

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

Wi-Fi Villa Door Station

MODEL NUMBER: DHI-VTO1301R-W

ADDITIONAL MODEL NUMBER: VTO1301R-W

PROJECT NUMBER: 4790209817-3

REPORT NUMBER: 4790209817-3-5

FCC ID: SVN-1301R-W

ISSUE DATE: Dec. 16, 2021

Prepared for

Zhejiang Dahua Vision Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China Tel: +86 512-6808 6400 Fax: +86 512-6808 4099 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	12/16/2021	Initial Issue	

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS 4
2.	TES	ST METHODOLOGY
3.	FAC	CILITIES AND ACCREDITATION
4.	CAI	-IBRATION AND UNCERTAINTY
4	4.1.	MEASURING INSTRUMENT CALIBRATION
4	4.2.	MEASUREMENT UNCERTAINTY7
5.	EQI	JIPMENT UNDER TEST
ł	5.1.	DESCRIPTION OF EUT
ł	5.2.	MAXIMUM OUTPUT POWER
ł	5.3.	CHANNEL LIST
ł	5. <i>4.</i>	TEST CHANNEL CONFIGURATION10
ł	5.5.	THE WORSE CASE POWER SETTING PARAMETER
ł	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS
ł	5.7.	THE WORSE CASE CONFIGURATIONS11
ł	5.8.	TEST ENVIRONMENT
ł	5.9.	DESCRIPTION OF TEST SETUP13
ł	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED15
6.	ME	ASUREMENT METHODS15
7.	AN	TENNA PORT TEST RESULTS17
-	7.1.	ON TIME AND DUTY CYCLE17
-	7.2.	6 dB BANDWIDTH
-	7.3.	CONDUCTED OUTPUT POWER27
-	7.4.	POWER SPECTRAL DENSITY
-	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS
	7.6. 7.6. 7.6. 7.6. 7.6.	RADIATED TEST RESULTS601. LIMITS AND PROCEDURE602. TEST ENVIRONMENT663. RESTRICTED BANDEDGE664. SPURIOUS EMISSIONS79
8.	AC	POWER LINE CONDUCTED EMISSIONS
9.	AN	FENNA REQUIREMENTS126

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	Zhejiang Dahua Vision Technology Co., Ltd. No 1199 Bin'an road Binijang District Hangzhou
	P.R. China.
Manufacturer Information	
Company Name:	Zhejiang Dahua Vision Technology Co., Ltd.
Address:	No.1199, Bin'an road, Binjiang District, Hangzhou,
	P.R. China.
EUT Description	
Product Name:	Wi-Fi Villa Door Station
Model Name:	DHI-VTO1301R-W
Additional No.:	VTO1301R-W
Sample Number:	4445266
Data of Receipt Sample:	Dec. 01, 2021
Test Date:	Dec. 02, 2021 ~ Dec. 13, 2021

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

PASS

Summary of Test Results							
Clause	Test Items	FCC Rules	Test Results				
1	6db DTS Bandwidth	FCC 15.247 (a) (2)	PASS				
2	Conducted Power	FCC 15.247 (b) (3)	PASS				
3	Power Spectral Density	FCC 15.247 (e)	PASS				
4	Conducted Band edge And Spurious emission	FCC 15.247 (d)	PASS				
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205	PASS				
6	Conducted Emission Test for AC Power Port	FCC 15.207	PASS				
7	Antenna Requirement	FCC 15.203	PASS				
Remark: 1) The measurement result for the sample received is <pass> according to < ANSI C63.10-2013, ECC CER 47 Part 2 ECC CER 47 Part 15C> when <accuracy method=""> decision rule is applied</accuracy></pass>							

Prepared By:

Reviewed By:

Tom Tang

Leon Wu

Tom Tang Project Engineer Leon Wu Senior Project Engineer

Authorized By:

Chris Zhong

Chris Zhong Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056 CAB No.: CN0073) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.1dB			
Radiation Emission test (include Fundamental emission) (9kHz-30MHz)	3.3dB			
Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	3.3dB			
Radiation Emission test (1GHz to 26GHz) (include Fundamental emission)	3.9dB (1GHz-18GHz)			
	4.2dB (18GHz-26.5GHz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	Wi-Fi Villa Door Station
Model No.:	DHI-VTO1301R-W
Operating Frequency:	IEEE 802.11B/G/N(HT20): 2412MHz to 2462MHz
Type of Modulation:	IEEE for 802.11B: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11G: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11N HT20: OFDM (64QAM, 16QAM, QPSK, BPSK)
Channels Step:	Channels with 5MHz step
Sample Type:	Fixed production
Test power grade:	/
Test software of EUT:	Secure CRT (manufacturer declare)
Antenna Type:	Patch Antenna
Antenna Gain:	2.1 dBi

Remark:

Model No.:

No.:	Name:	No.:	Name:	No.:	Name:
1	DHI-VTO1301R-W	2	VTO1301R-W	/	/

Only the main model DHI-VTO1301R-W was tested and only the data of this model is shown in this test report. Since Their material, types of encloser, antenna location, electrical circuit design, layout, components used and internal wiring are identical, only the model name is different and the user can't change the RF parameters or others access the software setting.

