

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

Access Standalone

MODEL NUMBER: ASI1212F-D

ADDITIONAL MODEL NUMBER: DHI-ASI1212F-D, DH-ASI1212F-D

PROJECT NUMBER: 4789452500

REPORT NUMBER: 4789452500-8

FCC ID: SVN-ASI1212F-D

ISSUE DATE: Jul. 10, 2020

Prepared for

Zhejiang Dahua Vision Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: +86 512-6808 6400 Fax: +86 512-6808 4099 Website: www.ul.com

Page 2 of 125

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	07/10/2020	Initial Issue	

TABLE OF CONTENTS

1.	A	TTEST	ATION OF TEST RESULTS	4
2.	TE	EST M	ETHODOLOGY	6
3.	F	ACILIT	TES AND ACCREDITATION	6
4.	C	ALIBR	ATION AND UNCERTAINTY	. 7
	4.1.	ME	ASURING INSTRUMENT CALIBRATION	. 7
	4.2.	ME	ASUREMENT UNCERTAINTY	. 7
5.	E	QUIPM	IENT UNDER TEST	. 8
	5.1.	DES	SCRIPTION OF EUT	. 8
	5.2.	MAX	XIMUM OUTPUT POWER	. 9
	5.3.	CHA	ANNEL LIST	. 9
	5.4.	TES	ST CHANNEL CONFIGURATION	10
	5.5.	THE	WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DES	SCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE	WORSE CASE CONFIGURATIONS	11
	5.8.	TES	ST ENVIRONMENT	12
	5.9.	DES	SCRIPTION OF TEST SETUP	13
	5.10). M	IEASURING INSTRUMENT AND SOFTWARE USED	14
6.	M	EASU	REMENT METHODS1	15
7.	ΑI	NTEN	NA PORT TEST RESULTS1	16
	7.1.	ON	TIME AND DUTY CYCLE	16
	7.2.	6 dE	B BANDWIDTH	19
	7.3.	PEA	AK CONDUCTED OUTPUT POWER2	27
	7.4.	POI	WER SPECTRAL DENSITY2	29
	7.5.	COI	NDUCTED BANDEDGE AND SPURIOUS EMISSIONS	37
	7.6.		DIATED TEST RESULTS	
		6.1. 6.2.	LIMITS AND PROCEDURE	
		-	RESTRICTED BANDEDGE	_
	7.	6.4.	SPURIOUS EMISSIONS	90
8.	A	C POV	VER LINE CONDUCTED EMISSIONS12	22
9.	ΑI	NTENI	NA REQUIREMENTS12	25

Page 4 of 125

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd. Address: No.1199, Bin'an road, Binjiang District, Hangzhou,

P.R.China.

Manufacturer Information

Company Name: Zhejiang Dahua Vision Technology Co., Ltd. Address: No.1199, Bin'an road, Binjiang District, Hangzhou,

P.R.China.

EUT Description

Product Name Access Standalone

Model Name ASI1212F-D

Additional No. DHI-ASI1212F-D, DH-ASI1212F-D, OEM-ASI1212F-D

Sample Number 3002344
Data of Receipt Sample Apr. 08, 2020

Date Tested Apr. 11, 2020 ~ Jun. 26, 2020

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

REPORT No.: 4789452500-8 Page 5 of 125

Complied

Complied

Summary of Test Results Test Items **FCC Rules** Clause **Test Results** 6db DTS Bandwidth FCC 15.247 (a) (2) 1 Complied **Conducted Power** Complied 2 FCC 15.247 (b) (3) Complied 3 Power Spectral Density FCC 15.247 (e) Conducted Band edge And 4 FCC 15.247 (d) Complied Spurious emission FCC 15.247 (d) Radiated Band edges and Spurious 5 FCC 15.209 Complied emission FCC 15.205 Conducted Emission Test For AC

Remark:

6

7

Power Port

Antenna Requirement

FCC 15.207

FCC 15.203

Prepared By: Jason Yang	Reviewed By: Tom Tang
Jason Yang Engineer	Tom Tang Engineer Project Associate
Authorized By:	
Chris Zhong	
Chris Zhong Laboratory Leader	

¹⁾ The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C> when <Accuracy Method> decision rule is applied.

Page 6 of 125

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	---

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 7 of 125

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.1dB
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	3.4dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.4dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.9dB (1GHz-18Gz)
(10112 to 200112)(morage i undamental emission)	4.2dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 125

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	Access Standalone
Model No.:	ASI1212F-D
Operating Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)
Channels Step:	Channels with 5MHz step
Sample Type:	Fixed production
Test power grade:	N/A
Test software of EUT:	Secure CRT (manufacturer declare)
Antenna Type:	Patch Antenna
Antenna Gain:	1.4 dBi

Remark:

Model No.:

Number:	Name:	Number:	Name:	Number:	Name:
1	ASI1212F-D	2	DHI-ASI1212F-D	3	DH-ASI1212F-D
4	OEM-ASI1212F-D	5		6	
7		8			

Only the main model ASI1212F-D was tested and only the data of this model is shown in this test report. Since Their electrical circuit design, layout, components used and internal wiring are identical, only the model name and selling area are different.

REPORT No.: 4789452500-8 Page 9 of 125

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max Peak Conducted Power (dBm)	Max AVG Conducted Power (dBm)
1	IEEE 802.11B	1-11[11]	18.30	15.57
1	IEEE 802.11G	1-11[11]	21.44	13.53
1	IEEE 802.11nHT20	1-11[11]	20.85	12.78
1	IEEE 802.11nHT40	3-9[7]	N/A	12.60

5.3. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)									
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)									
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452				

Channel List for 802.11n (40 MHz)									
Channel Frequency (MHz) Channel Frequenc (MHz) Channel Frequency (MHz) Channel (MHz)							Frequency (MHz)		
3	2422	5	2432	7	2442	9	2452		
4	2427	6	2437	8	2447				

Page 10 of 125

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel (MHz)
	LCH :CH01 2412
IEEE 802.11B	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11G	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11n HT20	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH03 2422
IEEE 802.11n HT40	MCH: CH06 2437
	HCH: CH09 2452

5.5. THE WORSE CASE POWER SETTING PARAMETER

The V	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare		SecureCRT						
	Transmit		Test Channel						
Modulation Mode	Antenna Number	NCB: 20MHz			NCB: 40MHz				
Wiode		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9		
802.11b	1	N/A	N/A	N/A					
802.11g	802.11g 1		N/A	N/A	/				
802.11n HT20	1	N/A N/A N/A							
802.11n HT40	1		/ N/A N/A N/A						

Page 11 of 125

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	Patch Antenna	1.4

Test Mode Transmit and Receive Mode		Description	
IEEE 802.11b	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.	
IEEE 802.11g	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.	
IEEE 802.11N (HT20)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.	
IEEE 802.11N (HT40)	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.	

5.7. THE WORSE CASE CONFIGURATIONS

For the product, the NFC and WIFI module can transmit simultaneously, and this work mode was the worse mode, only the worse data of this mode was recorded in the report.

