducted Emissions (Instrument)								
		CO	laucieu		510115	(เกรเน	· · ·		
Used	Equipment	Manufacturer	Mode	Model No.		al No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	ESR3		12	6700	2020-12-05	2021-12-04	2022-12-03
\checkmark	Two-Line V-Network	R&S	ENV	/216	12	6701	2020-12-05	2021-12-04	2022-12-03
V	Artificial Mains Networks	R&S	EN	Y81	12	6711	2020-10-13	2021-10-12	2022-10-11
				Soft	ware				
Used	Des	scription		Ma	nufac	turer	Name	Version	
	Test Software for (Conducted distur	bance		R&S	;	EMC32	Ver. 9.25	
		Ra	diated	Emissi	ions (Instrum	nent)		
Used	Equipment	Manufacturer	Mode	el No.	Seri	al No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N90	10B	15	5727	2020-05-10	2021-05-09	2022-05-08
\checkmark	EMI test receiver	R&S	ESF	R26	12	6703	2020-12-05	2021-12-04	2022-12-03
	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB	8 1513	15	5456	2018-06-15	2021-06-03	2024-06-02
	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JE	31	17	7821	2019-01-19	2022-01-18	2025-01-17
	Receiver Antenna (1GHz-18GHz)	R&S	HF	907	12	6705	2019-01-27	2022-02-28	2025-02-27
	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA	9170	12	6706	2019-01-05	2022-01-04	2025-01-03
\checkmark	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-10	G18-50	17	8825	2021-03-26	2022-03-01	2023-02-28
\checkmark	Pre-amplification (To 26.5GHz)	R&S	SCU	-26D	13	5391	2020-12-05	2021-12-04	2022-12-03
V	Band Reject Filter	Wainwright	WRC 2350- 2483.5- 403	2400- 2533.5-		1	2020-05-10	2021-05-09	2022-05-08
V	Highpass Filter	Wainwright	WHK 2700- 18000			2	2020-05-10	2021-05-09	2022-05-08
				Soft	ware				
Used	Desc	ription	Manufa		turer		Name	Version	
\checkmark	Test Software for R	adiated disturbar	ance Tor				TS+	Ver. 2.5	
			Ot	her ins	trum	ents			
Used	Equipment	Manufacturer	Model No.		Seri	al No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N90	10B	15	5368	2020-05-10	2021-05-09	2022-05-08
	Power Meter	Keysight	U202	21XA	15	5370	2020-05-10	2021-05-09	2022-05-08

6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test for AC Power Port	ANSI C63.10-2013	6.2

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4°C	Relative Humidity	55.7%
Atmosphere Pressure	101.1kPa	Test Date	2022-03-10

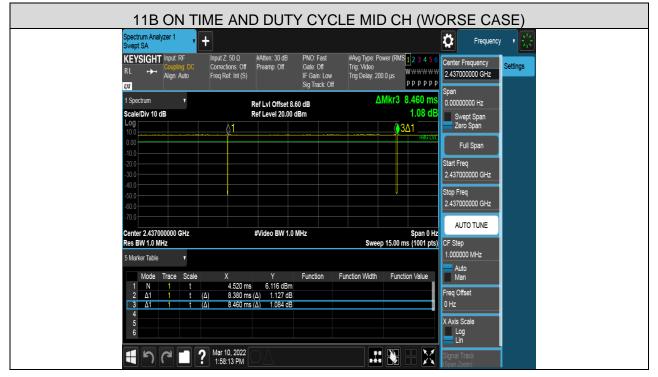
TEST RESULTS TABLE

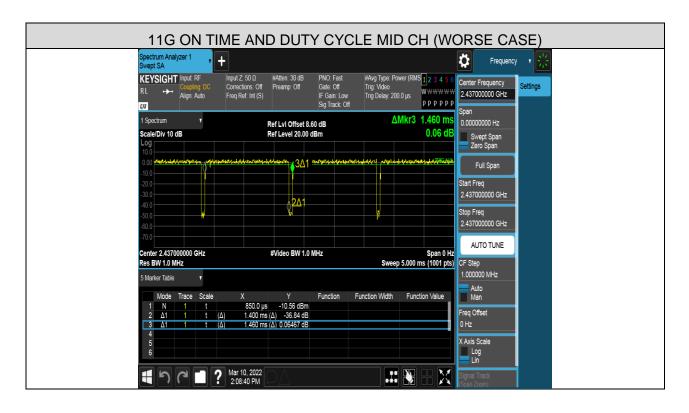
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final VBW (kHz)
11B	8.38	8.46	0.9905	99.05%	0.04	0.12	0.01
11G	1.4	1.46	0.9589	95.89%	0.18	0.71	1
802.11N HT20	5.08	5.15	0.9864	98.64%	0.06	0.20	0.01
802.11N HT40	2.47	2.53	0.9763	97.63%	0.10	0.40	1

Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle (Linear)

3) Where: T is On Time (transmit duration)


4) The duty cycle is above 98%, so the Final VBW is 10Hz.


UL-CCIC COMPANY LIMITED

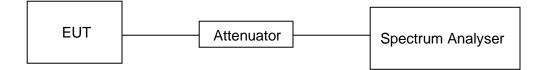
This report shall not be reproduced except in full, without the written approval of UL-CCIC COMPANY LIMITED.

