

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

IP Villa Outdoor Station

MODEL NUMBER: VTO2211G-WP

ADDITIONAL MODEL NUMBER: DHI-VTO2211G-WP

PROJECT NUMBER: 4789495399

REPORT NUMBER: 4789495399-1

FCC ID: SVN-VTO2211G-WP

ISSUE DATE: Jul. 29, 2020

Prepared for

Zhejiang Dahua Vision Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED
No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: +86 512-6808 6400 Fax: +86 512-6808 4099 Website: www.ul.com

REPORT No.: 4789495399-1 Page 2 of 184

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	07/29/2020	Initial Issue	

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. TE	ST METHODOLOGY	6
3. F	ACILITIES AND ACCREDITATION	6
4. C	ALIBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. E0	QUIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	9
5.3.	CHANNEL LIST	9
5.4.	TEST CHANNEL CONFIGURATION	10
5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5.7.	THE WORSE CASE CONFIGURATIONS	11
5.8.	TEST ENVIRONMENT	12
5.9.	DESCRIPTION OF TEST SETUP	13
5.10	. MEASURING INSTRUMENT AND SOFTWARE USED	14
6. M	EASUREMENT METHODS	15
7. AI	NTENNA PORT TEST RESULTS	16
7.1.	ON TIME AND DUTY CYCLE	16
7.2.	6 dB BANDWIDTH	19
7.3.	CONDUCTED OUTPUT POWER	33
7.4.	POWER SPECTRAL DENSITY	35
7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	49
	RADIATED TEST RESULTS	
	6.1. LIMITS AND PROCEDURE	
	6.3. RESTRICTED BANDEDGE	
7.	6.4. SPURIOUS EMISSIONS	137
8. A	POWER LINE CONDUCTED EMISSIONS	181
ο ΔΙ	NTENNA REQUIREMENTS	184

Page 4 of 184

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd. Address: No.1199, Bin'an road, Binjiang District, Hangzhou,

P.R.China.

Manufacturer Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd. Address: No.1199, Bin'an road, Binjiang District, Hangzhou,

P.R.China.

EUT Description

Product Name: IP Villa Outdoor Station

Model Name: VTO2211G-WP Additional No.: DHI-VTO2211G-WP

Sample Number: 3084887
Data of Receipt Sample: May. 27, 2020

Date Tested: May. 27, 2020 ~ Jun. 26, 2020

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

Page 5 of 184

Summary of Test Results							
Clause	Test Items	FCC/IC Rules	Test Results				
1	6db DTS Bandwidth	FCC 15.247 (a) (2)	Complied				
2	Conducted Power	FCC 15.247 (b) (3)	Complied				
3	Power Spectral Density	FCC 15.247 (e)	Complied				
4	Conducted Band edge And Spurious emission	FCC 15.247 (d)	Complied				
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	Complied				
6	Conducted Emission Test For AC Power Port	FCC 15.207	Complied				
7	Antenna Requirement	FCC 15.203	Complied				

Remark:

Prepared By: Jason Yang	Reviewed By: Tom Tang			
Jason Yang Engineer	Tom Tang Engineer Project Associate			
Authorized By:				
Chris Zhong				
Chris Zhong Laboratory Leader				

¹⁾ The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C> when <Accuracy Method> decision rule is applied.

Page 6 of 184

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	---

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 7 of 184

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.00dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.306dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.306dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.828dB (1GHz-18Gz)
Note: This was artists as a second of the se	4.130dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 184

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	IP Villa Outdoor Station
Model No.:	VTO2211G-WP
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)
Channels Step:	Channels with 5MHz step
Sample Type:	Fixed production
Test power grade:	N/A
Test software of EUT:	Secure CRT (manufacturer declare)
Antenna Type:	Patch Antenna
Antenna Gain:	Ant1: 6.12 dBi
Antenna Gam.	Ant2: 2.00 dBi

Remark:

Model No.:

Number	Name	Number	Name
1	VTO2211G-WP	2	DHI-VTO2211G-WP

Only the main model VTO2211G-WP was tested and only the data of this model is shown in this test report. Since their electrical circuit design, layout, components used and internal wiring are identical, only the model name and selling area are different.

Page 9 of 184

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max Peak Conducted Power-Ant 1 (dBm)	Max Peak Conducted Power-Ant 2 (dBm)	Max Peak Conducted Power-Ant 1+2 (dBm)
1/2	IEEE 802.11B	1-11[11]	17.80	16.51	N/A
1/2	IEEE 802.11G	1-11[11]	22.28	21.22	N/A
1/2	IEEE 802.11nHT20	1-11[11]	22.58	21.36	25.02
1/2	IEEE 802.11nHT40	3-9[7]	N/A	N/A	N/A

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max AVG Conducted Power-Ant 1 (dBm)	Max AVG Conducted Power-Ant 2 (dBm)	Max AVG Conducted Power-Ant 1+2 (dBm)
1/2	IEEE 802.11B	1-11[11]	14.89	13.75	N/A
1/2	IEEE 802.11G	1-11[11]	14.13	12.90	N/A
1/2	IEEE 802.11nHT20	1-11[11]	14.06	12.81	16.49
1/2	IEEE 802.11nHT40	3-9[7]	12.03	10.39	14.30

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)								
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz) Channel Frequency (MHz)									
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452				

Channel List for 802.11n (40 MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)							Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

Page 10 of 184

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel (MHz)
	LCH :CH01 2412
IEEE 802.11B	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11G	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11n HT20	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH03 2422
IEEE 802.11n HT40	MCH: CH06 2437
	HCH: CH09 2452

5.5. THE WORSE CASE POWER SETTING PARAMETER

The V	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Softw		SecureCRT						
	Transmit	Test Channel						
Modulation Mode	Antenna	١	NCB: 20MH	lz	NCB: 40MHz			
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1/2	N/A	N/A	N/A				
802.11g	1/2	N/A N/A N/A /						
802.11n HT20	1/2	N/A N/A N/A						
802.11n HT40	1/2		/		N/A	N/A	N/A	

Page 11 of 184

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	Patch Antenna	6.12
2	2400-2483.5	Patch Antenna	2.00

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	Antenna1& Antenna2 can be used as transmitting/receiving antenna independently
IEEE 802.11g	⊠1TX, 1RX	Antenna1& Antenna2 can be used as transmitting/receiving antenna independently
IEEE 802.11N (HT20)		Antenna1& Antenna2 can be used as transmitting/receiving antenna independently
IEEE 802.11N (HT40)	⊠2TX, 2RX	Antenna1& Antenna2 can be used as transmitting/receiving antenna independently

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there two transmission antennas, and pre-testing both of them, only the worse data for the antenna is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 12 of 184

5.8. **TEST ENVIRONMENT**

Environment Parameter	Selected Values During Tests			
Relative Humidity	55 ~ 65%			
Atmospheric Pressure:	1025Pa			
Temperature	TN	23 ~ 28°C		
	VL	N/A		
Voltage :	VN DC 12V			
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 13 of 184

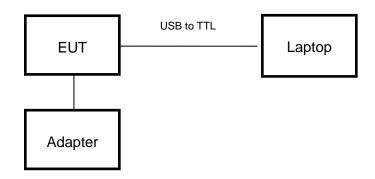
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E590	N/A

