

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

CONSUMER CAMERA

MODEL NUMBER: DH-IPC-HDBW1235EP-W-S2

ADDITIONAL MODEL NUMBER: DH-IPC-HDBW1235EN-W-0280B-S2; DH-IPC-HDBW1235EN-W-0360B-S2; DH-IPC-HDBW1235EP-W-0280B-S2; DH-IPC-HDBW1235EP-W-0360B-S2; DH-IPC-HDBW1235EN-W-S2; IPC-D22MP-0280B; IPC-D22MP-0360B; IPC-D22MN-0280B; IPC-D22MN-0360B; IPC-HDBW1235E-W-0280B-S2; IPC-HDBW1235E-W-0360B-S2; DH-IPC-HDBW1235E-W-S2; IPC-HDBW1235E-W-S2; IPC-D22M-0360B; IPC-D22M-0280B; IPC-D22M-0280B; IPC-D22M;

PROJECT NUMBER: 4789506901

REPORT NUMBER: 4789506901-1

FCC ID: SVNDH-IPC-HDB2X-W

ISSUE DATE: Jul. 05, 2020

Prepared for

Zhejiang Dahua Vision Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 126

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	07/05/2020	Initial Issue	

TABLE OF CONTENTS

1.	AΤΊ	TESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAI	LIBRATION AND UNCERTAINTY	7
4	4.1.	MEASURING INSTRUMENT CALIBRATION	7
4	4.2 .	MEASUREMENT UNCERTAINTY	7
5.	EQI	JIPMENT UNDER TEST	8
Ę	5.1.	DESCRIPTION OF EUT	8
Ę	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	9
	5. <i>4</i> .	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
Ę	5.7.	THE WORSE CASE CONFIGURATIONS	11
	5.8.	TEST ENVIRONMENT	12
	5.9.	DESCRIPTION OF TEST SETUP	13
	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED	14
6.	ME	ASUREMENT METHODS	15
7.	AN	FENNA PORT TEST RESULTS	16
7	7.1.	ON TIME AND DUTY CYCLE	16
7	7.2.	6 dB BANDWIDTH	19
7	7.3.	PEAK CONDUCTED OUTPUT POWER	27
7	7.4.	POWER SPECTRAL DENSITY	29
7	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	37
7		RADIATED TEST RESULTS	
	7.6. 7.6.	1. LIMITS AND PROCEDURE	
		3. RESTRICTED BANDEDGE	
	7.6.	4. SPURIOUS EMISSIONS	91
7	7.7.	AC POWER LINE CONDUCTED EMISSIONS	123
8.	ΔN	TENNA REQUIREMENTS	126

Page 4 of 126

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd.

Address: No.1199, Bin'an road, Binjiang District, Hangzhou,

P.R.China.

Manufacturer Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd.

Address: No.1199, Bin'an road, Binjiang District, Hangzhou,

P.R.China.

EUT Description

Product Name CONSUMER CAMERA

Model Name DH-IPC-HDBW1235EP-W-S2

Additional No. DH-IPC-HDBW1235EN-W-0280B-S2; DH-IPC-HDBW1235EN-W-0360B-S2;

DH-IPC-HDBW1235EP-W-0280B-S2;DH-IPC-HDBW1235EP-W-

0300D CO.DU IDO UDDW/4035EN W CO. IDO DOMD

0360B-S2;DH-IPC-HDBW1235EN-W-S2; IPC-D22MP-

0280B;IPC-D22MP-0360B;IPC-D22MN-0280B;IPC-D22MN-0360B;IPC-D22MP;IPC-D22MN;IPC-HDBW1235E-W-0280B-S2;IPC-HDBW1235E-W-0360B-S2;DH-IPC-HDBW1235E-W-S2;IPC-HDBW1235E-W-S2;IPC-D22M-0360B;IPC-D22M-

0280B;IPC-D22M;

Sample Number 3099081

Data of Receipt Sample Jun 05, 2020

Date Tested Jun 05, 2020 ~ Jul 04, 2020

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

Page 5 of 126

	Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results			
1	6db DTS Bandwidth	FCC 15.247 (a) (2)	Complied			
2	Peak Conducted Power	FCC 15.247 (b) (3)	Complied			
3	Power Spectral Density	FCC 15.247 (e)	Complied			
4	Conducted Band edge And Spurious emission	FCC 15.247 (d)	Complied			
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	Complied			
6	Conducted Emission Test For AC Power Port	FCC 15.207	Complied			
7	Antenna Requirement	FCC 15.203	Complied			

Remark:

Prepared By:	Reviewed By:
Jason Yang	Tom Tang
Jason Yang Engineer	Tom Tang Engineer Project Associate
Authorized By:	
Chris Zhong	
Chris Zhong Laboratory Leader	

¹⁾ The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C > when <Accuracy Method> decision rule is applied.

Page 6 of 126

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C.

3. FACILITIES AND ACCREDITATION

Test Location	UL-CCIC Company Limited, EMC&RF Lab
Address	No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122 ,China
Accreditation Certificate	CNAS (Certificate No.: L2065) The Laboratory has been assessed and proved to be in compliance with CNAS, The Certificate Registration Number is L2065. A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 7 of 126

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.00dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.32dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.27dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.80dB (1GHz-18Gz)
Note: This was estaints assessed as a series of the series	4.11dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 126

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	CONSUMER CAMERA
Model No.:	DH-IPC-HDBW1235EP-W-S2
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
	IEEE 802.11n(HT40): 2422MHz to 2452MHz
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK)
	IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)
Channels Step:	Channels with 5MHz step
Test power grade:	30 (manufacturer declare)
Test software of EUT:	Secure CRT (manufacturer declare)
Antenna Type:	Dipole antenna
Antenna Gain:	4 dBi
	Remark: This data is provided by customer and our lab isn't responsible for this data

