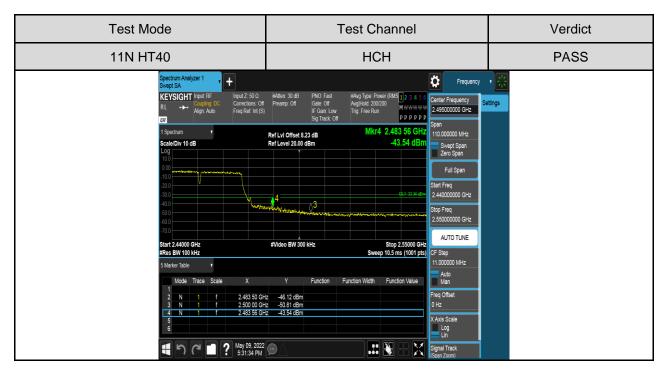

> ? May 09, 2022 4:26:50 PM


Log Lin





Page 50 of 146



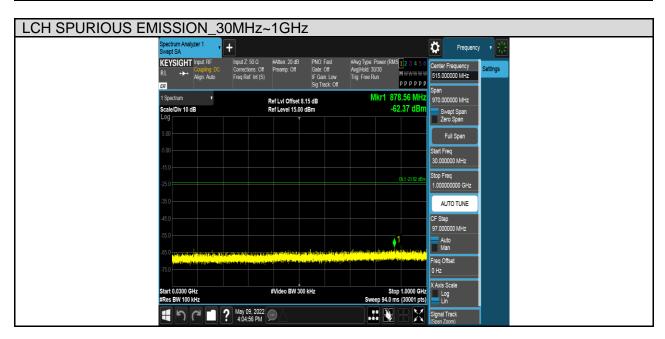




Page 51 of 146

# PART 3: CONDUCTED SPURIOUS EMISSION

## **TEST RESULTS TABLE**

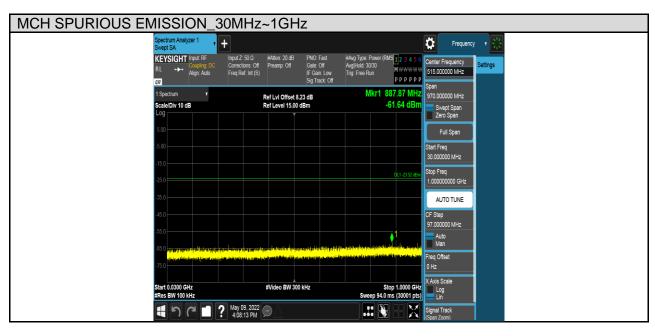

| Test Mode | Test Channel | Result                  | Verdict |
|-----------|--------------|-------------------------|---------|
|           | LCH          | Refer to the Test Graph | PASS    |
| 11B       | MCH          | Refer to the Test Graph | PASS    |
|           | HCH          | Refer to the Test Graph | PASS    |
|           | LCH          | Refer to the Test Graph | PASS    |
| 11G       | MCH          | Refer to the Test Graph | PASS    |
|           | HCH          | Refer to the Test Graph | PASS    |
|           | LCH          | Refer to the Test Graph | PASS    |
| 11N HT20  | MCH          | Refer to the Test Graph | PASS    |
|           | HCH          | Refer to the Test Graph | PASS    |
|           | LCH          | Refer to the Test Graph | PASS    |
| 11N HT40  | MCH          | Refer to the Test Graph | PASS    |
|           | HCH          | Refer to the Test Graph | PASS    |



Page 52 of 146

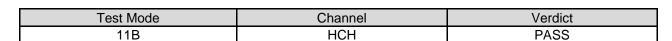
## **TEST GRAPHS**

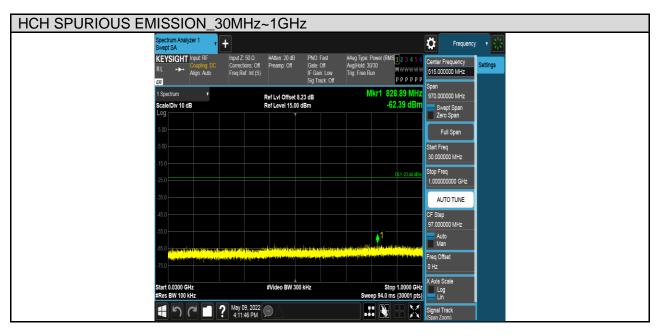
| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11B       | LCH     | PASS    |









REPORT No.: 4790254061-25-1 Page 53 of 146

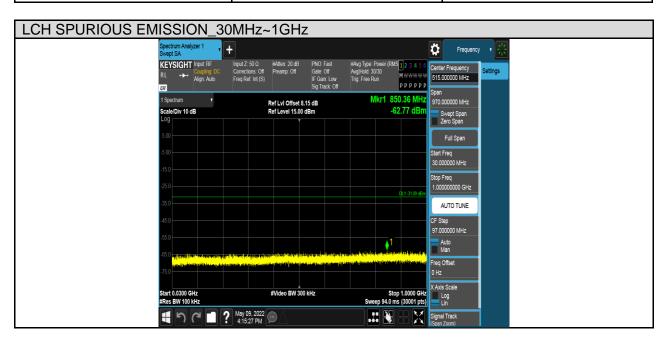

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11B       | MCH     | PASS    |







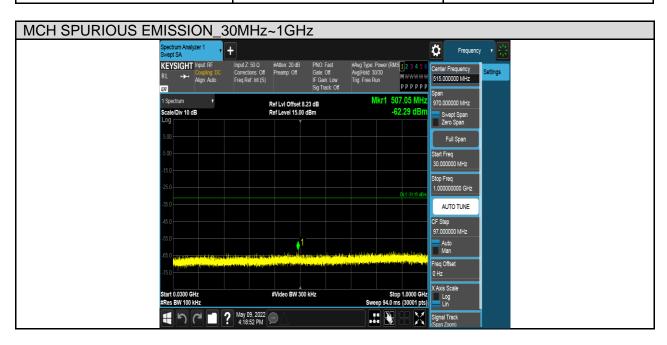









REPORT No.: 4790254061-25-1 Page 55 of 146

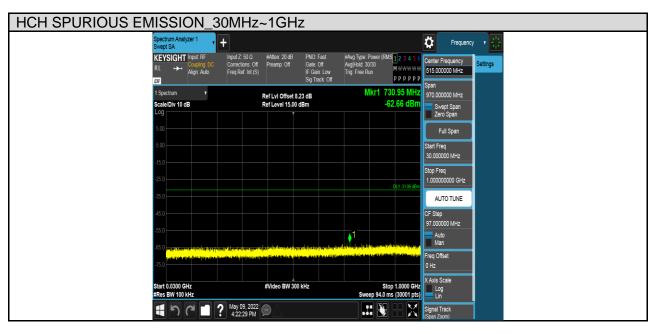

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11G       | LCH     | PASS    |







Test Mode Channel Verdict
11G MCH PASS








REPORT No.: 4790254061-25-1 Page 57 of 146

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11G       | HCH     | PASS    |