TEST GRAPHS

7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)		
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5		


TEST PROCEDURE

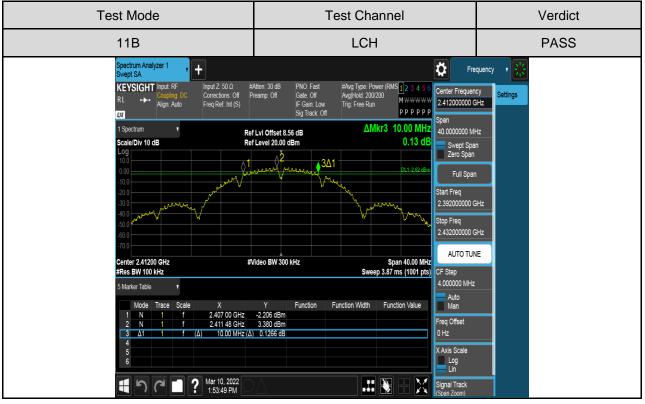
Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth.

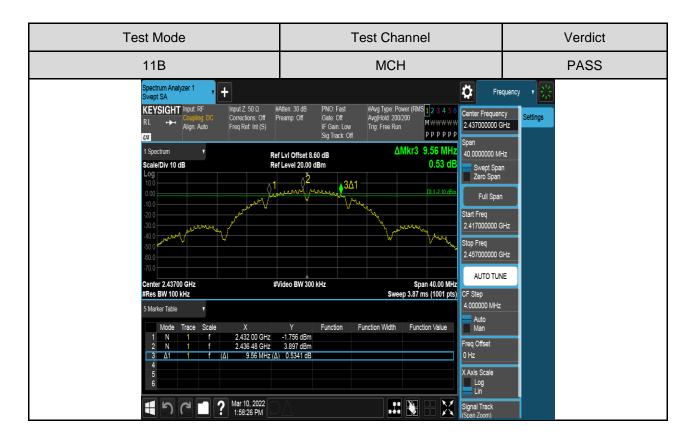
Center Frequency The centre frequency of the channel under test	
Detector Peak	
RBW	For 6 dB Bandwidth :100K
VBW	For 6dB Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

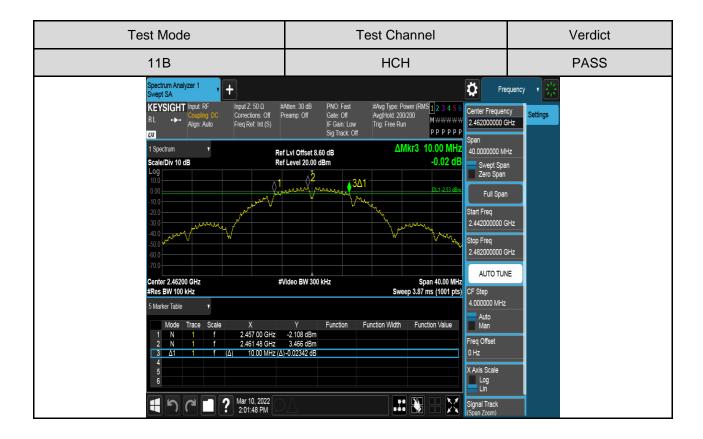
Temperature	21.4°C	Relative Humidity	55.7%
Atmosphere Pressure	101.1kPa	Test Date	2022-03-10

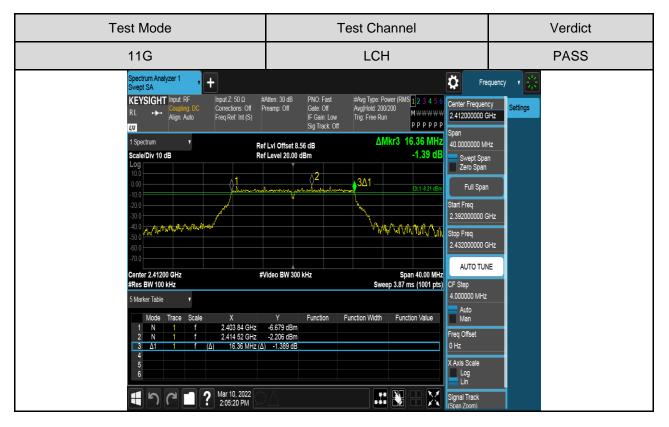

TEST RESULTS TABLE


Test Mode	Test Channel	6dB bandwidth (MHz)	Result
	LCH	10.00	Pass
11B	MCH	9.56	Pass
	HCH	10.00	Pass
	LCH	16.36	Pass
11G	MCH	16.32	Pass
	HCH	16.32	Pass
	LCH	17.60	Pass
11N HT20	MCH	17.60	Pass
	HCH	17.60	Pass
	LCH	36.00	Pass
11N HT40	MCH	36.32	Pass
	HCH	36.32	Pass