For WIFI module, the worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Page 12 of 125

5.8. **TEST ENVIRONMENT**

Environment Parameter	Selected Values During Tests		
Relative Humidity	55	5 ~ 65%	
Atmospheric Pressure:	1025Pa		
Temperature	TN	23 ~ 28°C	
	VL	N/A	
Voltage :	VN	DC 12V	
	VH	N/A	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage TN= Normal Temperature

Page 13 of 125

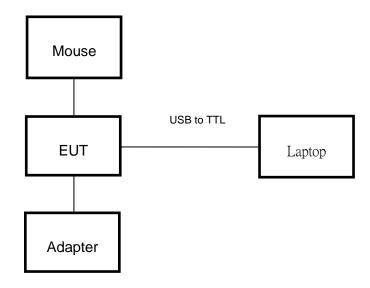
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E590	N/A
2	Fixed Frequency Board	N/A	N/A	Supply by UL Lab
3	Mouse	Lenovo	N/A	N/A

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB to TTL	USB	100cm Length	N/A
2	LAN	LAN	LAN	100cm Length	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	DC Adapter	НОПОТО	ADS-12AM-12 12012EPCU	INPUT:100-240V~50/60Hz 0.3A Max OUTPUT:12.0V=1.0A

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

REPORT No.: 4789452500-8 Page 14 of 125

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions (Instrument)								
		Col	laucte	u Emis	SIONS	(mstrui			
Used	Equipment	Manufacturer	Mode	el No.		al No.	Upper Last Cal.	Last Cal.	Next Cal.
•	EMI Test Receiver	R&S	ESR3		126	6700	2018-12-13	2019-12-12	2020-12-11
-	Two-Line V-Network	R&S	EN\	/216	126	6701	2018-12-13	2019-12-12	2020-12-11
-	Artificial Mains Networks	R&S	EN	Y81	126	6711	2018-12-13	2019-12-12	2020-12-11
				Soft	ware				
Used	Des		Ma	anufac	turer	Name	Version		
-	Test Software for 0	Conducted distur	bance		R&S		EMC32	Ver. 9.25	
	Radiated Emissions (Instrument)								
Used	Equipment	Manufacturer	Mode	el No.	Seri	al No.	Upper Last Cal.	Last Cal.	Next Cal.
-	Spectrum Analyzer	Keysight	N90)10B	MY57	110128	2019-05-29	2020-05-28	2021-05-27
-	EMI test receiver	R&S	ES	R26	126	7603	2018-12-13	2019-12-22	2020-12-21
•	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZE	3 1513	513	3-265	2019-06-16	2020-06-15	2021-06-14
•	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		126	6704	N/A	2019-01-28	2022-01-27
•	Receiver Antenna (1GHz-18GHz)	R&S	HF	907	126	6705	2019-01-26	2020-01-26	2021-01-25
•	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBH	49170	126	6706	2019-02-06	2020-02-05	2021-02-04
•	Receiver Antenna (26.5GHz-40GHz)	TOYO	HAP 2	26-40W	0000	00012	2019-07-23	2020-07-22	2021-07-21
•	Pre-amplification (To 1GHz)	R&S	SCU	J-03D	134	4666	2019-02-06	2020-02-05	2021-02-04
-	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1	G18-50	14140)-13467	2019-03-18	2020-03-17	2021-03-16
-	Pre-amplification (To 26.5GHz)	R&S	SCU	J-26D	134	4668	2019-02-06	2020-02-05	2021-02-04
•	Band Reject Filter	Wainwright	2350- 2483.5-	CJV8- -2400- -2533.5- ISS		1	2019-05-29	2020-05-28	2021-05-27
•	Highpass Filter	Wainwright	WHKX10- 2700-3000- 18000-40SS			2	2019-05-29	2020-05-28	2021-05-27
				Soft	ware				
Used	Desci	ription	N	/lanufac	turer		Name	Version	
-	·			Tonsce	end		JS32	V1.0	
				ther ins					
Used	Equipment	Manufacturer				al No.	Upper Last Cal.	Last Cal.	Next Cal.
•	Spectrum Analyzer	Keysight	N90)10B	MY57	110128		2020-05-28	2021-05-27
	Power Meter	Keysight	U20:	21XA	MY57	110002	2019-06-12	2020-06-11	2021-06-10

Page 15 of 125

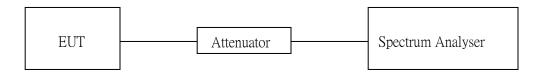
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 125

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

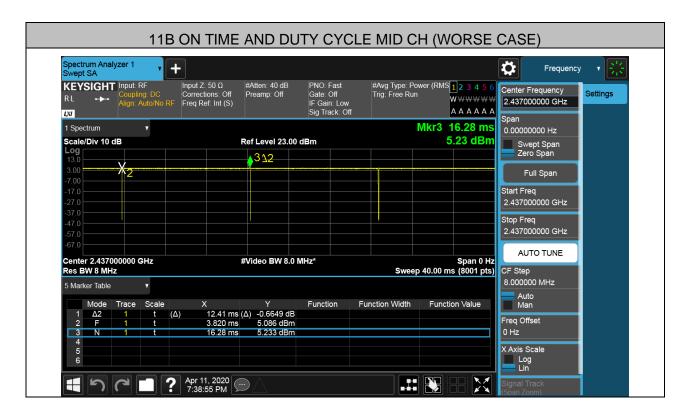
FCC KDB 558074 Zero-Span Spectrum Analyzer Method

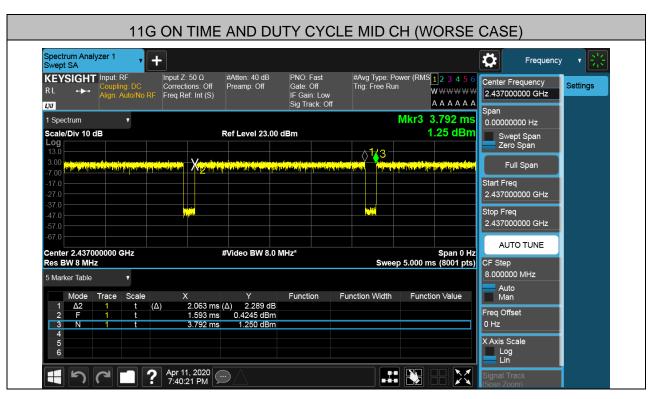
TEST SETUP

TEST ENVIRONMENT

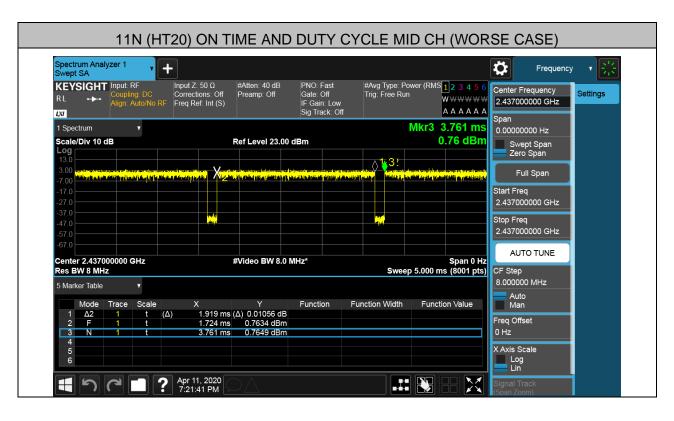
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