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains	IEE Std 802 11	Channel	Max AVG Conducted Power
(NTX)	122 Old. 002.11	Number	(dBm)
1	IEEE 802.11B	1-11[11]	12.38
1	IEEE 802.11G	1-11[11]	15.48
1	IEEE 802.11N HT20	1-11[11]	15.47

5.3. CHANNEL LIST

Channel List for 802.11B/G/N(20 MHz)									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452				

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel (MHz)
	LCH: CH01 2412
IEEE 802.11B	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH01 2412
IEEE 802.11G	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH01 2412
IEEE 802.11N HT20	MCH: CH06 2437
	HCH: CH11 2462

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare		SecureCRT					
	Transmit			Test C	Channel			
Modulation	Antenna Number	1	NCB: 20MHz			NCB: 40MHz		
Widde		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11B	1	N/A	N/A	N/A	/			
802.11G	1	N/A	N/A	N/A				
802.11N HT20	1	N/A	N/A	N/A	1			

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	Patch Antenna	2.1

Note: This data is provided by customer and our lab isn't responsible for this data.

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11B	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11G	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N HT20	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.

5.7. THE WORSE CASE CONFIGURATIONS

For WIFI module, the worst-case data rates as provided by the client were:

802.11B mode: 1 Mbps 802.11G mode: 6 Mbps 802.11N HT20 mode: MCS0

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Va	lues During Tests
Relative Humidity	55	5 ~ 65%
Atmospheric Pressure:	1	025Pa
Temperature	TN	23 ~ 28°C
	VL	N/A
Voltage:	VN	AC 120V
	VH	N/A

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E590	N/A
2	Alarm Light	N/A	N/A	Supply by UL Lab
3	Electric-magnetic Lock	N/A	N/A	Supply by UL Lab
4	Micro SD card	Sandisk	A1	32GB

<u>I/O PORT</u>

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB to TTL	USB	100cm Length	N/A
2	RJ45	RJ45	LAN	100cm Length	N/A

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	SWITCHING ADAPTER	HONOR	ADS-24S-12 1224GPCU	INPUT: 100-240V~50/60Hz max. 0.7A OUTPUT: 12.0V=2.0 A

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

Power by the adapter:

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

		Cor	nducted	Emis	sions (Instru	iment)		
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	ESR3		126700	2020-12-05	2021-12-04	2022-12-03
\checkmark	Two-Line V-Network	R&S	ENV2	16	126701	2020-12-05	2021-12-04	2022-12-03
	Artificial Mains Networks	R&S	ENY8	31	126711	2020-10-13	2021-10-12	2022-10-11
		Soft	ware					
Used	Des	scription		Ma	nufacturer	Name	Version	
\checkmark	Test Software for (Conducted distur	bance		R&S	EMC32	Ver. 9.25	
		Ra	diated E	missi	ions (Instrur	nent)		
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N901	0B	155727	2020-05-10	2021-05-09	2022-05-08
\checkmark	EMI test receiver	R&S	ESR2	26	126703	2020-12-05	2021-12-04	2022-12-03
	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB 1	1513	155456	2018-06-15	2021-06-03	2024-06-02
\checkmark	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1		177821	/	2019-01-28	2022-01-27
\checkmark	Receiver Antenna (1GHz-18GHz)	R&S	HF907		126705	2018-01-27	2019-01-27	2022-01-26
\checkmark	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9	170	126706	2018-02-07	2019-01-05	2022-01-04
V	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G	18-50	178825	2020-02-20	2021-03-26	2022-03-25
\checkmark	Pre-amplification (To 26.5GHz)	R&S	SCU-2	26D	135391	2020-12-05	2021-12-04	2022-12-03
V	Band Reject Filter	Wainwright	WRCJ 2350-24 2483.5-29 40S	V8- 400- 533.5- S	1	2020-05-10	2021-05-09	2022-05-08
V	Highpass Filter	Wainwright	WHKX 2700-30 18000-4	10- 000- 40SS	2	2020-05-10	2021-05-09	2022-05-08
			<u> </u>	Soft	ware			
Used	Desci	ription	Ma	anufac	turer	Name	Version	
\checkmark	Test Software for R	adiated disturbar	nce T	Tonsce	end	TS+	Ver. 2.5	
			Oth	er ins	truments			
Used	Equipment	Manufacturer	Model	No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N901	0B	155368	2020-05-10	2021-05-09	2022-05-08
	Power Meter	Keysight	U2021	XA	155370	2020-05-10	2021-05-09	2022-05-08

6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth and 99% Occupied Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.2
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test for AC Power Port	ANSI C63.10-2013	6.2

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST RESULTS TABLE

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final VBW (kHz)
11B	100.3	100.3	1	100%	0	0.01	0.01
11G	100.3	100.3	1	100%	0	0.01	0.01
802.11N HT20	100.3	100.3	1	100%	0	0.01	0.01

Note: 1) Duty Cycle Correction Factor=10log(1/x).