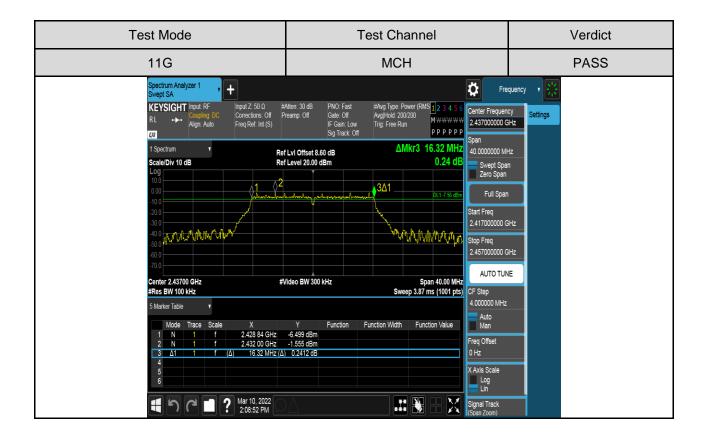
TEST GRAPHS

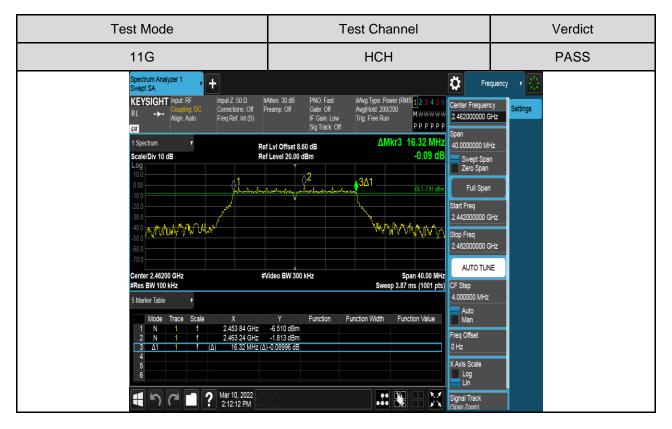
6dB Bandwdith

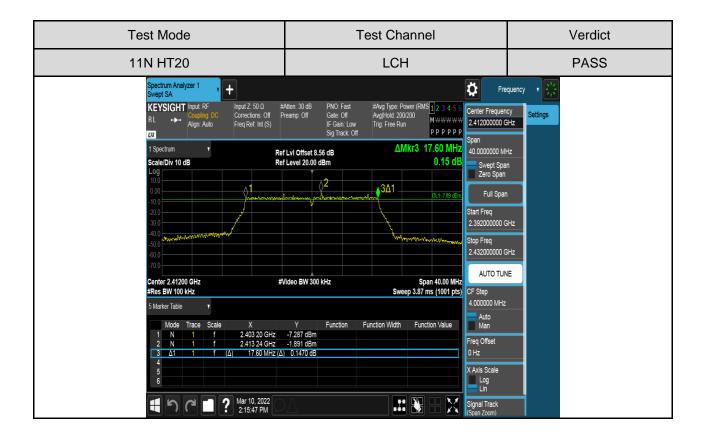


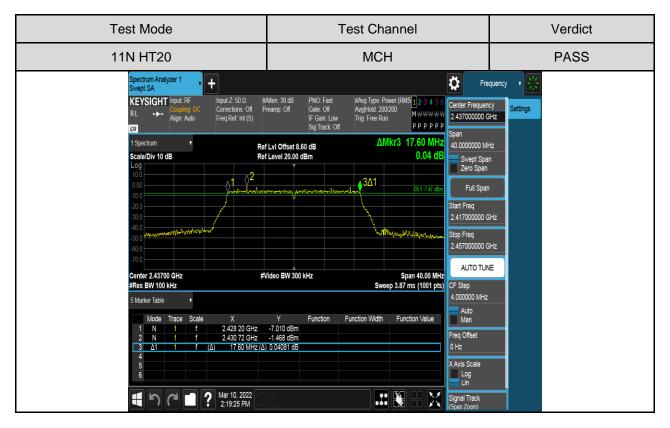


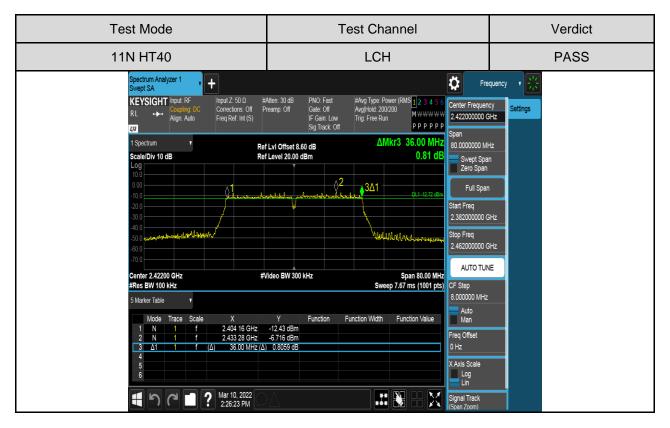
UL-CCIC COMPANY LIMITED

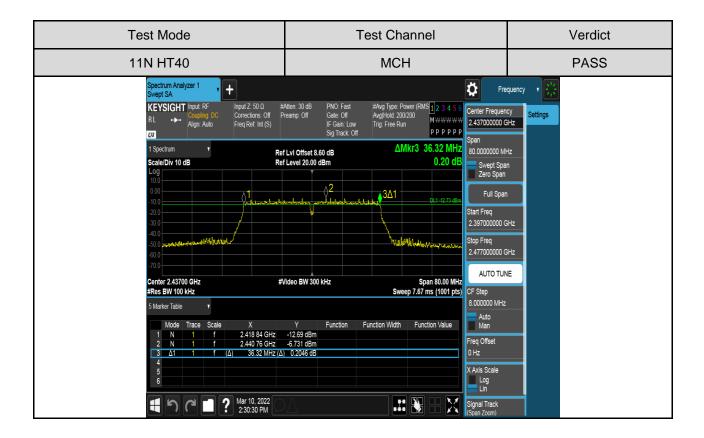

This report shall not be reproduced except in full, without the written approval of UL-CCIC COMPANY LIMITED.









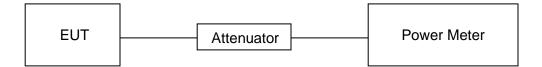


Test Mode	Test Channel	Verdict
11N HT40	НСН	PASS
RL Coupling: DC Corrections: Off RL → Align: Auto Corrections: Off 1 Spectrum • Ref Scale/Div 10 dB Ref Log • 0.00 <t< td=""><td>Atten: 30 dB PNO: Fast (Gate. Off) #Avg Type: Power (RMS] 2 3 4 5 6 (Avg)Hold 200200 Center VIEW: Sig Track: Off Trig: Free Run MWWWWW P P P P P P P</td><td>Frequency Coccoo GHz Settings Coccoo GHz Coccoo GHz Coccoo GHz Full Span Freq Coccoo GHz Coccoo GHZ Cocc</td></t<>	Atten: 30 dB PNO: Fast (Gate. Off) #Avg Type: Power (RMS] 2 3 4 5 6 (Avg)Hold 200200 Center VIEW: Sig Track: Off Trig: Free Run MWWWWW P P P P P P P	Frequency Coccoo GHz Settings Coccoo GHz Coccoo GHz Coccoo GHz Full Span Freq Coccoo GHz Coccoo GHZ Cocc
📕 🏷 (*) 🚺 🥐 Mar 10, 2022 💭	Signal	Track Zcom)