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB to TTL	USB	100cm Length	N/A
2	LAN	LAN	LAN	100cm Length	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description	
1	DC Adapter	HONOTO	ADS-12AM-12 12012EPCU	Supply by UL Lab	

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

Page 14 of 184

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	3.10. IVI				sions (Insti	ument)		
			luucieu	LIIIIS				
Used	Equipment	Manufacturer	Mode		Serial No	Cal.	Last Cal.	Next Cal.
$\overline{\checkmark}$	EMI Test Receiver	R&S	ESI	R3	126700	2018-12-13	2019-12-12	2020-12-11
\checkmark	Two-Line V-Network	R&S	ENV	216	126701	2018-12-13	2019-12-12	2020-12-11
V	Artificial Mains Networks	R&S	ENY	′81	126711	2018-12-13	2019-12-12	2020-12-11
				Soft	ware			
Used	Des	scription		Ma	anufacturer	Name	Version	
$\overline{\checkmark}$	Test Software for 0	Conducted distur	bance		R&S	EMC32	Ver. 9.25	
		Ra	diated	Emiss	ions (Instru	ıment)		
Used	Equipment	Manufacturer	Mode	l No.	Serial No	Upper Last Cal.	Last Cal.	Next Cal.
$\overline{\checkmark}$	Spectrum Analyzer	Keysight	N90 ²	10B	MY5711012	28 2019-05-29	2020-05-28	2021-05-27
$\overline{\checkmark}$	EMI test receiver	R&S	ESR	R26	1267603	2018-12-13	2019-12-22	2020-12-21
V	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB	1513	513-265	2019-06-16	2020-06-15	2021-06-14
V	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB	1	126704	N/A	2019-01-28	2022-01-27
V	Receiver Antenna (1GHz-18GHz)	R&S	HF9	907	126705	2019-01-26	2020-01-26	2021-01-25
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA	9170	126706	2019-02-06	2020-02-05	2021-02-04
V	Receiver Antenna (26.5GHz-40GHz)	TOYO	HAP 26	6-40W	00000012	2019-07-23	2020-07-22	2021-07-21
V	Pre-amplification (To 1GHz)	R&S	SCU-	03D	134666	2019-02-06	2020-02-05	2021-02-04
V	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-10	918-50	14140-1346	2019-03-18	2020-03-17	2021-03-16
V	Pre-amplification (To 26.5GHz)	R&S	SCU-	26D	134668	2019-02-06	2020-02-05	2021-02-04
V	Band Reject Filter	Wainwright	WRC- 2350-2 2483.5-2 408	2400- 2533.5- SS	1	2019-05-29	2020-05-28	2021-05-27
$\overline{\checkmark}$	Highpass Filter	Wainwright	WHK 2700-3 18000-	3000- -40SS	2	2019-05-29	2020-05-28	2021-05-27
				Soft	ware			
Used	Desci	ription	M	anufac	turer	Name	Version	
$\overline{\checkmark}$	Test Software for R	nce	Tonsce	end	JS32	V1.0		
			Otl	her ins	struments		•	
Used	Equipment	Manufacturer	Mode	l No.	Serial No	Upper Last Cal.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N90 ²	10B	MY5711012	28 2019-05-29	2020-05-28	2021-05-27
V	Power Meter	Keysight	U202	1XA	MY5711000		2020-06-11	2021-06-10

Page 15 of 184

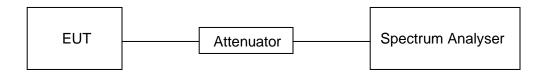
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 184

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

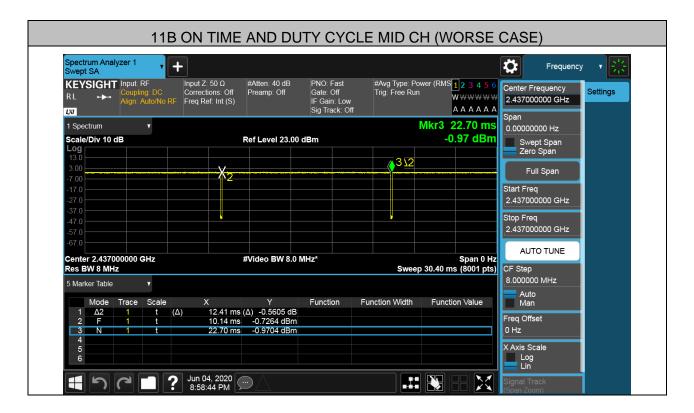
FCC KDB 558074 Zero-Span Spectrum Analyzer Method

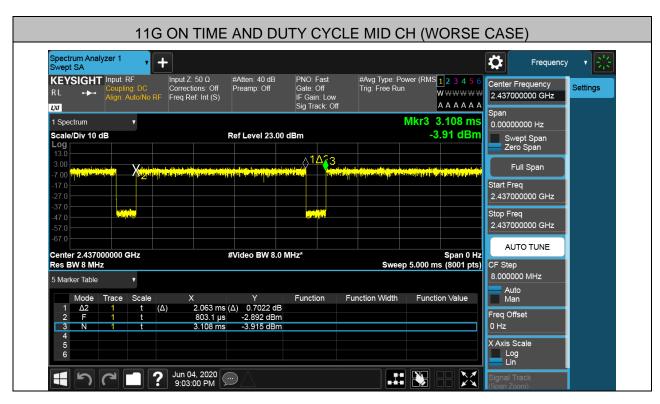
TEST SETUP

TEST ENVIRONMENT

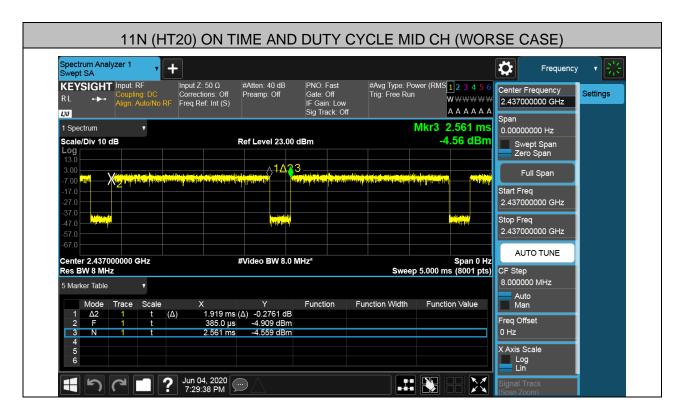
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

