

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM180500427001 Page: 1 of 101

TEST REPORT

Application No.:	SHEM1805004270CR
FCC ID	SVC-PF2I
IC	152C-PF2I
Applicant:	Lenbrook Industries Limited
Address of Applicant:	633 Granite Court, Pickering, Ontario, Canada L1W 3K1
Manufacturer:	Lenbrook Industries Limited
Address of Manufacturer:	633 Granite Court, Pickering, Ontario, Canada L1W 3K1
Factory:	HANSONG(NANJING) TECHNOLOGY LTD.
Address of Factory:	8th Kangping Road, Jiangning Economy and Technology Development Zone, Nanjing, 211106, China.
Equipment Under Test (EU	Г):
EUT Name: Protable Wireless Music Streaming Speaker	
Model No.:	Pulse Flex 2i
Trade mark:	Bluesound
Standard(s) :	47 CFR Part 15, Subpart C 15.247
	RSS-247 Issue 2, February 2017
	RSS-Gen Issue 5, April 2018
Date of Receipt:	2018-05-31
Date of Test:	2018-08-31 to 2018-09-02
Date of Issue:	2018-12-14
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions of Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the sample's) test dan such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN Doccheck@sas.com

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

Branch

Report No.: SHEM180500427001 Page: 2 of 101

Revision Record					
Version Description Date Remark					
00	Original	2018-12-14	/		

Authorized for issue by:		
	Vincent Zhu	
	Vincent Zhu / Project Engineer	
	Parlam zhan	
	Parlam Zhan /Reviewer	

Branch

Report No.: SHEM180500427001 Page: 3 of 101

2 Test Summary

Radio Spectrum Technical Requirement					
Item	FCC Requirement	IC Requirement	Method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	RSS-Gen Section 6.8	N/A	Customer Declaration	
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	RSS-247 Section 5.1(a)	N/A	Pass	

•	Radio Spectrum Matter Part					
ltem	FCC Requirement	IC Requirement	Method	Result		
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.207	RSS-Gen Section 8.8	ANSI C63.10 (2013) Section 6.2	Pass		
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247(b)(1)	RSS-247 Section 5.4(b)	ANSI C63.10 (2013) Section 7.8.5	Pass		
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247(a)(1)	RSS-247 Section 5.1(a)	ANSI C63.10 (2013) Section 7.8.7	Pass		
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247a(1)	RSS-247 Section 5.1(b)	ANSI C63.10 (2013) Section 7.8.2	Pass		
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247a(1)(iii)	RSS-247 Section 5.1(d)	ANSI C63.10 (2013) Section 7.8.3	Pass		
Dwell Time	47 CFR Part 15, Subpart C 15.247a(1)(iii)	RSS-247 Section 5.1(d)	ANSI C63.10 (2013) Section 7.8.4	Pass		
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Section 5.5	ANSI C63.10 (2013) Section 7.8.6	Pass		
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Section 5.5	ANSI C63.10 (2013) Section 7.8.8	Pass		
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.205 & 15.209	Section 3.3 & RSS- Gen Section 8.9	ANSI C63.10 (2013) Section 6.10.5	Pass		
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.205 & 15.209	Section 3.3 & RSS- Gen Section 8.9	ANSI C63.10 (2013) Section 6.4,6.5,6.6	Pass		
99% Bandwidth	-	RSS-Gen Section 6.6	ANSI C63.10 Section 6.9.3	Pass		
Frequency Stability	-	RSS-Gen Section 8.11	RSS-Gen Section 6.11	Pass		

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch

Report No.: SHEM180500427001 Page: 4 of 101

3 Contents

			Page
1	COV	R PAGE	1
2	TES	SUMMARY	3
3	CON	ENTS	4
4	GEN		6
	4.1 4.2	DETAILS OF E.U.T. DESCRIPTION OF SUPPORT UNITS	-
	4.2 4.3	Jescription of Support Units	
	4.4	Fest Location	
	4.5	Fest Facility	
	4.6	Deviation from Standards	
	4.7	ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQU	PMENT LIST	
Ū			
6		D SPECTRUM TECHNICAL REQUIREMENT	
	6.1	ANTENNA REQUIREMENT	
	6.1.1	Test Requirement:	
	6.1.2	Conclusion	
		OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUEN	
	6.2.1	Test Requirement:	
	6.2.2	Conclusion	
7	RAD	D SPECTRUM MATTER TEST RESULTS	11
	7.1	CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	
	7.1.1		
	7.1.2	Test Setup Diagram	
	7.1.3	Measurement Procedure and Data	
	7.2		
	7.2.1 7.2.2		
	7.2.2	Test Setup Diagram Measurement Procedure and Data	
	7.3	Conducted Peak Output Power	
	7.3.1		
	7.3.2	Test Setup Diagram	
	7.3.3	Measurement Procedure and Data	
	7.4	20dB Bandwidth	17
	7.4.1	E.U.T. Operation	17
	7.4.2	Test Setup Diagram	
	7.4.3	Measurement Procedure and Data	
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.5.1	E.U.T. Operation	
	7.5.2	Test Setup Diagram	
	7.5.3 7.6	Measurement Procedure and Data	
	7.6.1	E.U.T. Operation	
	7.6.2	Test Setup Diagram	
	7.6.3	Measurement Procedure and Data	
		NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 1(85-21)61915666 1(86-21)61915678 www.sgsgro	
		中国・上海・松江区全都西路588号 邮编: 201612 \$105-21)61915666 \$186-21)61915678 esgs.chinal	

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

Branch

Report No.: SHEM180500427001 Page: 5 of 101

7	.7 Dv	vell Time	
	7.7.1	E.U.T. Operation	
		Test Setup Diagram	
		Measurement Procedure and Data	
7		NDUCTED BAND EDGES MEASUREMENT	
	7.8.1	E.U.T. Operation	
		Test Setup Diagram	
		Measurement Procedure and Data	
7		NDUCTED SPURIOUS EMISSIONS	
		E.U.T. Operation	
		Test Setup Diagram	
	7.9.3	Measurement Procedure and Data	
7	.10 RA	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.10.1	E.U.T. Operation	
	7.10.2	Test Setup Diagram	
	7.10.3	Measurement Procedure and Data	24
7	.11 RA	DIATED SPURIOUS EMISSIONS	
	7.11.1	E.U.T. Operation	
	7.11.2	Test Setup Diagram	
	7.11.3	Measurement Procedure and Data	
7	.12 99	% Bandwidth	44
	7.12.1	E.U.T. Operation	
	7.12.2	Test Setup Diagram	
	7.12.3	Measurement Procedure and Data	44
8	TEST S	ETUP PHOTOGRAPHS	45
9	EUT CC	INSTRUCTIONAL DETAILS	45

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

Branch

Report No.: SHEM180500427001 Page: 6 of 101

4 General Information

4.1 Details of E.U.T.

Power supply:	AC 100-240V~50/60Hz
Test voltage:	AC 120V 60Hz
Cable:	AC Cable 180cm
Antenna Gain	2 dBi
Antenna Type	Integral Antenna
Channel Spacing	1MHz
Modulation Type	GFSK, π/4DQPSK, 8DPSK
Number of Channels	79
Operation Frequency	2402MHz to 2480MHz
Spectrum Spread Technology	Frequency Hopping Spread Spectrum(FHSS)

4.2 Description of Support Units

Description	Manufacturer Model No.		Serial No.
Laptop	Lenovo	ThinkPad X100e	/

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Timeout	2s
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.75dB
6	RF power density	2.84dB
7	Conducted Spurious emissions	0.75dB
	DE Dedicted newsr	4.5dB (Below 1GHz)
8	RF Radiated power	4.8dB (Above 1GHz)
		4.2dB (Below 30MHz)
9	Dedicted Sourieus omission test	4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	4.6dB (1GHz-18GHz)
		5.2dB (Above 18GHz)
10	Temperature test	1°C
11	Humidity test	3%
12	Supply voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM180500427001 Page: 7 of 101

4.4 Test Location

All tests were performed at: SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678 No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC – Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Branch

Report No.: SHEM180500427001 Page: 8 of 101

5 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Conducted Emission at AC					
EMI test receiver	R&S	ESR7	SHEM162-1	2017-12-20	2018-12-19
LISN	Schwarzbeck	NSLK8127	SHEM061-1	2017-12-20	2018-12-19
LISN	EMCO	3816/2	SHEM019-1	2017-12-20	2018-12-19
Pulse limiter	R&S	ESH3-Z2	SHEM029-1	2017-12-20	2018-12-19
CE test Cable	/	CE01	/	2017-12-26	2018-12-25
Conducted Test	1				
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2018-08-13	2019-08-12
Signal Generator	R&S	SMR20	SHEM006-1	2018-08-13	2019-08-12
Signal Generator	Agilent	N5182A	SHEM182-1	2018-08-13	2019-08-12
Communication Tester	R&S	CMW270	SHEM183-1	2018-08-13	2019-08-12
Switcher	Tonscend	JS0806	SHEM184-1	2018-08-13	2019-08-12
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2018-08-13	2019-08-12
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2018-08-13	2019-08-12
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2017-12-26	2018-12-25
DC Power Supply	QJE	QJ30003SII	SHEM046-1	2017-12-26	2018-12-25
Conducted test Cable	/	RF01~RF04	/	2017-12-26	2018-12-25
Radiated Test					
EMI test Receiver	R&S	ESU40	SHEM051-1	2017-12-20	2018-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001	SHEM164-1	2018-08-13	2019-08-12
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2018-08-13	2019-08-12
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2017-12-20	2018-12-19
Signal Generator	R&S	SMR40	SHEM058-1	2018-08-13	2019-08-12
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2017-12-26	2018-12-25

1(86-21) 61915666 1(86-21) 61915678 www.sgsgroup.com.cn 1(86-21) 61915666 1(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM180500427001 Page: 9 of 101

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c) RSS-Gen Section 6.8

6.1.2 Conclusion

Standard Requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Integral antenna and no consideration of replacement. The best case gain of the antenna is 2dBi.

NO.588 West Jindu Road, Songjiang District, Shanghai, China	201612
中国・上海・松江区金都西路588号 邮编:	201612

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

Report No.: SHEM180500427001 Page: 10 of 101

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h) RSS-247 Section 5.1(a)

Branch

6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

> Number of shift register stages: 9

> Length of pseudo-random sequence: 29 -1 = 511 bits

> Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band s

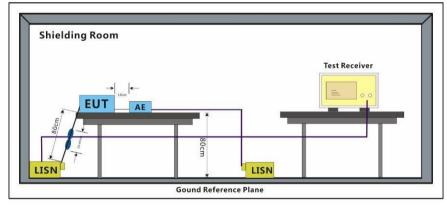
NO.588 West	Jindu Road, Songjiang District, Sh	anghai,China	201612	
中国・上海	 松江区金都西路588号 	邮编:	201612	

Report No.: SHEM180500427001 Page: 11 of 101

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement	47 CFR Part 15, Subpart C 15.207
	RSS-Gen Section 8.8
Test Method:	ANSI C63.10 (2013) Section 6.2
Limit:	


	Conducted limit(dBµV)		
Frequency of emission(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
*Decreases with the logarithm of t	he frequency.		

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:Engineering Mode_Using test software to control EUT working in continuous
transmitting, and select channel and modulation type.

7.1.2 Test Setup Diagram

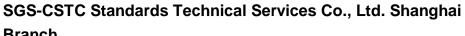
SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

Report No.: SHEM180500427001 Page: 12 of 101

7.1.3 Measurement Procedure and Data

Branch

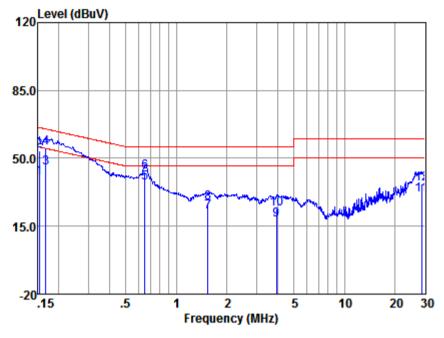
1) The mains terminal disturbance voltage test was conducted in a shielded room.

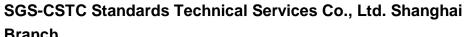

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

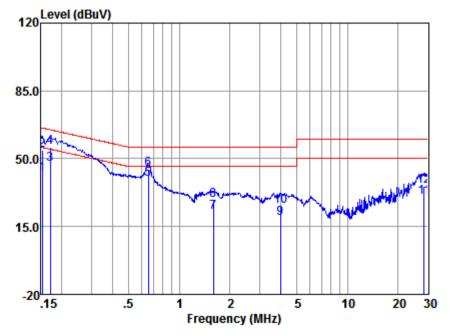
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor


Branch

Report No.: SHEM180500427001 Page: 13 of 101


	Freq (MHz)	Read level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Emission Level (dBuV)	Limit (dBuV)	Over Limit (dB)	Remark
1	0.15	29.90	0.19	9.82	39.91	55.87	-15.96	Average
2	0.15	43.61	0.19	9.82	53.62	65.87	-12.25	QP
3	0.17	35.22	0.18	9.83	45.23	55.08	-9.85	Average
4	0.17	45.19	0.18	9.83	55.20	65.08	-9.88	QP
5	0.65	27.56	0.18	9.83	37.57	46.00	-8.43	Average
6	0.65	33.02	0.18	9.83	43.03	56.00	-12.97	QP
7	1.54	12.05	0.23	9.88	22.16	46.00	-23.84	Average
8	1.54	16.98	0.23	9.88	27.09	56.00	-28.91	QP
9	3.94	7.80	0.36	9.89	18.05	46.00	-27.95	Average
10	3.94	13.70	0.36	9.89	23.95	56.00	-32.05	QP
11	28.75	18.73	2.12	10.33	31.18	50.00	-18.82	Average
12	28.75	24.25	2.12	10.33	36.70	60.00	-23.30	QP
No	tes: Emi	ission Le	vel = Re	ead Leve	1 +LISN F	actor +	Cable los	55

Branch

Report No.: SHEM180500427001 14 of 101 Page:

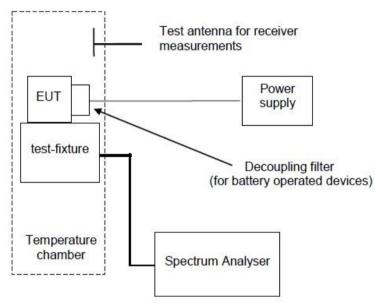
	Freq (MHz)	Read level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Emission Level (dBuV)	Limit (dBuV)	Over Limit (dB)	Remark
1	0.15	32.07	0.19	9.82	42.08	55.87	-13.79	Average
2	0.15	44.34	0.19	9.82	54.35	65.87	-11.52	QP
3	0.17	37.17	0.18	9.83	47.18	54.94	-7.76	Average
4	0.17	46.08	0.18	9.83	56.09	64.94	-8.85	QP
5	0.65	29.26	0.18	9.83	39.27	46.00	-6.73	Average
6	0.65	34.42	0.18	9.83	44.43	56.00	-11.57	QP
7	1.59	12.42	0.23	9.89	22.54	46.00	-23.46	Average
8	1.59	18.64	0.23	9.89	28.76	56.00	-27.24	QP
9	4.01	9.02	0.36	9.89	19.27	46.00	-26.73	Average
10	4.01	15.29	0.36	9.89	25.54	56.00	-30.46	QP
11	28.60	17.79	2.11	10.26	30.16	50.00	-19.84	Average
12	28.60	23.52	2.11	10.26	35.89	60.00	-24.11	QP
No	tes: Emi	ission Le	vel = Re	ead Leve	1 +LISN F	actor +	Cable los	55