Remark: Model No.:

Number:	Name:	Number:	Name:	Number:	Name:
	DH-IPC-HDBW1235EP-		DH-IPC-		DH-IPC-
1	W-S2	2	HDBW1235EN-W-	3	HDBW1235EN-W-
	VV-32		0280B-S2		0360B-S2
	DH-IPC-HDBW1235EP-		DH-IPC-		DH-IPC-
4		5	HDBW1235EP-W-	6	HDBW1235EN-W-
	W-0280B-S2		0360B-S2		S2
7	IPC-D22MP-0280B	8	IPC-D22MP-0360B	9	IPC-D22MN-0280B
10	IPC-D22MN-0360B	11	IPC-D22MP	12	IPC-D22MN
13	IPC-HDBW1235E-W-	14	IPC-HDBW1235E-	15	DH-IPC-
13	0280B-S2	14	W-0360B-S2	10	HDBW1235E-W-S2
16	IPC-HDBW1235E-W-S2	17	IPC-D22M-0360B	18	IPC-D22M-0280B
19	IPC-D22M				

Remark: Only the main model **DH-IPC-HDBW1235EP-W-S2** was tested and only the data of this model is shown in this test report. Since Their electrical circuit design, layout, components used and internal wiring are identical, only the model name, product color, marketing channel and sale country.

Page 9 of 126

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max AVG Conducted Power (dBm)
1	IEEE 802.11B	1-11[11]	14.63
1	IEEE 802.11G	1-11[11]	8.68
1	IEEE 802.11n HT20	1-11[11]	8.55
1	IEEE 802.11nHT40	3-9[7]	8.64

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452		

Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

Page 10 of 126

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel (MHz)
	LCH :CH01 2412
IEEE 802.11B	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11G	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11n HT20	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH03 2422
IEEE 802.11n HT40	MCH: CH06 2437
	HCH: CH09 2452

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare			Secur	re CRT			
		Test Channel						
Modulation Mode	Transmit Antenna		NCB: 20MF	łz	NCB: 40MHz		7	
Mode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	30	30	30			•	
802.11g	1	30	30	30	/			
802.11n HT20	1	30	30	30				
802.11n HT40	1		/ 30 30 30					

Page 11 of 126

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	Dipole antenna	4

Test Mode Transmit and Receive Mode		Description		
IEEE 802.11b	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11g	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N (HT20)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N (HT40)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there two transmission antennas, and pre-testing both of them, only the worse data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 12 of 126

5.8. **TEST ENVIRONMENT**

Environment Parameter	Selected Values During Tests				
Relative Humidity	55	5 ~ 65%			
Atmospheric Pressure:	101kPa				
Temperature	TN	23 ~ 28°C			
Voltage :	VL	N/A			
	VN	AC 120V			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 13 of 126

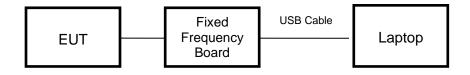
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description	
1	Laptop	ThinkPad	E550c	N/A	
2	Fixed Frequency Board	N/A	N/A	Supply by UL Lab	

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB	USB-VGA	100cm Length (Supply by UL Lab)	N/A
2	LAN	LAN	LAN Cable	100cm Length (Supply by UL Lab)	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Adapter(Supply by UL Lab)	NA	ADS-26FSG-12 12024EPCU/EP C	INPUT:100-240V~50/60Hz 0.7A Max OUTPUT:12.0V 2.0A

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

Page 14 of 126

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	5.10. MEASURING INSTRUMENT AND SOFTWARE USED									
	Conducted Emissions (Instrument)									
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.		
$\overline{\checkmark}$	EMI Test Receiver	R&S	ESR	3	126700	2018-12-13	2019-12-12	2020-12-11		
V	Two-Line V-Network	R&S	ENV2	16	126701	2018-12-13	2019-12-12	2020-12-11		
V	Artificial Mains Networks	R&S	ENY8	31	126711	2018-12-13	2019-12-12	2020-12-11		
	Software									
Used	Des	scription		Ma	nufacturer	Name	Version			
V	Test Software for 0	Conducted distur	bance		R&S	EMC32	Ver. 9.25			
		Ra	diated E	miss	ions (Instrum	ent)				
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.		
V	Spectrum Analyzer	Keysight	N9010	0B	MY57110128	2019-05-29	2020-05-10	2021-05-09		
$\overline{\mathbf{V}}$	EMI test receiver	R&S	ESR2	26	1267603	2018-12-13	2019-12-22	2020-12-21		
V	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1	513	513-265	N/A	2018-06-15	2021-06-14		
V	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		126704	N/A	2019-01-28	2022-01-27		
V	Receiver Antenna (1GHz-18GHz)	R&S	HF90)7	126705	2019-01-26	2020-01-26	2021-01-25		
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9	170	126706	2019-02-06	2020-02-05	2021-02-04		
V	Receiver Antenna (26.5GHz-40GHz)	TOYO	HAP 26-	-40W	00000012	2018-07-25	2019-07-23	2020-07-22		
V	Pre-amplification (To 1GHz)	R&S	SCU-0	3D	134666	2019-02-06	2020-02-05	2021-02-04		
V	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G ²	18-50	14140-13467	2019-03-18	2020-02-20	2021-02-19		
V	Pre-amplification (To 26.5GHz)	R&S	SCU-2	:6D	134668	2019-02-06	2020-02-05	2021-02-04		
$\overline{\mathbf{V}}$	Band Reject Filter	Wainwright	WRCJ' 2350-24 2483.5-25 4085	400- 533.5-	1	2019-05-29	2020-05-10	2021-05-09		
V	Highpass Filter	Wainwright	WHKX10- 2700-3000- 18000-40SS		2	2019-05-29	2020-05-10	2021-05-09		
				Soft	ware					
Used	Desci	ription	Ma	nufac	turer	Name	Version			
$\overline{\checkmark}$	Test Software for R	adiated disturbar	nce T	Tonsce	end	JS32	V1.0			
			Oth	er ins	truments					
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.		
V	Spectrum Analyzer	Keysight	N9010	0B	MY57110128	2019-05-29	2020-05-10	2021-05-09		