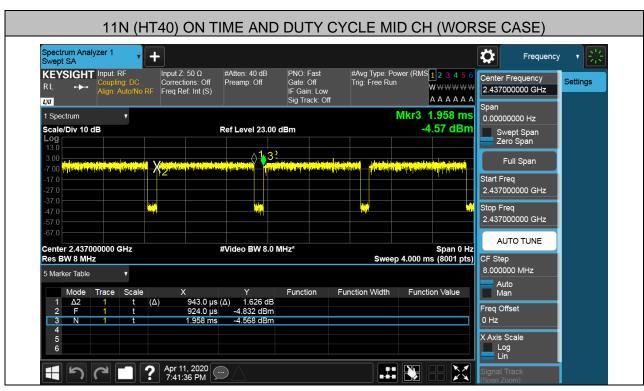
RESULTS


Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final VBW (kHz)
11B	12.41	12.46	0.9960	99.60%	0.02	0.08	0.1
11G	2.063	2.199	0.9382	93.82%	0.28	0.48	0.5
802.11n HT20	1.919	2.037	0.9420	94.21%	0.26	0.52	1
802.11n HT40	0.943	1.034	0.9120	91.20%	0.40	1.06	2


Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle(Linear)


3) Where: T is On Time (transmit duration)

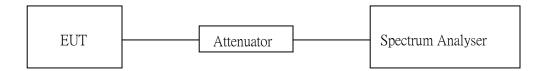


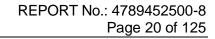
Page 19 of 125

7.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5		

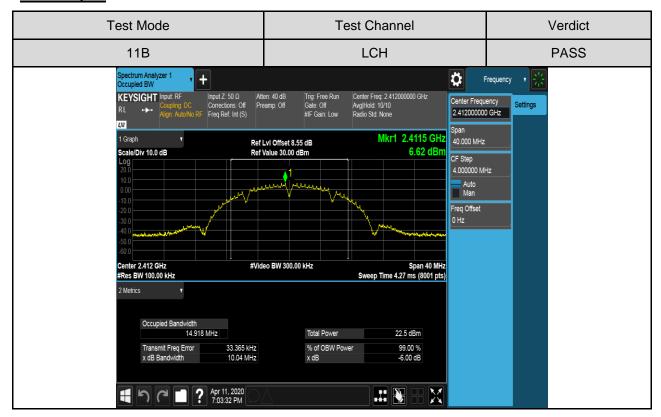

TEST PROCEDURE


Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6 dB Bandwidth :100K
VBW	For 6dB Bandwidth : ≥3 x RBW
Trace	Max hold
Sweep	Auto couple

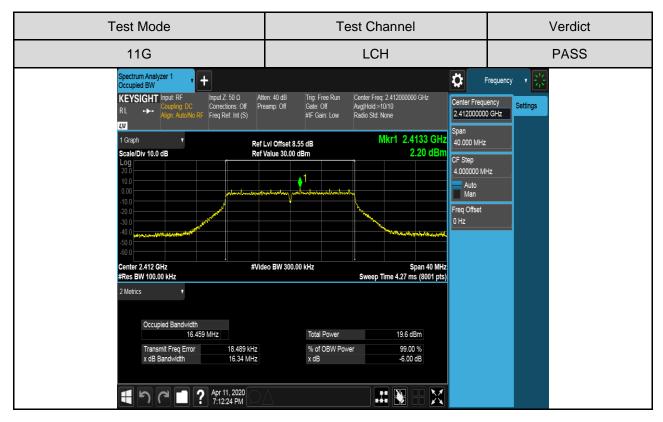
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

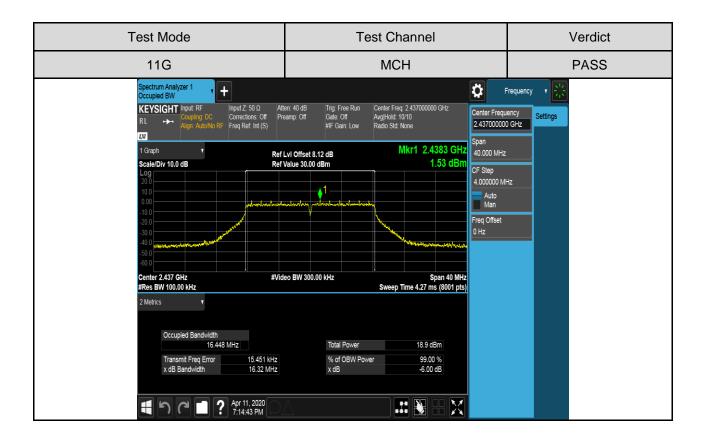
TEST SETUP

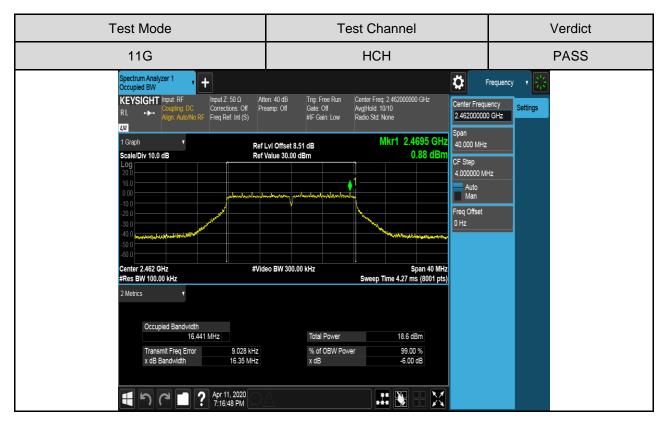


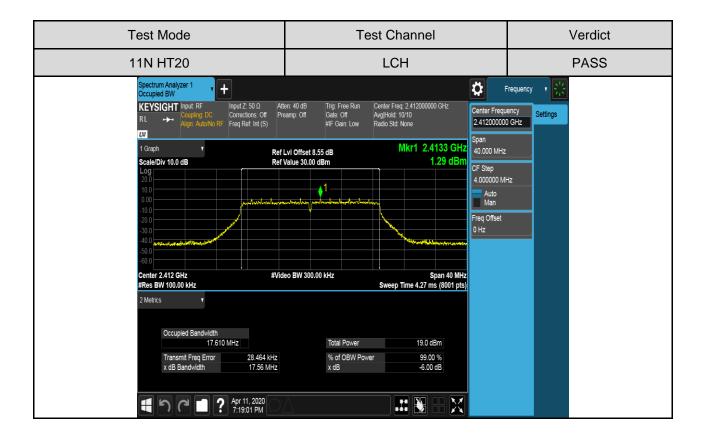
RESULTS

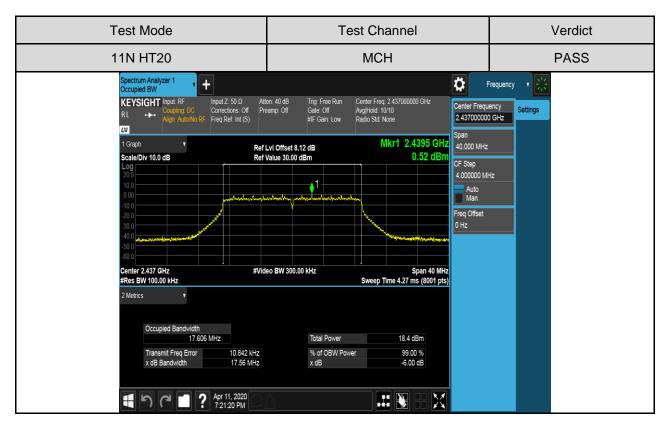
Test Mode	Test Channel	6dB bandwidth (MHz)	Result
	LCH	10.04	Pass
11B	MCH	10.03	Pass
	HCH	10.03	Pass
	LCH	16.34	Pass
11G	MCH	16.32	Pass
	HCH	16.35	Pass
11N HT20	LCH	17.56	Pass
	MCH	17.56	Pass
	HCH	17.56	Pass
11N HT40	LCH	35.08	Pass
	MCH	33.91	Pass
	HCH	35.14	Pass

