

# **EMC TEST REPORT**

(FULL COMPLIANCE)

**Report Number:** 103097968BOX-024 **Project Number:** G103097968

Report Issue Date: 09/24/2017

Model(s) Tested: Mx Encoder Model(s) Partially Tested: None Model(s) Not Tested but declared equivalent by the client: None

> Standards: CFR47 FCC Part 15 Subpart C (15.247): 09/2017 CFR47 FCC Part 15 Subpart B: 09/2017

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 USA Client: Simbex 10 Water Street Suite 410 Lebanon, NH 03766 USA

Report prepared by Naga Suryadevara

Naga Suryadevara/EMC Project Engineer

Report reviewed by Kouma Sinn

A A

Kouma Sinn/Staff Engineer, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

# Table of Contents

| 1  | Introduction and Conclusion                            | } |
|----|--------------------------------------------------------|---|
| 2  | Test Summary                                           | } |
| 3  | Client Information4                                    | ļ |
| 4  | Description of Equipment Under Test and Variant Models | ļ |
| 5  | System Setup and Method                                | 5 |
| 6  | Maximum Peak Power and Human RF exposure7              | 7 |
| 7  | Occupied Bandwidth and 6dB Bandwidth11                 | I |
| 8  | Power Spectral Density                                 | ; |
| 9  | Conducted Spurious and Band Edge Emissions19           | ) |
| 10 | Transmitter Spurious Emissions28                       | 3 |
| 11 | Digital Device Radiated Spurious Emissions46           | ; |
| 12 | Revision History                                       | ļ |

# 1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

## 2 Test Summary

| Section | Test full name                                                                                | Result |
|---------|-----------------------------------------------------------------------------------------------|--------|
| 3       | Client Information                                                                            |        |
| 4       | Description of Equipment Under Test and Variant Models                                        |        |
| 5       | System Setup and Method                                                                       |        |
| 6       | Output Power and Human RF Exposure<br>(CFR47 FCC Part 15 Subpart C (15.247): 09/2017)         | Pass   |
| 7       | Occupied (99%) and 6 dB Bandwidth<br>(CFR47 FCC Part 15 Subpart C (15.247): 09/2017)          | Pass   |
| 8       | Power Spectral Density<br>(CFR47 FCC Part 15 Subpart C (15.247): 09/2017)                     | Pass   |
| 9       | Conducted Spurious and Band edge emissions<br>(CFR47 FCC Part 15 Subpart C (15.247): 09/2017) | Pass   |
| 10      | Transmitter Spurious Emissions<br>(CFR47 FCC Part 15 Subpart C (15.247): 09/2017)             | Pass   |
| 11      | Digital Device Radiated Spurious Emissions<br>(CFR47 FCC Part 15 Subpart B: 09/2017)          | Pass   |
|         | AC Mains Conducted Emissions<br>(CFR47 FCC Part 15 Subpart B: 09/2017)                        | N/A*   |
| 12      | Revision History                                                                              |        |

\*Device is battery powered.

# 3 Client Information

#### This EUT was tested at the request of:

| Client:    | Simbex<br>10 Water Street Suite 410<br>Lebanon, NH 03766<br>USA |  |  |
|------------|-----------------------------------------------------------------|--|--|
| Contact:   | Spencer Brugger                                                 |  |  |
| Telephone: | 603-448-2367 x 395                                              |  |  |
| Fax:       | None                                                            |  |  |
| Email:     | sbrugger@simbex.com                                             |  |  |

## 4 Description of Equipment Under Test and Variant Models

| Manufacturer: | Simbex                    |
|---------------|---------------------------|
|               | 10 Water Street Suite 410 |
|               | Lebanon, NH 03766         |
|               | USA                       |

| Equipment Under Test                                |        |    |             |  |  |
|-----------------------------------------------------|--------|----|-------------|--|--|
| Description Manufacturer Model Number Serial Number |        |    |             |  |  |
| Mx Encoder                                          | Simbex | Mx | 00217F15-01 |  |  |

| Receive Date:       | 06/14, 08/04/2017 |
|---------------------|-------------------|
| Received Condition: | Good              |
| Type:               | Production        |

Description of Equipment Under Test (provided by client) The EUT is an Mx Encoder

| Equipment Under Test Power Configuration                     |          |     |     |  |  |
|--------------------------------------------------------------|----------|-----|-----|--|--|
| Rated Voltage Rated Current Rated Frequency Number of Phases |          |     |     |  |  |
| 3.6 VDC                                                      | 1000 mAh | N/A | N/A |  |  |

#### Operating modes of the EUT:

| No. | Descriptions of EUT Exercising       |
|-----|--------------------------------------|
| 1   | Tx mode on Low Mid and High channels |
| 2   | Rx mode                              |