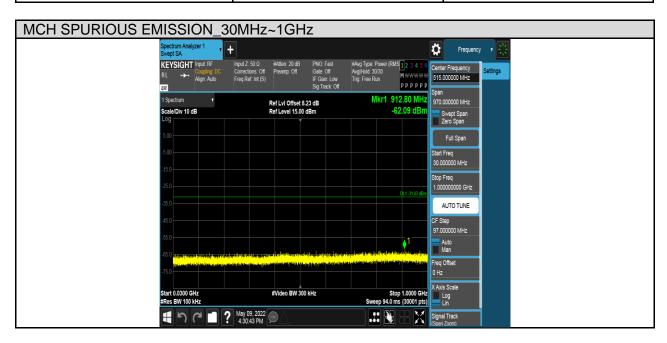







Page 58 of 146

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11N HT20  | LCH     | PASS    |

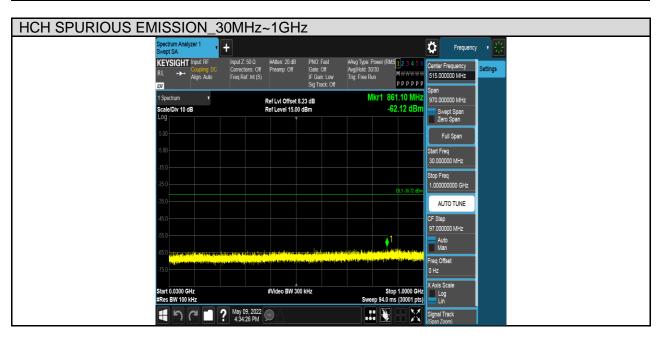




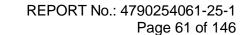



REPORT No.: 4790254061-25-1 Page 59 of 146

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11N HT20  | MCH     | PASS    |



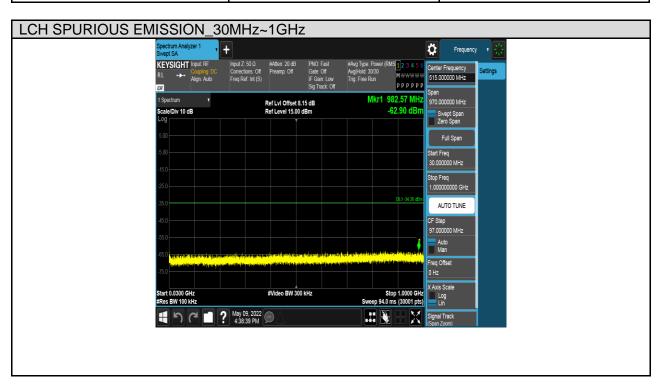



REPORT No.: 4790254061-25-1 Page 60 of 146

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11N HT20  | HCH     | PASS    |



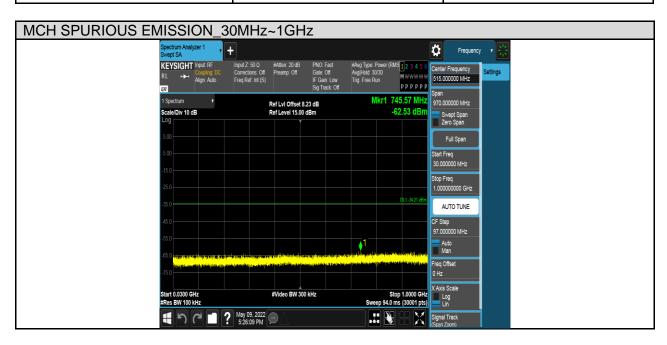







 Test Mode
 Channel
 Verdict

 11N HT40
 LCH
 PASS

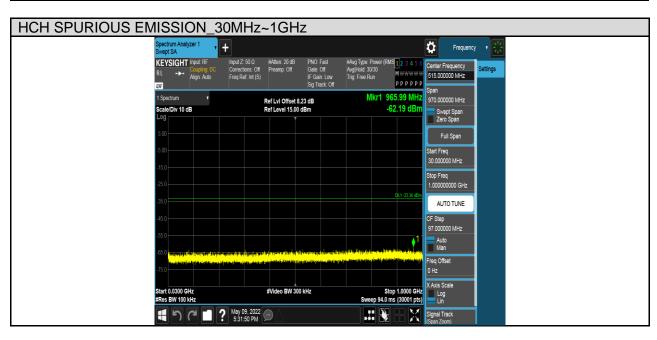







REPORT No.: 4790254061-25-1 Page 62 of 146

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11N HT40  | MCH     | PASS    |








REPORT No.: 4790254061-25-1 Page 63 of 146

| Test Mode | Channel | Verdict |
|-----------|---------|---------|
| 11N HT40  | HCH     | PASS    |







Page 64 of 146

## 7.6. RADIATED TEST RESULTS

## 7.6.1. LIMITS AND PROCEDURE

### **LIMITS**

Please refer to FCC §15.205 and §15.209

Please refer to FCC KDB 558074

Radiation Disturbance Test Limit for FCC (Class B) (9KHz-1GHz)

| Frequency<br>(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|--------------------|-----------------------------------|-------------------------------|
| 0.009~0.490        | 2400/F(KHz)                       | 300                           |
| 0.490~1.705        | 24000/F(KHz)                      | 30                            |
| 1.705~30.0         | 30                                | 30                            |
| 30~88              | 100                               | 3                             |
| 88~216             | 150                               | 3                             |
| 216~960            | 200                               | 3                             |
| 960~1000           | 500                               | 3                             |

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.



Page 65 of 146

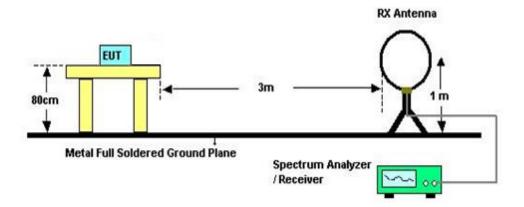
# Radiation Disturbance Test Limit for FCC (Above 1G)

| Eraguanay (MHz) | dB(uV/m) (at 3 meters) |         |
|-----------------|------------------------|---------|
| Frequency (MHz) | Peak                   | Average |
| Above 1000      | 74                     | 54      |

## Restricted bands of operation

| MHz                      | MHz                 | MHz           | GHz              |
|--------------------------|---------------------|---------------|------------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15         |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46        |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75        |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5        |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2          |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5          |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7        |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4       |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5       |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2       |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4        |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12      |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0        |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8        |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5       |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | ( <sup>2</sup> ) |
| 13.36-13.41              |                     |               |                  |

Note:  ${}^{1}_{\cdot}$ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.


<sup>2</sup>Above 38.6c



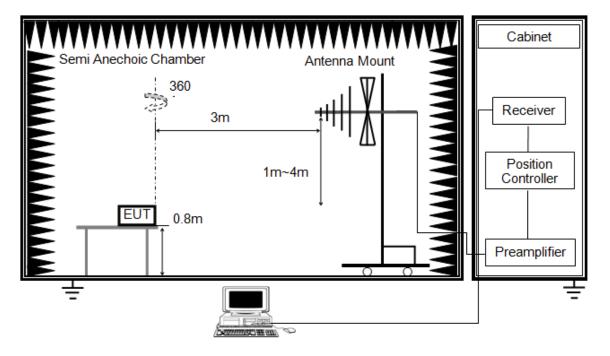
Page 66 of 146

#### **TEST SETUP AND PROCEDURE**

Below 30MHz



The setting of the spectrum analyser


| RBW      | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) |
|----------|------------------------------------------------------------|
| VBW      | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) |
| Sweep    | Auto                                                       |
| Detector | Peak/QP/ Average                                           |
| Trace    | Max hold                                                   |

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)