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

Branch

Report No.: SHEM180500427001 Page: 15 of 101

7.2 Frequency Stability


Test Requirement	RSS-Gen Section 8.11
Test Method:	RSS-Gen Section 6.11

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:21 °CHumidity:45 % RHAtmospheric Pressure:1010 mbarTest modeTX mode_Keep the EUT in continuously transmitting mode with unmodulated
carrier frequency.TX mode_Keep the EUT in continuously transmitting mode with unmodulated

7.2.2 Test Setup Diagram

7.2.3 Measurement Procedure and Data

Test Co	onditions		Test Result	
Voltage	Temp (℃)	2402	2441	2480
	Extreme (-20)	2402.008	2441.008	2480.006
Normal	Extreme (+20)	2402.006	2441.009	2480.008
	Extreme (+50)	2402.010	2441.006	2480.008
Extreme (+15%)	Normal (20)	2402.008	2441.010	2480.006
Extreme (-15%)	Normai (20)	2402.010	2441.010	2480.009

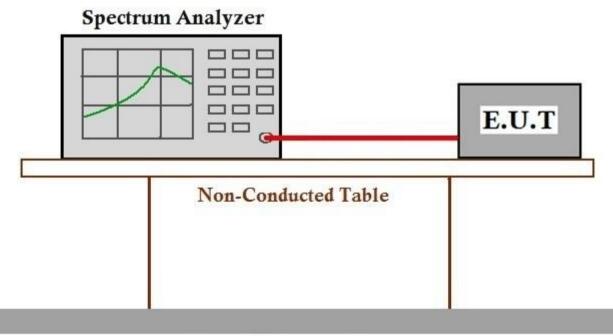
Report No.: SHEM180500427001 Page: 16 of 101

7.3 Conducted Peak Output Power

Test Requirement	RSS-2	R Part 15, Subpart C 15.247(b)(1) 47 Section 5.4(b) C63.10 (2013) Section 7.8.5
Limit:	ANOIN	
Frequency range(ИHz)	Output power of the intentional radiator(watt)
		1 for ≥50 hopping channels
902-928		0.25 for 25≤ hopping channels <50
		1 for digital modulation
		1 for ≥75 non-overlapping hopping channels
0400 0400 5		

 2400-2483.5
 0.125 for all other frequency hopping systems

 1 for digital modulation


 5725-5850
 1 for frequency hopping systems and digital modulation

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:Engineering Mode_Using test software to control EUT working in continuous
transmitting, and select channel and modulation type.

7.3.2 Test Setup Diagram

Ground Reference Plane

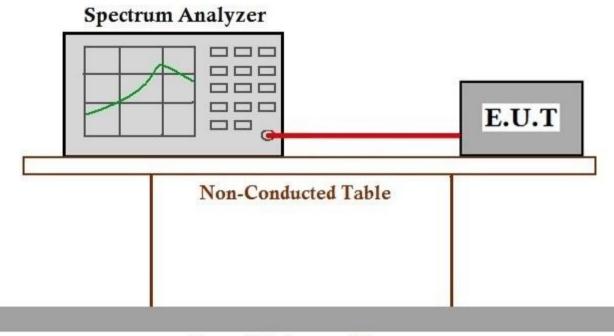
7.3.3 Measurement Procedure and Data

NO.588 West Jindu Road, Songjiang District, Shanghai, China	201612	1(86-21) 61915666	1(88-21)61915678	www.sgsgroup.com.cn
中国・上海・松江区金都西路588号 部编:	201612	1(86-21) 61915666	1(86-21)61915678	e sgs.china@sgs.com

Report No.: SHEM180500427001 Page: 17 of 101

7.4 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.247(a)(1)
	RSS-247 Section 5.1(a)
Test Method:	ANSI C63.10 (2013) Section 7.8.7


7.4.1 E.U.T. Operation

Operating Environment:

Branch

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:Engineering Mode_Using test software to control EUT working in continuous
transmitting, and select channel and modulation type.

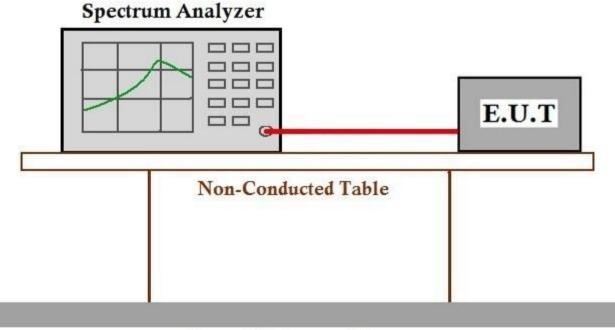
7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

Report No.: SHEM180500427001 Page: 18 of 101

7.5 Carrier Frequencies Separation


Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)
	RSS-247 Section 5.1(b)
Test Method:	ANSI C63.10 (2013) Section 7.8.2
Limit:	2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:Engineering Mode_Using test software to control EUT working in continuous
transmitting, and select channel and modulation type.

7.5.2 Test Setup Diagram

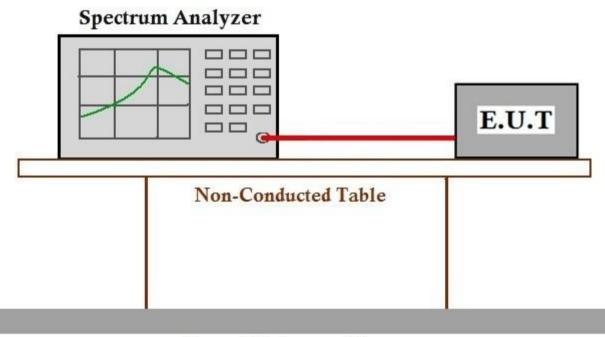
Ground Reference Plane

7.5.3 Measurement Procedure and Data

Report No.: SHEM180500427001 Page: 19 of 101

75

7.6 Hopping Channel Number


5725-5850

Test Requirement		art 15, Subpart C 15.247a(1)(iii) Section 5.1(d)
Test Method: Limit:		8.10 (2013) Section 7.8.3
Frequency range	(MHz)	Number of hopping channels (minimum)
	(MHz)	Number of hopping channels (minimum) 50 for 20dB bandwidth <250kHz
Frequency range	(MHz)	

7.6.1 E.U.T. Operation

Operating Enviro	nment:				
Temperature:	22 °C	Humidity:	50	% RH	Atmospheric Pressure: 1002 mbar
Test mode		g Mode_Using and select cha			to control EUT working in continuous ulation type.

7.6.2 Test Setup Diagram

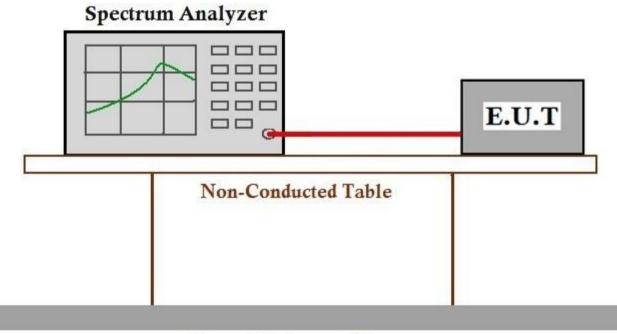
Ground Reference Plane

7.6.3 Measurement Procedure and Data

Report No.: SHEM180500427001 Page: 20 of 101

7.7 Dwell Time

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)(iii)
	RSS-247 Section 5.1(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.4
Limit:	


Frequency(MHz)Limit902-9280.4S within a 20S period(20dB bandwidth<250kHz)</td>0.4S within a 10S period(20dB bandwidth≥250kHz)2400-2483.50.4S within a period of 0.4S multiplied by the number
of hopping channels5725-58500.4S within a 30S period

7.7.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:Engineering Mode_Using test software to control EUT working in continuous
transmitting, and select channel and modulation type.

7.7.2 Test Setup Diagram

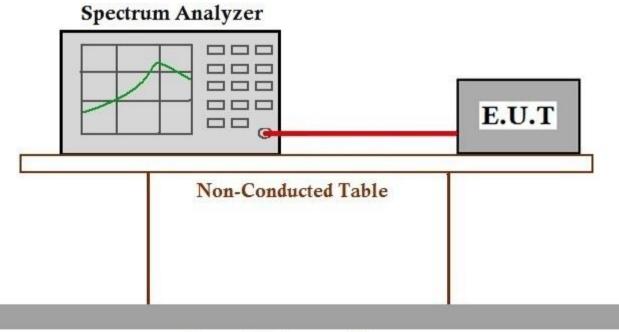
Ground Reference Plane

7.7.3 Measurement Procedure and Data

NO.588 West Jindu Road, Songjiang District, Shar	nghai,China	201612	
中国・上海・松江区金都西路588号	邮编:	201612	

Report No.: SHEM180500427001 Page: 21 of 101

7.8 Conducted Band Edges Measurement


Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
	RSS-247 Section 5.5
Test Method:	ANSI C63.10 (2013) Section 7.8.6
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)

7.8.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C	Humidity: 5	50 % RH	Atmospheric Pressure: 1002 mbar
Test mode		Mode_Using te and select chan		o control EUT working in continuous lation type.

7.8.2 Test Setup Diagram

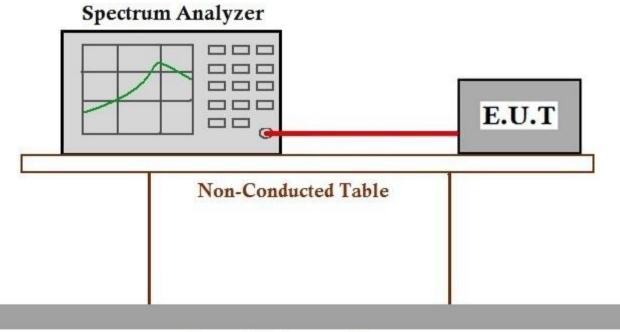
Ground Reference Plane

7.8.3 Measurement Procedure and Data

NO.588 West Jindu Road, Songjiang District, Shanghai, Ch	nina	201612	1(86-21) 61915666	1(88-21)61915678	www.sgsgroup.com.cn
中国・上海・松江区金都西路588号 邮	编:	201612	1(86-21) 61915666	1(86-21)61915678	e sgs.china@sgs.com

Report No.: SHEM180500427001 Page: 22 of 101

7.9 Conducted Spurious Emissions


Test Requirement	47 CFR Part 15, Subpart C 15.247(d) RSS-247 Section 5.5
Test Method:	ANSI C63.10 (2013) Section 7.8.8
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

7.9.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C	Humidity:	50	% RH	Atmospheric Pressure: 1002 mbar
Test mode		Mode_Using t and select char			control EUT working in continuous ation type.

7.9.2 Test Setup Diagram

Ground Reference Plane

7.9.3 Measurement Procedure and Data

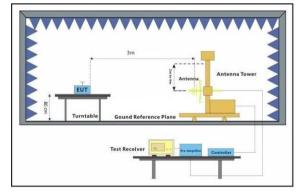
NO.588 West Jindu Road, Songjiang District, Shanghai, China	201612	1(86-21) 61915666	1(88-21)61915678	www.sgsgroup.com.cn
中国・上海・松江区金都西路588号 部编	201612	1(86-21) 61915666	1(88-21)61915678	e sgs.china@sgs.com

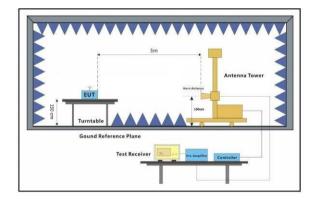
Report No.: SHEM180500427001 Page: 23 of 101

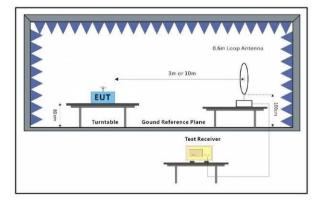
7.10 Radiated Emissions which fall in the restricted bands

Branch

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209 Section 3.3 & RSS-Gen Section 8.9					
Test Method: Limit:	ANSI C63.10 (2013) Section 6.10.5					
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				
Remark: The emission limit	s shown in the above table are based on	measurements employing a CISPR				


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.10.1 E.U.T. Operation


Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:Engineering Mode_Using test software to control EUT working in continuous
transmitting, and select channel and modulation type.

7.10.2 Test Setup Diagram

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区会都西路588号 部编: 201612 1(85-21) 61915666 1(86-21) 61915678 www.sgsgroup.com.cn 1(86-21) 61915666 1(86-21) 61915678 e sgs.china@sgs.com SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

Report No.: SHEM180500427001 Page: 24 of 101

7.10.3 Measurement Procedure and Data

Branch

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

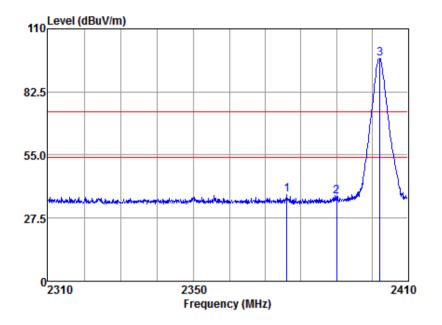
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

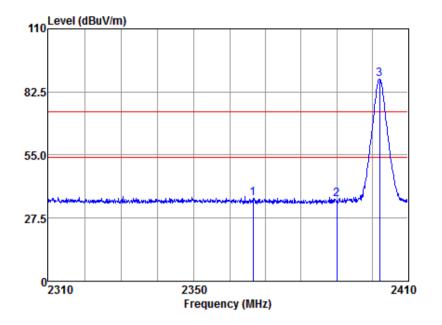
j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SHEM180500427001 Page: 25 of 101

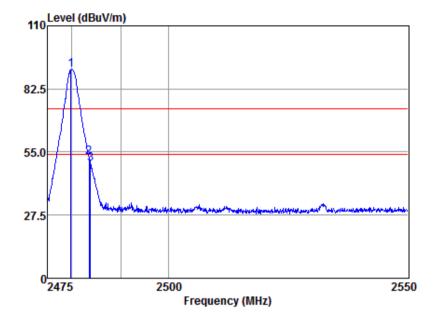
Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low


Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2376.03	42.50	26.01	6.45	37.36	37.60	74.00	-36.40	Peak
2390.00	41.93	26.03	6.47	37.36	37.07	74.00	-36.93	Peak
2402.25	101.95	26.05	6.50	37.35	97.15	74.00	23.15	Peak

Report No.: SHEM180500427001 Page: 26 of 101

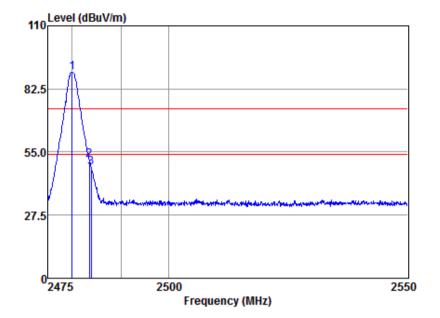
Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:Low


Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2366.48	40.92	26.00	6.42	37.36	35.98	74.00	-38.02	Peak
2390.00	40.60	26.03	6.47	37.36	35.74	74.00	-38.26	Peak
2402.15	92.92	26.05	6.50	37.35	88.12	74.00	14.12	Peak

Report No.: SHEM180500427001 Page: 27 of 101

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:High


Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.81	95.49	26.17	6.74	37.49	90.91	74.00	16.91	Peak
2483.50	57.37	26.18	6.80	37.51	52.84	74.00	-21.16	Peak
2483.81	54.28	26.18	6.80	37.51	49.75	74.00	-24.25	Peak