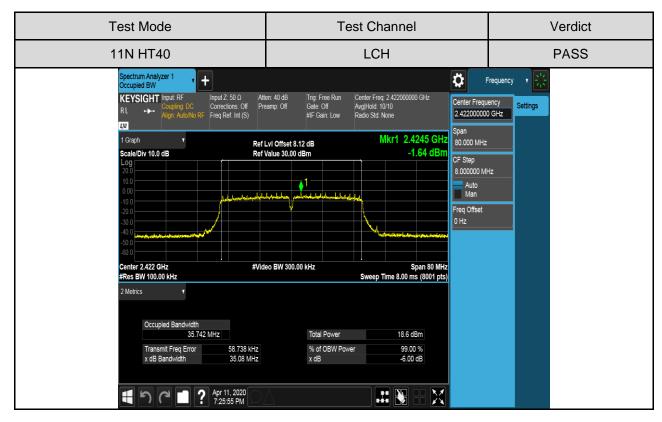

Test Graphs

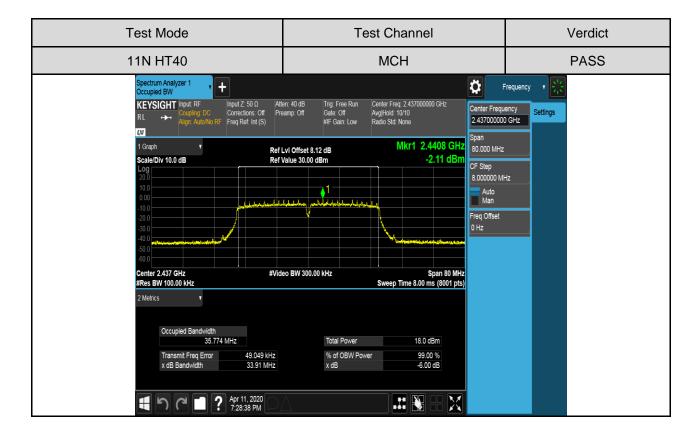


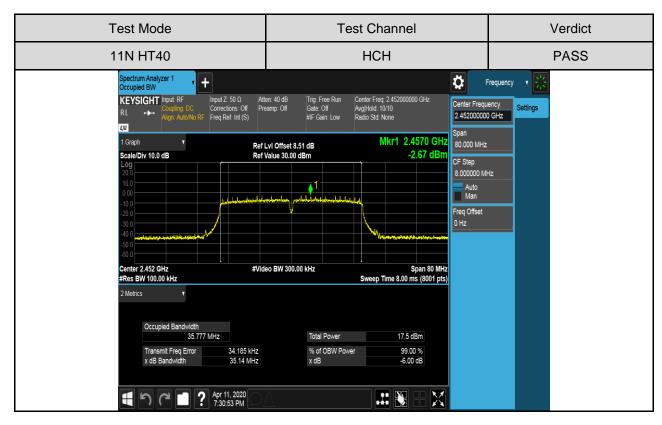












REPORT No.: 4789452500-8 Page 27 of 125

7.3. CONDUCTED OUTPUT POWER

LIMITS

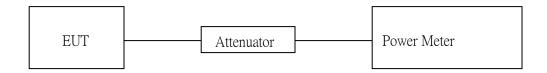
FCC Part15 (15.247) , Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.


Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

TEST SETUP

RESULTS

Test Mode	Test Channel	Maximum Conducted Output Power (PK)	Maximum Conducted Output Power (AV)	LIMIT
		dBm	dBm	dBm
	LCH	18.30	15.57	30
11B	MCH	17.55	14.83	30
	HCH	17.62	14.94	30
	LCH	21.44	13.53	30
11G	MCH	20.65	12.88	30
	HCH	20.30	12.62	30
	LCH	20.85	12.78	30
11n HT20	MCH	20.25	12.36	30
	HCH	19.85	11.98	30
11n HT40	LCH	N/A	12.60	30
	MCH	N/A	11.87	30
	HCH	N/A	11.72	30

7.4. POWER SPECTRAL DENSITY

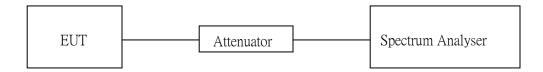
LIMITS

FCC Part15 (15.247) , Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	


Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST ENVIRONMENT

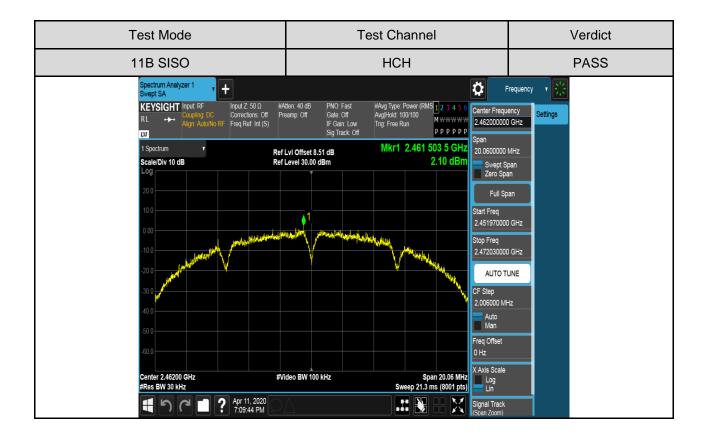
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