### Software used by the EUT:

| No. | Descriptions of EUT Exercising |
|-----|--------------------------------|
| 1   | Not Provided                   |

| Radio/Receiver Characteristics           |                                                          |  |  |
|------------------------------------------|----------------------------------------------------------|--|--|
| Frequency Band(s)                        | 2412-2462 MHz                                            |  |  |
| Modulation Type(s)                       | OFDM (802.11n)                                           |  |  |
| Data Rate                                | 65 Mbps                                                  |  |  |
| Maximum Output Power                     | 19.42 dBm                                                |  |  |
| Test Channels                            | Low (2412 MHz), Mid (2437 MHz), High channels (2462 MHz) |  |  |
| Occupied Bandwidth                       | 18.30 MHz                                                |  |  |
| Frequency Hopper: Number of Hopping      | N/A                                                      |  |  |
| Channels                                 |                                                          |  |  |
| Frequency Hopper: Channel Dwell Time     | N/A                                                      |  |  |
| Frequency Hopper: Max interval between   | N/A                                                      |  |  |
| two instances of use of the same channel |                                                          |  |  |
| MIMO Information (# of Transmit and      | N/A                                                      |  |  |
| Receive antenna ports)                   |                                                          |  |  |
| Equipment Type                           | Radio Module                                             |  |  |
| ETSI LBT/Adaptivity                      | N/A                                                      |  |  |
| ETSI Adaptivity Type                     | N/A                                                      |  |  |
| ETSI Temperature Category (I, II, III)   | N/A                                                      |  |  |
| ETSI Receiver Category (1, 2, 3)         | N/A                                                      |  |  |
| Antenna Type and Gain                    | Integral (1.9 dBi)                                       |  |  |

## Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

#### None

## 5 System Setup and Method

| Cables |             |               |           |          |             |
|--------|-------------|---------------|-----------|----------|-------------|
| ID     | Description | Length<br>(m) | Shielding | Ferrites | Termination |
|        | None        |               |           |          |             |

| Support Equipment |              |              |               |  |  |
|-------------------|--------------|--------------|---------------|--|--|
| Description       | Manufacturer | Model Number | Serial Number |  |  |
| None              |              |              |               |  |  |

## 5.1 Method:

Configuration as required by FCC Part 15 Subpart B: 2017, FCC Part 15 Subpart C: 2017, ANSI C63.4:2014 and ANSI C63.10.2013.

# 5.2 EUT Block Diagram:



Battery power

## 6 Maximum Peak Power and Human RF exposure

## 6.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247 and ANSI C63.10.

#### TEST SITE: EMC Lab

**The EMC Lab** has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

#### 6.2 Test Equipment Used:

| Asset           | Description                        | Manufacturer      | Model  | Serial      | Cal Date   | Cal Due    |
|-----------------|------------------------------------|-------------------|--------|-------------|------------|------------|
| ROS005'         | ETSI Test System                   | Rhode & Schwartz  | TS8997 | N/A         | 09/15/2016 | 09/15/2017 |
| DAV004'         | Weather Station                    | Davis Instruments | 7400   | PE80529A61A | 05/10/2017 | 05/10/2018 |
| CBLHF2012-2M-1' | 2m 9kHz-40GHz Coaxial Cable - SET1 | Huber & Suhner    | SF102  | 252675001   | 02/08/2017 | 02/08/2018 |

#### Software Utilized:

| Name | Manufacturer | Version |
|------|--------------|---------|
| None |              |         |

### 6.3 Results:

The sample tested was found to Comply.

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt or 30 dBm.

# Intertek

## 6.4 Plots/Data:



Date: 13.SEP.2017 16:58:30



Mid Channel (2462 MHz) Output Power = 17.89 dBm

Intertek

Date: 13.SEP.2017 10:55:12

### Issued: 09/24/2017

#### Human RF Exposure

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]  $\cdot \left[\sqrt{f_{(GHz)}}\right] \le 3.0$  for 1-g SAR, and  $\le 7.5$  for 10-g extremity SAR,<sup>30</sup> where

• f(GHz) is the RF channel transmit frequency in GHz

Maximum Output Power = 19.42 dBm @ 2437 MHz = 87.49 mW

Maximum duty cycle of the product during normal operation declared by the manufacturer = 0.02

Pavg = Peak Power\*Duty Cycle = 87.49\*0.02 = 1.74 mW

#### SAR = 0.53 < 3.0

Device meets SAR exclusion through calculation.

| Test Personnel:<br>Supervising/Reviewing | Naga Suryadevara N 5   | Test Date:            | 09/13/2017                  |
|------------------------------------------|------------------------|-----------------------|-----------------------------|
| Engineer:                                | N/A                    |                       |                             |
| Product Standard:                        | FCC Part 15 Subpart C  | Limit Applied:        | As specified in section 6.3 |
| Input Voltage:                           | 3.3 VDC                |                       |                             |
| Pretest Verification w/                  |                        | Ambient Temperature:  | 22ºC                        |
| BB Source:                               | Yes – Signal generator | Relative Humidity:    | 44 %                        |
|                                          |                        | Atmospheric Pressure: | 1003 mbars                  |
|                                          |                        |                       |                             |