Report No.: SHEM180500427001 Page: 28 of 101

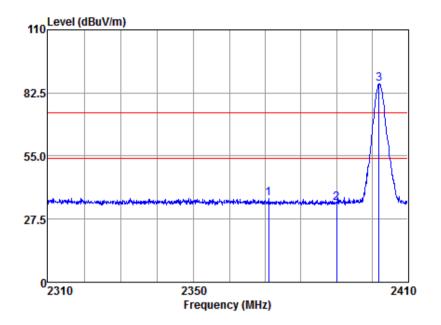
Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:High


Antenna Polarity :VERTICAL

Freq				-	Emission Level			Remark
2479.96 2483.50	94.34 56.10	26.17 26.18	6.74 6.80	37.49 37.51	dBuv/m 89.76 51.57 48.50	74.00 74.00	15.76 -22.43	Peak

Report No.: SHEM180500427001 Page: 29 of 101

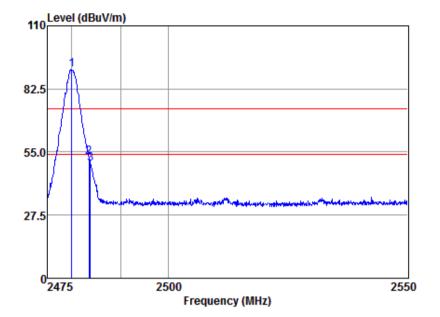
Mode:a; Polarization:Horizontal; Modulation:π/4 DQPSK; ; Channel:Low


Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2368.69	41.49	26.00	6.45	37.36	36.58	74.00	-37.42	Peak
2390.00	39.48	26.03	6.47	37.36	34.62	74.00	-39.38	Peak
2401.95	100.15	26.05	6.50	37.35	95.35	74.00	21.35	Peak

Report No.: SHEM180500427001 Page: 30 of 101

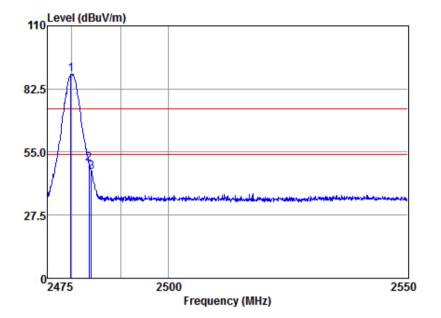
Mode:a; Polarization:Vertical; Modulation: $\pi/4$ DQPSK; ; Channel:Low


Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2371.00	41.59	26.01	6.45	37.36	36.69	74.00	-37.31	Peak
2390.00	39.53	26.03	6.47	37.36	34.67	74.00	-39.33	Peak
2401.95	91.17	26.05	6.50	37.35	86.37	74.00	12.37	Peak

Report No.: SHEM180500427001 Page: 31 of 101

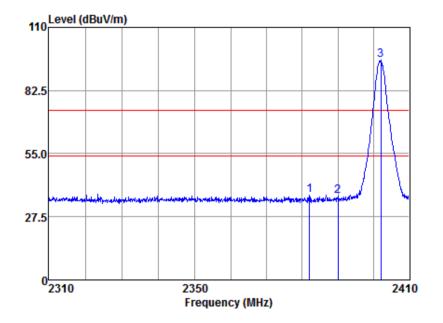
Mode:a; Polarization:Horizontal; Modulation:π/4 DQPSK; ; Channel:High


Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.96	95.46	26.17	6.74	37.49	90.88	74.00	16.88	Peak
2483.50	57.21	26.18	6.80	37.51	52.68	74.00	-21.32	Peak
2483.81	54.56	26.18	6.80	37.51	50.03	74.00	-23.97	Peak

Report No.: SHEM180500427001 Page: 32 of 101

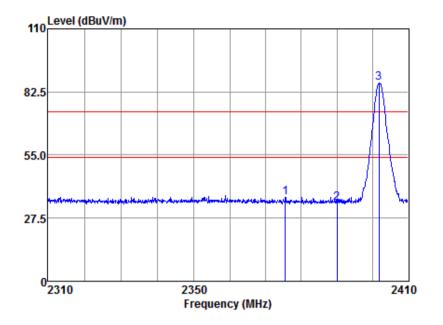
Mode:a; Polarization:Vertical; Modulation: $\pi/4$ DQPSK; ; Channel:High


Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.81	93.51	26.17	6.74	37.49	88.93	74.00	14.93	Peak
2483.50	54.61	26.18	6.80	37.51	50.08	74.00	-23.92	Peak
2483.96	50.71	26.18	6.80	37.51	46.18	74.00	-27.82	Peak

Report No.: SHEM180500427001 Page: 33 of 101

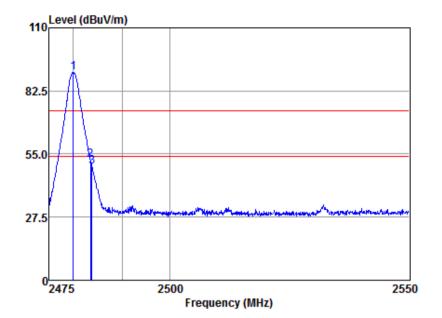
Mode:a; Polarization:Horizontal; Modulation:8DPSK; ; Channel:Low


Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2381.98	41.92	26.02	6.45	37.36	37.03	74.00	-36.97	Peak
2390.00	41.27	26.03	6.47	37.36	36.41	74.00	-37.59	Peak
2402.15	100.40	26.05	6.50	37.35	95.60	74.00	21.60	Peak

Report No.: SHEM180500427001 Page: 34 of 101

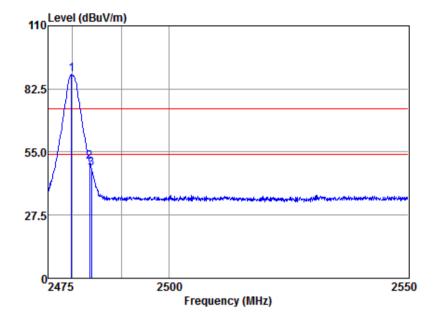
Mode:a; Polarization:Vertical; Modulation:8DPSK; ; Channel:Low


Antenna Polarity :VERTICAL

Freq				-	Emission Level			Remark
2375.52 2390.00	41.53 39.12	26.01 26.03	6.45 6.47	37.36 37.36	dBuv/m 36.63 34.26 86.49	74.00 74.00	-37.37 -39.74	Peak

Report No.: SHEM180500427001 Page: 35 of 101

Mode:a; Polarization:Horizontal; Modulation:8DPSK; ; Channel:High


Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.96	95.06	26.17	6.74	37.49	90.48	74.00	16.48	Peak
2483.50	57.04	26.18	6.80	37.51	52.51	74.00	-21.49	Peak
2483.81	54.01	26.18	6.80	37.51	49.48	74.00	-24.52	Peak

Report No.: SHEM180500427001 Page: 36 of 101

Mode:a; Polarization:Vertical; Modulation:8DPSK; ; Channel:High

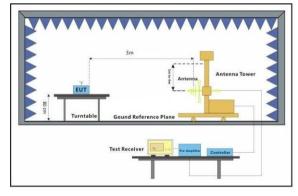
Antenna Polarity :VERTICAL

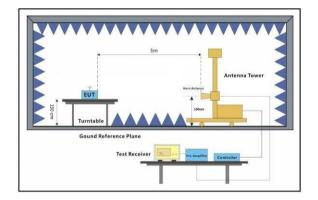
Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.81	93.30	26.17	6.74	37.49	88.72	74.00	14.72	Peak
2483.50	55.30	26.18	6.80	37.51	50.77	74.00	-23.23	Peak
2483.88	52.49	26.18	6.80	37.51	47.96	74.00	-26.04	Peak

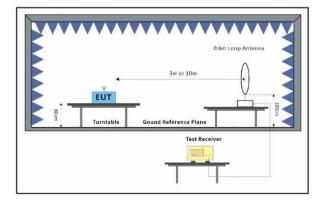
Report No.: SHEM180500427001 Page: 37 of 101

7.11 Radiated Spurious Emissions

•	17 CFR Part 15, Subpart C 15.205 & 15.	209
	Section 3.3 & RSS-Gen Section 8.9	
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6	
Limit:		
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3
Remark: The emission limits sh	own in the above table are based on i	measurements employing a CISPR


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.11.1 E.U.T. Operation


Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:Engineering Mode_Using test software to control EUT working in continuous
transmitting, and select channel and modulation type.

7.11.2 Test Setup Diagram

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区会都西路588号 部编: 201612 1(85-21) 61915666 1(86-21) 61915678 www.sgsgroup.com.cn 1(86-21) 61915666 1(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM180500427001 Page:

38 of 101

7.11.3 Measurement Procedure and Data

Branch

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

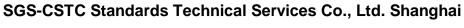
g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

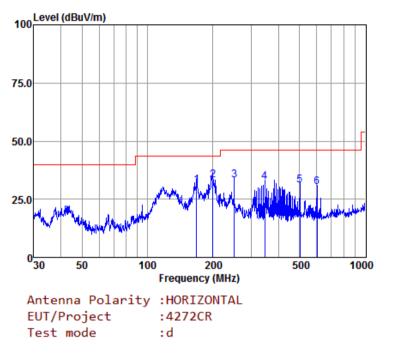

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

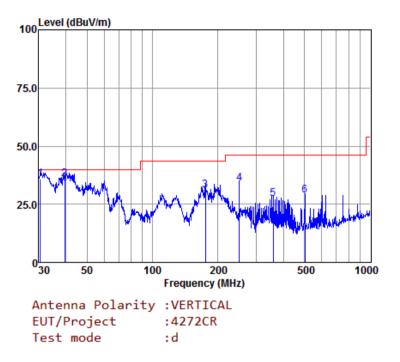
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown



Branch

Report No.: SHEM180500427001 Page: 39 of 101

Below 1GHz


	R	ead A	ntenna Ca	able Pı	reamp Er	mission	Limit O	/er	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
1	167.82	60.97	11.93	0.65	42.58	30.97	43.50	-12.53	QP
2	199.99	65.79	9.40	0.69	42.52	33.36	43.50	-10.14	QP
3	250.30	63.46	11.50	0.77	42.46	33.27	46.00	-12.73	QP
4	346.81	59.49	14.15	0.92	42.25	32.31	46.00	-13.69	QP
5	501.18	54.88	17.24	1.18	42.14	31.16	46.00	-14.84	QP
6	601.43	51.52	19.42	1.38	42.19	30.13	46.00	-15.87	QP

Note:Emission Level=Read Level+Antenna Factor+Cable loss-Preamp Factor

Branch

Report No.: SHEM180500427001 Page: 40 of 101

	R	ead A	ntenna Ca	able Pr	reamp Er	mission	Limit O	ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
1	30.53	62.98	15.36	0.18	42.60	35.92	40.00	-4.08	QP
2	39.58	62.02	16.26	0.22	42.62	35.88	40.00	-4.12	QP
3	175.04	61.05	11.75	0.66	42.56	30.90	43.50	-12.60	QP
4	250.30	64.24	11.50	0.77	42.46	34.05	46.00	-11.95	QP
5	359.19	54.22	14.38	0.93	42.21	27.32	46.00	-18.68	QP
6	501.18	52.34	17.24	1.18	42.14	28.62	46.00	-17.38	QP

Note:Emission Level=Read Level+Antenna Factor+Cable loss-Preamp Factor

Report No.: SHEM180500427001 Page: 41 of 101

Above 1GHz						
Mode:a; Pol	arization:H	-				
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	39.88	6.18	46.06	54	-7.94	peak
7206	36.12	10.63	46.75	54	-7.25	peak
9608	33.88	14.38	48.26	54	-5.74	peak
Mode:a; Pol	arization:\	/ertical: Mo	dulation:GE	SK · Cha	nnel·l ow	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	36.83	6.18	43.01	54	-10.99	peak
7206	35.46	10.63	46.09	54	-7.91	peak
9608	33.80	14.38	48.18	54	-5.82	peak
9008	55.00	14.50	40.10	54	-0.02	реак
Mode:a; Pol	arization:H	Horizontal; I	Modulation:	GFSK; ; C	hannel:midd	le
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4882	34.97	7.00	41.97	54	-12.03	peak
7323	38.81	11.13	49.94	54	-4.06	peak
9764	33.05	14.36	47.41	54	-6.59	peak
Mada a Dal						
Mode:a; Pol Frequency	RX_R	Factor	Emission	SK; ; Cna Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Delector
						naak
4882	35.42	7.00	42.42	54	-11.58	peak
7323	35.65	11.13	46.78	54	-7.22	peak
9764	30.77	14.36	45.13	54	-8.87	peak
Mode:a; Pol	arization:H	lorizontal; l	Modulation:	GFSK; ; C	hannel:High	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	38.42	7.49	45.91	54	-8.09	peak
7440	36.18	11.65	47.83	54	-6.17	peak
9920	31.31	14.40	45.71	54	-8.29	peak
						•
Mode:a; Pol	arization:\	/ertical; Mo	dulation:GF	SK; ; Cha	nnel:High	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	34.95	7.49	42.44	54	-11.56	peak
7440	33.86	11.65	45.51	54	-8.49	peak
9920	31.00	14.40	45.40	54	-8.60	peak