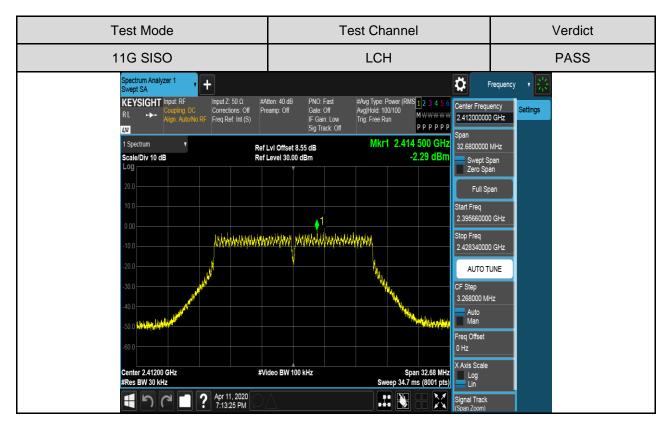
TEST SETUP

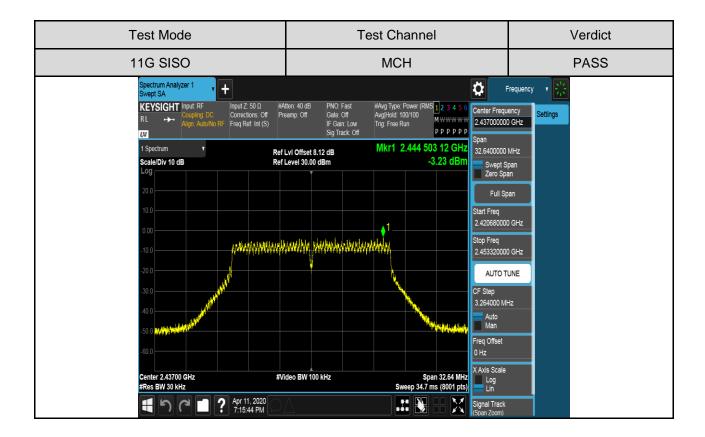


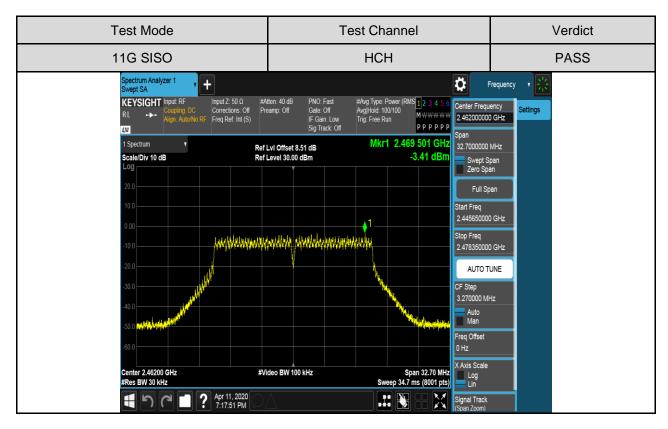
RESULTS

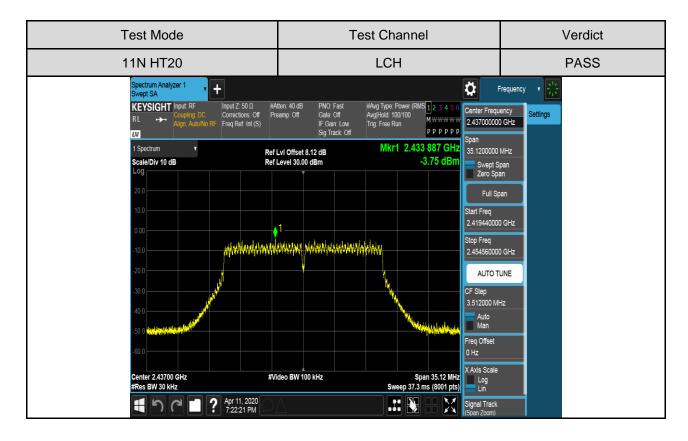
Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	3.19	Pass
11B	MCH	1.53	Pass
	HCH	2.10	Pass
	LCH	-2.29	Pass
11G	MCH	-3.23	Pass
	HCH	-3.41	Pass
	LCH	-3.75	Pass
11n HT20	MCH	-4.49	Pass
	HCH	-6.50	Pass
11n HT40	LCH	-7.14	Pass
	MCH	-7.60	Pass
	HCH	-3.38	Pass

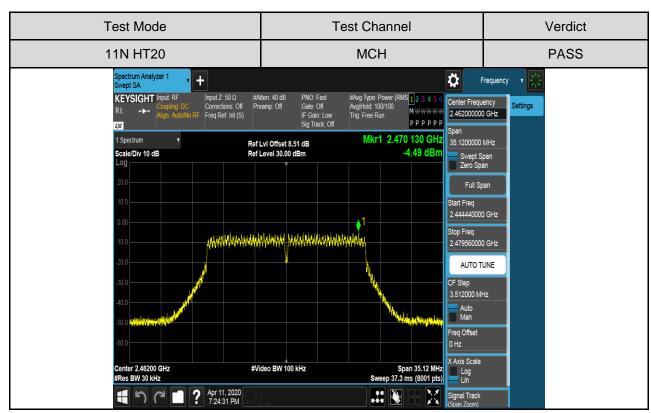


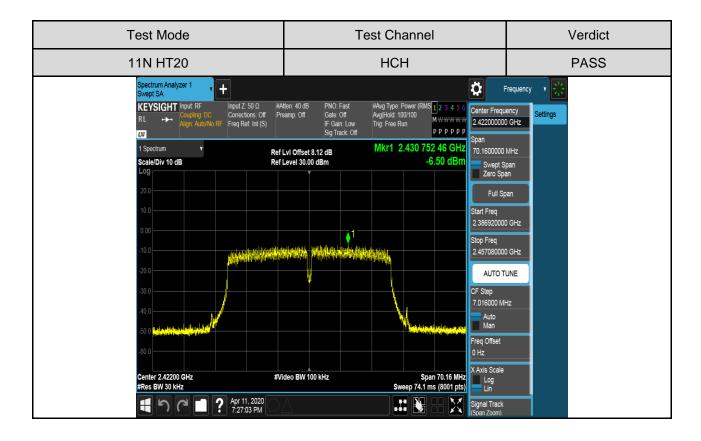

Test Graphs:

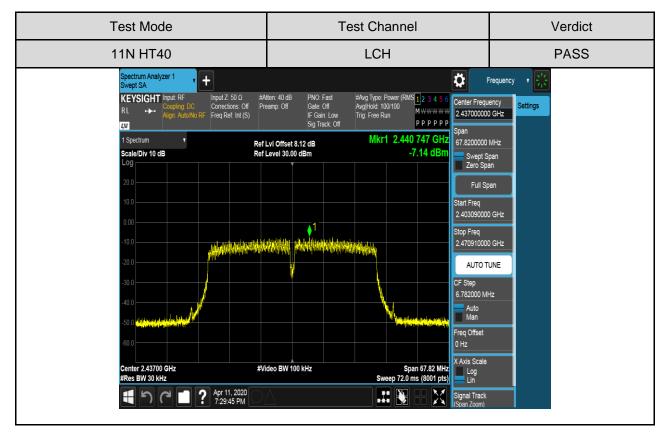


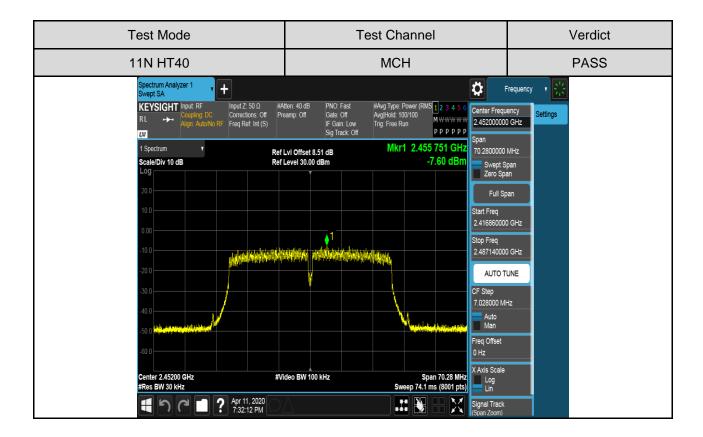


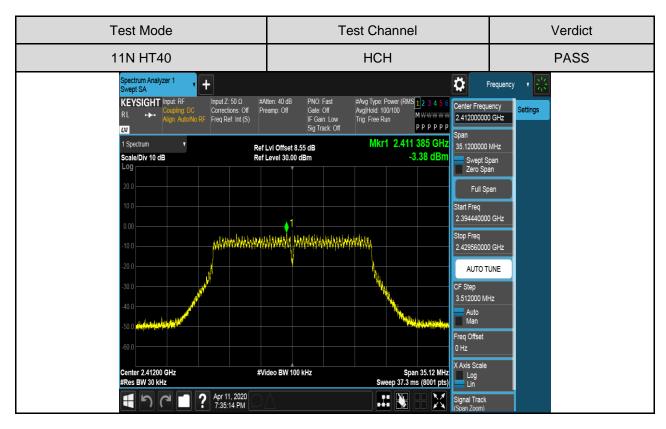












7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

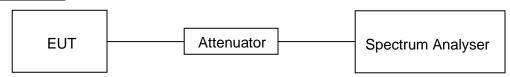
LIMITS

FCC Part15 (15.247) , Subpart C			
Section	Test Item	Limit	
FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	For b/g/n HT20 modes: at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power; For HT40 mode: at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


settings:

Use the peak marker function to determine the maximum PSD level.