Deviations, Additions, or Exclusions: None

# 7 Occupied Bandwidth and 6dB Bandwidth

## 7.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247 and ANSI C63.10.

#### TEST SITE: EMC Lab

**The EMC Lab** has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

### 7.2 Test Equipment Used:

| Asset           | Description                        | Manufacturer      | Model  | Serial      | Cal Date   | Cal Due    |
|-----------------|------------------------------------|-------------------|--------|-------------|------------|------------|
| ROS005'         | ETSI Test System                   | Rhode & Schwartz  | TS8997 | N/A         | 09/15/2016 | 09/15/2017 |
| DAV004'         | Weather Station                    | Davis Instruments | 7400   | PE80529A61A | 05/10/2017 | 05/10/2018 |
| CBLHF2012-2M-1' | 2m 9kHz-40GHz Coaxial Cable - SET1 | Huber & Suhner    | SF102  | 252675001   | 02/08/2017 | 02/08/2018 |

#### Software Utilized:

| Name | Manufacturer | Version |
|------|--------------|---------|
| None |              |         |

## 7.3 Results:

The sample tested was found to Comply.

§15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### Issued: 09/24/2017

## 7.4 Plots/Data:



Intertek

Date: 13.SEP.2017 13:10:19

#### Low Channel (2412 MHz) 6dB Bandwidth = 18.30 MHz



Date: 13.SEP.2017 13:11:16



Date: 13.SEP.2017 17:00:04



Mid Channel (2437 MHz) 6dB Bandwidth = 18.10 MHz

Date: 13.SEP.2017 17:01:19



High Channel (2462 MHz) Occupied Bandwidth = 17.86 MHz

Date: 13.SEP.2017 10:47:49





Date: 13.SEP.2017 10:45:48

|                                  |                        | Intertek              |                             |
|----------------------------------|------------------------|-----------------------|-----------------------------|
| Report Number: 103               | 3097968BOX-024         |                       | Issued: 09/24/2017          |
|                                  |                        |                       |                             |
| Test Personnel                   | Naga Survadavara N.5   | Test Date:            | 00/13/2017                  |
| Supervising/Reviewing            | Naga Sulyadevala ( 4 S |                       | 03/13/2011                  |
| Engineer:                        | Ν/Δ                    |                       |                             |
| Product Standard:                | FCC Part 15 Subpart C  | Limit Applied:        | As specified in section 7.3 |
| Input Voltage:                   | 3.3 VDC                |                       |                             |
| Pretest Verification w/          |                        | Ambient Temperature:  | 22°C                        |
| Ambient Signals or<br>BB Source: | Yes – Signal generator | Relative Humidity:    | 44 %                        |
|                                  |                        | Atmospheric Pressure: | 1003 mbars                  |
|                                  |                        |                       |                             |

Deviations, Additions, or Exclusions: None

# 8 **Power Spectral Density**

## 8.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247 and ANSI C63.10.

### TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

### 8.2 Test Equipment Used:

| Asset           | Description                        | Manufacturer      | Model  | Serial      | Cal Date   | Cal Due    |
|-----------------|------------------------------------|-------------------|--------|-------------|------------|------------|
| ROS005'         | ETSI Test System                   | Rhode & Schwartz  | TS8997 | N/A         | 09/15/2016 | 09/15/2017 |
| DAV004'         | Weather Station                    | Davis Instruments | 7400   | PE80529A61A | 05/10/2017 | 05/10/2018 |
| CBLHF2012-2M-1' | 2m 9kHz-40GHz Coaxial Cable - SET1 | Huber & Suhner    | SF102  | 252675001   | 02/08/2017 | 02/08/2018 |

#### Software Utilized:

| Name | Manufacturer | Version |
|------|--------------|---------|
| None |              |         |

## 8.3 Results:

The sample tested was found to Comply.

§15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

## 8.4 Plots/Data:



| Att        | 10 dB SWT       | 1.02 ms 🖷 VBW   | 300 kHz Mod       | le Auto Sweep          |                           |                                          |            |           |                        |
|------------|-----------------|-----------------|-------------------|------------------------|---------------------------|------------------------------------------|------------|-----------|------------------------|
| 1 Frequenc | y Sweep         |                 |                   |                        |                           |                                          |            |           | ⊙2Pk Max               |
|            |                 |                 |                   |                        |                           |                                          | M1         | [2]       | -1.86 dBn              |
| 20 dBm     |                 |                 |                   |                        |                           |                                          |            |           | 2,4395020 GH           |
| 10 dBm     |                 |                 |                   |                        |                           |                                          |            |           |                        |
|            |                 |                 |                   |                        |                           |                                          |            |           |                        |
| 0 dBm      | -3.000 dBm      |                 |                   | when have been been as | M1                        |                                          |            |           |                        |
| -10 dBm    |                 |                 |                   | Hat Managements of     | lan Jera di Inalita Anast | 4                                        |            |           |                        |
|            |                 |                 |                   |                        |                           |                                          |            |           |                        |
| -20 dBm    |                 |                 | - W               |                        |                           | h.                                       |            |           |                        |
| -30 dBm    |                 |                 | nort              |                        |                           | hy h |            |           |                        |
|            |                 |                 | Manne             |                        |                           | Why                                      |            |           |                        |
| -40 dBm    |                 | AMM May May 100 | (b <sup>rad</sup> |                        |                           |                                          | Www.WMhine |           |                        |
| -50 dBm    | Mr. Why with My | ADVI:           |                   |                        |                           |                                          | wy.        | Munundyna | 4 Here the Joyly Marti |
| -60 dBm    |                 |                 |                   |                        |                           |                                          |            |           |                        |
|            |                 |                 |                   |                        |                           |                                          |            |           |                        |
| -70 dBm    |                 |                 |                   |                        |                           |                                          |            |           |                        |
| CF 2.437 G | Hz              |                 | 1001 pt           | S                      | 8.                        | 35 MHz/                                  |            |           | Span 83.5 MHz          |