Report No.: SHEM180500427001 Page: 42 of 101

Mode:a; Pol	arization:H	lorizontal;	Modulation:	τ/4 DQPSk	K; ; Channel	:Low
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	39.63	6.18	45.81	54	-8.19	peak
7206	37.28	10.63	47.91	54	-6.09	peak
9608	30.16	14.38	44.54	54	-9.46	peak
Mode:a; Pol	arization·V	ertical [.] Mo	dulation π/4	DOPSK	· Channel·I o	W
Frequency	RX_R	Factor	Emission	Limit		Detector
MHz	 dBuV	dB	dBuV/m	dBuV/m	dB	
4804	33.62	6.18	39.80	54	-14.20	peak
7206	33.13	10.63	43.76	54	-10.24	peak
9608	32.28	14.38	46.66	54	-7.34	peak
Mode:a; Pol	arization:H	lorizontal;	Modulation:	t/4 DQPSk	K; ; Channel	:middle
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4882	38.64	7.00	45.64	54	-8.36	peak
7323	37.36	11.13	48.49	54	-5.51	peak
9764	33.31	14.36	47.67	54	-6.33	peak
Madaia: Dal				DODOL		
MODE'A' POL	arization·V	ertical Mo	ndulation π/4	DOPSK	· (Channel·m	iddle
			odulation:π/4 Emission			
Frequency	RX_R	Factor	Emission	Limit	Over Limit	
Frequency MHz	RX_R dBuV	Factor dB	Emission dBuV/m	Limit dBuV/m	Over Limit dB	Detector
Frequency MHz 4882	RX_R dBuV 36.41	Factor dB 7.00	Emission dBuV/m 43.41	Limit dBuV/m 54	Over Limit dB -10.59	Detector peak
Frequency MHz 4882 7323	RX_R dBuV 36.41 35.08	Factor dB 7.00 11.13	Emission dBuV/m 43.41 46.21	Limit dBuV/m 54 54	Over Limit dB -10.59 -7.79	Detector peak peak
Frequency MHz 4882	RX_R dBuV 36.41	Factor dB 7.00	Emission dBuV/m 43.41	Limit dBuV/m 54	Over Limit dB -10.59	Detector peak
Frequency MHz 4882 7323	RX_R dBuV 36.41 35.08 34.44	Factor dB 7.00 11.13 14.36	Emission dBuV/m 43.41 46.21 48.80	Limit dBuV/m 54 54 54	Over Limit dB -10.59 -7.79 -5.20	Detector peak peak peak
Frequency MHz 4882 7323 9764 Mode:a; Pol	RX_R dBuV 36.41 35.08 34.44 arization:H	Factor dB 7.00 11.13 14.36 lorizontal;	Emission dBuV/m 43.41 46.21 48.80	Limit dBuV/m 54 54 54 r/4 DQPSk	Over Limit dB -10.59 -7.79 -5.20	Detector peak peak peak :High
Frequency MHz 4882 7323 9764 Mode:a; Pol	RX_R dBuV 36.41 35.08 34.44 arization:H	Factor dB 7.00 11.13 14.36 lorizontal;	Emission dBuV/m 43.41 46.21 48.80 Modulation:T	Limit dBuV/m 54 54 54 r/4 DQPSk	Over Limit dB -10.59 -7.79 -5.20	Detector peak peak peak :High
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R	Factor dB 7.00 11.13 14.36 lorizontal; Factor	Emission dBuV/m 43.41 46.21 48.80 Modulation:T Emission	Limit dBuV/m 54 54 54 54 T/4 DQPSP Limit	Over Limit dB -10.59 -7.79 -5.20 K; ; Channel Over Limit	Detector peak peak peak :High
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB	Emission dBuV/m 43.41 46.21 48.80 Modulation:r Emission dBuV/m	Limit dBuV/m 54 54 54 t/4 DQPSk Limit dBuV/m	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB	Detector peak peak peak :High Detector
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49	Emission dBuV/m 43.41 46.21 48.80 Modulation:T Emission dBuV/m 41.81	Limit dBuV/m 54 54 54 7/4 DQPSH Limit dBuV/m 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19	Detector peak peak peak High Detector peak
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960 7440	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32 33.83	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49 11.65	Emission dBuV/m 43.41 46.21 48.80 Modulation:r Emission dBuV/m 41.81 45.48	Limit dBuV/m 54 54 54 t/4 DQPSH Limit dBuV/m 54 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19 -8.52	Detector peak peak peak :High Detector peak peak
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960 7440 9920	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32 33.83 33.96	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49 11.65 14.40	Emission dBuV/m 43.41 46.21 48.80 Modulation:T Emission dBuV/m 41.81 45.48 48.36	Limit dBuV/m 54 54 54 54 t/4 DQPSH Limit dBuV/m 54 54 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19 -8.52 -5.64	Detector peak peak peak :High Detector peak peak peak
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960 7440 9920	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32 33.83 33.96 arization:V	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49 11.65 14.40	Emission dBuV/m 43.41 46.21 48.80 Modulation:T Emission dBuV/m 41.81 45.48 48.36	Limit dBuV/m 54 54 54 54 t/4 DQPSk Limit dBuV/m 54 54 54 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19 -8.52 -5.64 ; Channel:H	Detector peak peak peak :High Detector peak peak peak
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960 7440 9920	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32 33.83 33.96 arization:V RX_R	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49 11.65 14.40 /ertical; Mo Factor	Emission dBuV/m 43.41 46.21 48.80 Modulation:π Emission dBuV/m 41.81 45.48 48.36 odulation:π/4 Emission	Limit dBuV/m 54 54 54 54 t/4 DQPSK Limit dBuV/m 54 54 54 54 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19 -8.52 -5.64 ; Channel:H Over Limit	Detector peak peak peak :High Detector peak peak peak
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960 7440 9920 Mode:a; Pol Frequency MHz	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32 33.83 33.96 arization:V RX_R dBuV	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49 11.65 14.40 'ertical; Mo Factor dB	Emission dBuV/m 43.41 46.21 48.80 Modulation:π Emission dBuV/m 41.81 45.48 48.36 odulation:π/4 Emission dBuV/m	Limit dBuV/m 54 54 54 54 t/4 DQPSK Limit dBuV/m 54 54 54 54 54 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19 -8.52 -5.64 ; Channel:H Over Limit dB	Detector peak peak peak :High Detector peak peak peak
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960 7440 9920 Mode:a; Pol Frequency MHz 4960	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32 33.83 33.96 arization:V RX_R dBuV 35.65	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49 11.65 14.40 /ertical; Mo Factor dB 7.49	Emission dBuV/m 43.41 46.21 48.80 Modulation:π Emission dBuV/m 41.81 45.48 48.36 odulation:π/4 Emission dBuV/m 43.14	Limit dBuV/m 54 54 54 54 t/4 DQPSK Limit dBuV/m 54 54 DQPSK; Limit dBuV/m 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19 -8.52 -5.64 ; Channel:H Over Limit dB -10.86	Detector peak peak peak :High Detector peak peak peak peak
Frequency MHz 4882 7323 9764 Mode:a; Pol Frequency MHz 4960 7440 9920 Mode:a; Pol Frequency MHz	RX_R dBuV 36.41 35.08 34.44 arization:H RX_R dBuV 34.32 33.83 33.96 arization:V RX_R dBuV	Factor dB 7.00 11.13 14.36 lorizontal; Factor dB 7.49 11.65 14.40 'ertical; Mo Factor dB	Emission dBuV/m 43.41 46.21 48.80 Modulation:π Emission dBuV/m 41.81 45.48 48.36 odulation:π/4 Emission dBuV/m	Limit dBuV/m 54 54 54 54 t/4 DQPSK Limit dBuV/m 54 54 54 54 54 54	Over Limit dB -10.59 -7.79 -5.20 (; ; Channel Over Limit dB -12.19 -8.52 -5.64 ; Channel:H Over Limit dB	Detector peak peak peak :High Detector peak peak peak

Report No.: SHEM180500427001 Page: 43 of 101

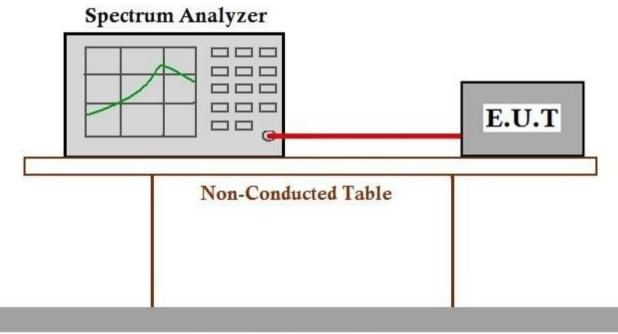
Mode:a; Pol	arization:H	orizontal;	Modulation:8	BDPSK; ;		1
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	38.22	6.18	44.40	54	-9.60	peak
7206	36.10	10.63	46.73	54	-7.27	peak
9608	33.02	14.38	47.40	54	-6.60	peak
Modera: Pol	arization.//	ertical [.] M	odulation:8DI	PSK· · Ch	annel:I ow	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	32.83	6.18	39.01	54	-14.99	peak
7206	33.94	10.63	44.57	54	-9.43	peak
9608	32.12	14.38	46.50	54	-7.50	peak
-		-	Modulation:8			
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4882	38.79	7.00	45.79	54	-8.21	peak
7323	36.88	11.13	48.01	54	-5.99	peak
9764	34.46	14.36	48.82	54	-5.18	peak
Mode:a; Pol	arization:V	ertical; M	odulation:8Dl	PSK;;Ch	annel:middle	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4882	38.35	7.00	45.35	54	-8.65	peak
7323	36.66	11.13	47.79	54	-6.21	peak
9764	32.77	14.36	47.13	54	-6.87	peak
Madatat Dal	orization	orizontoli	Modulation:8	י יישטחס	Channal·Hig	-
Frequency	RX_R	Factor	Emission	Limit	Over Limit	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Deteolor
4960	36.91	7.49	44.40	54	-9.60	peak
7440	36.34	11.65	47.99	54	-6.01	peak
9920	32.51	14.40	46.91	54	-7.09	peak
						pour
-	arization:V		odulation:8Dl		Ū	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	37.23	7.49	44.72	54	-9.28	peak
7440	35.12	11.65	46.77	54	-7.23	peak
9920	31.23	14.40	45.63	54	-8.37	peak

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区全都西路588号 郎塢: 201612 1(86-21)61915666 1(86-21)61915678 www.agsgroup.com.cn 1(86-21)61915666 1(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM180500427001 Page: 44 of 101

7.12 99% Bandwidth

Test Requirement	RSS-Gen Section 6.6
Test Method:	ANSI C63.10 Section 6.9.3


Branch

7.12.1 E.U.T. Operation

Operating Environment:

Temperature: Test mode 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar a:Engineering Mode_Using test software to control EUT working in continuous transmitting, and select channel and modulation type.

7.12.2 Test Setup Diagram

Ground Reference Plane

7.12.3 Measurement Procedure and Data

The detailed test data see: Appendix A SHEM180500427001

Report No.: SHEM180500427001 Page: 45 of 101

8 Test Setup Photographs

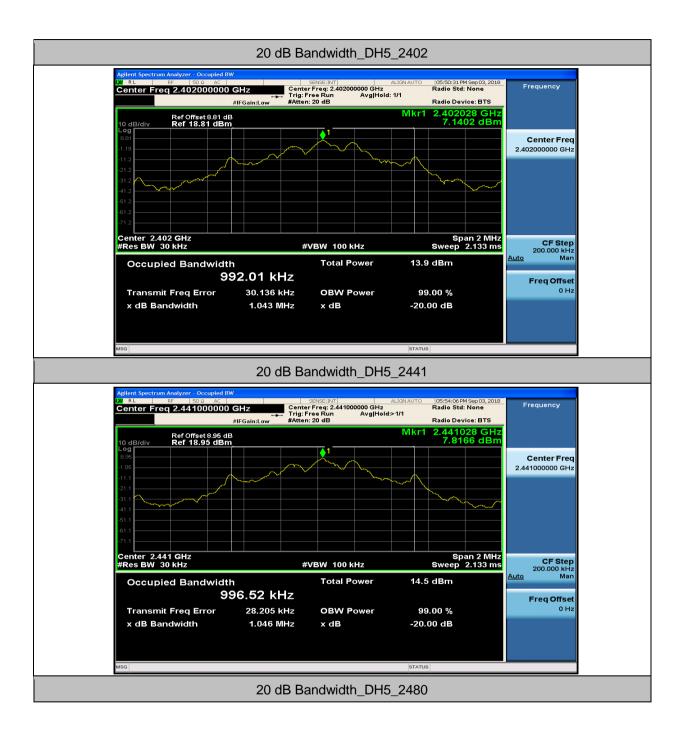
Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

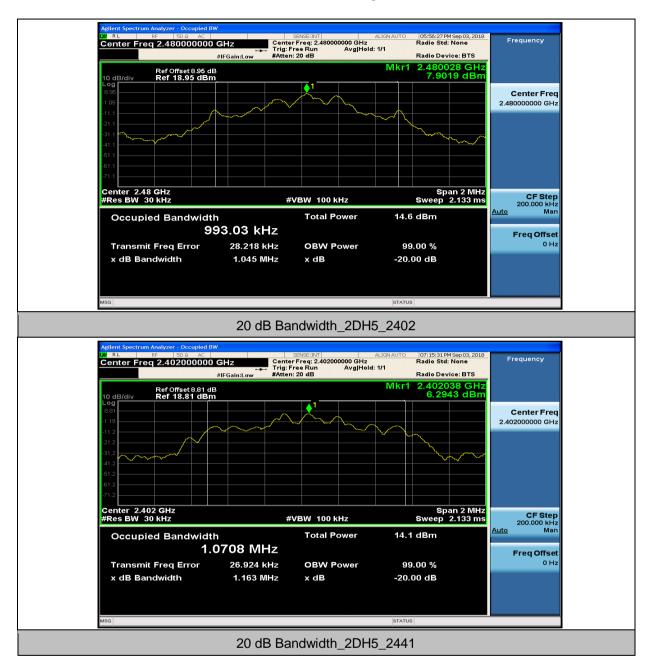
Report No.: SHEM180500427001 Page: 46 of 101

Appendix A for SHEM180500427001

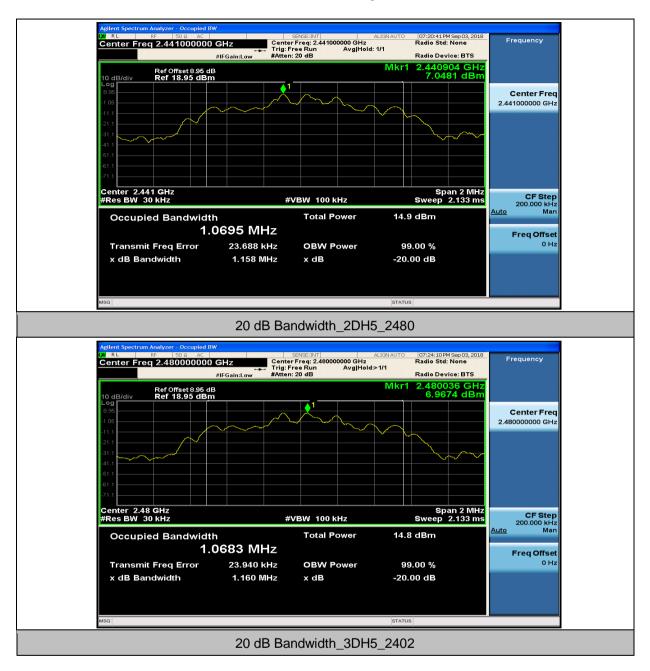

1.20 dB Bandwidth

Test Mode	Test Channel	EBW[MHz]	Limit[MHz]	Verdict
DH5	2402	1.04		PASS
DH5	2441	1.05		PASS
DH5	2480	1.05		PASS
2DH5	2402	1.16		PASS
2DH5	2441	1.16		PASS
2DH5	2480	1.16		PASS
3DH5	2402	1.17		PASS
3DH5	2441	1.17		PASS
3DH5	2480	1.17		PASS