Page 67 of 146

Below 1G



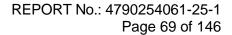
The setting of the spectrum analyser

| RBW      | 120KHz   |
|----------|----------|
| VBW      | 300KHz   |
| Sweep    | Auto     |
| Detector | Peak/QP  |
| Trace    | Max hold |

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

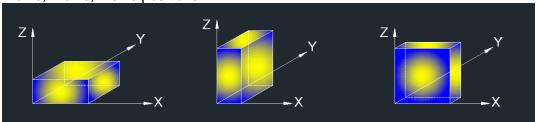


Page 68 of 146


Above 1G



The setting of the spectrum analyser


| RBW      | 1MHz                        |
|----------|-----------------------------|
| IV/R\//  | PEAK:3MHz<br>AVG: See note6 |
| Sweep    | Auto                        |
| Detector | Peak                        |
| Trace    | Max hold                    |

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz, the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements; and 1 MHz resolution bandwidth with video bandwidth ≥1/T but not less than the setting list in section 7.1 when use peak detector, max hold to be run for at least [50\*(1/Duty Cycle)] traces for average measurements. For the Duty Cycle need to refer the results in section 7.2.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)





X axis, Y axis, Z axis positions:



Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worse case (Y axis) data recorded in the report.

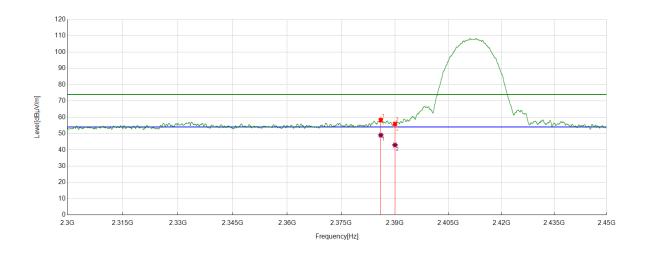


Page 70 of 146

## 7.6.2. TEST ENVIRONMENT

| Temperature         | 22.3°C | Relative Humidity | 57.5%   |
|---------------------|--------|-------------------|---------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V |

# 7.6.3. RESTRICTED BANDEDGE


## **TEST RESULT TABLE**

| Test Mode | Channel | Puw(dBm)                             | Verdict |
|-----------|---------|--------------------------------------|---------|
|           | LCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B       | MCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | LCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G       | MCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | LCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N HT20  | MCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | LCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N HT40  | MCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH     | <limit< td=""><td>PASS</td></limit<> | PASS    |

Page 71 of 146

## **TEST GRAPHS**

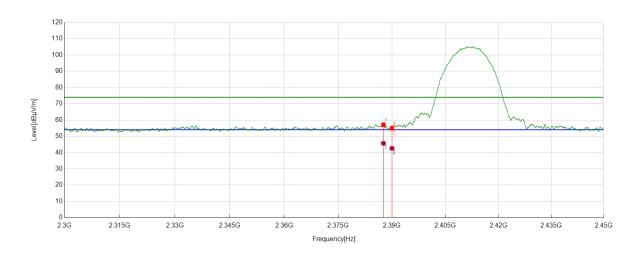
| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11B       | LCH     | Horizontal   | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2386.0358 | 47.55            | 11.28             | 58.83    | 74.00    | -15.17 | Horizontal |
| 2   | 2390      | 43.85            | 11.25             | 55.10    | 74.00    | -18.90 | Horizontal |

## AV Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2386.0358 | 37.68            | 11.28             | 48.96    | 54.00    | -5.04  | Horizontal |
| 2   | 2390      | 31.69            | 11.25             | 42.94    | 54.00    | -11.06 | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 72 of 146

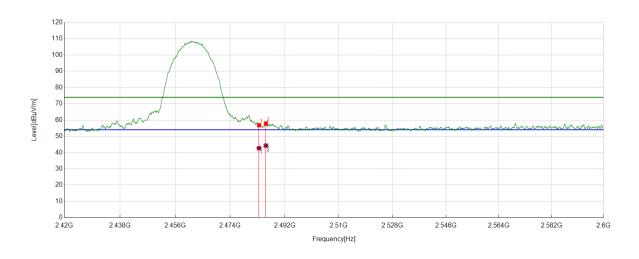
| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11B       | LCH     | Vertical     | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2387.5922 | 45.62            | 11.26             | 56.88    | 74.00    | -17.12 | Vertical |
| 2   | 2390      | 43.44            | 11.25             | 54.69    | 74.00    | -19.31 | Vertical |

#### AV Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2387.5922 | 34.43            | 11.26             | 45.69    | 54.00    | -8.31  | Horizontal |
| 2   | 2390      | 31.32            | 11.25             | 42.57    | 54.00    | -11.43 | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 73 of 146

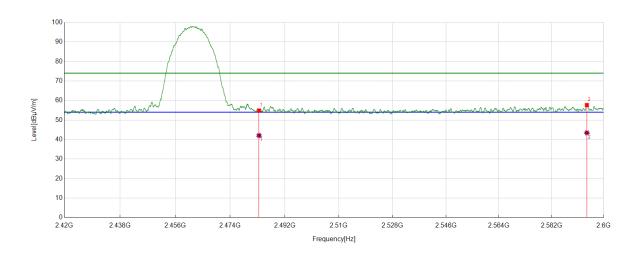
| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11B       | HCH     | Horizontal   | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 45.56            | 11.28             | 56.84    | 74.00    | -17.16 | Horizontal |
| 2   | 2485.7757 | 46.53            | 11.32             | 57.85    | 74.00    | -16.15 | Horizontal |

#### AV Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 31.38            | 11.28             | 42.66    | 54.00    | -11.34 | Horizontal |
| 2   | 2485.7757 | 32.93            | 11.32             | 44.25    | 54.00    | -9.75  | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



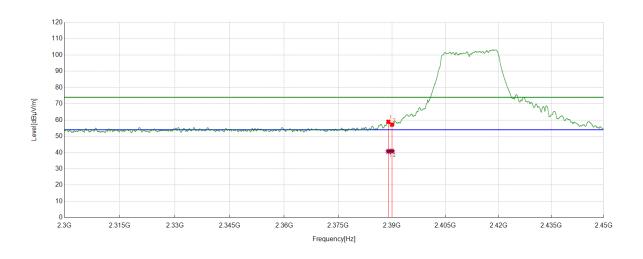
Page 74 of 146

| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11B       | HCH     | Vertical     | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 43.55            | 11.28             | 54.83    | 74.00    | -19.17 | Vertical |
| 2   | 2594.1943 | 45.48            | 12.19             | 57.67    | 74.00    | -16.33 | Vertical |


## **AV Result:**

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 30.78            | 11.28             | 42.06    | 54.00    | -11.94 | Vertical |
| 2   | 2594.1943 | 31.25            | 12.19             | 43.44    | 54.00    | -10.56 | Vertical |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

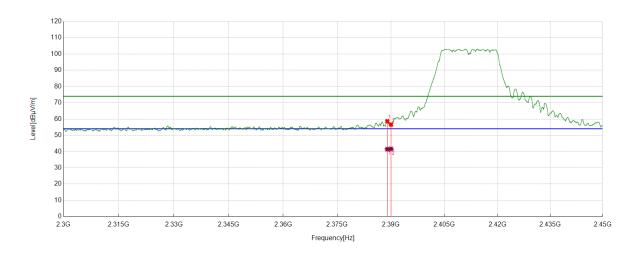
Page 75 of 146

| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11G       | LCH     | Horizontal   | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2388.9799 | 47.64            | 11.26             | 58.90    | 74.00    | -15.10 | Horizontal |
| 2   | 2390      | 45.94            | 11.25             | 57.19    | 74.00    | -16.81 | Horizontal |