Page 15 of 126

\checkmark	Power Meter	Keysight	U2021XA	MY57110002	2019-06-12	2020-05-10	2021-05-09
--------------	-------------	----------	---------	------------	------------	------------	------------

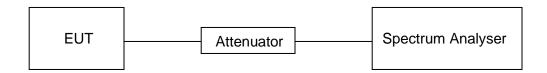
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth and 99% Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 126

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

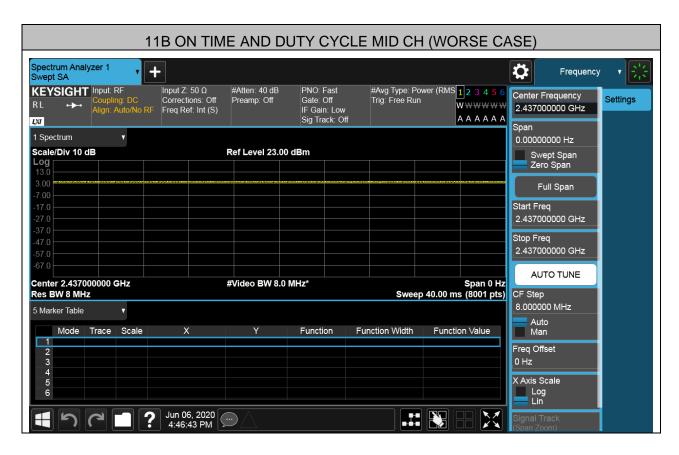
FCC KDB 558074 Zero-Span Spectrum Analyzer Method

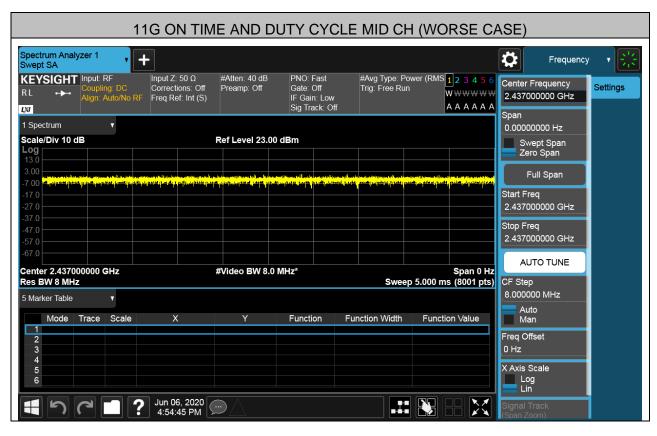
TEST SETUP

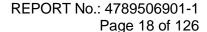
TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

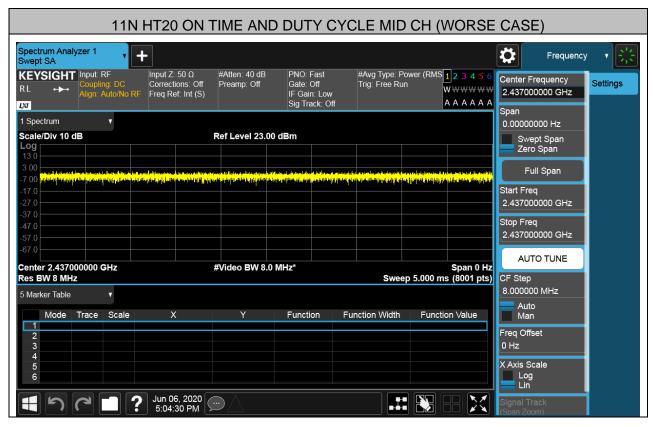
RESULTS

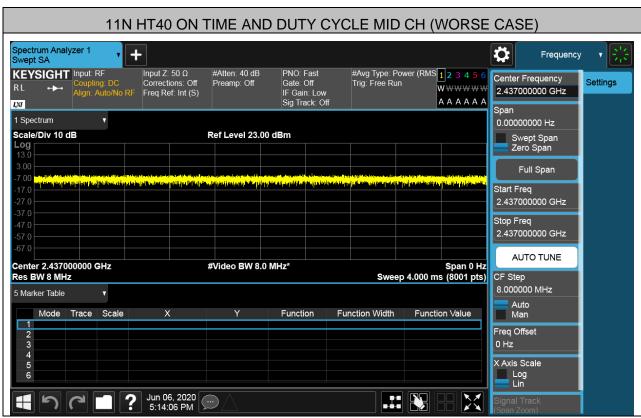

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final VBW(Hz)
11B	100	100	1	100	0	0.01	10
11G	100	100	1	100	0	0.01	10
11N HT20	100	100	1	100	0	0.01	10
11N HT40	100	100	1	100	0	0.01	10


Note: 1) Duty Cycle Correction Factor=10log(1/x).