Date: 13.SEP.2017 16:59:26

| Fighter of the second s | 🕤 Spectrun                                                                                                                                                 | ı                                                     |                              |                  |                       |                                              |                                                                                 |                                           |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|------------------|-----------------------|----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|
| Ref Level 16.0<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 dBm<br>26 dB <b>SWT</b>                                                                                                                                  | ● RE<br>1.02 ms ● VE                                  | 3W 100 kHz<br>3W 300 kHz Mod | le Auto Sweep    |                       |                                              |                                                                                 |                                           |                             |
| 1 Frequency S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | weep                                                                                                                                                       |                                                       |                              |                  |                       |                                              |                                                                                 |                                           | © 2Pk Max                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 | M1[2]                                     | -5.57 dBr<br>2.4645040 GH   |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                       |                              |                  | M1                    |                                              |                                                                                 |                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       |                              | when higher when | when broken deed when |                                              |                                                                                 |                                           |                             |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                       |                              | /                |                       |                                              |                                                                                 |                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       |                              |                  | 1                     |                                              |                                                                                 |                                           |                             |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                       | Í                            |                  |                       | 1                                            |                                                                                 |                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       | J.                           |                  |                       | hu.                                          |                                                                                 |                                           |                             |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                       | المار                        |                  |                       | hu,                                          |                                                                                 |                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       | had water                    |                  |                       | Mader                                        |                                                                                 |                                           |                             |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | endehen warmente                                                                                                                                           | Muderla Harth Mal                                     | war war                      |                  |                       | May                                          | mulumpature                                                                     | Mush. rown or mel                         | munterview                  |
| alma-nd adno-A date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P0000- 0 ~                                                                                                                                                 | 1                                                     |                              |                  |                       |                                              |                                                                                 |                                           |                             |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
| oo daa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |                                                       |                              |                  |                       |                                              |                                                                                 |                                           |                             |
| -ou ubili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |                                                       | 1001                         |                  |                       |                                              |                                                                                 |                                           |                             |
| 05 0 460 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                       | 1001 p                       | ts               | 8.                    | 36 MHZ/                                      |                                                                                 | 5                                         | pan 83.56 MH:<br>13.09.2017 |
| CF 2.462 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                       | Instrumont u                 |                  |                       |                                              | measuring                                                                       |                                           | 10.40.01                    |
| CF 2.462 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 10:49:01                                                                                                                                                 |                                                       | Instrument w                 | arning up        |                       | . ,                                          |                                                                                 |                                           | 10/15/01                    |
| CF 2.462 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 10:49:01                                                                                                                                                 |                                                       | Instrument w                 | winning up       |                       |                                              |                                                                                 |                                           |                             |