#### AV Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2388.9799 | 29.50            | 11.26             | 40.76    | 54.00    | -13.24 | Horizontal |
| 2   | 2390      | 29.64            | 11.25             | 40.89    | 54.00    | -13.11 | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Page 76 of 146

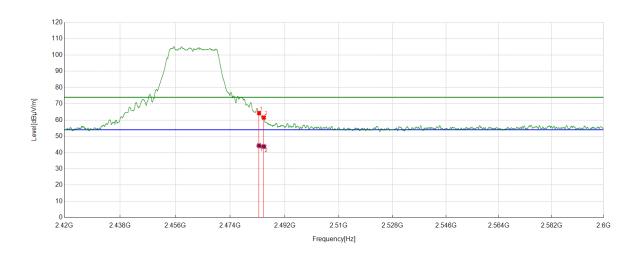
| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11G       | LCH     | Vertical     | PASS    |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2388.9611 | 47.37            | 11.26             | 58.63    | 74.00    | -15.37 | Vertical |
| 2   | 2390      | 45.31            | 11.25             | 56.56    | 74.00    | -17.44 | Vertical |

## **AV Result:**


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2388.9611 | 30.17            | 11.26             | 41.43    | 54.00    | -12.57 | Vertical |
| 2   | 2390      | 30.37            | 11.25             | 41.62    | 54.00    | -12.38 | Vertical |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 77 of 146

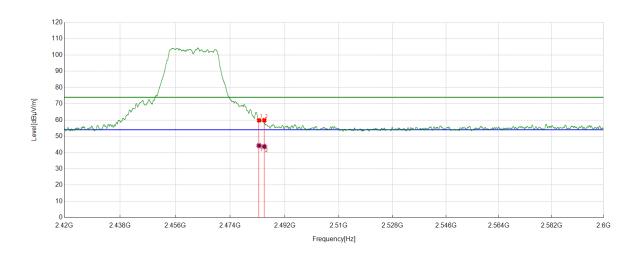
| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11G       | HCH     | Horizontal   | PASS    |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 53.05            | 11.28             | 64.33    | 74.00    | -9.67  | Horizontal |
| 2   | 2485.0781 | 50.22            | 11.31             | 61.53    | 74.00    | -12.47 | Horizontal |

#### AV Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 32.94            | 11.28             | 44.22    | 54.00    | -9.78  | Horizontal |
| 2   | 2485.0781 | 32.41            | 11.31             | 43.72    | 54.00    | -10.28 | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 78 of 146

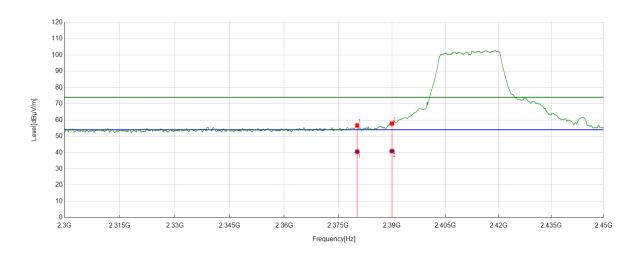
| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11G       | HCH     | Vertical     | PASS    |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 48.51            | 11.28             | 59.79    | 74.00    | -14.21 | Vertical |
| 2   | 2485.2582 | 48.55            | 11.31             | 59.86    | 74.00    | -14.14 | Vertical |

## **AV Result:**


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 32.97            | 11.28             | 44.25    | 54.00    | -9.75  | Vertical |
| 2   | 2485.2582 | 32.37            | 11.31             | 43.68    | 54.00    | -10.32 | Vertical |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



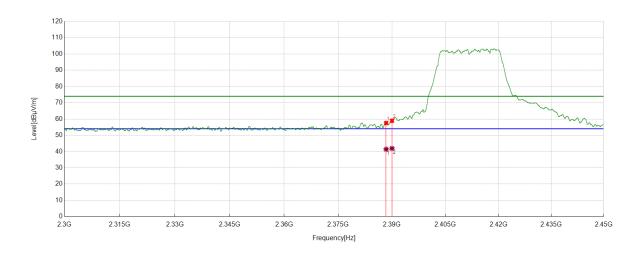
Page 79 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11N HT20  | LCH     | Horizontal   | PASS    |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2380.2788 | 45.42            | 11.32             | 56.74    | 74.00    | -17.26 | Horizontal |
| 2   | 2390      | 46.60            | 11.25             | 57.85    | 74.00    | -16.15 | Horizontal |


#### AV Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2380.2788 | 29.21            | 11.32             | 40.53    | 54.00    | -13.47 | Horizontal |
| 2   | 2390      | 29.64            | 11.25             | 40.89    | 54.00    | -13.11 | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Page 80 of 146

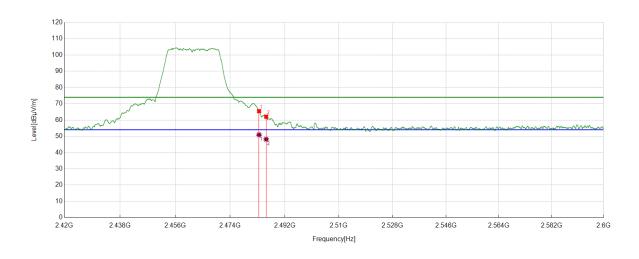
| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11N HT20  | LCH     | Vertical     | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2388.361  | 46.30            | 11.26             | 57.56    | 74.00    | -16.44 | Vertical |
| 2   | 2390      | 47.69            | 11.25             | 58.94    | 74.00    | -15.06 | Vertical |

## **AV Result:**


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2388.361  | 30.14            | 11.26             | 41.40    | 54.00    | -12.60 | Vertical |
| 2   | 2390      | 30.66            | 11.25             | 41.91    | 54.00    | -12.09 | Vertical |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 81 of 146

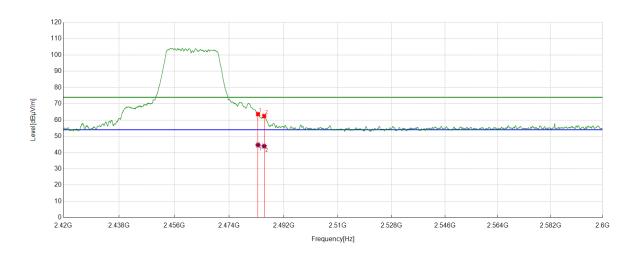
| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11N HT20  | HCH     | Horizontal   | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 54.18            | 11.28             | 65.46    | 74.00    | -8.54  | Horizontal |
| 2   | 2485.8657 | 50.70            | 11.32             | 62.02    | 74.00    | -11.98 | Horizontal |

#### AV Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 39.63            | 11.28             | 50.91    | 54.00    | -3.09  | Horizontal |
| 2   | 2485.8657 | 36.84            | 11.32             | 48.16    | 54.00    | -5.84  | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 82 of 146

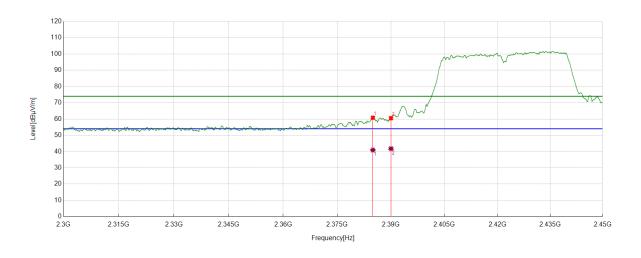
| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11N HT20  | HCH     | Vertical     | PASS    |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 52.34            | 11.28             | 63.62    | 74.00    | -10.38 | Vertical |
| 2   | 2485.5282 | 51.11            | 11.31             | 62.42    | 74.00    | -11.58 | Vertical |