2) Where: x is Duty Cycle(Linear)

3) Where: T is On Time (transmit duration)





REPORT No.: 4789506901-1 Page 19 of 126

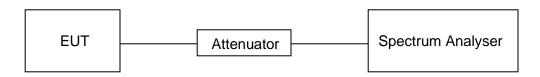
7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	For 6dB Bandwidth :100K	
VBW	For 6dB Bandwidth : ≥3 × RBW	
Trace	Max hold	
Sweep	Auto couple	

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

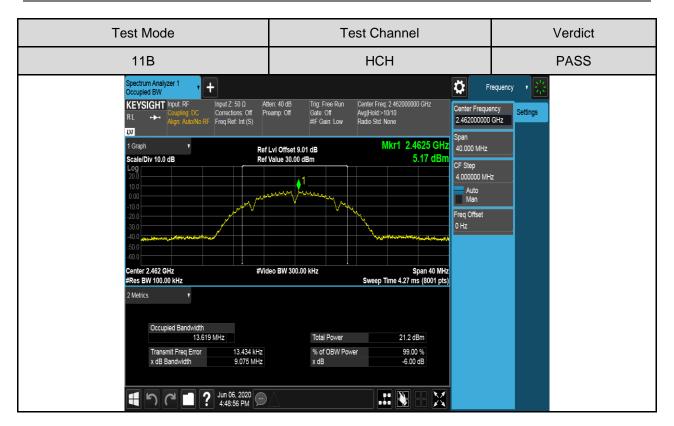
TEST ENVIRONMENT

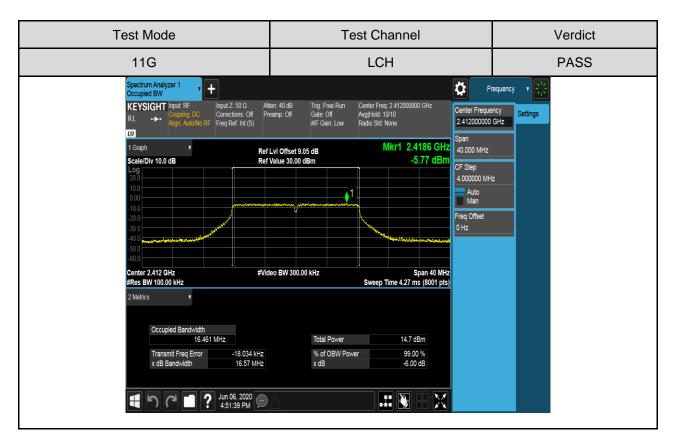
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC120V

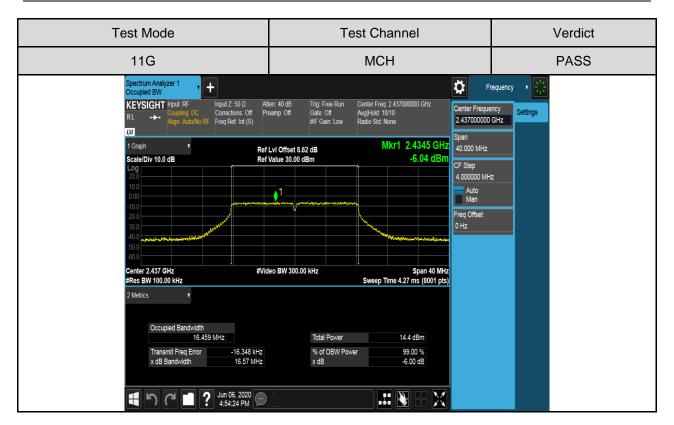
TEST SETUP


RESULTS TABLE

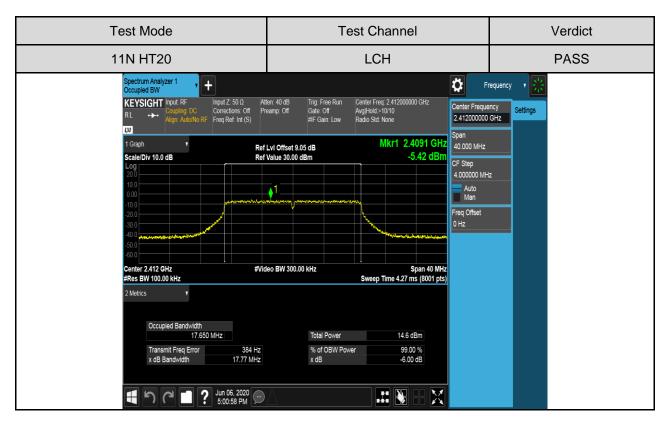

Test Mode	Test Channel	6dB bandwidth(MHz)	Verdict
11B	LCH	9.062	PASS
11B	MCH	9.066	PASS
11B	HCH	9.075	PASS
11G	LCH	16.57	PASS
11G	MCH	16.57	PASS
11G	HCH	16.56	PASS
11N HT20	LCH	17.77	PASS
11N HT20	MCH	17.76	PASS
11N HT20	HCH	17.77	PASS
11N HT40	LCH	36.45	PASS
11N HT40	MCH	36.44	PASS
11N HT40	HCH	36.46	PASS

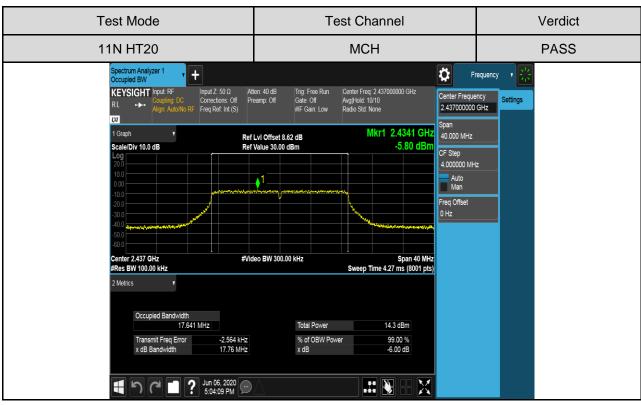

Test Graphs


Part I: For 6dB bandwidth













Page 26 of 126

Page 27 of 126

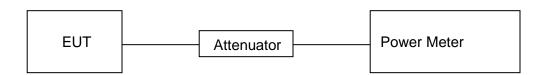
7.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
FCC 15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC120V