7.3. CONDUCTED OUTPUT POWER

<u>LIMITS</u>

	FCC Part15 (15.247), Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor. Measure the power of each channel. AVG Detector used for AVG result.

TEST ENVIRONMENT

Temperature	21.4°C	Relative Humidity	55.7%
Atmosphere Pressure	101.1kPa	Test Date	2022-03-10

TEST SETUP

TEST RESULTS TABLE

Test Mode	Test Channel	Measurement Output Power (AV)	10log(1/x) Factor	Maximum Average Conducted Output Power (dBm)	LIMIT
		dBm	dBm	dBm	dBm
	LCH	13.08	0.04	13.12	30
11B	MCH	13.57	0.04	13.61	30
	HCH	13.17	0.04	13.21	30
	LCH	9.42	0.18	9.60	30
11G	MCH	9.87	0.18	10.05	30
	HCH	9.52	0.18	9.70	30
	LCH	9.44	0.06	9.50	30
11N HT20	MCH	9.88	0.06	9.94	30
	HCH	9.48	0.06	9.54	30
	LCH	7.28	0.10	7.38	30
11N HT40	MCH	7.35	0.10	7.45	30
	HCH	7.23	0.10	7.33	30

7.4. POWER SPECTRAL DENSITY

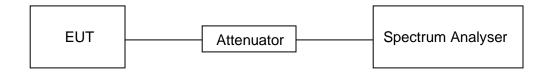
LIMITS

	FCC Part15 (15.24	7), Subpart C	
Section Test Item Limit Frequency Range (MHz)			
FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

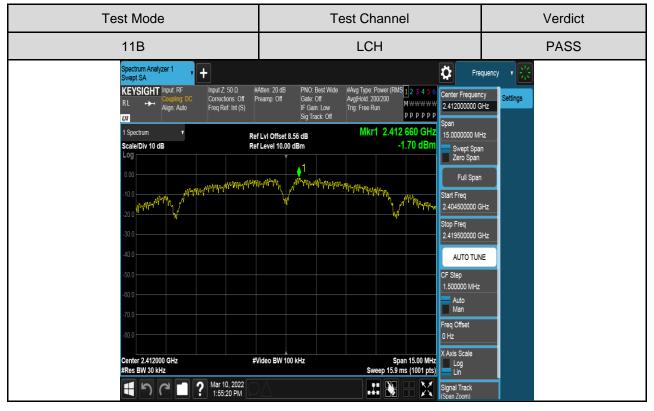

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

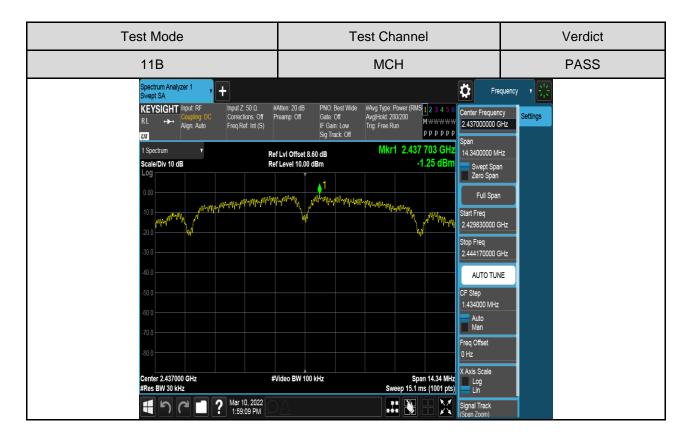
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