Branch

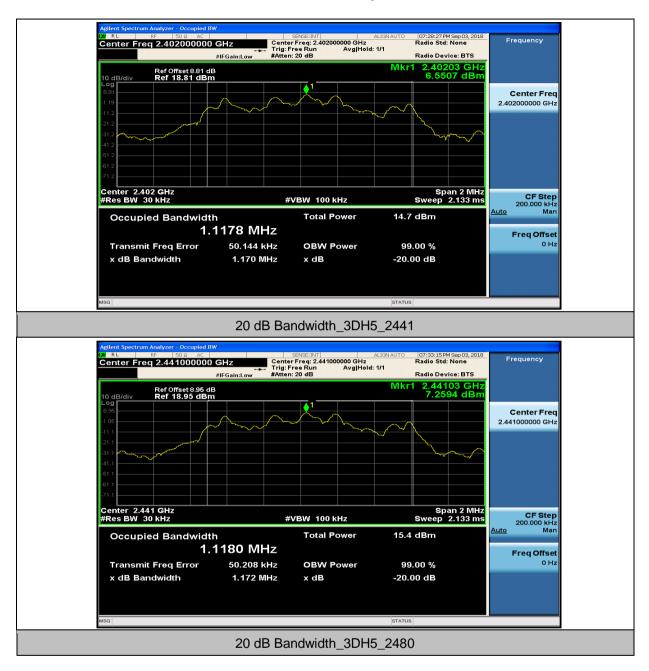

Report No.: SHEM180500427001 Page: 47 of 101

Branch


Report No.: SHEM180500427001 Page: 48 of 101

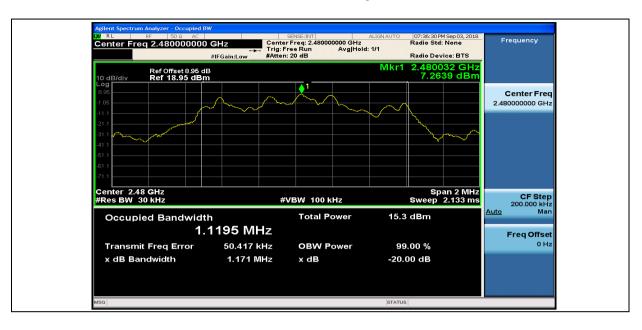
Branch

Report No.: SHEM180500427001 Page: 49 of 101



NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区全都西路588号 邮编: 201612

Branch

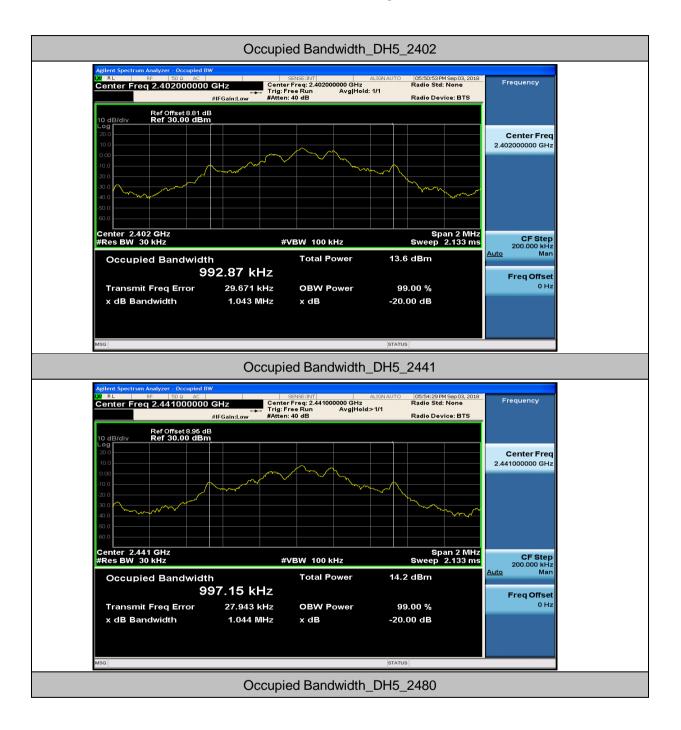

Report No.: SHEM180500427001 Page: 50 of 101

Branch

Report No.: SHEM180500427001 Page: 51 of 101

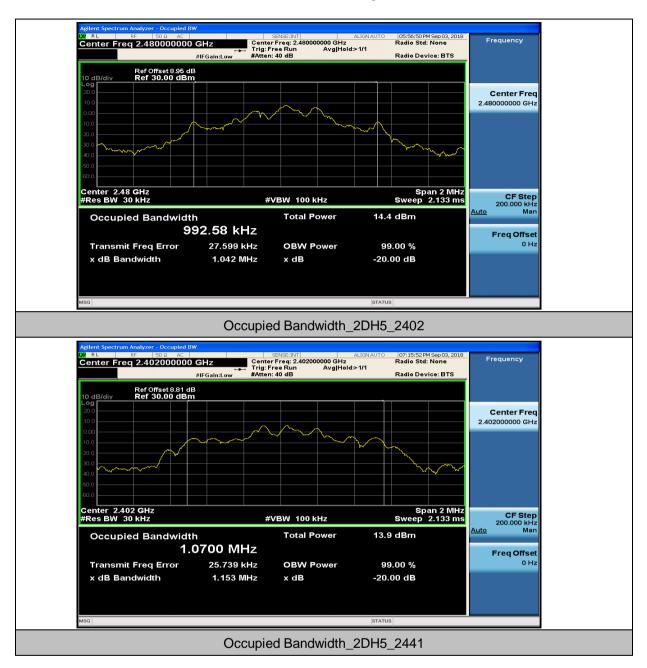
Branch

Report No.: SHEM180500427001 Page: 52 of 101

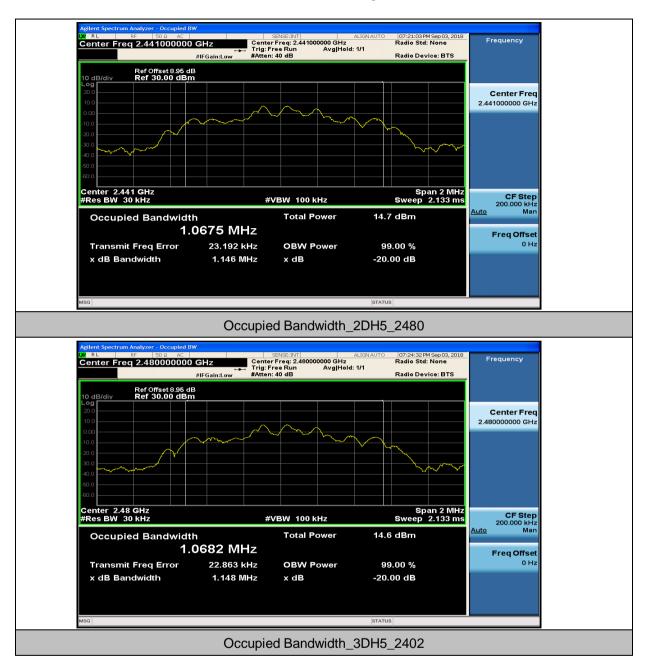

2.Occupied Bandwidth

Test Mode	Test Channel	OBW[MHz]	Limit[MHz]	Verdict
DH5	2402	0.99		PASS
DH5	2441	1.00		PASS
DH5	2480	0.99		PASS
2DH5	2402	1.07		PASS
2DH5	2441	1.07		PASS
2DH5	2480	1.07		PASS
3DH5	2402	1.12		PASS
3DH5	2441	1.11		PASS
3DH5	2480	1.12		PASS

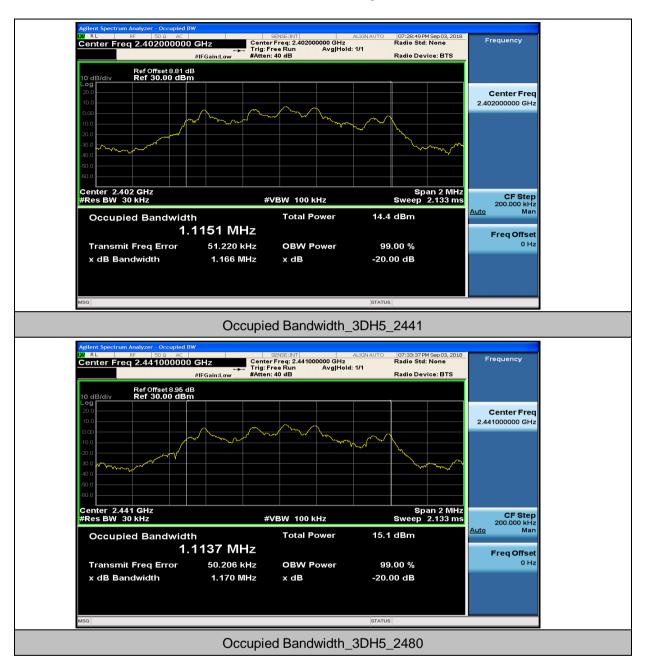
Branch


Report No.: SHEM180500427001 Page: 53 of 101

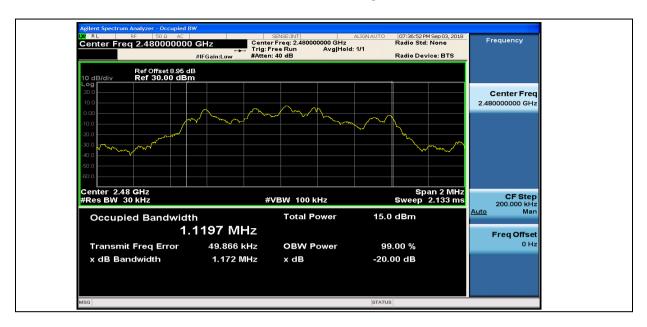
Branch


Report No.: SHEM180500427001 Page: 54 of 101

Branch


Report No.: SHEM180500427001 Page: 55 of 101

Branch


Report No.: SHEM180500427001 Page: 56 of 101

Branch

Report No.: SHEM180500427001 Page: 57 of 101

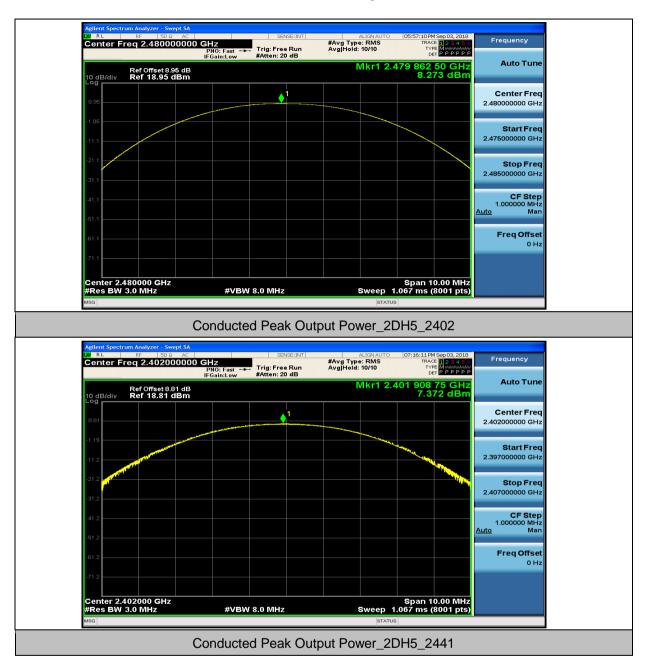
Branch

Report No.: SHEM180500427001 Page: 58 of 101

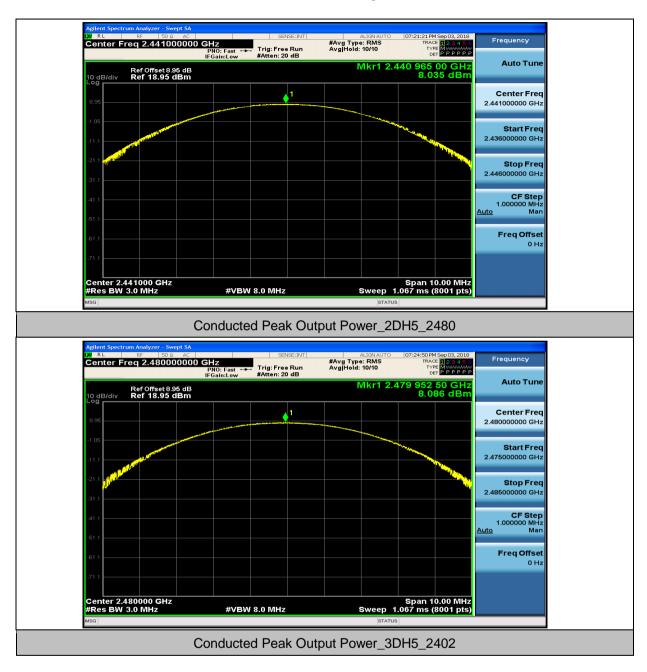
3.Conducted Peak Output Power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	7.46	20.96	PASS
DH5	2441	8.16	20.96	PASS
DH5	2480	8.27	20.96	PASS
2DH5	2402	7.37	20.96	PASS
2DH5	2441	8.04	20.96	PASS
2DH5	2480	8.09	20.96	PASS
3DH5	2402	7.57	20.96	PASS
3DH5	2441	8.25	20.96	PASS
3DH5	2480	8.32	20.96	PASS

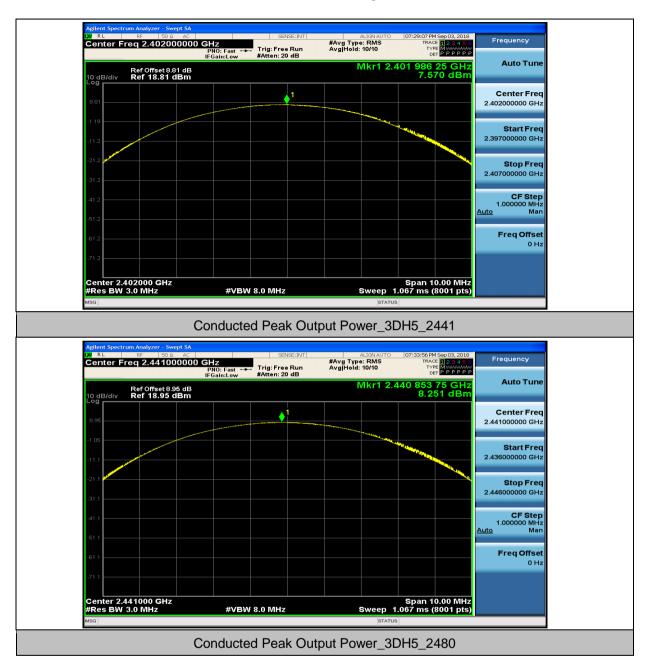
Branch


Report No.: SHEM180500427001 Page: 59 of 101

Branch


Report No.: SHEM180500427001 Page: 60 of 101

Branch


Report No.: SHEM180500427001 Page: 61 of 101

Branch

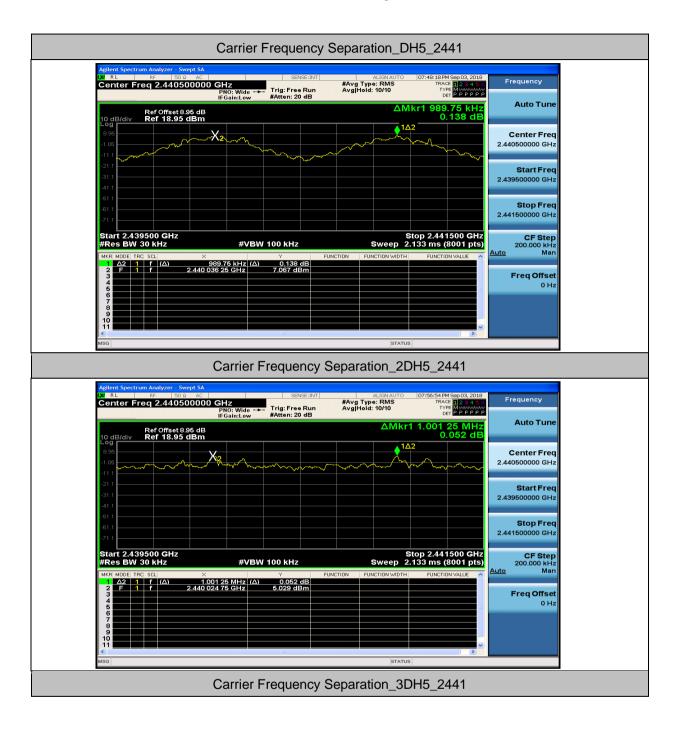
Report No.: SHEM180500427001 Page: 62 of 101

Branch

Report No.: SHEM180500427001 Page: 63 of 101

Branch

Report No.: SHEM180500427001 Page: 64 of 101


4.Carrier Frequency Separation

Test Mode	Test Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	2441	0.99	0.697	PASS
2DH5	2441	1.00	0.772	PASS
3DH5	2441	0.96	0.781	PASS