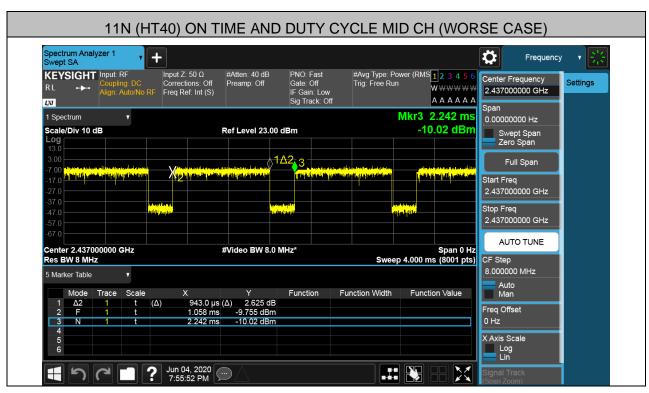
RESULTS


Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final VBW (kHz)
11B	12.41	12.56	0.9881	98.81%	0.05	0.08	0.1
11G	2.063	2.3049	0.8950	89.50%	0.48	0.48	0.5
802.11n HT20	1.919	2.176	0.8819	88.19%	0.55	0.52	1
802.11n HT40	0.943	1.184	0.7965	79.65%	0.99	1.06	2


Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle(Linear)


3) Where: T is On Time (transmit duration)



REPORT No.: 4789495399-1 Page 19 of 184

7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5	

TEST PROCEDURE

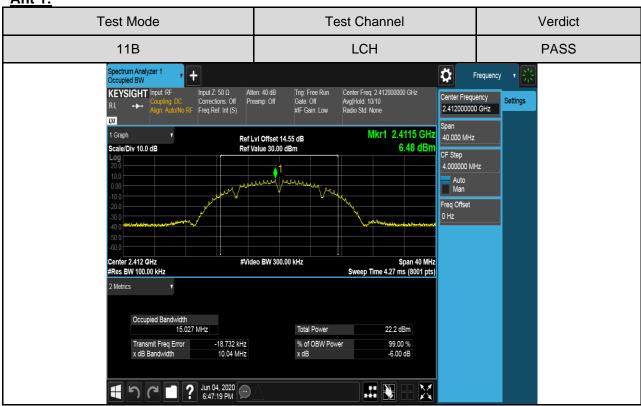
Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

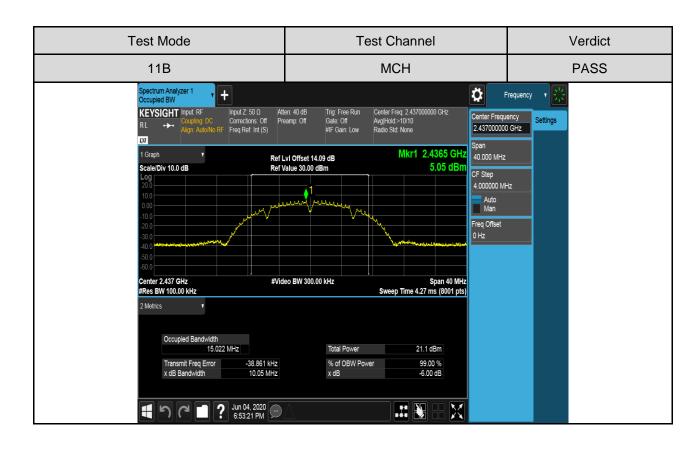
Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	For 6 dB Bandwidth :100K	
VBW	For 6dB Bandwidth : ≥3 × RBW	
Trace	Max hold	
Sweep	Auto couple	

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

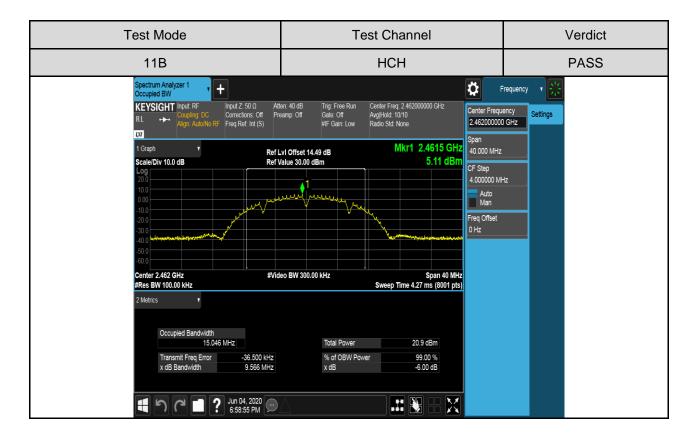
.

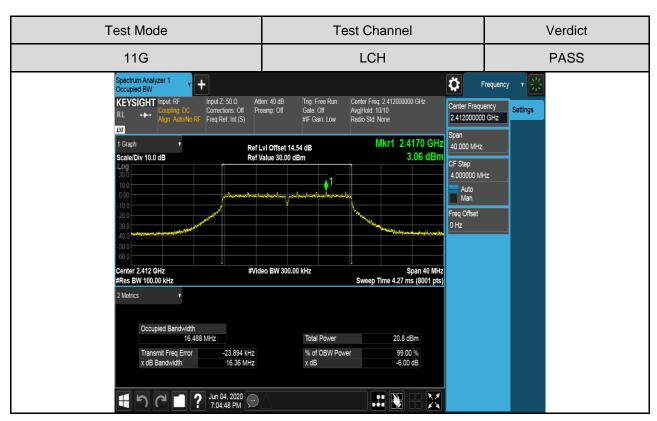
TEST SETUP

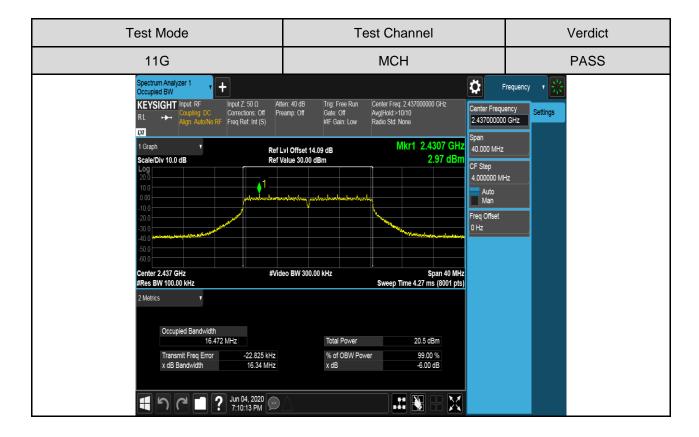


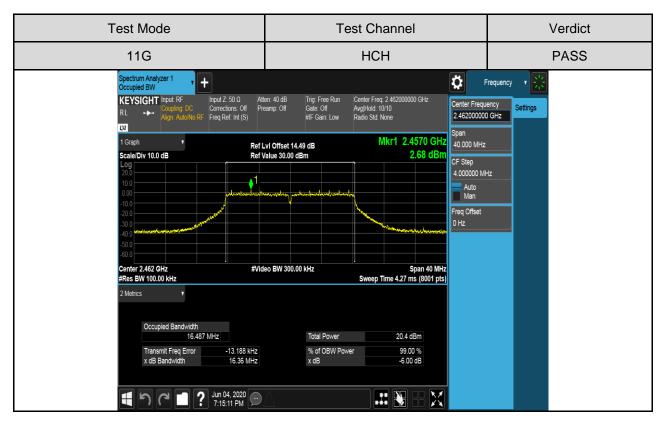

RESULTS

Took Mode	Test Channel	6dB bandv	6dB bandwidth (MHz)	
Test Mode	Test Channel	Ant 1	Ant 2	Result
	LCH	10.04	9.566	Pass
11B	MCH	10.05	9.990	Pass
	HCH	9.566	10.07	Pass
	LCH	16.36	16.36	Pass
11G	MCH	16.34	16.36	Pass
	HCH	16.36	16.38	Pass
	LCH	17.57	17.30	Pass
11N HT20	MCH	17.56	17.57	Pass
	HCH	17.56	17.55	Pass
11N HT40	LCH	35.76	35.73	Pass
	MCH	35.83	35.71	Pass
	HCH	36.29	35.65	Pass