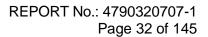
TEST ENVIRONMENT

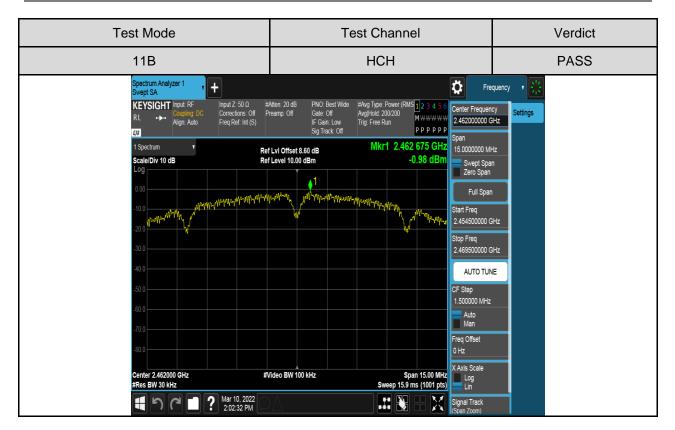
Temperature	19.8°C	Relative Humidity	55.4%
Atmosphere Pressure	103.1kPa	Test Voltage	AC 120V

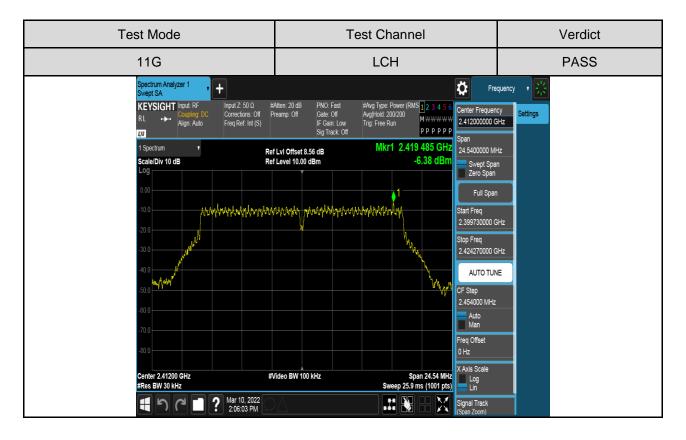
TEST SETUP

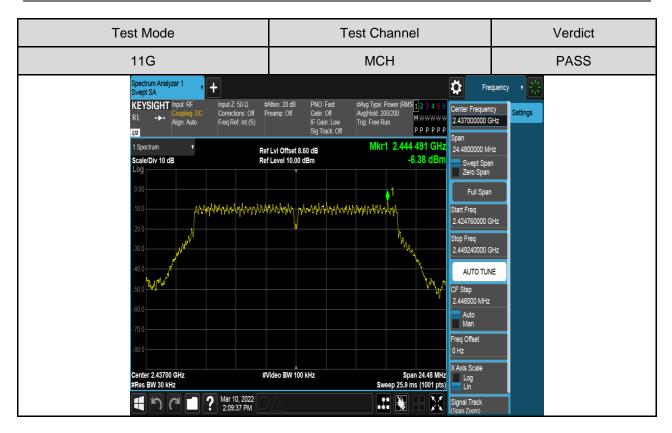


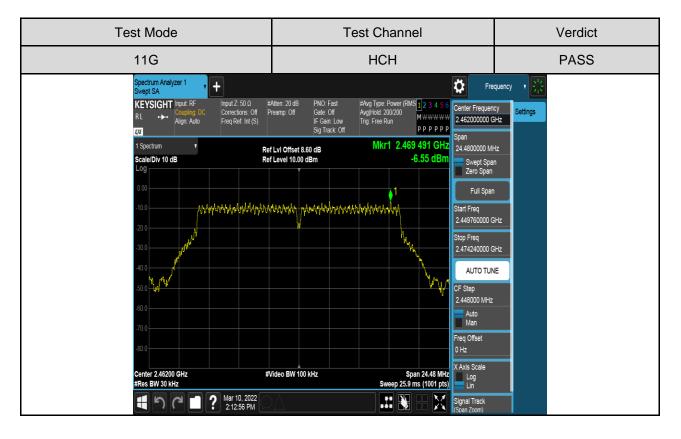

TEST RESULTS TABLE

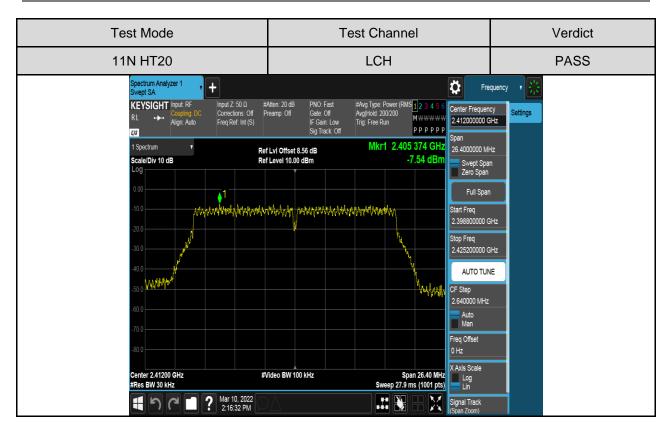

Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	-1.70	Pass
11B	MCH	-1.25	Pass
	HCH	-0.98	Pass
	LCH	-6.38	Pass
11G	MCH	-6.38	Pass
	HCH	-6.55	Pass
	LCH	-7.54	Pass
11N HT20	MCH	-7.00	Pass
	HCH	-7.31	Pass
	LCH	-11.24	Pass
11N HT40	MCH	-12.39	Pass
	HCH	-12.42	Pass