12090	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

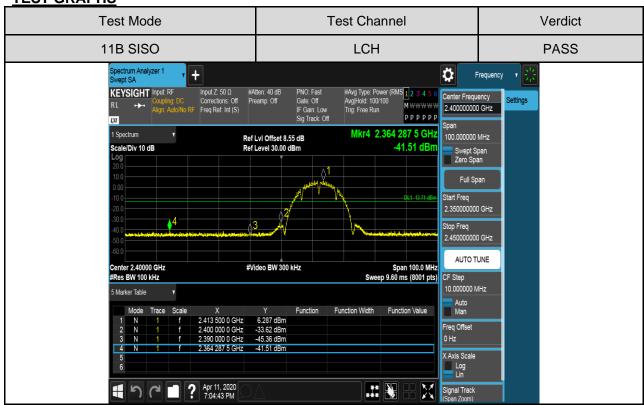
Use the peak marker function to determine the maximum amplitude level.

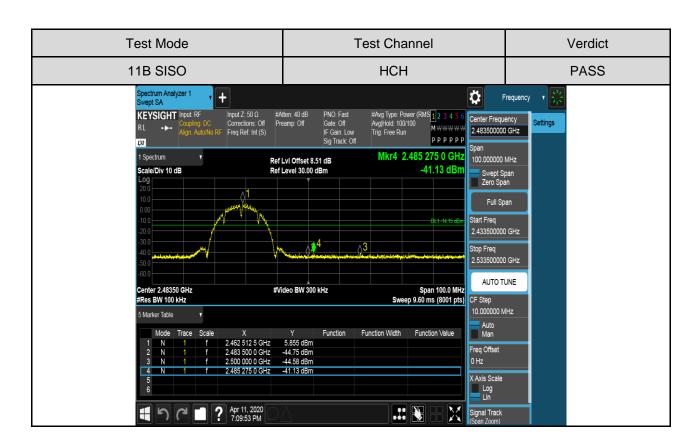
TEST SETUP

Page 38 of 125

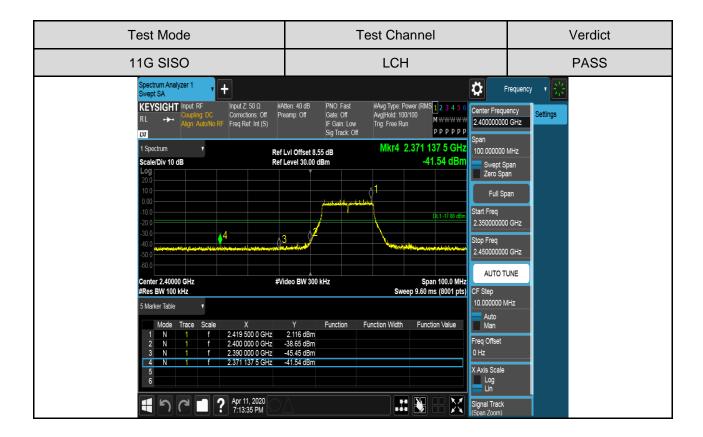
TEST ENVIRONMENT

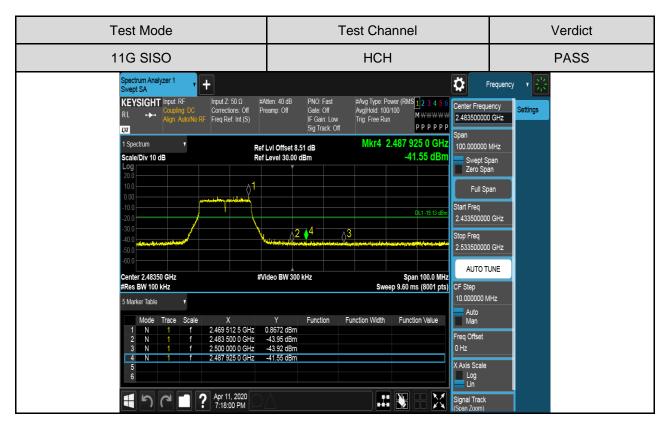
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 12V

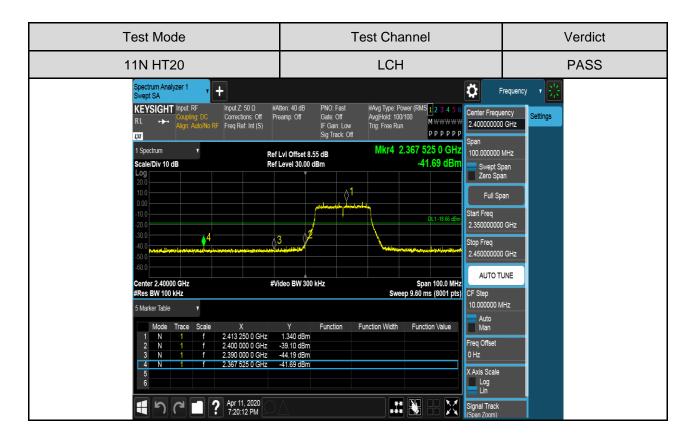

Part I : Conducted Bandedge

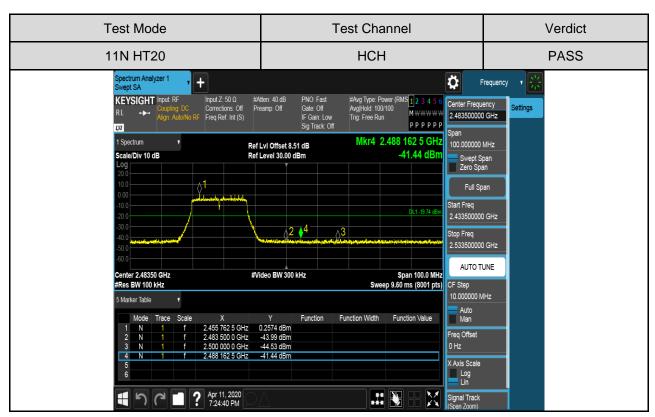

RESULTS TABLE

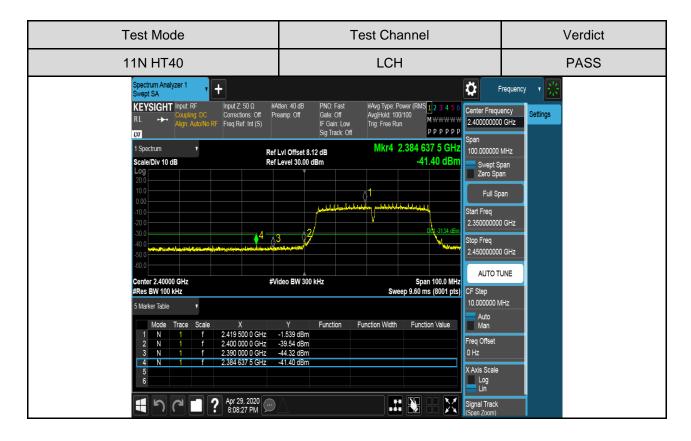
Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	6.287	-41.51	-13.71	PASS
IID	HCH	5.855	-41.13	-14.15	PASS
11G	LCH	2.116	-41.54	-17.88	PASS
116	HCH	0.8672	-41.55	-19.13	PASS
11N HT20	LCH	1.340	-41.69	-18.66	PASS
11111 1120	HCH	0.2574	-41.44	-19.74	PASS
11N UT10	LCH	-1.539	-41.40	-31.54	PASS
11N HT40	HCH	-2.305	-41.01	-32.31	PASS