- 2) Where: x is Duty Cycle(Linear)
- 3) Where: T is On Time (transmit duration)

TEST GRAPHS

Spectrum Ana Swept SA	alyzer 1	•	+					Frequency	- * 😤
KEYSIGH RL ↔►→	T Input: RF Coupling: I Align: Auto	DC)	Input Ζ: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 40 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Po Trig: Free Run	wer (RMS <mark>1</mark> 23456 W W W W W A A A A A A	Center Frequency 2.437000000 GHz	Settings
1 Spectrum	•							0.00000000 Hz	
Log	dB			Ref Level 23.	UU ABM			Swept Span Zero Span	
3.00								Full Span	
-17.0 -27.0								Start Freq 2.437000000 GHz	
-37.0 -47.0 -57.0								Stop Freq 2.437000000 GHz	
-67.0	000000 GHz	2		#Video BW 8	.0 MHz*		Span 0 Hz	AUTO TUNE	
Res BW 8 M	lz					Sweep	100.3 ms (8001 pts)	CF Step	
5 Marker Table Mode	e v Trace Se	cale	X	Y	Function	Function Width	Function Value	8.000000 MHz Auto Man	
2								Freq Offset 0 Hz	
4 5 6								X Axis Scale Log	

Spectrum Ana Swept SA	lyzer 1 🔻	+					Frequer	ncy 🔻 🔆
KEYSIGH	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 40 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Po Trig: Free Run	wer(RMS <mark>1</mark> 2345 WWWWW AAAAA	Center Frequency 2.437000000 GHz	Settings
1 Spectrum	•						0.00000000 Hz	
Scale/Div 10	dB		Ref Level 23.00	dBm			Swept Span Zero Span	
13.0 3.00							Full Span	
-7.00 -17.0 -27.0							Start Freq 2.437000000 GHz	
-37.0 -47.0 -57.0							Stop Freq 2.437000000 GHz	
Center 2.4370	000000 GHz		#Video BW 8.0	MHz*		Span 0	AUTO TUNE	
Res BW 8 MH	lz				Sweep	100.3 ms (8001 p	CF Step	
5 Marker Table	Trace Scale	X	Y	Function I	Function Width	Function Value	Auto Man	
2							Freq Offset 0 Hz	
4 5 6							X Axis Scale Log	

Spectrum An Swept SA	alyzer 1	•	+					Frequenc	y ▼ 😤
KEYSIGH RL ↔→	T Input: F Couplin Align: A	RF 1g: DC Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 40 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Pov Trig: Free Run	wer (RMS <mark>1</mark> 23456 WWWWWW AAAAAA	Center Frequency 2.437000000 GHz	Settings
1 Spectrum		•						0.00000000 Hz	
Scale/Div 10	dB			Ref Level 23.00	dBm			Swept Span Zero Span	
3.00								Full Span	
-17.0								Start Freq 2.437000000 GHz	
-37.0 -47.0 -57.0								Stop Freq 2.437000000 GHz	
-67.0	000000 G	Hz		#Video BW 8.0	MHz*		Span 0 Hz	AUTO TUNE	
Res BW 8 M	Hz					Sweep	100.3 ms (8001 pts)	CF Step	
5 Marker Tabl	e Trace	▼ Scale	X	Y	Function	Function Width	Function Value	Auto Man	
2								Freq Offset 0 Hz	
4 5 6								X Axis Scale	

7.2. 6 dB BANDWIDTH

<u>LIMITS</u>

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
FCC 15.247(a)(2)	6dB Bandwidth	>= 500KHz	2400-2483.5			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth.

Connect the EUT	to the spectrum	analyser and	use the following	settings:
		,		

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6 dB Bandwidth :100K
VBW	For 6dB Bandwidth : ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST RESULTS TABLE

Test Mode	Test Channel	6dB bandwidth (MHz)	Result
	LCH	9.053	Pass
11B	MCH	8.592	Pass
	HCH	9.048	Pass
11G	LCH	16.55	Pass
	MCH	16.56	Pass
	HCH	16.55	Pass
	LCH	17.72	Pass
11N HT20	MCH	17.71	Pass
	НСН	17.73	Pass

TEST GRAPHS

6dB Bandwdith

UL-CCIC COMPANY LIMITED

UL-CCIC COMPANY LIMITED

UL-CCIC COMPANY LIMITED

UL-CCIC COMPANY LIMITED

7.3. CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247), Subpart C						
Section Test Item Limit Frequency Range (MHz)						
FCC 15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5			

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor. Measure the power of each channel.