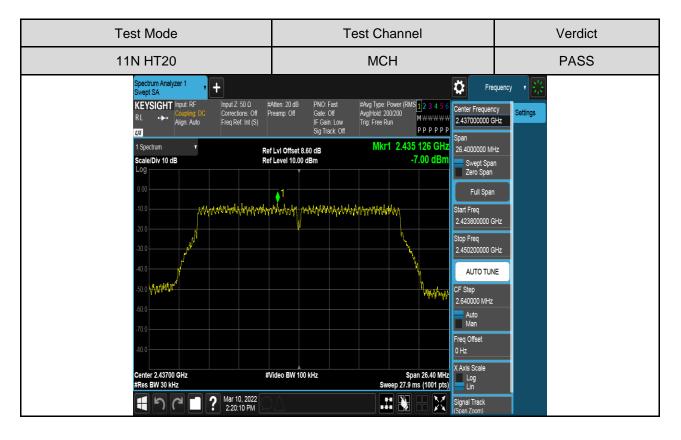


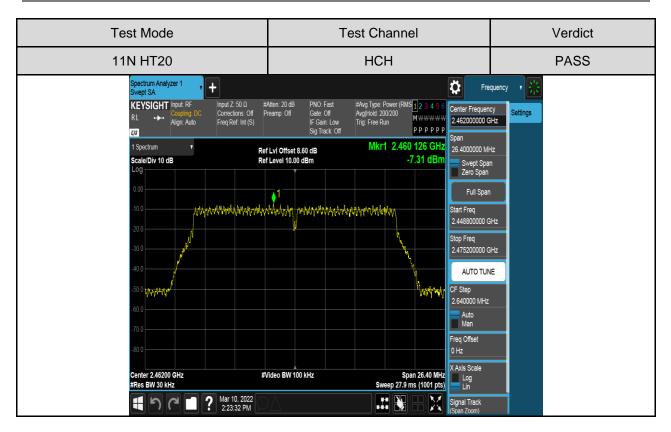

TEST GRAPHS

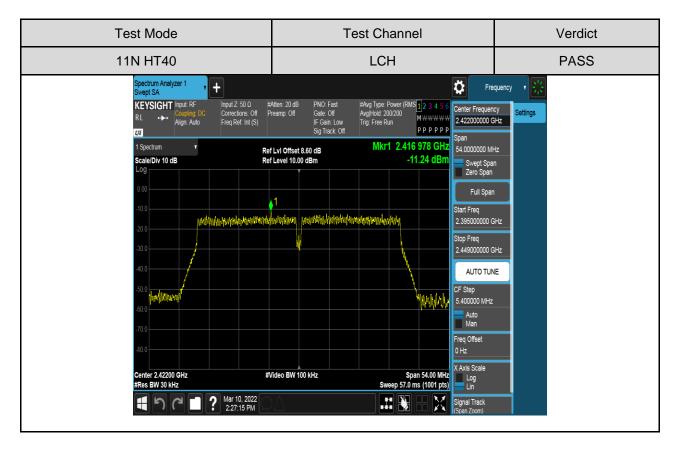


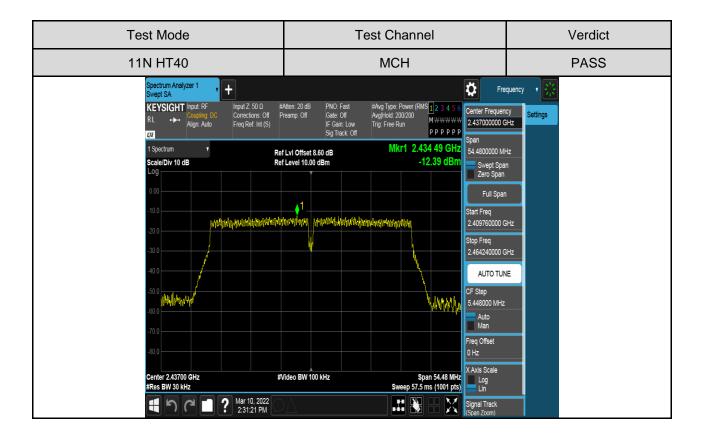


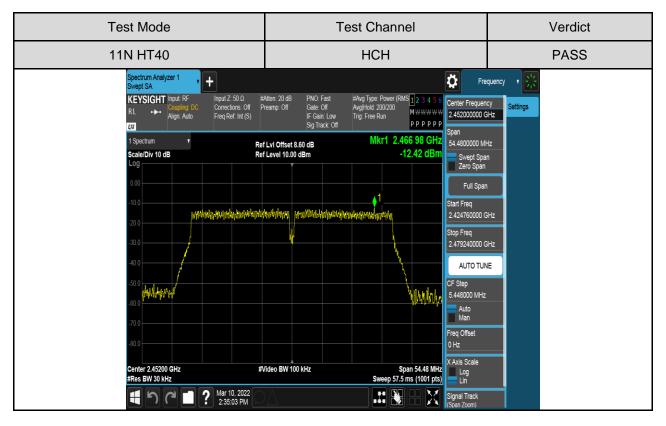












7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

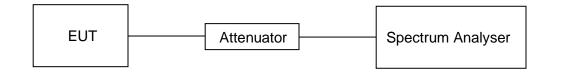
<u>LIMITS</u>

FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit
FCC §15.247 (d)Conducted Bandedge and Spurious Emissions30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyzer and use the following

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


settings:

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

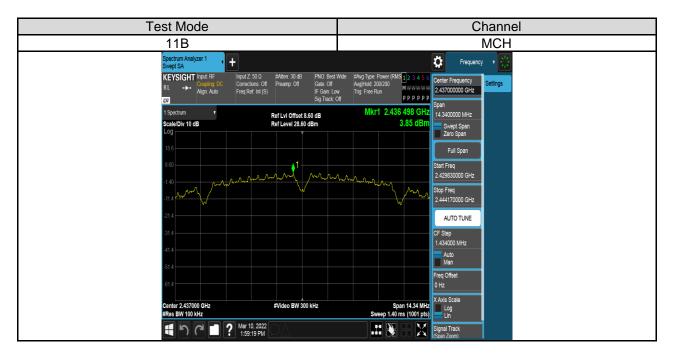
Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

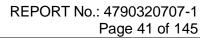
Temperature	21.4°C	Relative Humidity	55.7%
Atmosphere Pressure	101.1kPa	Test Date	2022-03-10

PART 1: REFERENCE LEVEL MEASUREMENT


TEST RESULTS TABLE

Test Mode	Test Channel	Result[dBm]	
	LCH	3.38	
11B	MCH	3.85	
	HCH	3.45	
	LCH	-2.04	
11G	MCH	-1.59	
	HCH	-1.93	
	LCH	-2.12	
11N HT20	MCH	-1.70	
	HCH	-1.99	
	LCH	-6.89	
11N HT40	MCH	-6.68	
	НСН	-6.83	

TEST GRAPHS



Test Mode	e	Cha	nnel
11B		HC	СН