## **AV Result:**


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 33.38            | 11.28             | 44.66    | 54.00    | -9.34  | Vertical |
| 2   | 2485.5282 | 32.61            | 11.31             | 43.92    | 54.00    | -10.08 | Vertical |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 83 of 146

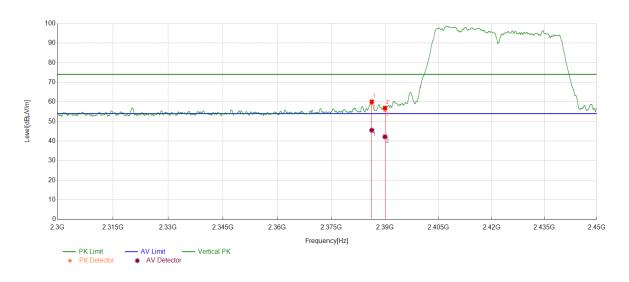
| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11N HT40  | LCH     | Horizontal   | PASS    |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2384.9294 | 49.52            | 11.29             | 60.81    | 74.00    | -13.19 | Horizontal |
| 2   | 2390      | 49.28            | 11.25             | 60.53    | 74.00    | -13.47 | Horizontal |

## **AV Result:**


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2384.9294 | 29.65            | 11.29             | 40.94    | 54.00    | -13.06 | Horizontal |
| 2   | 2390      | 30.52            | 11.25             | 41.77    | 54.00    | -12.23 | Horizontal |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 84 of 146

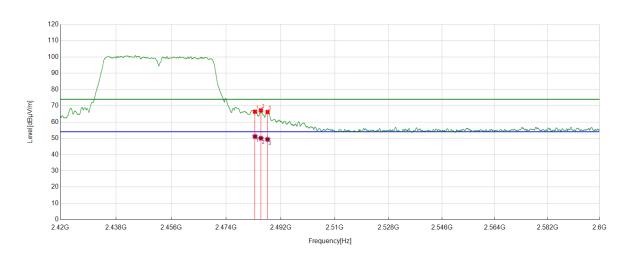
| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11N HT40  | LCH     | Vertical     | PASS    |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2387.3484 | 50.49            | 11.27             | 61.76    | 74.00    | -12.24 | Vertical |
| 2   | 2390      | 51.14            | 11.25             | 62.39    | 74.00    | -11.61 | Vertical |

#### AV Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2387.3484 | 32.14            | 11.27             | 43.41    | 54.00    | -10.59 | Vertical |
| 2   | 2390      | 32.43            | 11.25             | 43.68    | 54.00    | -10.32 | Vertical |

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 85 of 146

| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11N HT40  | HCH     | Horizontal   | PASS    |  |

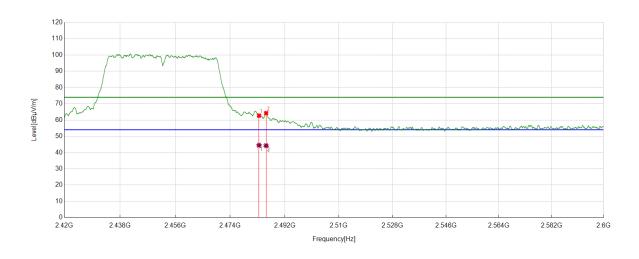


# PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 55.08            | 11.28             | 66.36    | 74.00    | -7.64  | Horizontal |
| 2   | 2485.4382 | 55.88            | 11.31             | 67.19    | 74.00    | -6.81  | Horizontal |
| 3   | 2487.6435 | 54.83            | 11.35             | 66.18    | 74.00    | -7.82  | Horizontal |

# AV Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 2483.5    | 39.80            | 11.28             | 51.08    | 54.00    | -2.92  | Horizontal |
| 2   | 2485.4382 | 38.75            | 11.31             | 50.06    | 54.00    | -3.94  | Horizontal |
| 3   | 2487.6435 | 37.97            | 11.35             | 49.32    | 54.00    | -4.68  | Horizontal |


Note: 1. Peak detector: RBW: 1 MHz, VBW: 3 MHz.

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 86 of 146

| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11N HT40  | HCH     | Vertical     | PASS    |  |



## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 51.41            | 11.28             | 62.69    | 74.00    | -11.31 | Vertical |
| 2   | 2485.8432 | 52.91            | 11.32             | 64.23    | 74.00    | -9.77  | Vertical |

#### AV Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 2483.5    | 33.20            | 11.28             | 44.48    | 54.00    | -9.52  | Vertical |
| 2   | 2485.8432 | 32.91            | 11.32             | 44.23    | 54.00    | -9.77  | Vertical |

Note: 1. Peak detector: RBW: 1 MHz, VBW: 3 MHz.

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Page 87 of 146

# 7.6.4. SPURIOUS EMISSIONS

#### **TEST RESULTS TABLE**

# 1) For 1GHz~18GHz

| Test Mode | Channel Puw(dBm) |                                      | Verdict |
|-----------|------------------|--------------------------------------|---------|
|           | LCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11B       | MCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | LCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11G       | MCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | LCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N HT20  | MCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | LCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 11N HT40  | MCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |
|           | HCH              | <limit< td=""><td>PASS</td></limit<> | PASS    |

#### 2) For 9KHz~30MHz

| Test Mode | Channel | Puw(dBm)                             | Verdict |
|-----------|---------|--------------------------------------|---------|
| 11B       | MCH     | <limit< th=""><th>PASS</th></limit<> | PASS    |

## Remark:

1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.

#### 3) For 30MHz~1GHz

| Test Mode | Channel | Puw(dBm)                             | Verdict |
|-----------|---------|--------------------------------------|---------|
| 11B       | MCH     | <limit< th=""><th>PASS</th></limit<> | PASS    |

#### Remark:

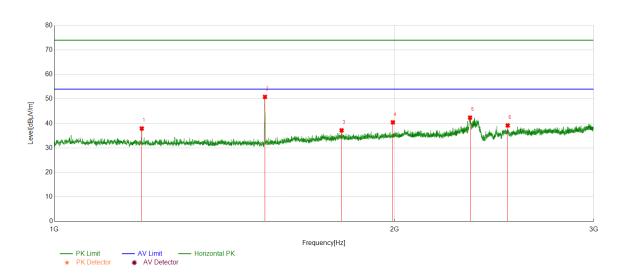
1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.

#### 4) For 18GHz~26.5GHz

| Test Mode | Channel | Puw(dBm)                             | Verdict |  |
|-----------|---------|--------------------------------------|---------|--|
| 11B       | MCH     | <limit< th=""><th>PASS</th></limit<> | PASS    |  |

## Remark:

1) Through pre-testing all the test modes and test channels, but only the data of the worst case is included in this test report.