Page 28 of 126

RESULTS

Test Mode	Test Channel	Maximum Conducted Output Power (PK)	Maximum Conducted Output Power (AV)	LIMIT
		dBm	dBm	dBm
	LCH	17.37	14.63	30
11B	MCH	17.02	14.27	30
	HCH	17.2	14.45	30
	LCH	16.39	8.68	30
11G	MCH	16.09	8.37	30
	HCH	16.31	8.60	30
	LCH	16.39	8.55	30
11n HT20	MCH	16.10	8.26	30
	HCH	16.34	8.49	30
11n HT40	LCH	N/A	8.25	30
	MCH	N/A	8.27	30
	HCH	N/A	8.64	30

Page 29 of 126

7.4. POWER SPECTRAL DENSITY

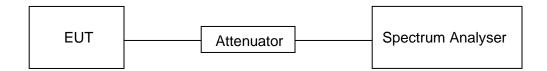
LIMITS

FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

	, ,
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

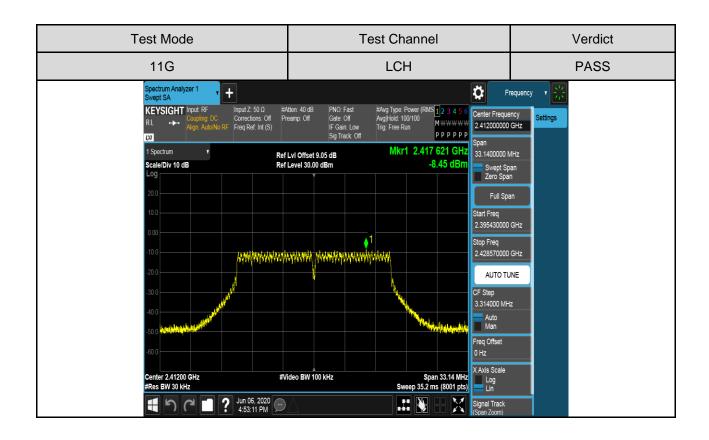
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

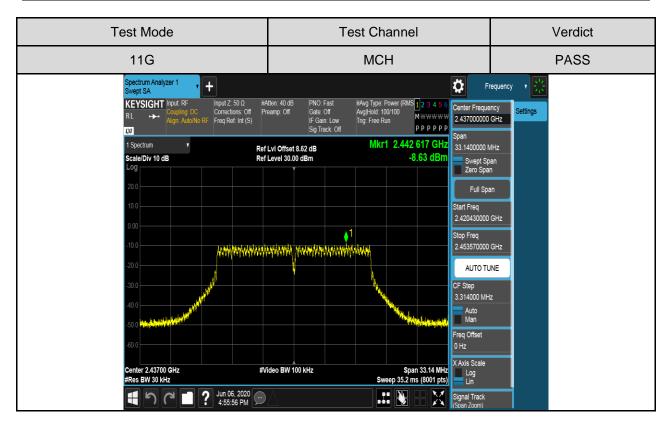
TEST ENVIRONMENT

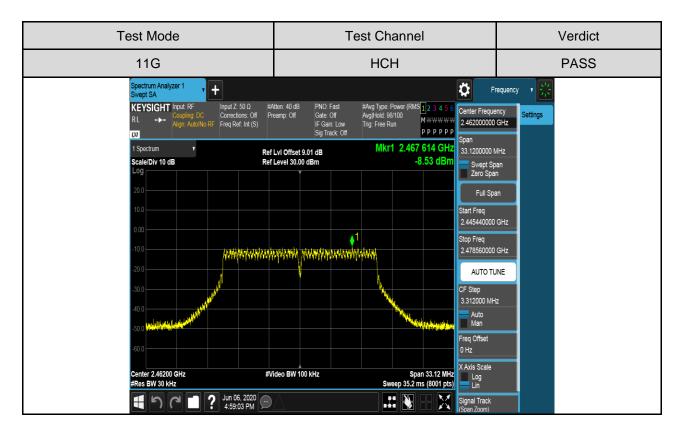
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 21.6V

TEST SETUP

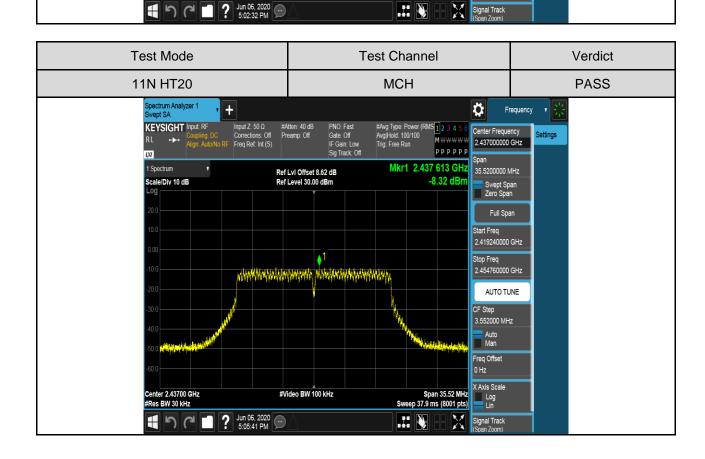
Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	0.31	Pass
11B	MCH	-0.10	Pass
	HCH	0.08	Pass
	LCH	-8.45	Pass
11G	MCH	-8.63	Pass
	НСН	-8.53	Pass
	LCH	-8.13	Pass
11N HT20	MCH	-8.32	Pass
	HCH	-8.08	Pass
	LCH	-10.66	Pass
11N HT40	MCH	-11.00	Pass
	HCH	-10.89	Pass