| CF 2.462 GHz<br>Date: 13.SEP.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 10:49:01                                                                                                                                                 |                                                       | Instrument w                 | anning ap        |                       |                                              | t Deter                                                                         | 0/40/0047                                 | 101101                      |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 10:49:01                                                                                                                                                 | aga Suryad                                            | devara N·5                   | unning op        |                       | Tes                                          | t Date: _0                                                                      | 9/13/2017                                 |                             |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 10:49:01                                                                                                                                                 | aga Suryad                                            | devara N·5                   |                  |                       | Tes                                          | t Date: _0                                                                      | 9/13/2017                                 |                             |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Eng<br>Where Appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 10:49:01<br>connel: <u>Na</u><br>iewing<br>jineer:<br>icable) N                                                                                          | aga Suryad                                            | devara N·5                   |                  |                       | Tes                                          | t Date: _ 09                                                                    | 9/13/2017                                 |                             |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Enc<br>Where Appli<br>Product Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 10:49:01<br>connel: <u>N</u><br>iewing<br>jineer:<br>icable) <u>N</u><br>ndard: F(                                                                       | aga Suryad<br>/A<br>CC Part 15                        | devara N·5                   |                  |                       | Tes<br>Limit A                               | t Date: <u>09</u><br>pplied: A                                                  | 9/13/2017<br>s specified ir               | section 8.3                 |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Eng<br>Where Appli<br>Product Star<br>Input Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 10:49:01<br>connel: <u>N</u><br>iewing<br>gineer:<br>icable) <u>N</u><br>ndard: <u>F(</u><br>oltage: <u>3</u> .                                          | aga Suryad<br>/A<br>CC Part 15<br>3 VDC               | devara N·5                   |                  |                       | Tes<br>Limit A                               | t Date: <u>05</u><br>pplied: <u>A</u>                                           | 9/13/2017<br>s specified ir               | n section 8.3               |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Eng<br>Where Appli<br>Product Star<br>Input Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 10:49:01<br>connel: <u>N:</u><br>iewing<br>gineer:<br>icable) <u>N.</u><br>ndard: <u>F(</u><br>bltage: <u>3.</u>                                         | aga Suryad<br>/A<br>CC Part 15<br>3 VDC               | devara N·5                   |                  |                       | Tes<br>Limit A                               | t Date: <u>05</u><br>pplied: <u>A</u>                                           | 9/13/2017<br>s specified in               | n section 8.3               |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Eng<br>Where Appli<br>Product Star<br>Input Vo<br>test Verificat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T 10:49:01<br>connel: <u>N</u><br>iewing<br>gineer:<br>icable) <u>N</u><br>ndard: <u>F(</u><br>oltage: <u>3</u> .                                          | aga Suryad<br>/A<br>CC Part 15<br>3 VDC               | devara N-5                   |                  | Amt                   | Tes<br>Limit A                               | t Date: <u>09</u><br>pplied: <u>A</u>                                           | 9/13/2017<br>s specified in<br>2ºC        | section 8.3                 |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Eng<br>Where Appli<br>Product Star<br>Input Vo<br>test Verificat<br>Ambient Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T 10:49:01<br>connel: <u>N</u><br>iewing<br>gineer:<br>icable) <u>N</u><br>ndard: <u>F(</u><br>oltage: <u>3</u><br>tion w/<br>nals or                      | aga Suryad<br>/A<br>CC Part 15<br>3 VDC               | devara N·5                   |                  | Amt                   | Tes<br>Limit A<br>sient Tempe                | t Date: 09                                                                      | 9/13/2017<br>s specified in<br>2ºC        | section 8.3                 |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Eng<br>Where Appli<br>Product Sta<br>Input Vo<br>test Verificat<br>Ambient Sigr<br>BB S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T 10:49:01<br>connel: <u>N</u><br>iewing<br>gineer:<br>icable) <u>N</u><br>ndard: <u>F(</u><br>oltage: <u>3</u><br>tion w/<br>nals or<br>ource: <u>Y(</u>  | aga Suryad<br>/A<br>CC Part 15<br>3 VDC<br>es – Signa | devara N·5                   |                  | Amt                   | Tes<br>Limit A<br>vient Tempe<br>Relative Hu | t Date: <u>09</u><br>pplied: <u>A</u><br>rature: <u>22</u><br>midity: <u>4</u>  | 9/13/2017<br>s specified in<br>2ºC        | n section 8.3               |
| CF 2.462 GHz<br>Date: 13.SEP.201<br>Test Pers<br>ervising/Revi<br>Eng<br>Where Appli<br>Product Star<br>Input Vo<br>test Verificat<br>Ambient Sigr<br>BB S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 10:49:01<br>connel: <u>N</u><br>iewing<br>gineer:<br>icable) <u>N</u><br>ndard: <u>F(</u><br>oltage: <u>3</u> .<br>tion w/<br>nals or<br>ource: <u>Y</u> | aga Suryad<br>/A<br>CC Part 15<br>3 VDC<br>es – Signa | devara N·5                   |                  | Amb                   | Tes<br>Limit A<br>vient Tempe<br>Relative Hu | t Date: <u>09</u><br>pplied: <u>A</u><br>rature: <u>22</u><br>midity: <u>44</u> | 9/13/2017<br>s specified in<br>2ºC<br>4 % | section 8.3                 |

~ • • - ---

Deviations, Additions, or Exclusions: None

# 9 Conducted Spurious and Band Edge Emissions

## 9.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247 and ANSI C63.10.

### TEST SITE: EMC Lab

**The EMC Lab** has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

### 9.2 Test Equipment Used:

| Asset           | Description                        | Manufacturer      | Model  | Serial      | Cal Date   | Cal Due    |
|-----------------|------------------------------------|-------------------|--------|-------------|------------|------------|
| ROS005'         | ETSI Test System                   | Rhode & Schwartz  | TS8997 | N/A         | 09/15/2016 | 09/15/2017 |
| DAV004'         | Weather Station                    | Davis Instruments | 7400   | PE80529A61A | 05/10/2017 | 05/10/2018 |
| CBLHF2012-2M-1' | 2m 9kHz-40GHz Coaxial Cable - SET1 | Huber & Suhner    | SF102  | 252675001   | 02/08/2017 | 02/08/2018 |

#### Software Utilized:

| Name | Manufacturer | Version |
|------|--------------|---------|
| None |              |         |

## 9.3 Results:

The sample tested was found to Comply.