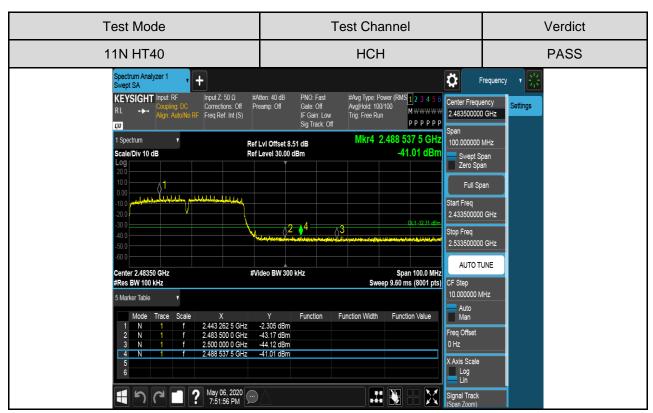



TEST GRAPHS



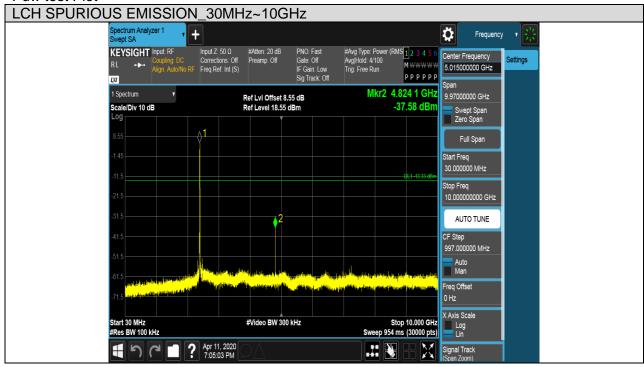


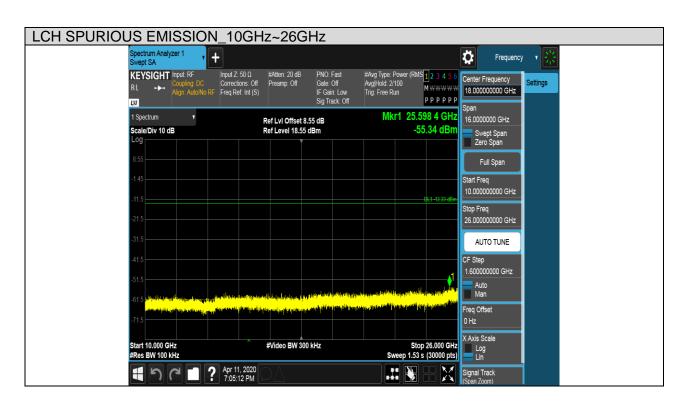




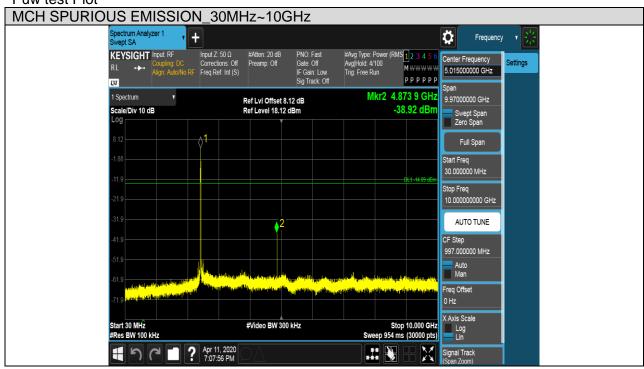
Part II : Conducted Emission

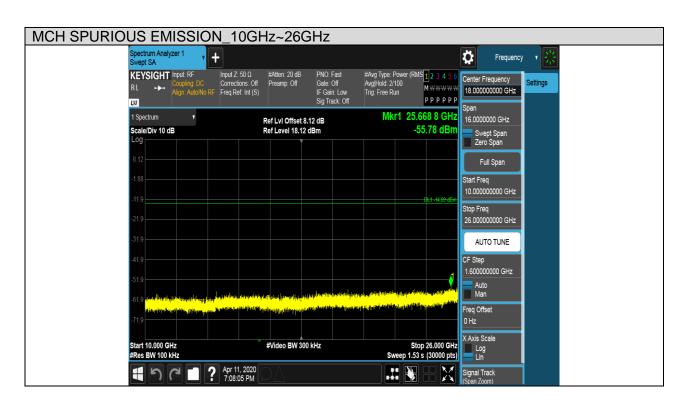
Test Result Table


Test Mode	Channel	Pref(dBm)	Puw(dBm)	Verdict
	LCH	6.67	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	5.91	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	5.47	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	2.26	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	1.39	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	1.19	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	1.08	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT20	MCH	0.94	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	0.29	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	-1.28	<limit< td=""><td>PASS</td></limit<>	PASS
11N HT40	MCH	-1.90	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	-2.30	<limit< td=""><td>PASS</td></limit<>	PASS