Page 88 of 146

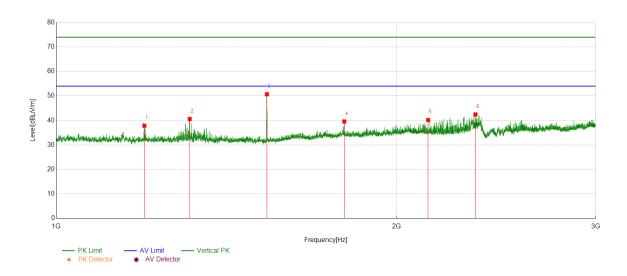
# Part 1: 1GHz~3GHz

## **HARMONICS AND SPURIOUS EMISSIONS**

| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11B       | LCH     | Horizontal   | PASS    |  |



## PK Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 1195.0244 | 44.59            | -6.65             | 37.94    | 74.00    | -36.06 | Horizontal |
| 2   | 1535.817  | 57.47            | -6.62             | 50.85    | 74.00    | -23.15 | Horizontal |
| 3   | 1795.3494 | 41.46            | -4.28             | 37.18    | 74.00    | -36.82 | Horizontal |
| 4   | 1992.8741 | 43.61            | -3.16             | 40.45    | 74.00    | -33.55 | Horizontal |
| 5   | 2332.1665 | 45.52            | -3.13             | 42.39    | 74.00    | -31.61 | Horizontal |
| 6   | 2518.1898 | 40.98            | -1.79             | 39.19    | 74.00    | -34.81 | Horizontal |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

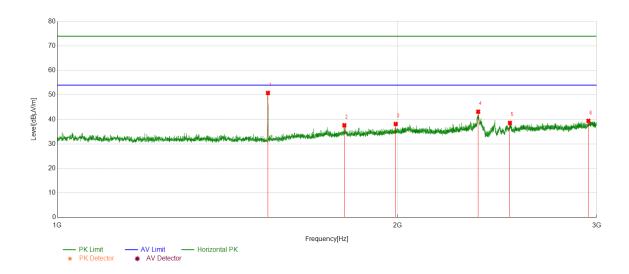


Page 89 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11B       | LCH     | Vertical     | PASS    |



#### PK Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 1196.5246 | 44.52            | -6.66             | 37.86    | 74.00    | -36.14 | Vertical |
| 2   | 1312.289  | 47.03            | -6.42             | 40.61    | 74.00    | -33.39 | Vertical |
| 3   | 1535.817  | 57.33            | -6.62             | 50.71    | 74.00    | -23.29 | Vertical |
| 4   | 1797.8497 | 43.85            | -4.24             | 39.61    | 74.00    | -34.39 | Vertical |
| 5   | 2132.6416 | 43.10            | -2.89             | 40.21    | 74.00    | -33.79 | Vertical |
| 6   | 2348.4186 | 45.53            | -3.08             | 42.45    | 74.00    | -31.55 | Vertical |

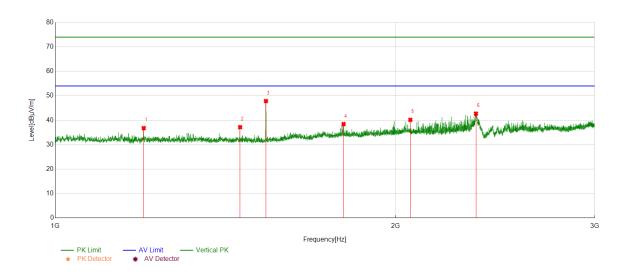
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 90 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11B       | MCH     | Horizontal   | PASS    |




#### PK Result:

| 1 17 1 | Court.    |                  |                   |          |          |        |            |
|--------|-----------|------------------|-------------------|----------|----------|--------|------------|
| No.    | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|        | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1      | 1535.817  | 57.44            | -6.62             | 50.82    | 74.00    | -23.18 | Horizontal |
| 2      | 1794.3493 | 41.91            | -4.29             | 37.62    | 74.00    | -36.38 | Horizontal |
| 3      | 1992.374  | 41.30            | -3.16             | 38.14    | 74.00    | -35.86 | Horizontal |
| 4      | 2356.6696 | 46.03            | -2.86             | 43.17    | 74.00    | -30.83 | Horizontal |
| 5      | 2514.1893 | 40.48            | -1.88             | 38.60    | 74.00    | -35.40 | Horizontal |
| 6      | 2949 9937 | 39 56            | -0 14             | 39 42    | 74 00    | -34 58 | Horizontal |

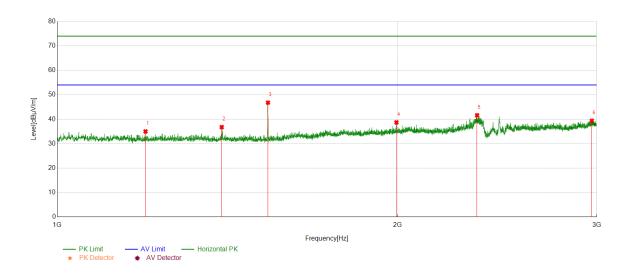
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT No.: 4790254061-25-1 Page 91 of 146

| Test Mode | Test Mode Channel |          | Verdict |
|-----------|-------------------|----------|---------|
| 11B       | MCH               | Vertical | PASS    |



## PK Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 1197.2747 | 43.43            | -6.66             | 36.77    | 74.00    | -37.23 | Vertical |
| 2   | 1457.0571 | 43.66            | -6.49             | 37.17    | 74.00    | -36.83 | Vertical |
| 3   | 1535.817  | 54.46            | -6.62             | 47.84    | 74.00    | -26.16 | Vertical |
| 4   | 1798.8499 | 42.64            | -4.22             | 38.42    | 74.00    | -35.58 | Vertical |
| 5   | 2060.8826 | 43.00            | -2.85             | 40.15    | 74.00    | -33.85 | Vertical |
| 6   | 2355.4194 | 45.59            | -2.90             | 42.69    | 74.00    | -31.31 | Vertical |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

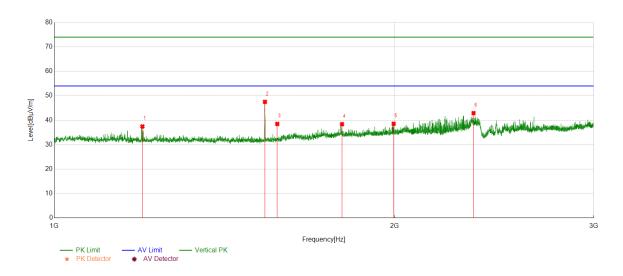


Page 92 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11B       | HCH     | Horizontal   | PASS    |



## PK Result.


| 1 K Kesuit. |           |                  |                   |          |          |        |            |  |
|-------------|-----------|------------------|-------------------|----------|----------|--------|------------|--|
| No.         | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |  |
|             | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |  |
| 1           | 1196.7746 | 41.66            | -6.66             | 35.00    | 74.00    | -39.00 | Horizontal |  |
| 2           | 1397.7997 | 43.24            | -6.46             | 36.78    | 74.00    | -37.22 | Horizontal |  |
| 3           | 1535.817  | 53.41            | -6.62             | 46.79    | 74.00    | -27.21 | Horizontal |  |
| 4           | 1995.3744 | 41.82            | -3.12             | 38.70    | 74.00    | -35.30 | Horizontal |  |
| 5           | 2351.4189 | 44.64            | -3.03             | 41.61    | 74.00    | -32.39 | Horizontal |  |
| 6           | 2970.7463 | 38.83            | 0.53              | 39.36    | 74.00    | -34.64 | Horizontal |  |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