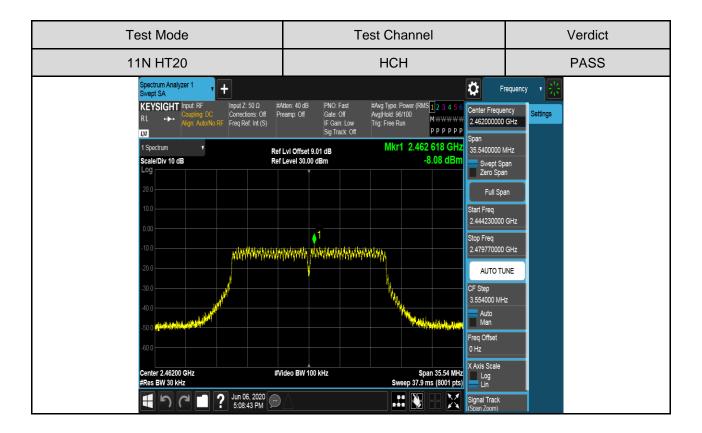

Test Graphs:

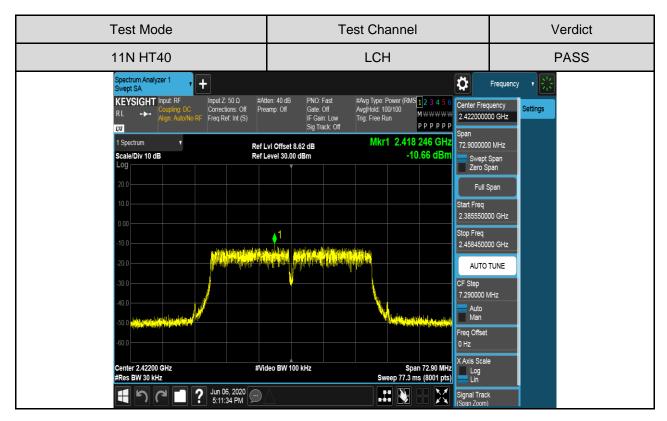




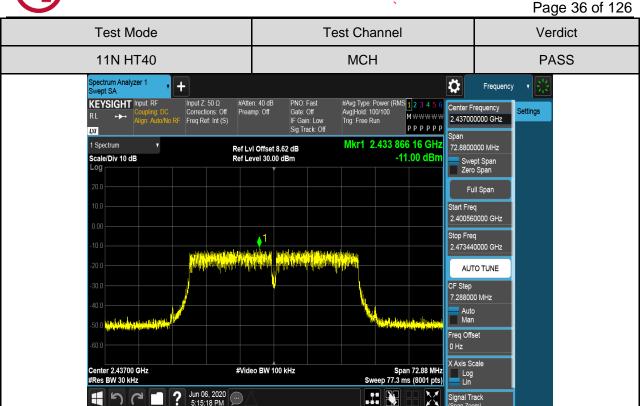
Test Mode Test Channel Verdict **HCH PASS** 11B pectrum Analyzer 1 wept SA Ö Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) #Atten: 40 dB Preamp: Off KEYSIGHT Input RF Settings 2.462000000 GHz PPPPPP L)XI Mkr1 2.462 692 0 GHz 1 Spectrum 18.1500000 MHz Ref Lvl Offset 9.01 dB 0.08 dBr Scale/Div 10 dB Swept Span Zero Span Full Span 2.452925000 GHz Stop Freq 2.471075000 GHz 1.815000 MHz Auto Man Freq Offset X Axis Scale Span 18.15 MHz Sweep 19.2 ms (8001 pts) enter 2.462000 GHz #Video BW 100 kHz Log Lin #Res BW 30 kHz # 1

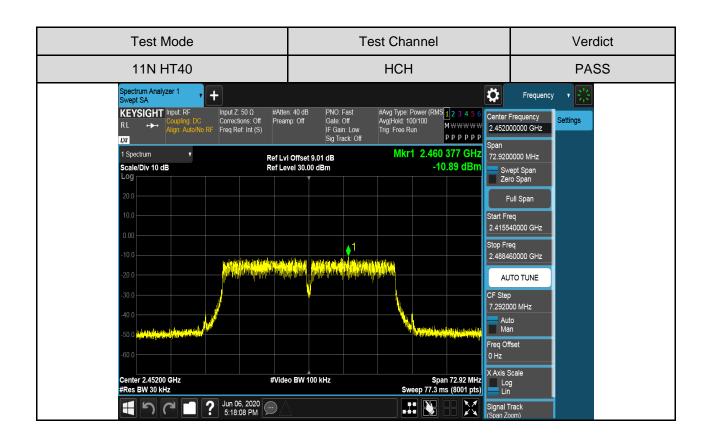






Test Mode Test Channel Verdict LCH **PASS** 11N HT20 pectrum Analyzer 1 wept SA Ö Frequency Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) #Atten: 40 dB Preamp: Off PNO: Fast Gate: Off IF Gain: Low KEYSIGHT Input RF Settings 2.412000000 GHz PPPPPP L)XI Mkr1 2.412 613 GHz 1 Spectrum Ref Lvl Offset 9.05 dB 35.5400000 MHz -8.13 dBn Scale/Div 10 dB Swept Span Zero Span Full Span 2.394230000 GHz Stop Freq 2.429770000 GHz AUTO TUNE 3.554000 MHz Auto Man req Offset 0 Hz X Axis Scale enter 2.41200 GHz #Video BW 100 kHz Span 35.54 MHz Log Lin Sweep 37.9 ms (8001 pts) Res BW 30 kHz





REPORT No.: 4789506901-1 Page 37 of 126

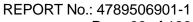
7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	For 11B, 11G and 11N TH20 modes: At least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

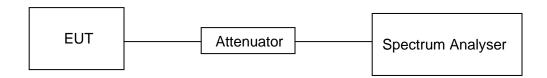
Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following


Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

settings:

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum amplitude level.