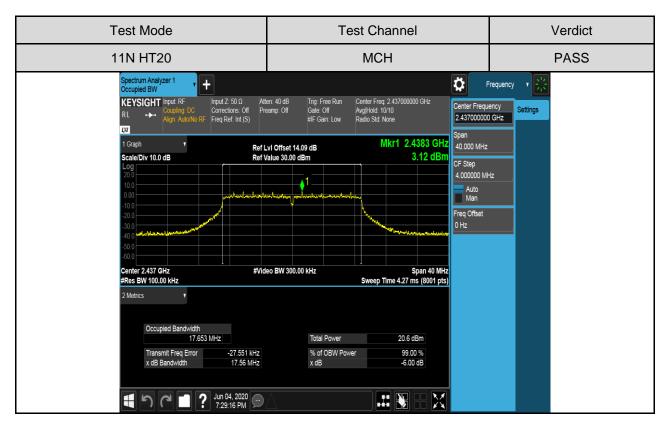


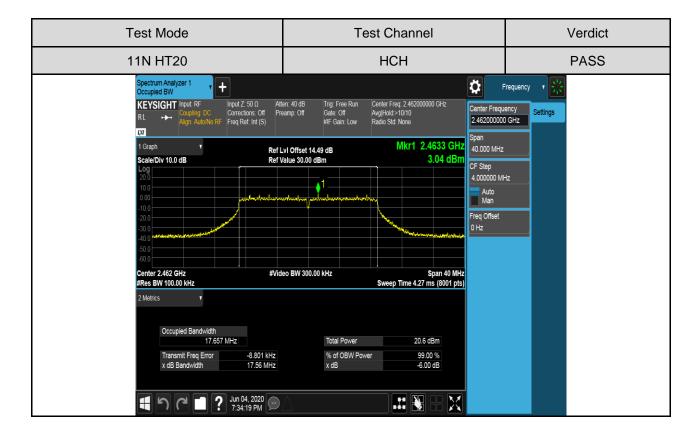

Ant 1:

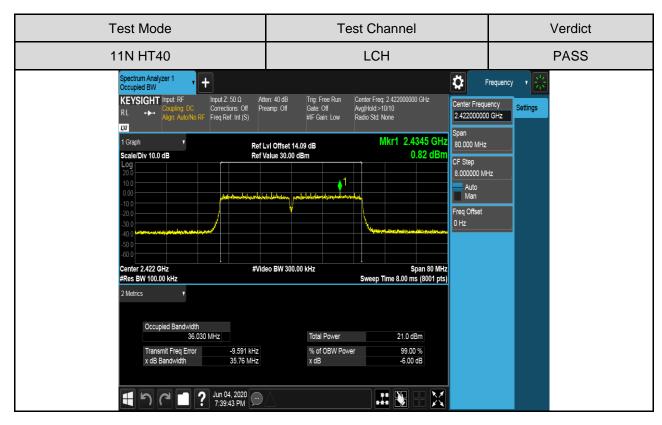


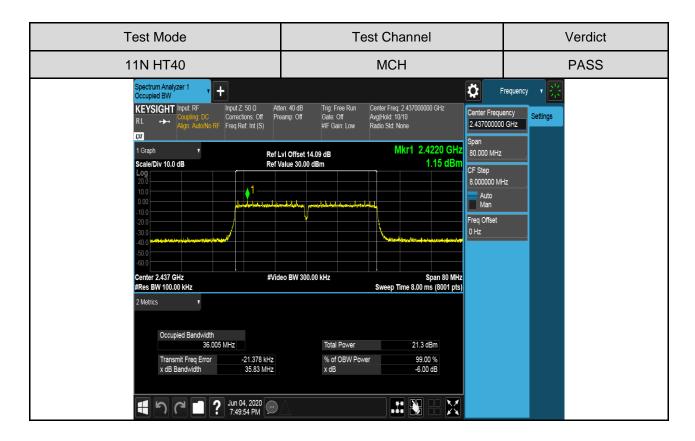


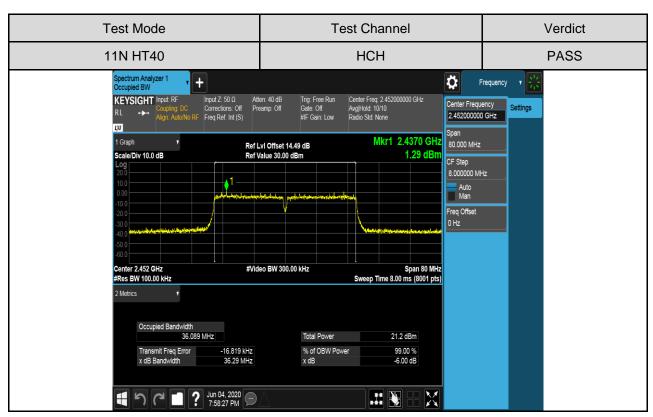


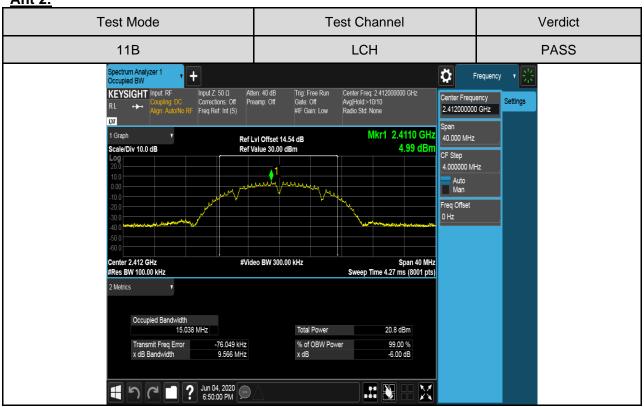


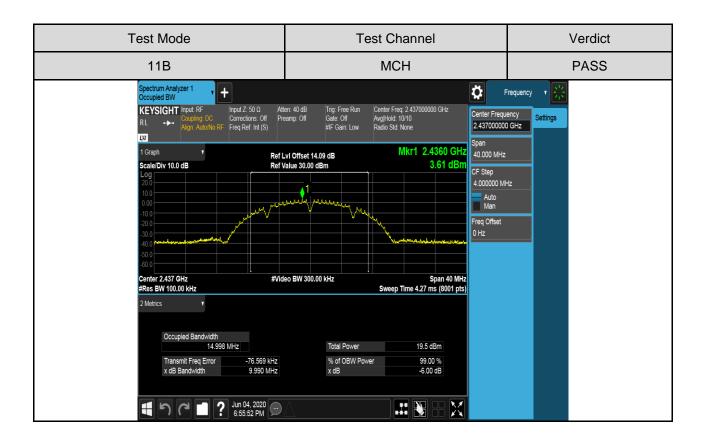


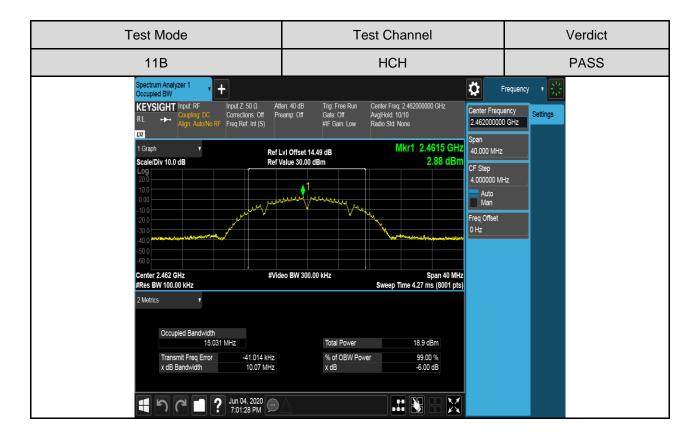


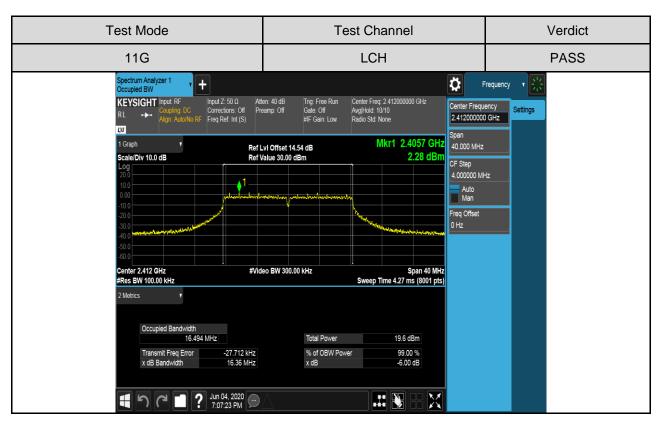


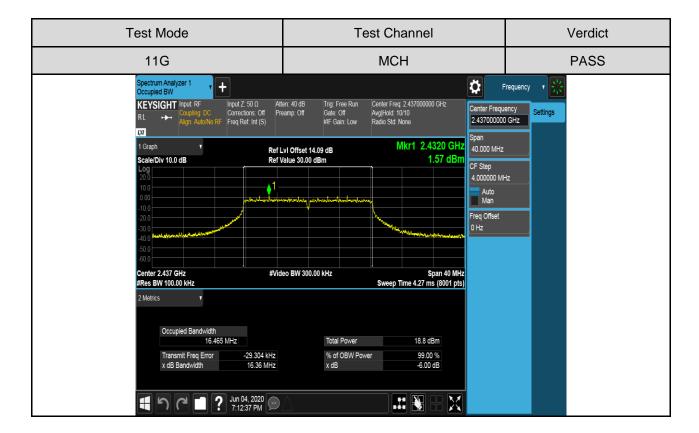


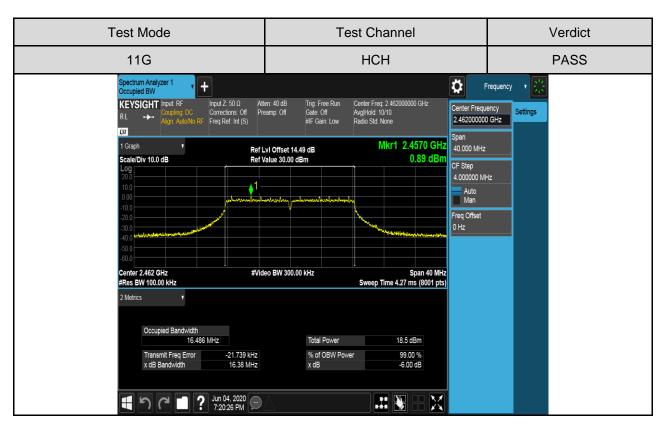


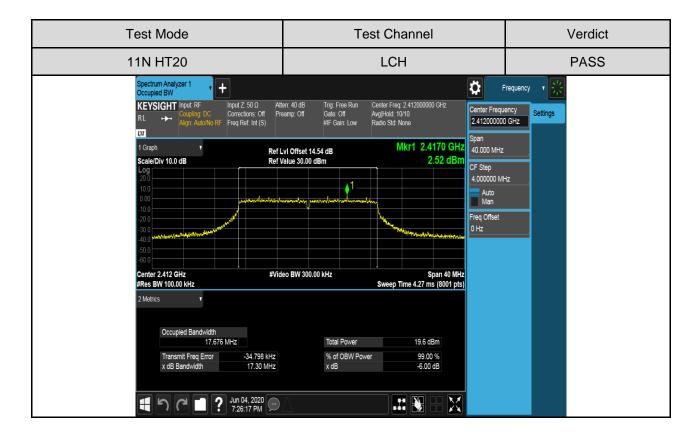


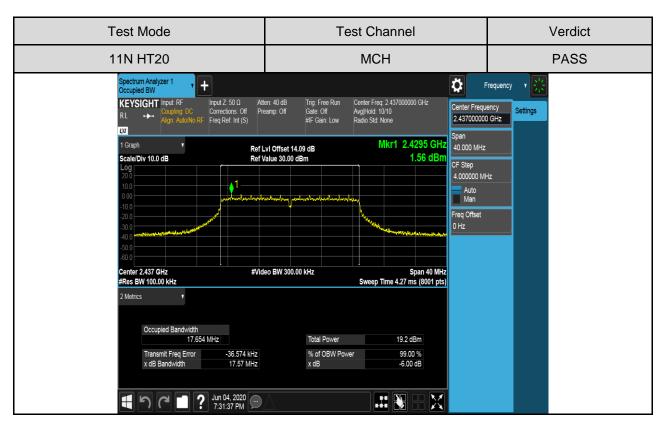


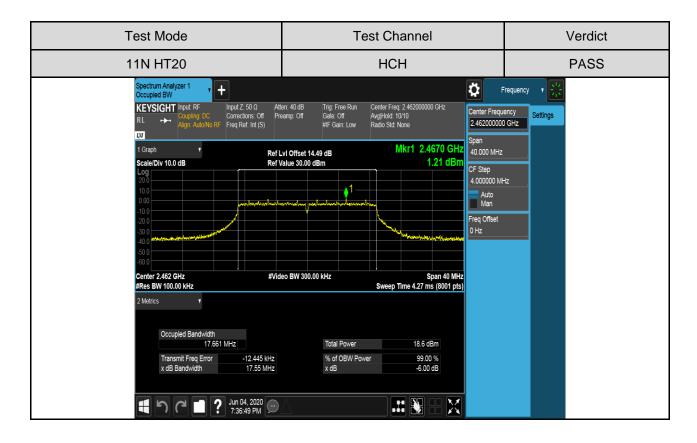

Ant 2:

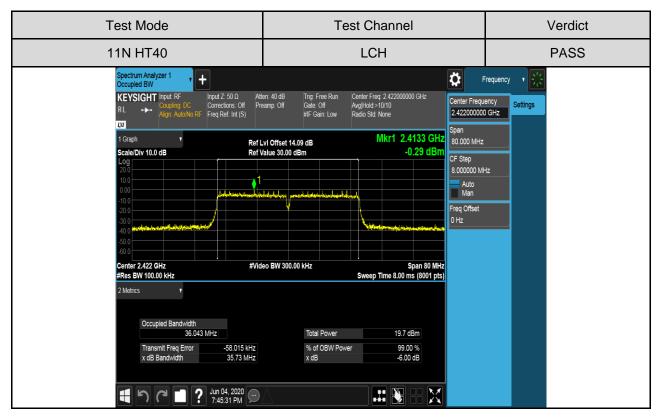


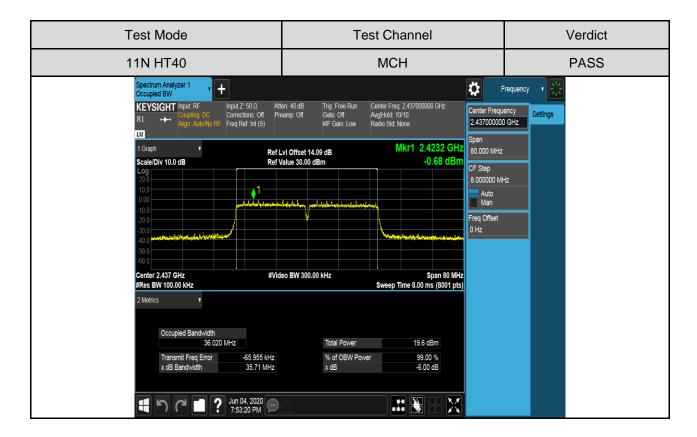


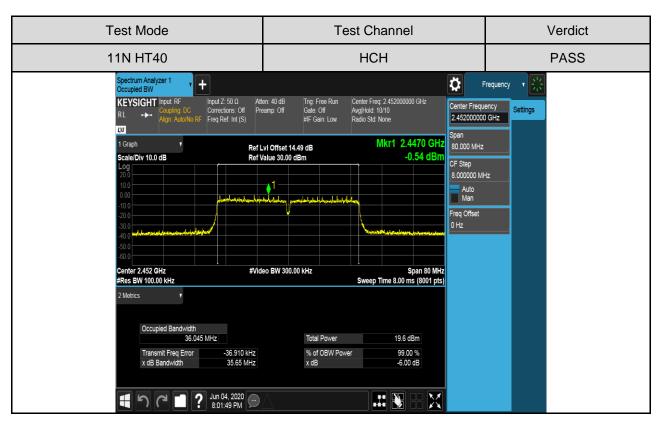












7.3. CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz)				
FCC 15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	

- 1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
- 2. Limit=30dBm (Directional gain -6)dBi

The antenna 2 gain of EUT is more than 6 dBi,

- 1) For the 11b&11g mode, the gain of antenna 1 = 6.12 > 6dBi. So, the power limit of antenna 1 shall be reduced to 30 (6.12 6) = 29.88 dBm
- 2) For the 11n20&11n40 mode, the Directional gain = $10log [(10^{G1/20} + 10^{G2/20})^2/N_{ANT}] = 7.31 > 6dBi$, where the NANT is the numbers of antenna. So, the power limit shall be reduced to 30 (7.31 6) = 28.69 dBm

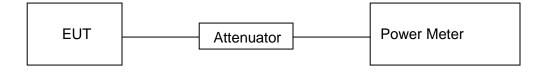
Note: For b/g/n HT20 mode the average data is for reference only.

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.


Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

TEST SETUP

RESULTS

Test	Test	Max Peak Conducted Power(dBm)			Result
Mode	Channel	Ant 1	Ant 2	Ant 1+2	Result
	LCH	17.80	16.51	N/A	Pass
11B	MCH	16.89	15.28	N/A	Pass
	HCH	16.63	14.75	N/A	Pass
	LCH	22.28	21.22	N/A	Pass
11G	MCH	21.99	20.75	N/A	Pass
	HCH	21.99	20.01	N/A	Pass
11n	LCH	22.58	21.36	25.02	Pass
HT20	MCH	22.22	20.79	24.57	Pass
MIMO	HCH	22.20	20.26	24.35	Pass

Test Test		Max Average Conducted Power(dBm)			LIMIT
Mode	Channel	Ant 1	Ant 2	Ant 1+2	(dBm)
	LCH	14.89	13.75	N/A	Pass
11B	MCH	14.09	12.52	N/A	Pass
	HCH	13.90	12.02	N/A	Pass
	LCH	14.13	12.90	N/A	Pass
11G	MCH	13.77	12.21	N/A	Pass
	HCH	13.73	11.75	N/A	Pass
11n	LCH	14.06	12.81	16.49	Pass
HT20	MCH	13.70	12.14	14.90	Pass
MIMO	HCH	13.68	11.62	15.78	Pass
11n HT40	LCH	12.03	10.39	14.30	Pass
	MCH	11.99	10.32	14.25	Pass
MIMO	HCH	12.12	10.18	14.27	Pass

REPORT No.: 4789495399-1 Page 35 of 184

T digo do d

7.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz)				
FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5	

- 1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
- 2. Limit=30dBm (Directional gain -6)dBi

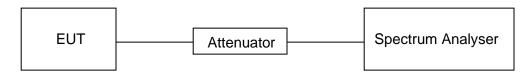
The antenna 2 gain of EUT is more than 6 dBi,

- 1) For the 11b&11g mode, the gain of antenna 1 = 6.12 > 6dBi. So, the power limit of antenna 1 shall be reduced to 8 (6.12 6) = 7.88 dBm
- 2) For the 11n20&11n40 mode, Directional gain = 10log [(10G1/20 + 10G2/20)2/NANT] = 7.31 > 6dBi, where the NANT is the numbers of antenna. So, the power limit shall be reduced to <math>8 (7.31 6) = 6.69 dBm