Spectrum Analyzer Swept SA KEYSIGHT Inp RL → Ga Aug		de =Avg Type: Power (RMS 12 3 4 5 6 AvgHold: 200200 Ting: Free Run Center Frequency N WWWWW P P P P P P Setting	rgs
1 Spectrum Scale/Div 10 dB Log	Ref Lvi Offset 8.60 dB Ref Level 28.60 dBm	Mkr1 2.461 505 GHz Span 15.000000 MHz 3.45 dBm Swept Span Zero Span Zer	
18.6 8.60 -1.40 -11.4 Junton M	John Marine Marine	Full Span Start Freq 2.454500000 GHz Stop Freq 2.458500000 GHz	
21.4 -31.4 -41.4 -51.4		CF Step 1.500000 MHz Auto Man	
614 614 Center 2.462000 G #Ros BW 100 kHz		Span 15.00 MHz Sweep 1.47 ms (1001 pbs) Sweep 1.47 ms (1001 pbs) Sweep 1.47 ms (1001 pbs) Sweep 1.47 ms (1001 pbs) Signal Track Signal Track	

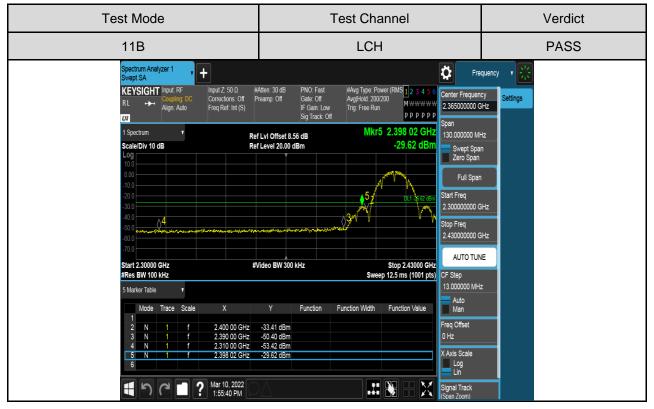
Test Mode		Channel
11G		MCH
onept ent	+	Frequency •
KEYSIGHT Input RF RL 아니 Align Auto	Input Z: 50 Ω #Atten: 30 dB PNO: Fast Corrections: Off Preamp: Off Gate: Off Freq Ref: Int (S) IF Gain: Low Sig Track: Off	
1 Speirum • Scale/Div 10 dB	Ref Lvi Offset 8.60 dB Ref Level 28.60 dBm	Mkr1 2.441 994 GHZ -1.59 dBm Zers Span
18.6		Full Span
8.60 		1 Start Freq 2.424760000 GHz
-11.4	have have many portunations	2.44924000 GHz
-21.4		
41.4		2.448000 MHz
51.4		Freq Offset
-01 4 Center 2.43700 GHz	#Video BW 300 kHz	Span 24.48 MHz X Avis Scale
#Res BW 100 kHz	Mar 10, 2022 2:09:46 PM	Span 24.48 mHz Sweep 2.40 ms (100 pts) Signal Track Stan Zoom