Branch

Report No.: SHEM180500427001 Page: 65 of 101

Branch

Report No.: SHEM180500427001 Page: 66 of 101

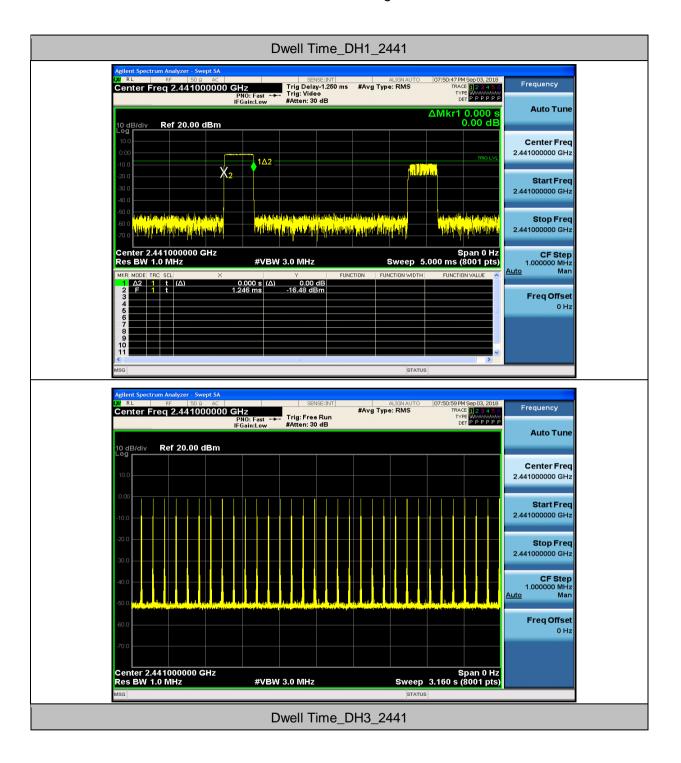
RL RF 50 Ω AC Center Freq 2.440500000	PNO:Wide ↔ Trig:Free F	#Avg Type: RMS Run Avg Hold: 10/10	08:10:04 PM Sep 03, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P P P P P	Frequency
Ref Offset 8.95 dB dB/div Ref 18.95 dBm	IFGain:Low #Atten: 20 (//kr1 961.00 kHz -0.101 dB	Auto Tune
• g =	~~~X2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1Δ2 	Center Freq 2.440500000 GHz
21.1				Start Freq 2.439500000 GHz
-51.1 				Stop Freq 2.441500000 GHz
Start 2.439500 GHz #Res BW 30 kHz MKR MODE TRC SCL ×	#VBW 100 kHz	Sweep :	Stop 2.441500 GHz 2.133 ms (8001 pts)	CF Step 200.000 kHz <u>Auto</u> Man
	61.00 kHz (Δ) -0.101 dl 08 25 GHz 1.377 dB		3	Freq Offset 0 Hz
7 8 9 9 9 9 10 10 11 1 1 1 1 1 1 1 1 1 1 1				
`	110		>	

SGS

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai

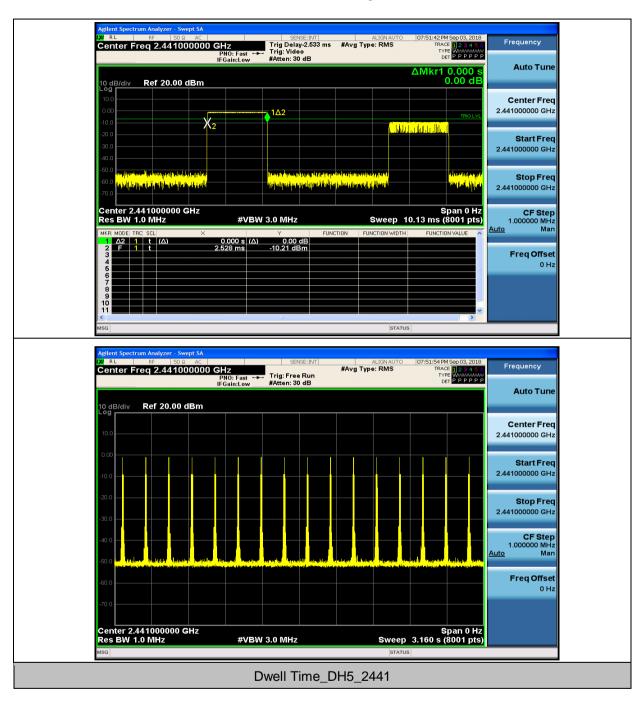
Branch

Report No.: SHEM180500427001 Page: 67 of 101

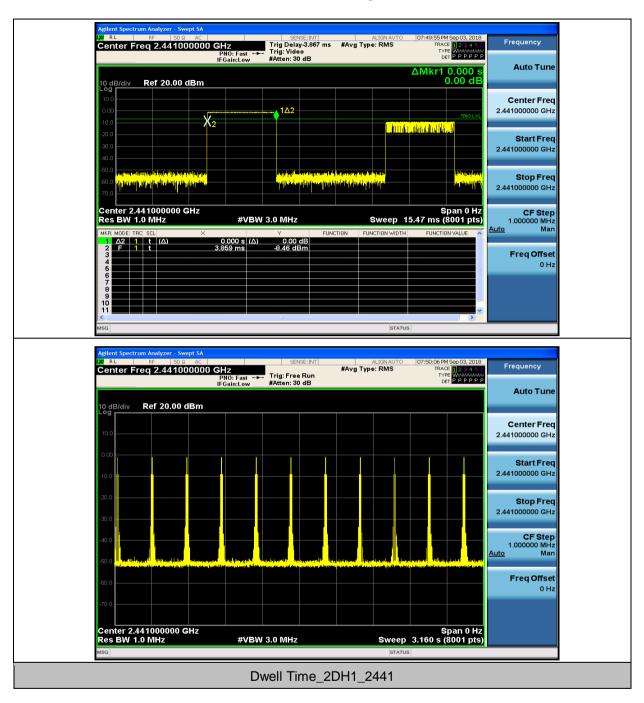

Test Mode	Test Channel	Burst Width[ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Limit[s]	Verdict
DH1	2441	0.40	310	0.13	0.4	PASS
DH3	2441	1.66	160	0.27	0.4	PASS
DH5	2441	2.90	110	0.32	0.4	PASS
2DH1	2441	0.41	310	0.13	0.4	PASS
2DH3	2441	1.66	160	0.27	0.4	PASS
2DH5	2441	1.71	160	0.27	0.4	PASS
3DH1	2441	0.41	310	0.13	0.4	PASS
3DH3	2441	1.66	160	0.27	0.4	PASS
3DH5	2441	2.91	110	0.32	0.4	PASS