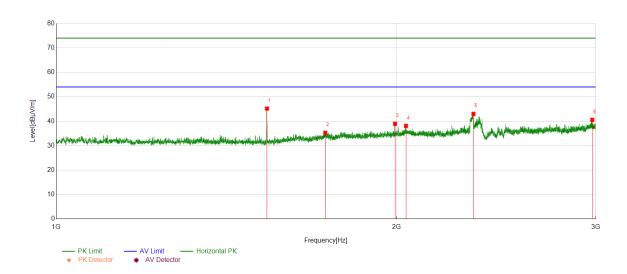


Page 93 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11B       | HCH     | Vertical     | PASS    |



#### PK Result


| 1 11 11 | esuit.    |                  |                   |          |          |        |          |
|---------|-----------|------------------|-------------------|----------|----------|--------|----------|
| No.     | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|         | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1       | 1196.5246 | 44.10            | -6.66             | 37.44    | 74.00    | -36.56 | Vertical |
| 2       | 1535.817  | 54.14            | -6.62             | 47.52    | 74.00    | -26.48 | Vertical |
| 3       | 1574.8219 | 44.68            | -6.19             | 38.49    | 74.00    | -35.51 | Vertical |
| 4       | 1796.8496 | 42.64            | -4.25             | 38.39    | 74.00    | -35.61 | Vertical |
| 5       | 1996.1245 | 41.67            | -3.10             | 38.57    | 74.00    | -35.43 | Vertical |
| 6       | 2348.9186 | 46.00            | -3.08             | 42.92    | 74.00    | -31.08 | Vertical |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

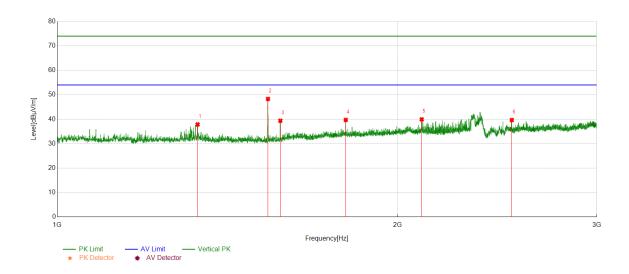


Page 94 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11G       | LCH     | Horizontal   | PASS    |



#### PK Result:


| 1 17 17 | ooait.    |                  |                   |          |          |        |            |
|---------|-----------|------------------|-------------------|----------|----------|--------|------------|
| No.     | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|         | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1       | 1535.817  | 51.80            | -6.62             | 45.18    | 74.00    | -28.82 | Horizontal |
| 2       | 1729.5912 | 39.93            | -4.67             | 35.26    | 74.00    | -38.74 | Horizontal |
| 3       | 1993.6242 | 42.10            | -3.14             | 38.96    | 74.00    | -35.04 | Horizontal |
| 4       | 2038.3798 | 40.62            | -2.53             | 38.09    | 74.00    | -35.91 | Horizontal |
| 5       | 2338.9174 | 46.13            | -3.12             | 43.01    | 74.00    | -30.99 | Horizontal |
| 6       | 2979 2474 | 40 22            | 0.37              | 40 59    | 74.00    | -33.41 | Horizontal |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

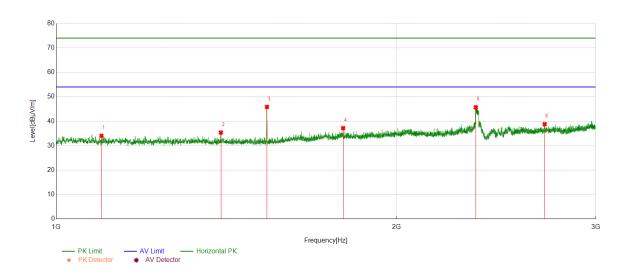


Page 95 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11G       | LCH     | Vertical     | PASS    |



## PK Result:


| 1 17 17 | Court.    |                  |                   |          |          |        |          |
|---------|-----------|------------------|-------------------|----------|----------|--------|----------|
| No.     | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|         | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1       | 1330.7913 | 44.29            | -6.42             | 37.87    | 74.00    | -36.13 | Vertical |
| 2       | 1535.817  | 54.91            | -6.62             | 48.29    | 74.00    | -25.71 | Vertical |
| 3       | 1575.0719 | 45.56            | -6.18             | 39.38    | 74.00    | -34.62 | Vertical |
| 4       | 1799.6    | 43.93            | -4.21             | 39.72    | 74.00    | -34.28 | Vertical |
| 5       | 2100.6376 | 42.87            | -2.92             | 39.95    | 74.00    | -34.05 | Vertical |
| 6       | 2523.6905 | 41.58            | -1.91             | 39.67    | 74.00    | -34.33 | Vertical |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

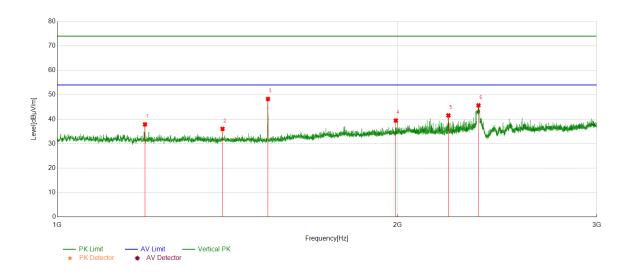


REPORT No.: 4790254061-25-1 Page 96 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11G       | MCH     | Horizontal   | PASS    |



## PK Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 1096.262  | 40.19            | -6.15             | 34.04    | 74.00    | -39.96 | Horizontal |
| 2   | 1398.2998 | 41.82            | -6.44             | 35.38    | 74.00    | -38.62 | Horizontal |
| 3   | 1535.817  | 52.48            | -6.62             | 45.86    | 74.00    | -28.14 | Horizontal |
| 4   | 1793.5992 | 41.49            | -4.30             | 37.19    | 74.00    | -36.81 | Horizontal |
| 5   | 2350.1688 | 48.79            | -3.07             | 45.72    | 74.00    | -28.28 | Horizontal |
| 6   | 2703.963  | 40.16            | -1.35             | 38.81    | 74.00    | -35.19 | Horizontal |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

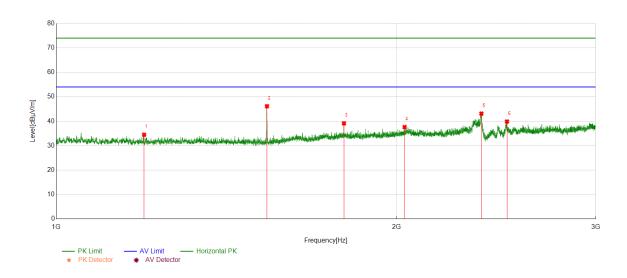


Page 97 of 146

| Test | Mode | Channel | Polarization | Verdict |  |
|------|------|---------|--------------|---------|--|
| 1    | 1G   | MCH     | Vertical     | PASS    |  |



## PK Result:


| 1 17 17 | Court.    |                  |                   |          |          |        |          |
|---------|-----------|------------------|-------------------|----------|----------|--------|----------|
| No.     | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|         | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1       | 1195.5244 | 44.55            | -6.65             | 37.90    | 74.00    | -36.10 | Vertical |
| 2       | 1400.05   | 42.45            | -6.39             | 36.06    | 74.00    | -37.94 | Vertical |
| 3       | 1535.817  | 54.91            | -6.62             | 48.29    | 74.00    | -25.71 | Vertical |
| 4       | 1992.6241 | 42.63            | -3.16             | 39.47    | 74.00    | -34.53 | Vertical |
| 5       | 2217.9022 | 44.82            | -3.26             | 41.56    | 74.00    | -32.44 | Vertical |
| 6       | 2358.1698 | 48.48            | -2.81             | 45.67    | 74.00    | -28.33 | Vertical |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