§15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

#### Issued: 09/24/2017

## 9.4 Plots/Data:



Intertek

Date: 13.SEP.2017 13:13:11



| MultiView 8         | Spectrum                       |                        |                                        |                |              |                       |             |             |                                                                                                                 |
|---------------------|--------------------------------|------------------------|----------------------------------------|----------------|--------------|-----------------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------|
| RefLevel 105<br>Att | 5.00 dBµV<br>10 dB <b>SW</b> 1 | ■ RE<br>T 1.02 ms ■ VE | 3W 100 kHz<br>SW 300 kHz M             | ode Auto Sweep |              |                       |             |             |                                                                                                                 |
| TDF                 |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
| 1 Frequency Sv      | weep                           |                        |                                        |                |              |                       | м           | 1[2]        | O 2Pk Max<br>102 72 dBut                                                                                        |
| 130 dBuV            |                                |                        |                                        |                |              |                       |             | ILZJ        | 2.4144730 GHz                                                                                                   |
|                     |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
|                     |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
| 120 dBµV            |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
|                     |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
| 110 dBµV            |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
|                     | 105 000 dBu                    |                        |                                        |                |              |                       |             |             |                                                                                                                 |
| اساليه العاليس مع   | and what and be level a        | had it is              |                                        |                |              |                       |             |             |                                                                                                                 |
| TOD OPHIAN OPHIAN   | - Crowd Leo Are C.C.           | 1 CONTRACT             |                                        |                |              |                       |             |             |                                                                                                                 |
|                     |                                | {                      |                                        |                |              |                       |             |             |                                                                                                                 |
| 90 dвµ∨             | 0                              |                        |                                        |                |              |                       |             |             |                                                                                                                 |
|                     |                                | (                      |                                        |                |              |                       |             |             |                                                                                                                 |
|                     |                                | <u> </u>               |                                        |                |              |                       |             |             |                                                                                                                 |
| - MI                |                                | V,                     |                                        |                |              |                       |             |             |                                                                                                                 |
| 10                  |                                | \u                     |                                        |                |              |                       |             |             |                                                                                                                 |
| 70 dBμV             |                                |                        | 1                                      |                |              |                       |             |             |                                                                                                                 |
|                     |                                |                        | 1100                                   |                |              |                       |             |             |                                                                                                                 |
| 60 dBµV             |                                |                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                |              |                       |             |             |                                                                                                                 |
|                     |                                |                        | William                                | elen.          | l            |                       |             |             | h a h uhr                                                                                                       |
|                     |                                |                        |                                        | "Mumphulushard | hanglymallur | wanter why why prendy | Luganana    | hunghillion | hand a |
| 50 авру             |                                |                        |                                        |                |              |                       | <u> </u>    |             |                                                                                                                 |
|                     |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
| 40 dBµV             |                                |                        |                                        |                |              |                       |             |             |                                                                                                                 |
|                     |                                |                        | 1001                                   |                |              |                       |             |             | 0.4005.011                                                                                                      |
| 2.4 GHZ             |                                |                        | 1001 pt                                | s              | 8.           | .35 MHZ/              |             |             | 2.4835 GHz                                                                                                      |
|                     |                                |                        |                                        |                |              |                       | Measuring 🔳 |             | 13:13:42                                                                                                        |

Date: 13.SEP.2017 13:13:42

 $\square$ 

Low Channel (2412 MHz) Conducted Spurious Emissions 2.4835 GHz – 10 GHz

Intertek

| MultiView                  | B) Spectrum                  |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
|----------------------------|------------------------------|------------------------|--------------------------------|--------------------|--------------|------------------------------------|-------------------|----------|------------------------------------------------------------------------------------------------------------------|
| RefLevel 103<br>Att<br>TDF | 5.00 dBµV<br>10 dB <b>SW</b> | ● RB<br>T 75.2 ms ● VB | W 100 kHz<br>W 300 kHz Mo      | ode Auto Sweep     |              |                                    |                   |          |                                                                                                                  |
| 1 Frequency S              | weep                         |                        |                                |                    |              |                                    |                   |          | ⊜2Pk Max                                                                                                         |
| 100 40-04                  |                              |                        |                                |                    |              |                                    | м                 | 1[2]     | 58.06 dBµV                                                                                                       |
| 130 0800-                  |                              |                        |                                |                    |              |                                    |                   |          | 5121500 0112                                                                                                     |
| 120 dBµV                   |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 110 dBµV                   |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
|                            | -105.000 dBµV                |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 100 dBµV                   |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 90 dBuV                    |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
|                            |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 80 dBµV                    |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 70 dBµV                    |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
|                            |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 60 dBµV                    |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| M                          |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 501dByv-<br>nhrthwyryywr,n | gramman grand from           | -                      | and the business of the second | nullprulowenderver | wanterparter | gether demonstration of the second | when when when we | Mahamman | international and the second |
| 40 dBµV                    |                              |                        |                                |                    |              |                                    |                   |          |                                                                                                                  |
| 2.4835 GHz                 | 1                            | 1                      | 1001 pt                        | S                  | 75:          | 1.65 MHz/                          | 1                 | 1        | 10.0 GHz                                                                                                         |
|                            | ][]                          |                        |                                |                    |              |                                    | Measuring 【       |          | 13.09.2017<br>13:14:08                                                                                           |