5.Dwell Time

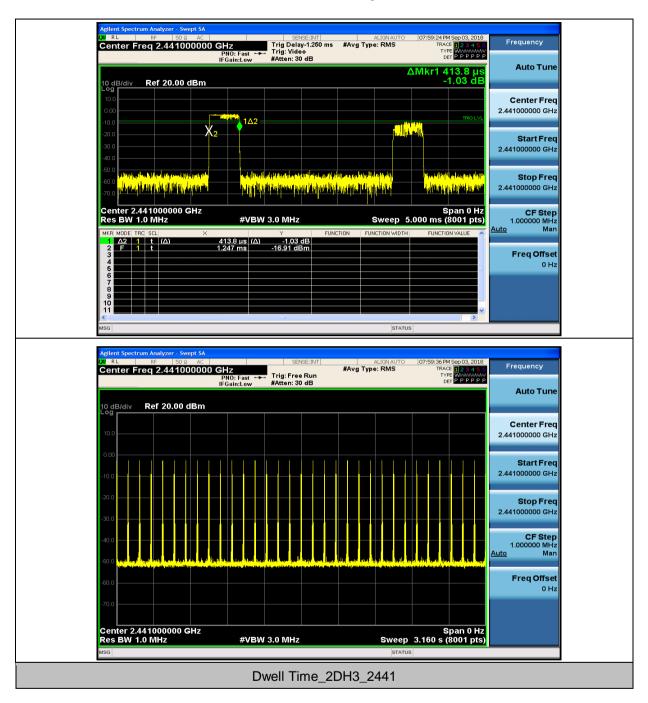
Branch


Report No.: SHEM180500427001 Page: 68 of 101

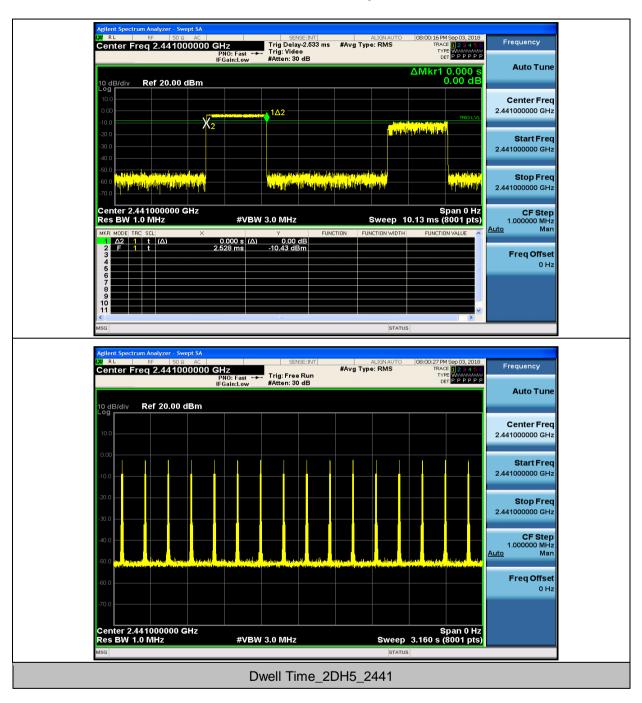
Branch


Report No.: SHEM180500427001 Page: 69 of 101

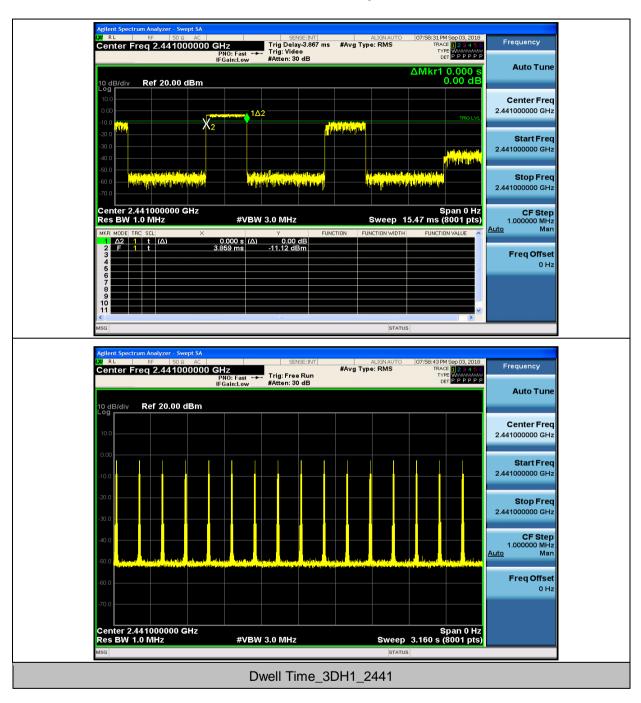
Branch


Report No.: SHEM180500427001 Page: 70 of 101

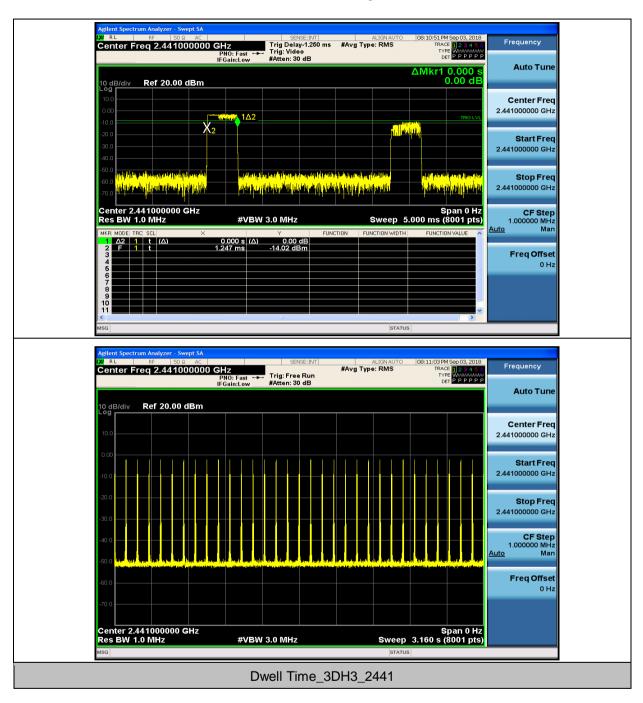
Branch


Report No.: SHEM180500427001 Page: 71 of 101

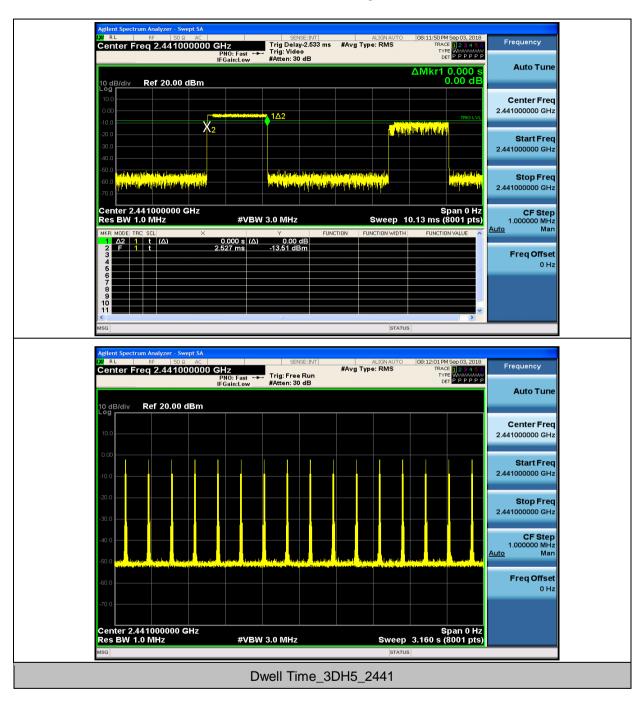
Branch


Report No.: SHEM180500427001 Page: 72 of 101

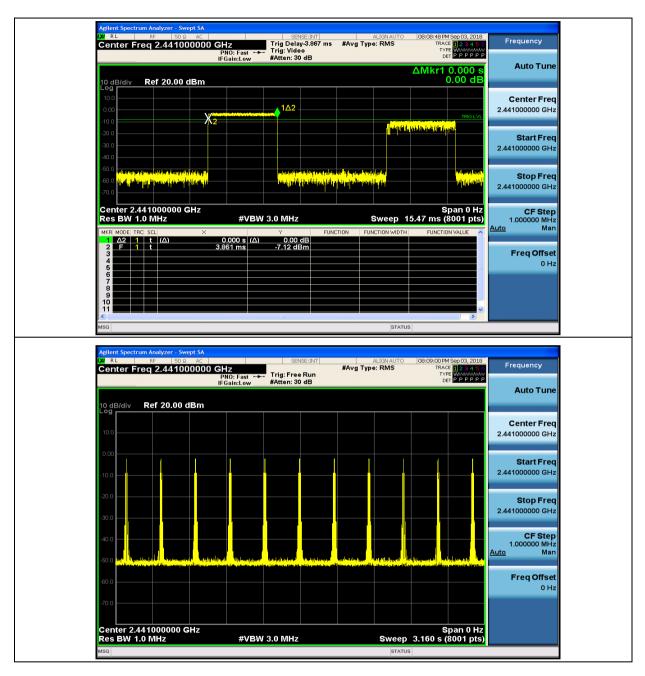
Branch


Report No.: SHEM180500427001 Page: 73 of 101

Branch


Report No.: SHEM180500427001 Page: 74 of 101

Branch

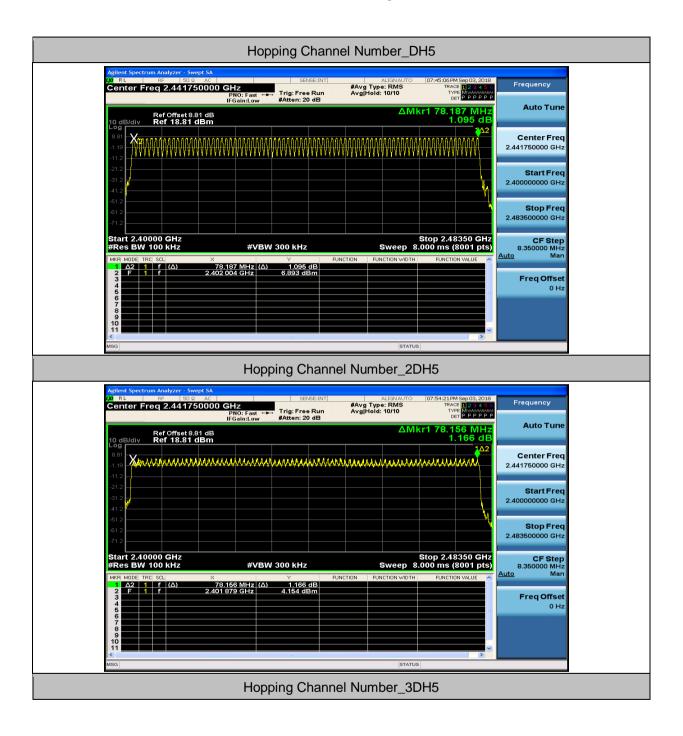

Report No.: SHEM180500427001 Page: 75 of 101

Branch

Report No.: SHEM180500427001 Page: 76 of 101

Branch

Report No.: SHEM180500427001 Page: 77 of 101


6.Hopping Channel Number

Test Mode	Number of Hopping Channel[N]	Limit[N]	Verdict
DH5	79	>=15	PASS
2DH5	79	>=15	PASS
3DH5	79	>=15	PASS

Branch

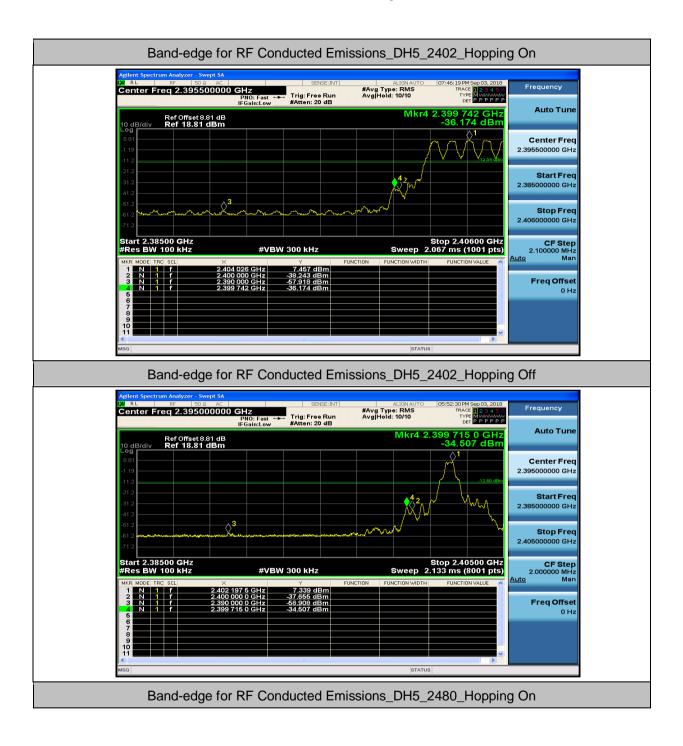
Report No.: SHEM180500427001 Page: 78 of 101

Branch

Report No.: SHEM180500427001 Page: 79 of 101

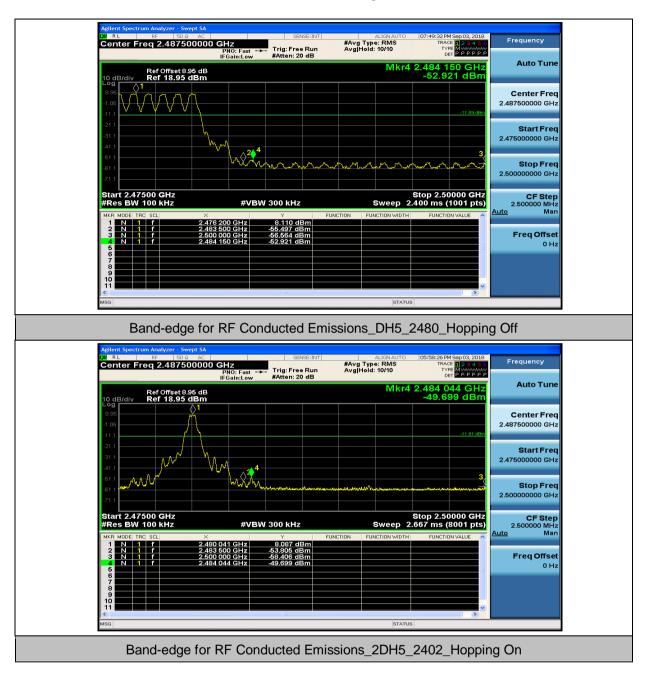
M RL RF 50 G Center Freq 2.4417		SENSE:INT → Trig: Free Run #Atten: 20 dB	ALIGNAUTO #Avg Type: RMS Avg Hold: 10/10	08:03:55 PM Sep 03, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P	Frequency
Ref Offset 8. 10 dB/div Ref 18.81	81 dB dBm		ΔΜΙ	(r1 77.999 MHz 0.788 dB	Auto Tune
8.81	~~~~~	****	*****		Center Freq 2.441750000 GHz
-21.2 -31.2 -41.2					Start Freq 2.40000000 GHz
-51.2 -61.2 -71.2					Stop Freq 2.483500000 GHz
Start 2.40000 GHz #Res BW 100 kHz	#VB\	N 300 kHz	Sweep 8	Stop 2.48350 GHz .000 ms (8001 pts)	CF Step 8.350000 MHz Auto Man
1 Δ2 1 f (Δ) 2 F 1 f 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	77.999 MHz (Δ 2.402 035 GHz		UNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset 0 Hz
6 7 8 9 10					
<		110		>	

Report No.: SHEM180500427001 Page: 80 of 101

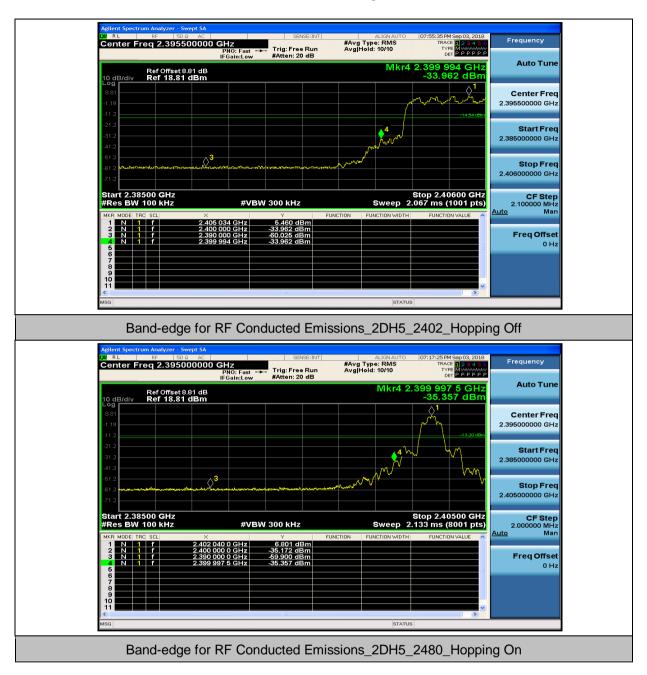

Test Mode	Test Channel	Hopping	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit[dBm]	Verdict
DH5	2402	On	7.46	-36.17	-12.54	PASS
DH5	2402	Off	7.34	-34.51	-12.66	PASS
DH5	2480	On	8.11	-52.92	-11.89	PASS
DH5	2480	Off	8.09	-49.70	-11.91	PASS
2DH5	2402	On	5.46	-33.96	-14.54	PASS
2DH5	2402	Off	6.80	-35.17	-13.20	PASS
2DH5	2480	On	5.57	-56.57	-14.43	PASS
2DH5	2480	Off	7.50	-51.40	-12.50	PASS
3DH5	2402	On	5.49	-35.06	-14.51	PASS
3DH5	2402	Off	7.10	-35.46	-12.90	PASS
3DH5	2480	On	5.62	-53.18	-14.38	PASS
3DH5	2480	Off	7.85	-48.66	-12.15	PASS

7.Band-edge for RF Conducted Emissions

Branch


Report No.: SHEM180500427001 Page: 81 of 101

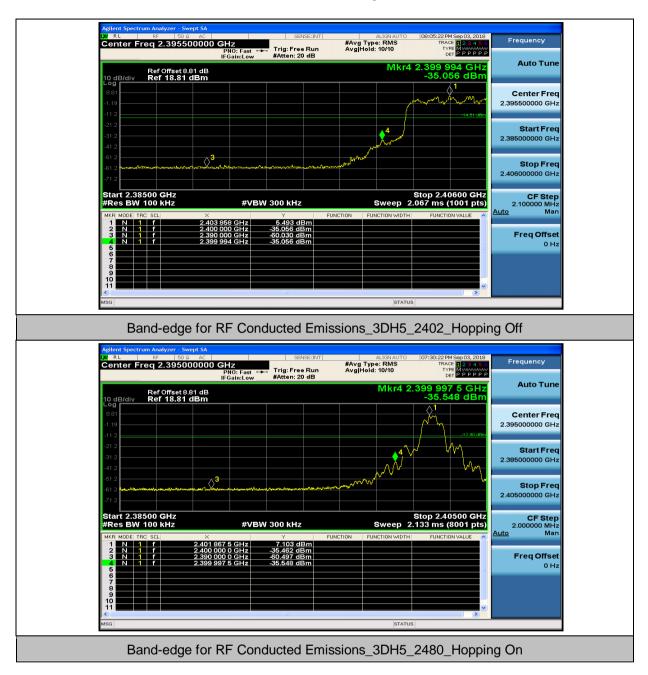
Branch


Report No.: SHEM180500427001 Page: 82 of 101

Branch

Report No.: SHEM180500427001 Page: 83 of 101

Branch


Report No.: SHEM180500427001 Page: 84 of 101

Branch

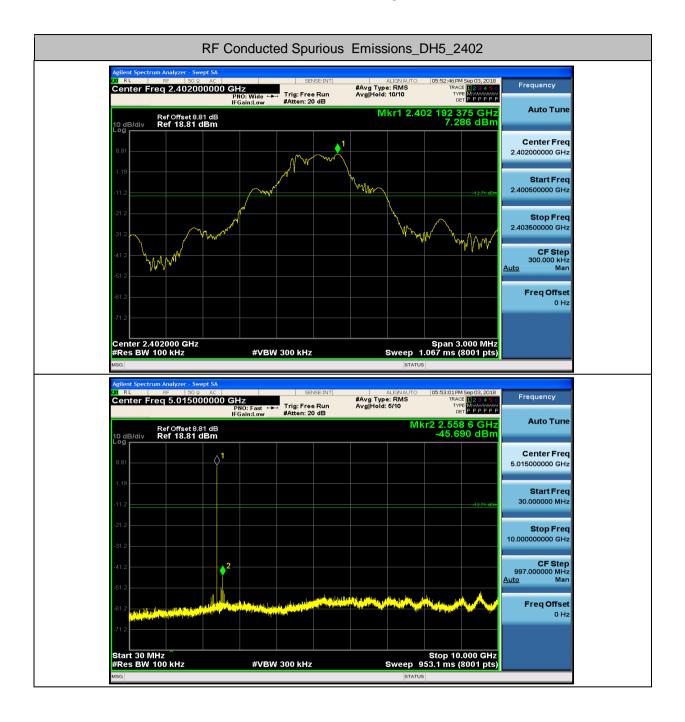
Report No.: SHEM180500427001 Page: 85 of 101

Branch

Report No.: SHEM180500427001 Page: 86 of 101

Report No.: SHEM180500427001 Page: 87 of 101

8.RF Conducted Spurious Emissions

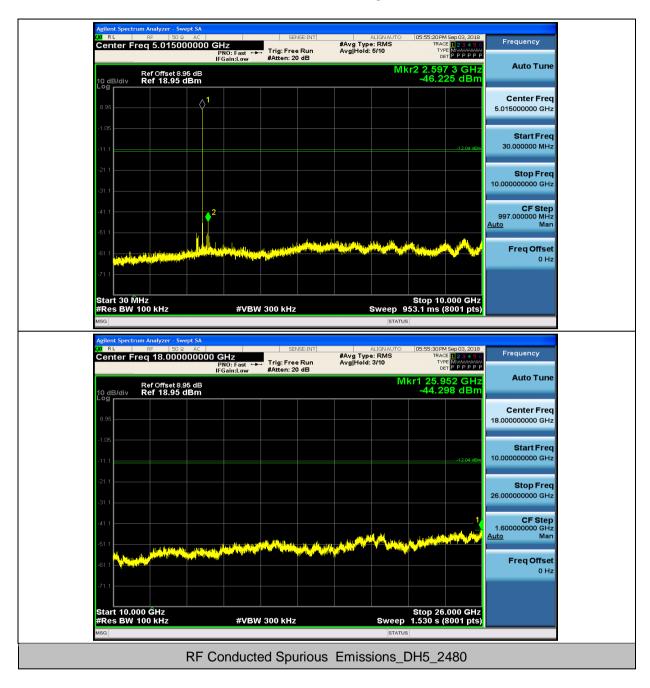

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
DH5	2402	30	10000	100	300	7.29	-45.69	<- 12.71	PASS
DH5	2402	10000	26000	100	300	7.286	-43.59	<- 12.71	PASS
DH5	2441	30	10000	100	300	7.97	-46.23	<- 12.04	PASS
DH5	2441	10000	26000	100	300	7.965	-44.30	<- 12.04	PASS
DH5	2480	30	10000	100	300	7.94	-47.75	<- 12.06	PASS
DH5	2480	10000	26000	100	300	7.941	-43.69	<- 12.06	PASS
2DH5	2402	30	10000	100	300	6.70	-47.75	<- 13.30	PASS
2DH5	2402	10000	26000	100	300	6.7	-44.23	<- 13.30	PASS
2DH5	2441	30	10000	100	300	7.43	-47.98	<- 12.57	PASS
2DH5	2441	10000	26000	100	300	7.429	-43.54	<- 12.57	PASS
2DH5	2480	30	10000	100	300	7.39	-48.92	<- 12.61	PASS
2DH5	2480	10000	26000	100	300	7.39	-43.93	<- 12.61	PASS
3DH5	2402	30	10000	100	300	7.06	-49.84	<- 12.95	PASS
3DH5	2402	10000	26000	100	300	7.055	-43.73	<- 12.95	PASS
3DH5	2441	30	10000	100	300	7.74	-49.91	<- 12.26	PASS
3DH5	2441	10000	26000	100	300	7.742	-43.76	<- 12.26	PASS
3DH5	2480	30	10000	100	300	7.82	-48.66	<- 12.18	PASS
3DH5	2480	10000	26000	100	300	7.821	-43.71	<- 12.18	PASS