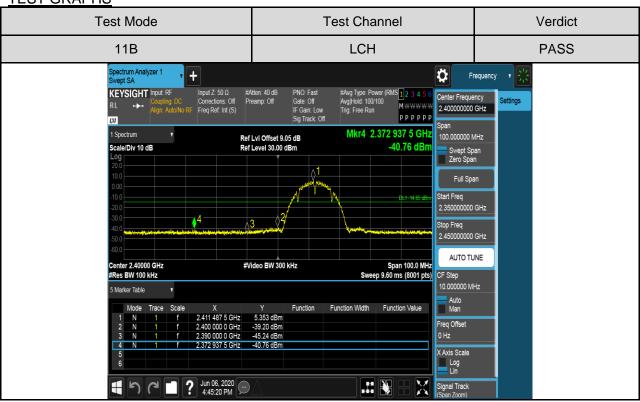
Page 38 of 126

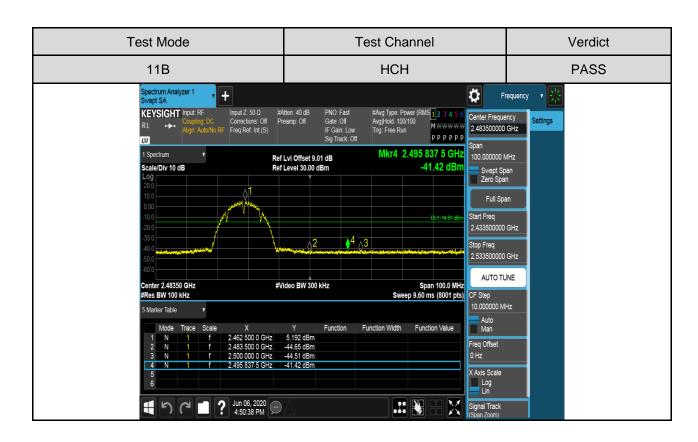
TEST SETUP

TEST ENVIRONMENT

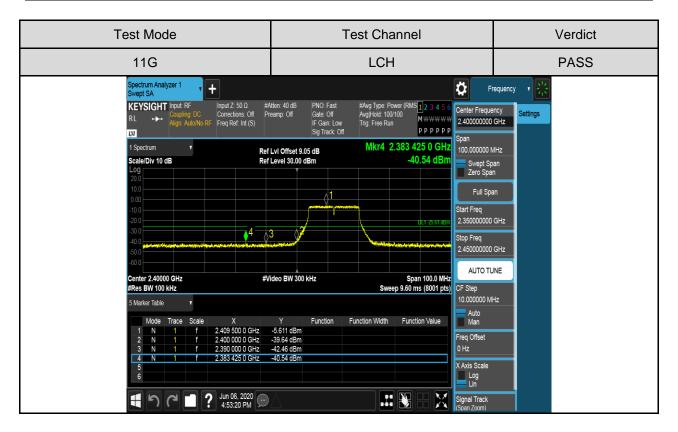
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC120V

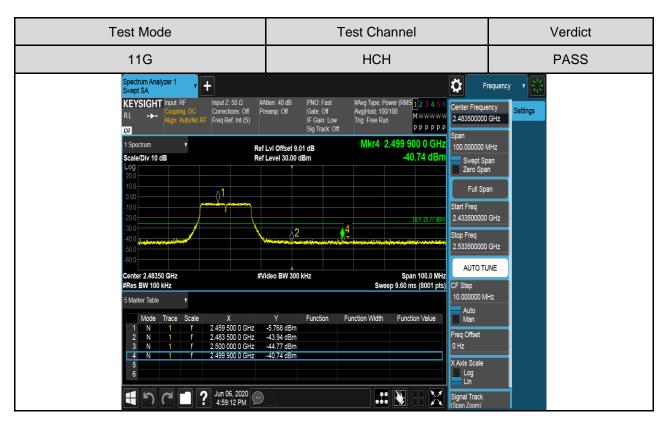
Page 39 of 126


Part I: Conducted Bandedge

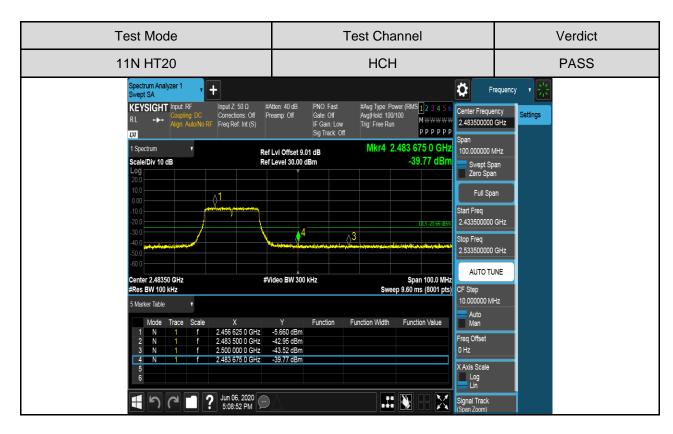

RESULTS TABLE

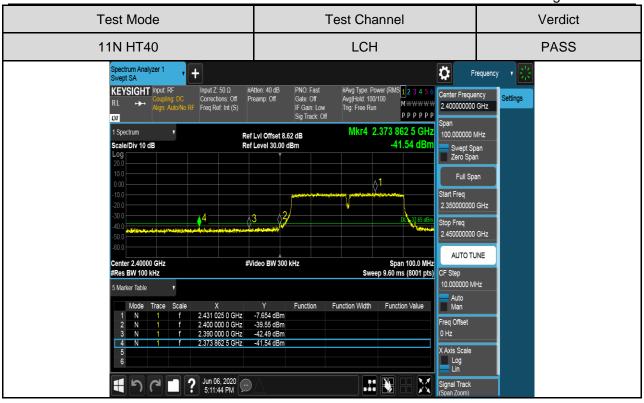
Test Mode	Test Antenna	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11B	Antenna 1	LCH	5.353	-40.765	-14.65	PASS
IID	Antenna i	HCH	5.192	-41.421	-14.81	PASS
11G	Antenna 1	LCH	-5.611	-40.542	-25.61	PASS
110		Antenna	HCH	-5.768	-40.744	-25.77
11N HT20	Antenna 1	LCH	-5.454	-41.180	-25.45	PASS
TIN HIZU	Antenna i	HCH	-5.660	-39.767	-25.66	PASS
11N HT40	T40 Antenna 1	LCH	-7.654	-41.538	-37.65	PASS
111N F1140		HCH	-7.437	-39.821	-37.44	PASS