Date: 13.SEP.2017 13:14:08



| MultiView     | B Spectrum                |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
|---------------|---------------------------|------------------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------|-----------------|-----------------------------|-------------------|-------------------------|
| Ref Level 103 | 5.00 dBµV                 | • RB             | N 100 kHz        | de Auto Guiana                                                                                                  |             |                 |                             |                   |                         |
| TDF           |                           | 150 ms - VBV     | V SUURHZ NO      | de Auto Sweep                                                                                                   |             |                 |                             |                   |                         |
| 1 Frequency S | weep                      |                  |                  |                                                                                                                 |             |                 | MI                          | [2]               | ○ 2Pk Max<br>57 20 dBuy |
| 130 dBµV      |                           |                  |                  |                                                                                                                 |             |                 |                             | [2]<br>           | 24.6180 GHz             |
| 120 dBµV      |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 110 dBµV      |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 100 dBuV      | 105.000 dBµV              |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 100 0804      |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 90 dBµV       |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 80 dBµV       |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 70 dBµV       |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 60 dBu//      |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
|               |                           | As the           |                  | يەر يەر                                                                                                         | Mynaulikulo | white mentioned | what sail Alas and when the | white when we are | hurthan shill both is   |
| 50 dBUX       | with when with the second | www.com.<br>www. | holunnungenender | hand and a second se | Vo          | 1 - 0 - 7       |                             |                   | [                       |
| 40 dBµV       |                           |                  |                  |                                                                                                                 |             |                 |                             |                   |                         |
| 10.0 GHz      | 1                         |                  | 1001 pt          | 6                                                                                                               | 1           | .5 GHz/         | 1                           | 1                 | 25.0 GHz                |
|               |                           |                  |                  |                                                                                                                 |             |                 | Measuring 【                 | ••••              | 13.09.2017<br>13:14:33  |

Date: 13.SEP.2017 13:14:33



Intertek

Date: 13.SEP.2017 17:02:38





Date: 13.SEP.2017 17:03:10

# Mid Channel (2437 MHz) Conducted Spurious Emissions 2.4835 GHz – 10 GHz

Intertek

| MultiView                 | B Spectrum                   |             |                                                      |              |         |               |           |                    |                    |                           |
|---------------------------|------------------------------|-------------|------------------------------------------------------|--------------|---------|---------------|-----------|--------------------|--------------------|---------------------------|
| RefLevel 10<br>Att<br>TDF | 7.00 dBµV<br>10 dB <b>SW</b> | T 75.2 ms   | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> | Mode Auto    | Sweep   |               |           |                    |                    |                           |
| 1 Frequency S             | Sweep                        |             |                                                      |              |         |               |           |                    |                    | ⊚2Pk Max                  |
|                           |                              |             |                                                      |              |         |               |           | м                  | 1[2]               | 50.75 dBµV<br>7.87870 GHz |
| 130 dBµV                  |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 120 dBµV                  |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 110 dBµV                  |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           | 107.000 dBµV                 |             |                                                      |              |         |               |           |                    |                    |                           |
| 100 dBuV                  |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 100 0000                  |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 90 dBµV                   |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 80 dBµV                   |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 70 dBµV                   |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 60 dBuV                   |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| μ.                        |                              |             |                                                      |              |         |               |           |                    |                    |                           |
|                           |                              |             |                                                      |              |         |               |           | M1                 |                    |                           |
| SU OBDV                   | Muhuhulund when              | werdennehan | how when the former                                  | ulupromition | Jumbrum | uppy-unitable | mandanter | warden warden with | word March Willing | www.depuerent.ventra      |
| 40 dBuV                   |                              |             |                                                      |              |         |               |           |                    |                    |                           |
| 2.4835 GHz                |                              |             | 100                                                  | 1 pts        |         | 751           | .65 MHz/  | 1                  | I                  | 10.0 GHz                  |
|                           | Y                            |             | 100                                                  | * 1          |         | 701           |           | Measuring          |                    | 13.09.2017                |
| L                         |                              |             |                                                      |              |         |               |           |                    |                    | 17:03:39                  |