1(86-21) 61915666 1(86-21) 61915678 www.sgsgroup.com.cn 1(86-21) 61915666 1(86-21) 61915678 e sgs.china@sgs.com

Branch

Report No.: SHEM180500427001 Page: 88 of 101

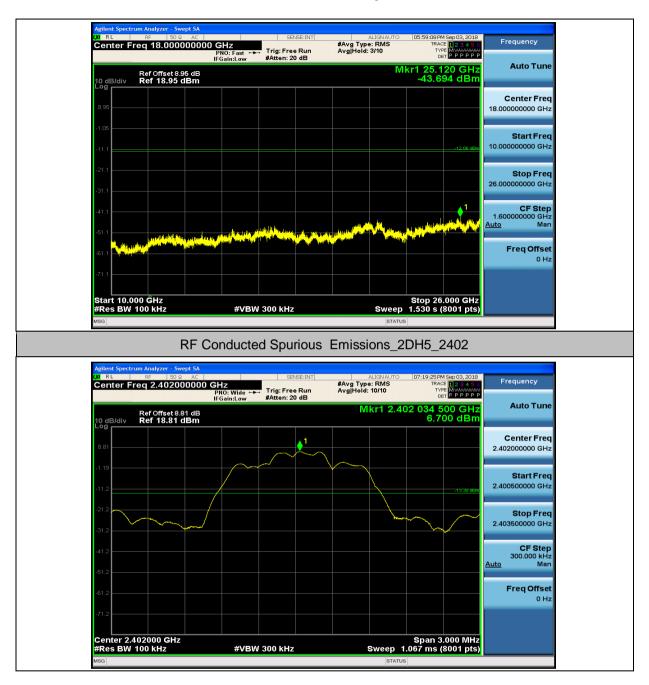
Branch


Report No.: SHEM180500427001 Page: 89 of 101

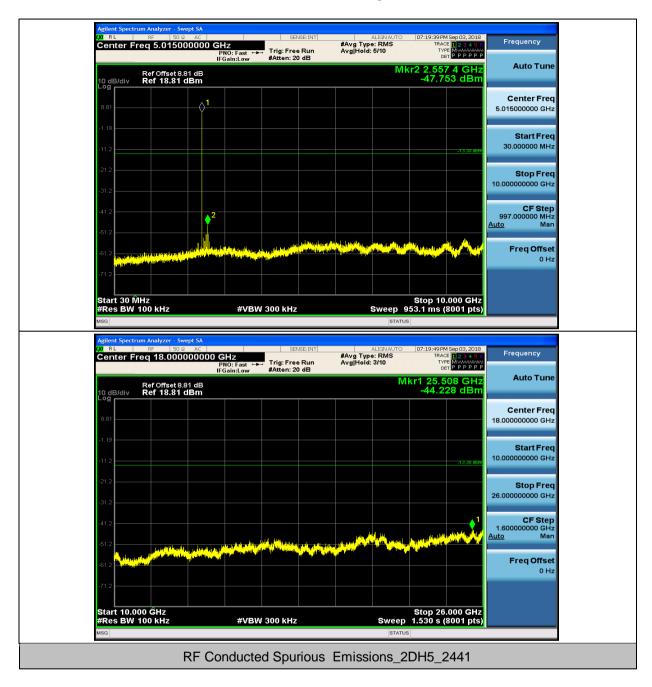
Branch

Report No.: SHEM180500427001 Page: 90 of 101

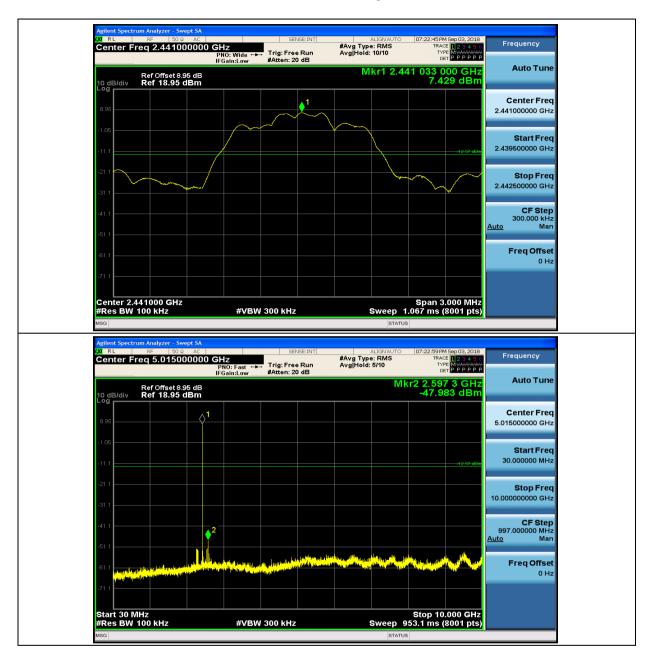
Branch


Report No.: SHEM180500427001 Page: 91 of 101

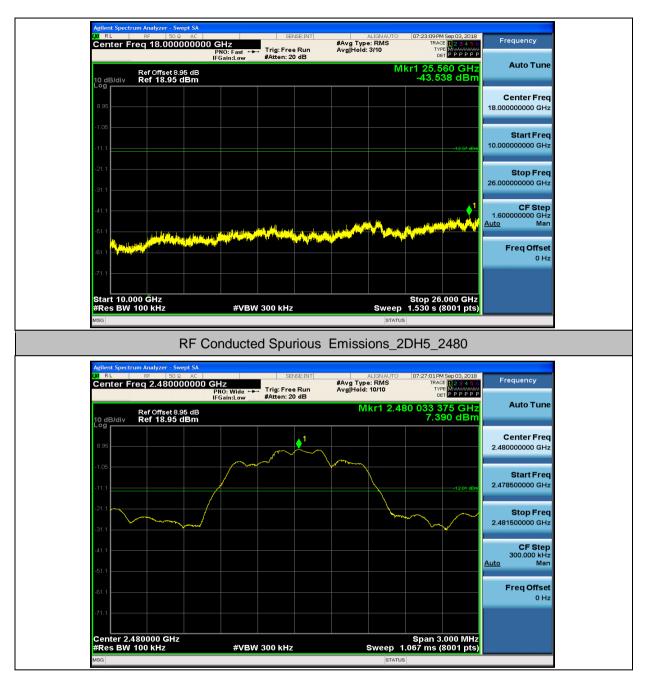
Branch


Report No.: SHEM180500427001 Page: 92 of 101

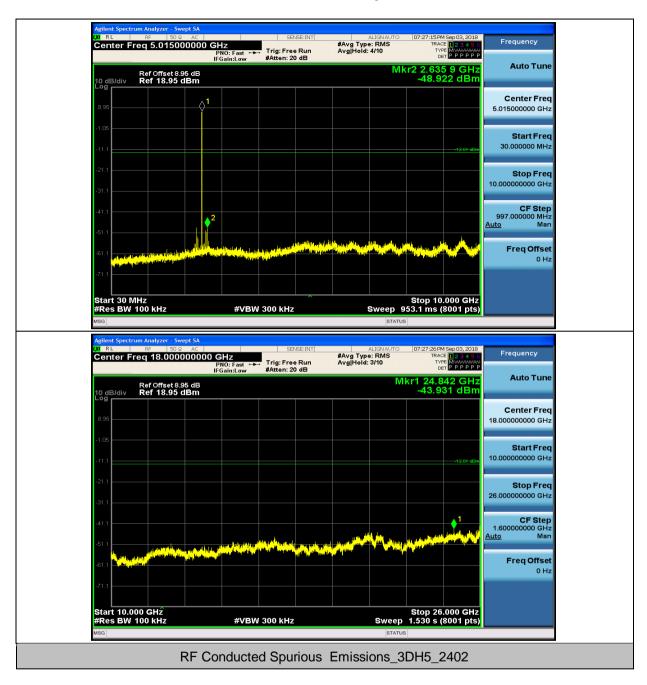
Branch


Report No.: SHEM180500427001 Page: 93 of 101

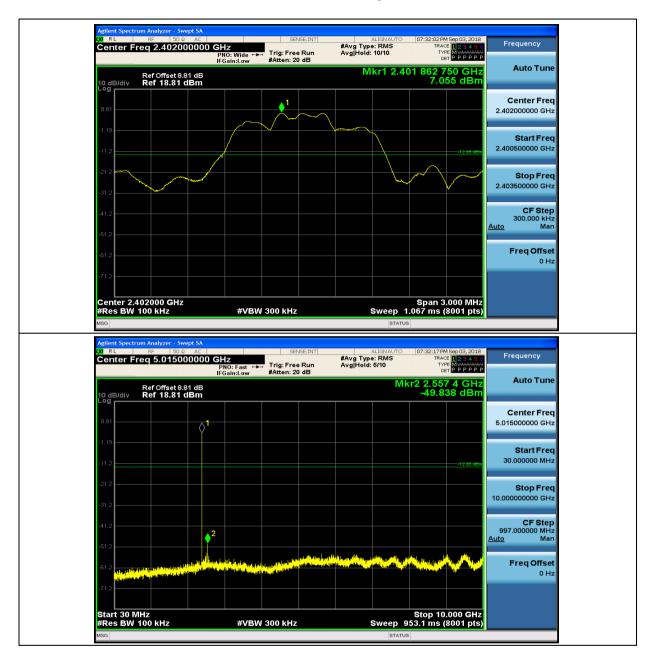
Branch


Report No.: SHEM180500427001 Page: 94 of 101

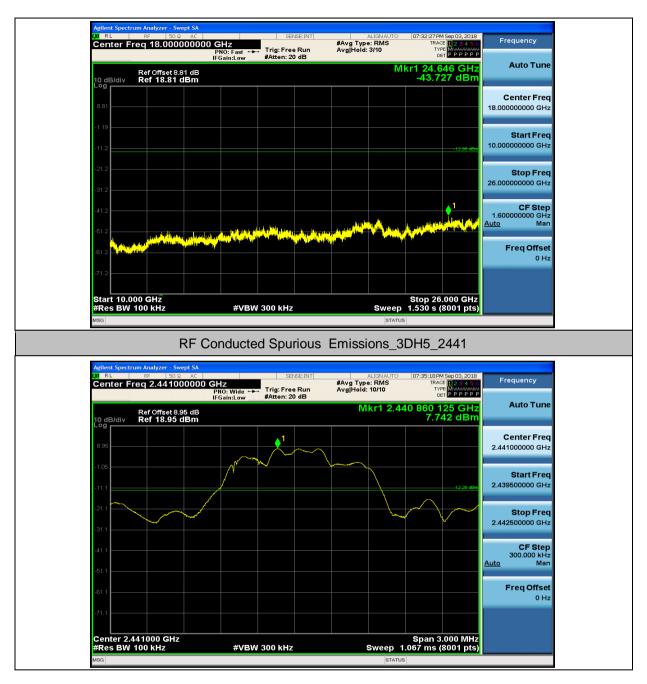
Branch


Report No.: SHEM180500427001 Page: 95 of 101

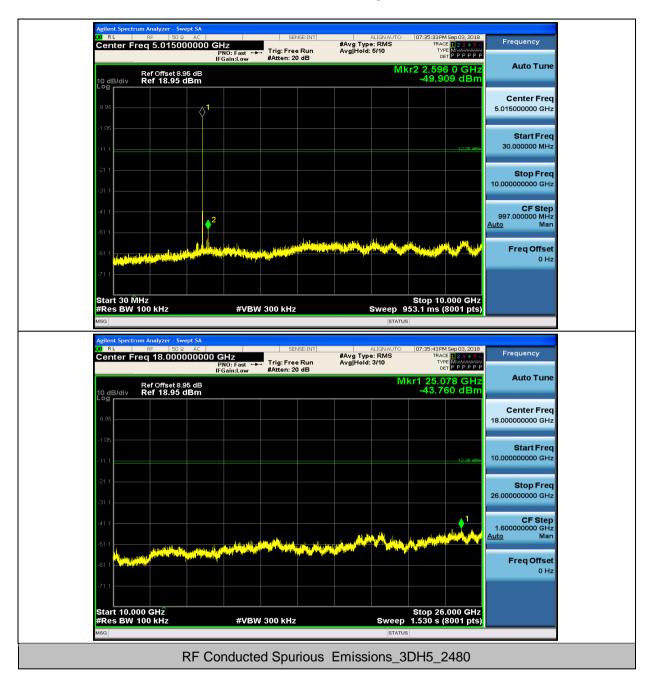
Branch


Report No.: SHEM180500427001 Page: 96 of 101

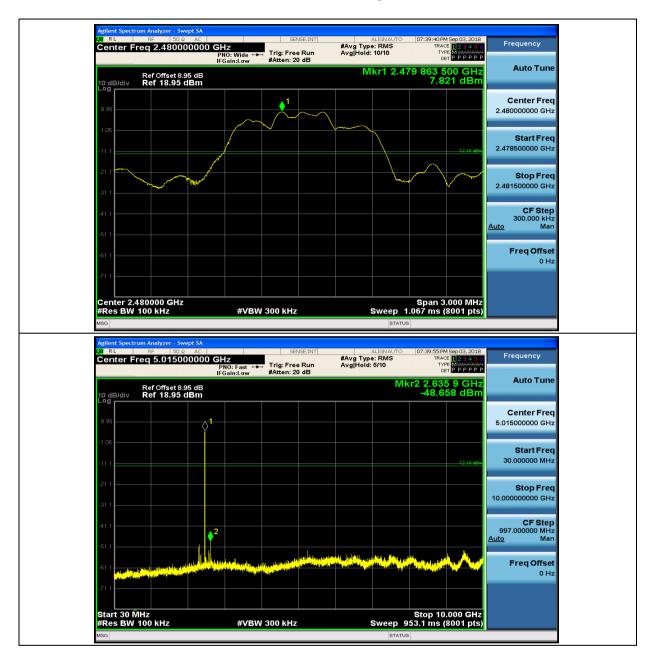
Branch


Report No.: SHEM180500427001 Page: 97 of 101

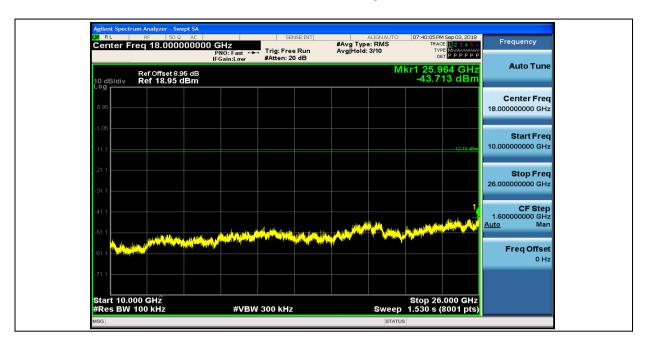
Branch


Report No.: SHEM180500427001 Page: 98 of 101

Branch


Report No.: SHEM180500427001 Page: 99 of 101

Branch


Report No.: SHEM180500427001 Page: 100 of 101

Branch

Report No.: SHEM180500427001 Page: 101 of 101

- End of the Report -

Member of the SGS Group (SGS SA)