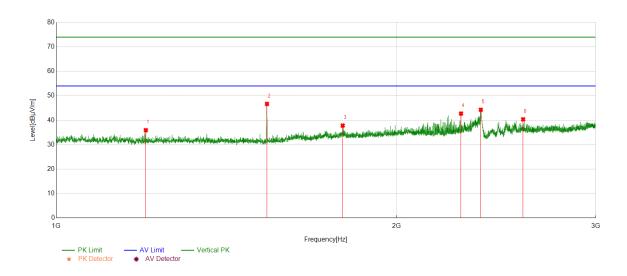


Page 98 of 146

| Test Mode | Channel | Polarization | Verdict |  |
|-----------|---------|--------------|---------|--|
| 11G       | HCH     | Horizontal   | PASS    |  |



#### PK Result:


| 1 17 17 | ooait.    |                  |                   |          |          |        |            |
|---------|-----------|------------------|-------------------|----------|----------|--------|------------|
| No.     | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|         | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1       | 1195.7745 | 41.12            | -6.65             | 34.47    | 74.00    | -39.53 | Horizontal |
| 2       | 1535.817  | 52.76            | -6.62             | 46.14    | 74.00    | -27.86 | Horizontal |
| 3       | 1796.5996 | 43.39            | -4.26             | 39.13    | 74.00    | -34.87 | Horizontal |
| 4       | 2032.8791 | 40.34            | -2.73             | 37.61    | 74.00    | -36.39 | Horizontal |
| 5       | 2376.9221 | 45.63            | -2.50             | 43.13    | 74.00    | -30.87 | Horizontal |
| 6       | 2504 188  | 41 87            | -2.00             | 39 87    | 74.00    | -34.13 | Horizontal |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 99 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11G       | HCH     | Vertical     | PASS    |



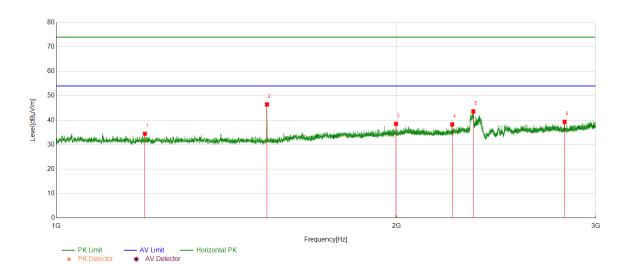
## PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 1200.025  | 42.61            | -6.68             | 35.93    | 74.00    | -38.07 | Vertical |
| 2   | 1535.817  | 53.30            | -6.62             | 46.68    | 74.00    | -27.32 | Vertical |
| 3   | 1792.099  | 42.16            | -4.33             | 37.83    | 74.00    | -36.17 | Vertical |
| 4   | 2280.4101 | 45.94            | -3.20             | 42.74    | 74.00    | -31.26 | Vertical |
| 5   | 2374.1718 | 46.77            | -2.49             | 44.28    | 74.00    | -29.72 | Vertical |
| 6   | 2587.9485 | 42.43            | -2.06             | 40.37    | 74.00    | -33.63 | Vertical |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



11N HT20


REPORT No.: 4790254061-25-1 Page 100 of 146

**PASS** 

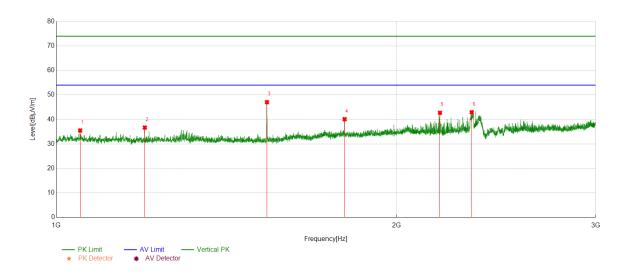
| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|

Horizontal

LCH



## PK Result:


| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|-----|-----------|------------------|-------------------|----------|----------|--------|------------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1   | 1197.7747 | 41.16            | -6.67             | 34.49    | 74.00    | -39.51 | Horizontal |
| 2   | 1535.817  | 53.09            | -6.62             | 46.47    | 74.00    | -27.53 | Horizontal |
| 3   | 1997.6247 | 41.61            | -3.08             | 38.53    | 74.00    | -35.47 | Horizontal |
| 4   | 2239.905  | 41.58            | -3.27             | 38.31    | 74.00    | -35.69 | Horizontal |
| 5   | 2338.1673 | 46.76            | -3.12             | 43.64    | 74.00    | -30.36 | Horizontal |
| 6   | 2816.227  | 40.84            | -1.49             | 39.35    | 74.00    | -34.65 | Horizontal |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Page 101 of 146

| Test Mode | Channel | Polarization | Verdict |
|-----------|---------|--------------|---------|
| 11N HT20  | LCH     | Vertical     | PASS    |



# PK Result:

| No. | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark   |
|-----|-----------|------------------|-------------------|----------|----------|--------|----------|
|     | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |          |
| 1   | 1049.7562 | 41.12            | -5.61             | 35.51    | 74.00    | -38.49 | Vertical |
| 2   | 1197.5247 | 43.35            | -6.66             | 36.69    | 74.00    | -37.31 | Vertical |
| 3   | 1535.817  | 53.69            | -6.62             | 47.07    | 74.00    | -26.93 | Vertical |
| 4   | 1799.0999 | 44.33            | -4.22             | 40.11    | 74.00    | -33.89 | Vertical |
| 5   | 2184.6481 | 45.94            | -3.23             | 42.71    | 74.00    | -31.29 | Vertical |
| 6   | 2330.6663 | 46.09            | -3.14             | 42.95    | 74.00    | -31.05 | Vertical |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



Test Mode

11N HT20

REPORT No.: 4790254061-25-1 Page 102 of 146

Verdict

**PASS** 

Polarization

Horizontal

Channel

MCH

| 80 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 70 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30 | probritability and a mortificated that it is the little in the processing and other contract the forest in the contract th | paditanishi dishatalpakashi dishatili dagalar dishatili dagalar dishatili dagalar dishatili dagalar dishatili | And the second s | A Marie Control of the Control of th |
| 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               | 2G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency[Hz]                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### PK Result:

| 1 K Kosuit. |           |                  |                   |          |          |        |            |
|-------------|-----------|------------------|-------------------|----------|----------|--------|------------|
| No.         | Frequency | Reading<br>Level | Correct<br>Factor | Result   | Limit    | Margin | Remark     |
|             | [MHz]     | [dBuV]           | [dB/m]            | [dBuV/m] | [dBuV/m] | [dB]   |            |
| 1           | 1050.0063 | 41.87            | -5.61             | 36.26    | 74.00    | -37.74 | Horizontal |
| 2           | 1535.817  | 50.93            | -6.62             | 44.31    | 74.00    | -29.69 | Horizontal |
| 3           | 1797.0996 | 42.88            | -4.25             | 38.63    | 74.00    | -35.37 | Horizontal |
| 4           | 2355.9195 | 49.14            | -2.88             | 46.26    | 74.00    | -27.74 | Horizontal |
| 5           | 2514.4393 | 41.16            | -1.87             | 39.29    | 74.00    | -34.71 | Horizontal |
| 6           | 2972.9966 | 40.33            | 0.49              | 40.82    | 74.00    | -33.18 | Horizontal |

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.