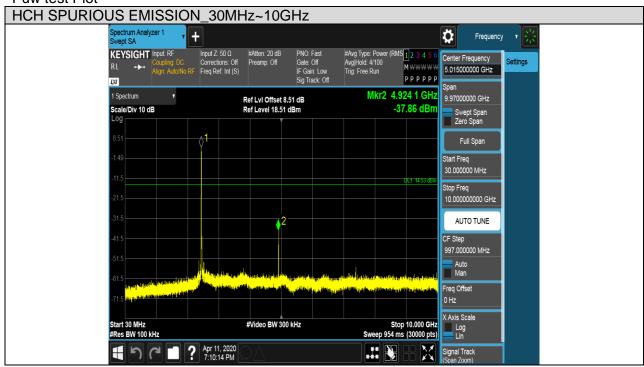

Test Plots

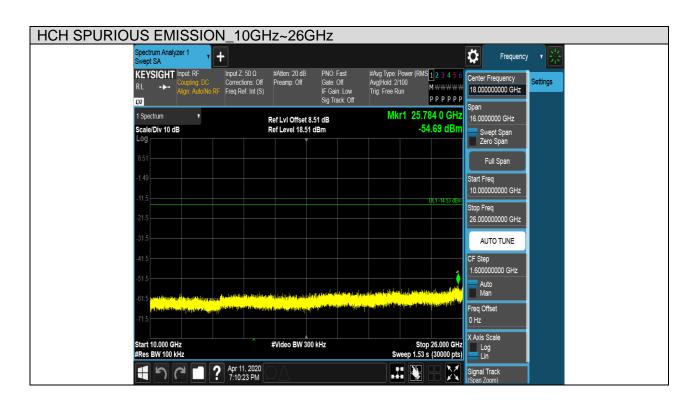
Test Mode	Channel	Verdict
11B	LCH	PASS



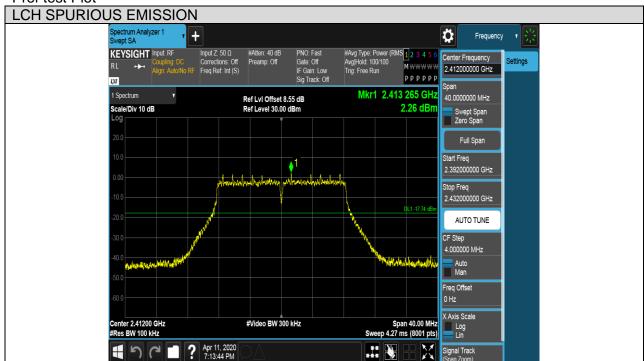

Page 45 of 125

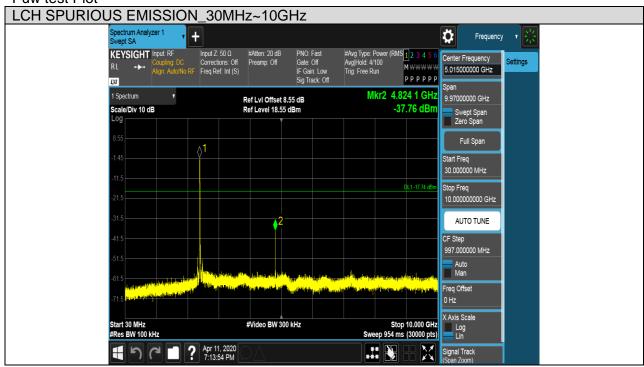

Test Mode	Channel	Verdict
11B	MCH	PASS




Page 47 of 125

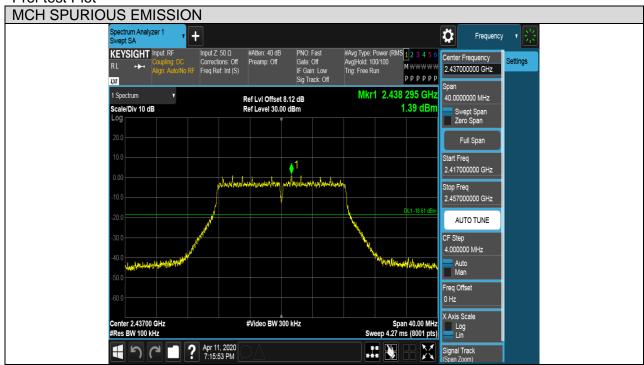
Test Mode	Channel	Verdict
11B	HCH	PASS

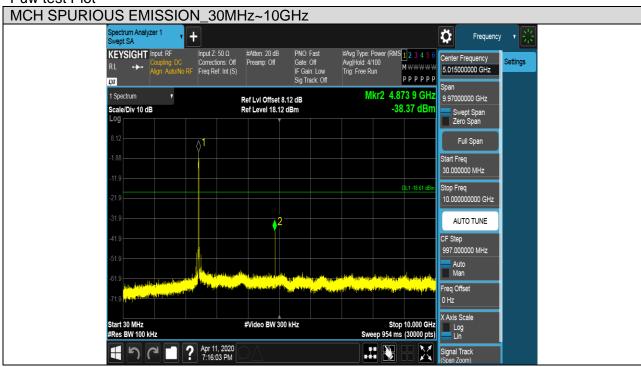


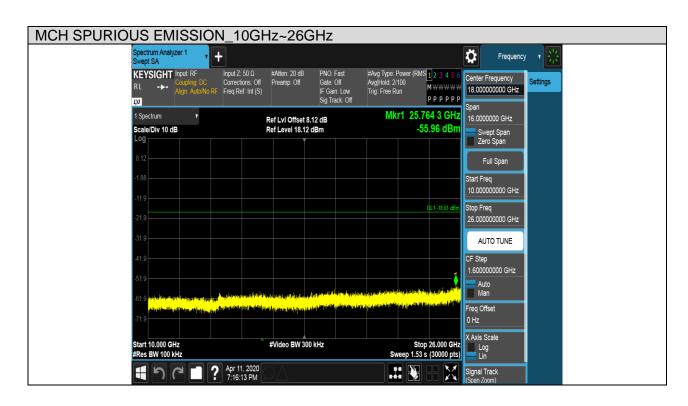


Page 49 of 125

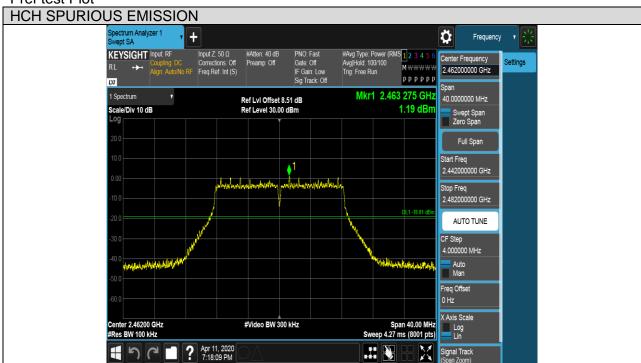
Test Mode	Channel	Verdict
11G	LCH	PASS

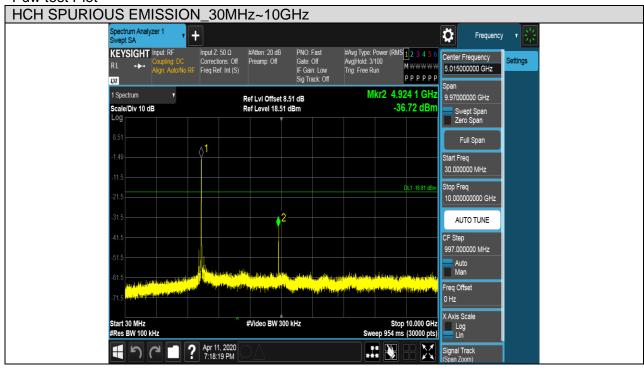


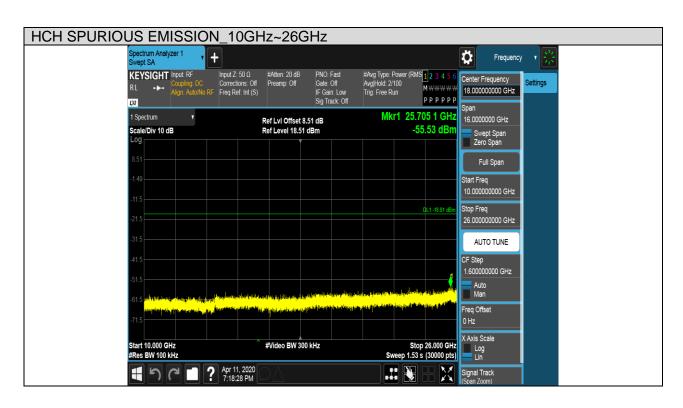




Test Mode	Channel	Verdict
11G	MCH	PASS






REPORT No.: 4789452500-8 Page 53 of 125

Test Mode Channel Verdict
11G HCH PASS

Page 55 of 125

Test Mode	Channel	Verdict
11N HT20	LCH	PASS