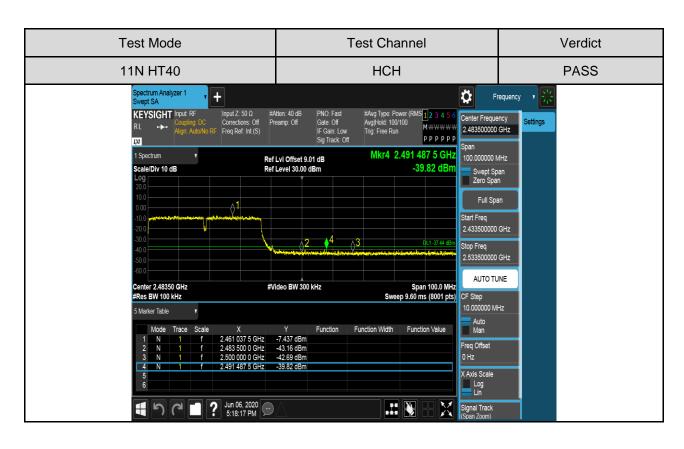



TEST GRAPHS









Page 43 of 126

Page 44 of 126

Part II :Conducted Emission

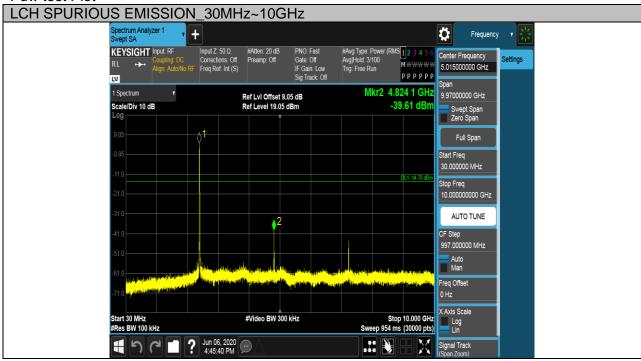
Test Result Table

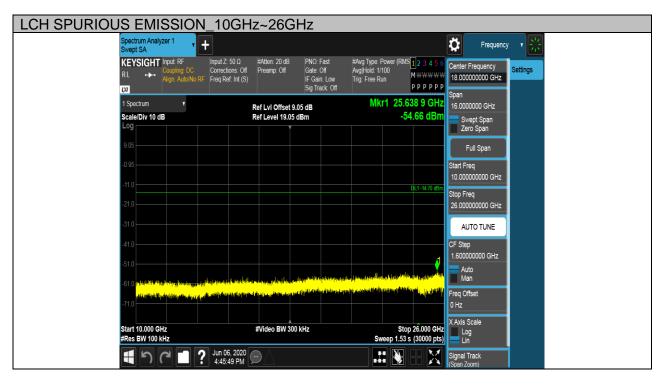
Test Mode	Channel	Pref(dBm)	Puw(dBm)	Verdict
	LCH	5.30	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.94	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	5.10	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	-5.64	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-5.97	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	-5.94	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	-5.59	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	MCH	-5.85	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	-5.53	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	-7.71	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	MCH	-7.63	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	-7.66	<limit< td=""><td>PASS</td></limit<>	PASS

Page 45 of 126

Test Plots

Test Mode	Channel	Verdict
11B	LCH	PASS


Pref test Plot



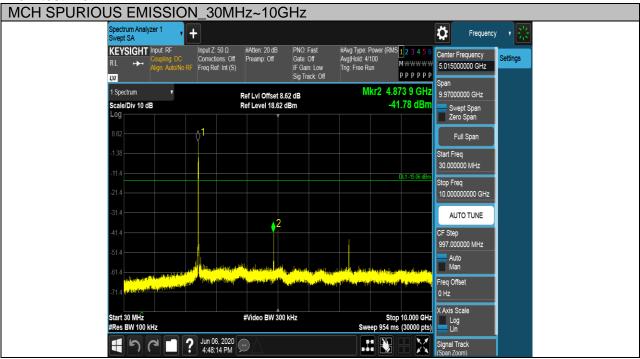
Page 46 of 126

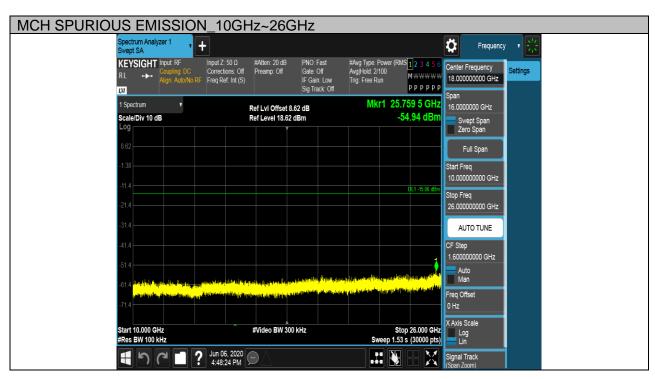
Puw test Plot



Page 47 of 126

Test Mode	Channel	Verdict
11B	MCH	PASS


Pref test Plot



Page 48 of 126

Puw test Plot

Page 49 of 126

Test Mode	Channel	Verdict
11B	HCH	PASS

Pref test Plot