AVG Detector used for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST RESULTS TABLE

Test Mode	Test Channel	Measurement Output Power (AV)	10log(1/x) Factor	Maximum Conducted Output Power (AV)	LIMIT
		dBm	dBm	dBm	dBm
	LCH	12.38	0	12.38	30
11B	MCH	11.13	0	11.13	30
	HCH	11.36	0	11.36	30
	LCH	15.48	0	15.48	30
11G	MCH	13.82	0	13.82	30
	HCH	13.94	0	13.94	30
11N HT20	LCH	15.47	0	15.47	30
	MCH	13.87	0	13.87	30
	НСН	14.02	0	14.02	30

7.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)			
FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5			

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST RESULTS TABLE

Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	-4.78	Pass
11B	MCH	-5.88	Pass
	HCH	-5.70	Pass
	LCH	-9.28	Pass
11G	MCH	-11.00	Pass
	HCH	-10.83	Pass
	LCH	-8.88	Pass
11N HT20	MCH	-10.56	Pass
	HCH	-10.42	Pass

TEST GRAPHS

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit
FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

settings:

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

PART I: CONDUCTED BANDEDGE

TEST RESULTS TABLE

Test Mode	Test Channel	Result	Verdict
110	LCH	Refer to the Test Graph	PASS
ПD	НСН	Refer to the Test Graph	PASS
110	LCH	Refer to the Test Graph	PASS
116	HCH	Refer to the Test Graph	PASS
	LCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS

TEST GRAPHS

Test Mode	Test Channel	Verdict
11B	НСН	PASS
Spectrum Analyzer 1 Swept SA Imput: Z: 50 Ω Concellons: Off Progretions: Off Progretion: Off Progr	tten: 40 dB PNO: Fast #AvgType: Power (RMS) 1 2 3 4 5 0 Cent prop: Off Gate: Off #AvgType: Power (RMS) 1 2 3 4 5 0 Cent sign Tack: Off Trig: Free Run P P P P P P P P Lvi Offset 8.51 dB Mkr4 2.485 312 5 GHz D D Lvi Offset 8.51 dB -42.00 dBm -42.00 dBm 0 deo BW 300 kHz Span 100.0 MHz Span 100.0 MHz Span 100.0 MHz Sweep 9.60 ms (8001 pts) Freq 10.0 Freq 44.99 dBm -42.00 dBm -42.00 dBm -42.00 dBm -42.00 dBm Lvi Offset 8.51 dB Sweep 9.60 ms (8001 pts) Freq -43.90 dBm -44.90 dBm	Frequency er Frequency 3550000 GHz 0.00000 MHz Swept Span Full Span Full Span Fireq 38500000 GHz Freq 38500000 GHz Auto TUNE Skep 000000 MHz Auto Tune Skep 00000 MHz </td

PART II: CONDUCTED EMISSION

TEST RESULTS TABLE

Test Mode	Test Channel	Result	Verdict
	LCH	Refer to the Test Graph	PASS
11B	MCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS
	LCH	Refer to the Test Graph	PASS
11G	MCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS
	LCH	Refer to the Test Graph	PASS
11N HT20	MCH	Refer to the Test Graph	PASS
	HCH	Refer to the Test Graph	PASS

TEST GRAPHS

Test Mode	Channel	Verdict
11B	LCH	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11B	MCH	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11B	НСН	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11G	LCH	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11G	MCH	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11G	НСН	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11N HT20	LCH	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11N HT20	MCH	PASS

Pref test Plot

Puw test Plot

Test Mode	Channel	Verdict
11N HT20	НСН	PASS

Pref test Plot

Puw test Plot

7.6. RADIATED TEST RESULTS

7.6.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

Please refer to FCC §15.205 and §15.209

Please refer to FCC KDB 558074

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

	dB(uV/m) (at 3 meters)	
	Peak	Average
Above 1000	74	54

Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with set VBW ≤RBW/100, but not less than list in section 7.1 with average detector, max hold to run for at least 50 traces for average measurements.

7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Above 1G

The setting of the spectrum analyser

RBW	1M
VBW	PEAK:3M AVG: See note6
Sweep	Auto
Detector	Peak/Average(10Hz)
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with set VBW ≤RBW/100, but not less than list in section 7.1 with average detector, max hold to run for at least 50 traces for average measurements.

7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)