Test	Mode			Chann	el
11N	HT20			LCH	
Spectr Swept	trum Analyzer 1 v			Frequency 🔹 🔆	
KEY RL נעז	'SIGHT Input: RF Input Z: 50 Ω Coupling: DC Corrections: Off Align: Auto Freq Ref. Int (S)	#Atten: 30 dB PNO: Fast Preamp: Off Gate: Off IF Gain: Low Sig Track: Off			
1 Spec	e/Div 10 dB	Ref LvI Offset 8.56 dB Ref Level 28.56 dBm	Mkr1 2.405 717 GHz -2.12 dBm	Span 26.4000000 MHz Swept Span	
18.6				Zero Span Full Span	
8.56 - 1.44		mlummy monoherman		Start Freq 2.398800000 GHz Stop Freq	
-11.4 -21.4	en e	Administration for the sector of the sector	19 19 19 19 19 19 19 19 19 19 19 19 19 1	2.425200000 GHz	
-31.4				CF Step 2.640000 MHz	
-41.4 -51.4	Pollow .		Work	Auto Man	
-61.4				Freq Offset 0 Hz X Axis Scale	
#Res	er 2.41200 GHz BW 100 kHz	#Video BW 300 kHz	Span 26.40 MHz Sweep 2.53 ms (1001 pts)	Log Lin	
4	う C ⁴ I ? Mar 10, 2022 2:16:41 PM		X - X 🖬 🖿	Signal Track (Span Zoom)	



Te	st Mode			Channel
11	N HT20			HCH
	Spectrum Analyzer 1 Swept SA		🛟 Frequ	ency 🔹
	KEYSIGHT Input: RF Input: Z: 50 Ω RL ↔ Coupling: DC Corrections: Of Align: Auto Freq Ref. Int (S		#Avg Type: Power (RMS 1 2 3 4 5 6 Avg Hold: 200200 Trig. Free Run P P P P P	
	1 Spectrum v Scale/Div 10 dB Log	Ref LvI Offset 8.60 dB Ref Level 28.60 dBm	Mkr1 2.466 990 GHz -1.99 dBm Span Swept Span	
	18.6		Zero Span Full Span	
	-1.40		Start Freq 1 2.448800000 GH: Church Witten Stop Freq	
	-11.4	undership providence	2.475200000 GHz	
	-31.4		CF Step 2.640000 MHz	
	-41.4		Auto Man	
	-61.4		Freq Offset 0 Hz	
	Center 2.46200 GHz #Res BW 100 kHz	#Video BW 300 kHz	Span 26.40 MHz Sweep 2.53 ms (1001 pts)	
	📲 🖒 🥂 🗖 ? Mar 10, 2022 2:23:41 PM		Signal Track (Span Zoom)	

Test Mode	;	Channel		
11N HT40		MCH		
Spectrum Analyzer Swept SA		Frequency		
KEYSIGHT ind RL ↔ Aig 100	t RF Input Z: 50 Ω #Atten 30 dB PNO. Fast sing DC Corrections: Off Preamp: Off Gate. Off IF anto Freq Ref. Int (S) IF Gain. Lor Sig Track. C		Settings	
1 Spectrum Scale/Div 10 dB	Ref Lvi Offset 8.60 dB Ref Level 28.60 dBm	Mkr1 2.431 99 GHz -6.68 dBm Svept Span Zero Span		
18.6		Full Span		
8 60		Start Freq 2.409760000 GHz		
-11.4	putertinentertitertertiterter	Stop Freq 2.464240000 GHz		
-21.4		AUTO TUNE		
-31.4		CF Step 5.448000 MHz		
-51.4 databella				
-61.4		Freq Offset 0 Hz		
Center 2.43700 GH #Res BW 100 kHz	z #Video BW 300 kHz	Span 54.48 MHz Log Sweep 5.27 ms (1001 pts)		
4 n C	Mar 10, 2022 2:31:31 PM	Signal Track (Span Zoom)		


PART 2: CONDUCTED BANDEDGE

TEST RESULTS TABLE

Test Mode	Test Channel	Result	Verdict
11B	LCH	Refer to the Test Graph	PASS
ПD	HCH	Refer to the Test Graph	PASS
11G	LCH	Refer to the Test Graph	PASS
ПG	HCH	Refer to the Test Graph	PASS
11N HT20	LCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS
11N HT40	LCH	Refer to the Test Graph	PASS
	НСН	Refer to the Test Graph	PASS

TEST GRAPHS