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

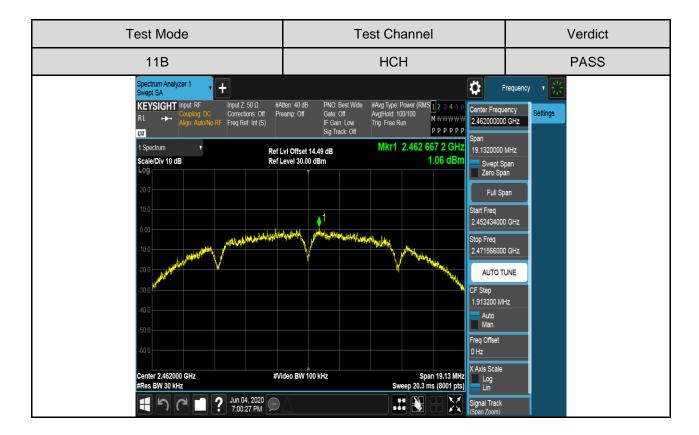
TEST ENVIRONMENT

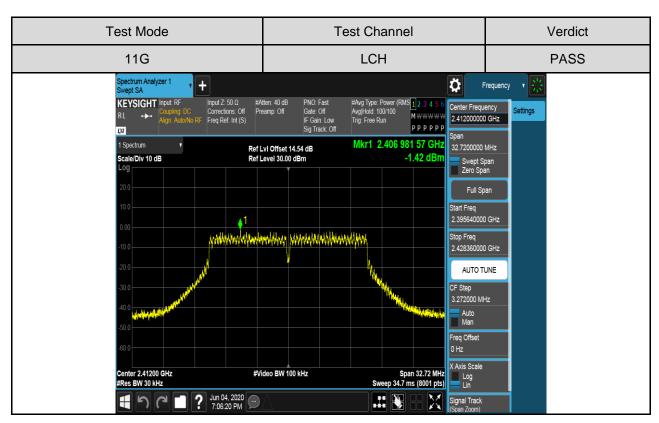
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

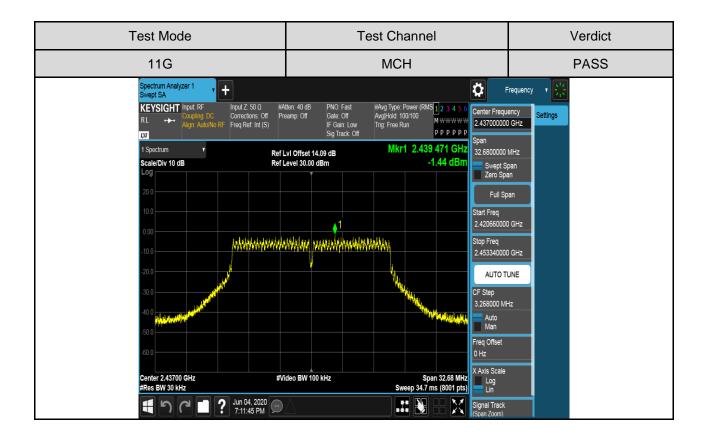
TEST SETUP

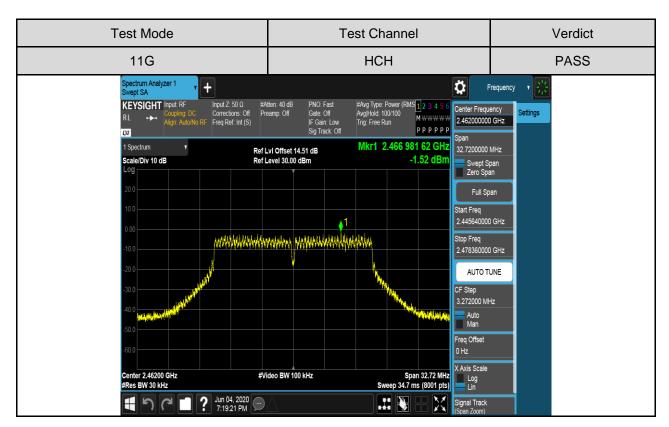
RESULTS

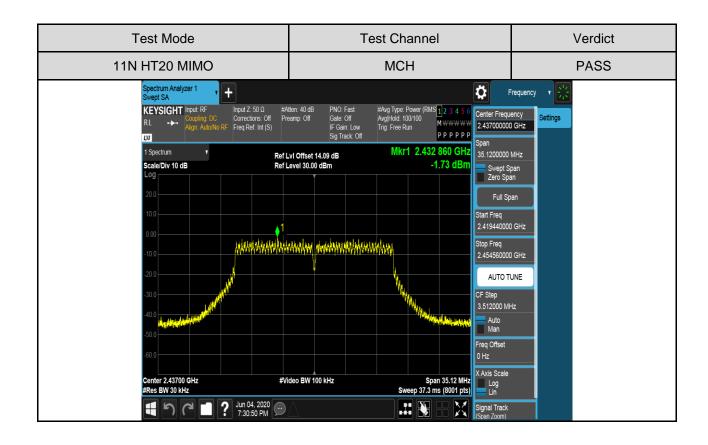
Test Test		Maximum Peak p	Danak		
Mode	Channel	Ant 1	Ant 2	Ant 1+2	Result
	LCH	2.04	0.31	N/A	Pass
11B	MCH	1.43	-0.88	N/A	Pass
	HCH	1.06	-0.03	N/A	Pass
11G MC	LCH	-1.42	-2.67	N/A	Pass
	MCH	-1.44	-3.44	N/A	Pass
	HCH	-1.52	-3.63	N/A	Pass
11n	LCH	-1.62	-2.62	0.92	Pass
HT20	MCH	-1.73	-3.35	0.55	Pass
MIMO	HCH	-1.76	-4.33	0.15	Pass
11n HT40 MIMO	LCH	-3.91	-5.04	-1.43	Pass
	MCH	-4.03	-4.76	-1.37	Pass
	HCH	-3.48	-5.16	-1.23	Pass

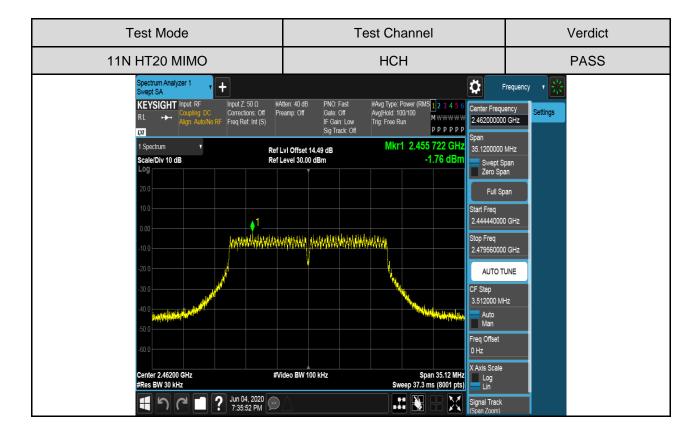


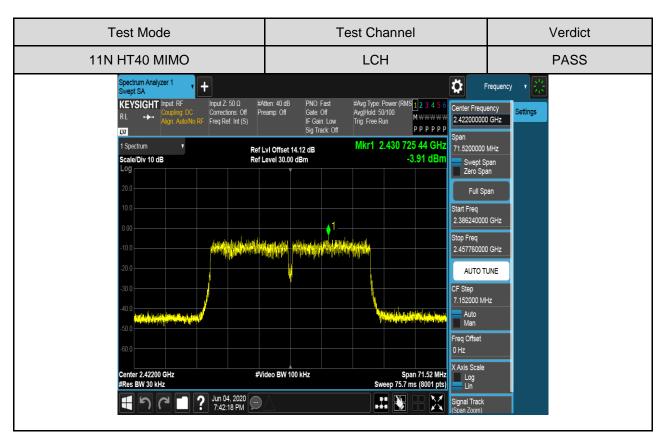

Ant 1:



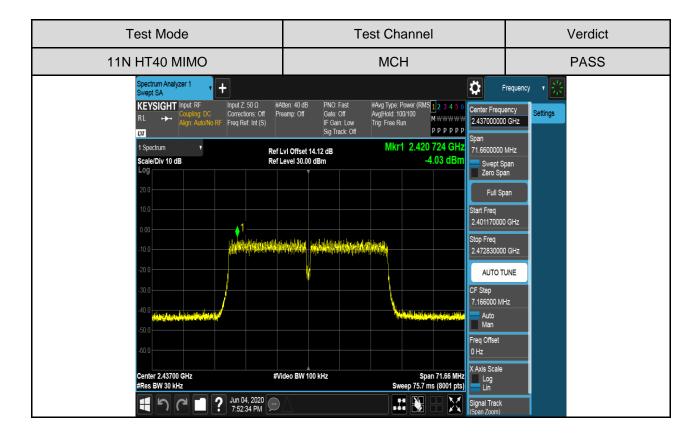


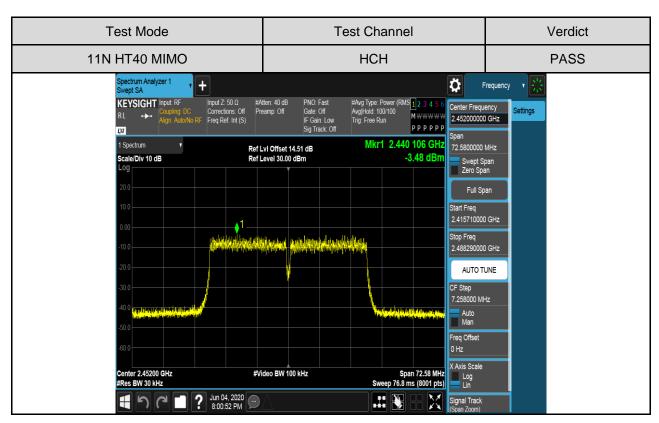






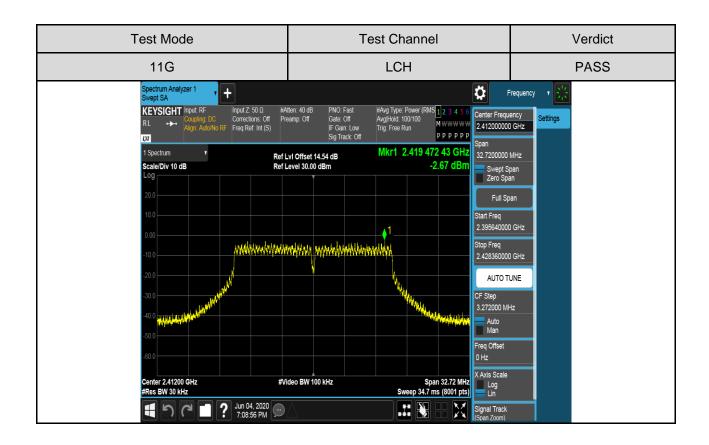
Test Mode **Test Channel** Verdict LCH **PASS 11N HT20 MIMO** Spectrum Analyzer 1 Swept SA Ö Frequency Input Z: 50 Ω #Avg Type: Power (RMS 1 2 3 4 5 KEYSIGHT Input RF #Atten: 40 dB Coupling: DC Corrections: Off Align: Auto/No RF Freq Ref: Int (S) Gate: Off IF Gain: Low Settings M WWWW 2.412000000 GHz PPPPPP L)XI Mkr1 2.419 472 GHz 1 Spectrum Ref LvI Offset 14.54 dB Ref Level 30.00 dBm 35.1400000 MHz -1.62 dBm Scale/Div 10 dB Swept Span Zero Span Full Span 2.394430000 GHz JANAN MARAKATAN MANAN Stop Freq 2.429570000 GHz AUTO TUNE 3.514000 MHz Auto Man Freq Offset X Axis Scale enter 2.41200 GHz #Video BW 100 kHz Span 35.14 MHz Sweep 37.3 ms (8001 pts) ? Jun 04, 2020 ... 7:25:20 PM 1961 # 1 Signal Track (Span Zoom)



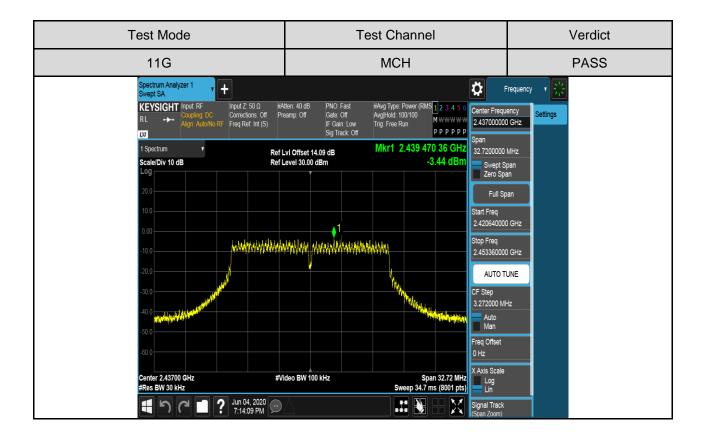


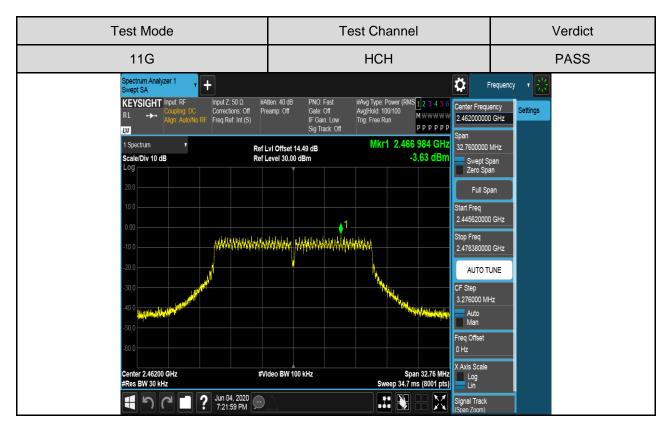


Ant 2:


Test Mode Test Channel Verdict **HCH PASS** 11B Spectrum Analyzer 1 Swept SA Ö Frequency Input Z: 50 Ω #Avg Type: Power (RMS 1 2 3 4 5 KEYSIGHT Input RF #Atten: 40 dB Coupling: DC Corrections: Off Align: Auto/No RF Freq Ref: Int (S) Gate: Off IF Gain: Low Settings M₩₩₩₩ 2.462000000 GHz PPPPPP ĻXI Mkr1 2.464 487 3 GHz 1 Spectrum Ref LvI Offset 14.49 dB Ref Level 30.00 dBm 20.1400000 MHz Scale/Div 10 dB -0.03 dBn Swept Span Zero Span Full Span Start Freq 2.451930000 GHz 2.472070000 GHz AUTO TUNE 2.014000 MHz Auto Man Freq Offset 0 Hz X Axis Scale Span 20.14 MHz Sweep 21.3 ms (8001 pts) #Video BW 100 kHz enter 2.46200 GHz

#


Signal Track (Span Zoom)


? Jun 04, 2020 7:03:01 PM

190