Date: 13.SEP.2017 17:03:39



| MultiView 🗄         | Spectrum                     | 1                     |                                |                                  |           |                             |                      |                | $\bigtriangledown$     |
|---------------------|------------------------------|-----------------------|--------------------------------|----------------------------------|-----------|-----------------------------|----------------------|----------------|------------------------|
| Ref Level 107       | .00 dBµV                     | <b>T</b> 150 <b>m</b> | RBW 100 kHz                    |                                  |           |                             |                      |                |                        |
| TDF                 | IU UB SW                     | 1 150 ms 🖷            | VBW SOURH2 Mic                 | de Auto Sweep                    |           |                             |                      |                |                        |
| 1 Frequency Sv      | veep                         |                       |                                |                                  |           |                             | MI                   | [2]            |                        |
|                     |                              |                       |                                |                                  |           |                             | NT1                  | [2]            | 24.7680 GHz            |
| 130 dBµV            |                              |                       |                                |                                  |           |                             |                      |                |                        |
|                     |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 120 dBµV            |                              |                       |                                |                                  |           |                             |                      |                |                        |
|                     |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 110 dBµV            |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 1                   | 107.000 dBµV                 |                       |                                |                                  |           |                             |                      |                |                        |
| 100 dBµV            |                              |                       |                                |                                  |           |                             |                      |                |                        |
|                     |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 90 dBuV             |                              |                       |                                |                                  |           |                             |                      |                |                        |
|                     |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 80. dBu//           |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 00 000              |                              |                       |                                |                                  |           |                             |                      |                |                        |
|                     |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 70 авру-            |                              |                       |                                |                                  |           |                             |                      |                |                        |
|                     |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 60 dBµV             |                              |                       |                                |                                  |           |                             |                      |                | <br>                   |
|                     |                              | 6. mi 1               |                                | bi u.                            | 104 March | Managa da ya wakila akariwa | liles with as Alward | allower way wo | and the west have a we |
| 5P. ABHN working MA | way was shown and the second | hun powershi          | Had from the strategic between | How full working and some set of | 10        |                             | weither the second   | out out        |                        |
|                     |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 40 dBµV             |                              |                       |                                |                                  |           |                             |                      |                |                        |
| 10.0 GHz            |                              | I                     | 1001 pt                        | s                                | 1         | .5 GHz/                     | I                    | L              | 25.0 GHz               |
|                     |                              |                       |                                |                                  |           |                             | Measuring 【          |                | 13.09.2017<br>17:04:06 |

Date: 13.SEP.2017 17:04:05

High Channel (2462 MHz) Conducted Spurious Emissions 30 MHz – 2.4 GHz

Intertek

| MultiView                                | B Spectrum                   |                                 |                               |               |                |            |                  |                                |                           |
|------------------------------------------|------------------------------|---------------------------------|-------------------------------|---------------|----------------|------------|------------------|--------------------------------|---------------------------|
| Ref Level 74<br>Att<br>TDF               | .00 dBµV<br>10 dB <b>SWT</b> | ● F<br>23.7 ms ● V              | RBW 100 kHz<br>/BW 300 kHz Mo | de Auto Sweep |                |            |                  |                                |                           |
| 1 Frequency S                            | weep                         |                                 |                               |               |                |            |                  |                                | ⊖ 2Pk Max                 |
| 110 dBµV                                 |                              |                                 |                               |               |                |            |                  | M1[2]                          | 55.82 dBµV<br>2.34910 GHz |
| 100 dBµV                                 |                              |                                 |                               |               |                |            |                  |                                |                           |
| 90 dBµV                                  |                              |                                 |                               |               |                |            |                  |                                |                           |
| 80 dBµV                                  |                              |                                 |                               |               |                |            |                  |                                |                           |
| 70 dBµV                                  | -74.000 dBµV                 |                                 |                               |               |                |            |                  |                                |                           |
| 60 dBµV                                  |                              |                                 |                               |               |                |            |                  |                                | .M1                       |
| 50 dBµV                                  |                              |                                 |                               |               | helmenteriteta | Henderhout | Her Monthean and | herewold here and a sport work | Hermond Martin            |
| Yuuk <sub>uMu</sub> ukuwaNdhi<br>40 dBµV | olden and the former         | and a contraction of the second |                               |               |                |            |                  |                                |                           |
| 30 dBµV                                  |                              |                                 |                               |               |                |            |                  |                                |                           |
| 20 dBµV                                  |                              |                                 |                               |               |                |            |                  |                                |                           |
| 30.0 MHz                                 |                              |                                 |                               | <u> </u> s    | 23             | 7.0 MHz/   | 1                |                                | 2.4 GHz                   |
|                                          | Y                            |                                 | 1001 pt                       |               | 20             |            |                  |                                | 13.09.2017                |
|                                          | Л                            |                                 |                               |               |                |            | Measuring        |                                | 10:58:16                  |

Date: 13.SEP.2017 10:58:16



| MultiView 🖽 Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Ref Level 74.00 dBμV         ■ RBW 100 kHz           ■ NBW 200 kHz         ■ NBW 200 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>_</u>                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| TDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sweep                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 1 Frequency Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | 141503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊖ 2Pk Max              |
| 110 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | MI[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4645230 GHz          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| 100 dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | the the second states of the s |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /w/w/w                                                                                                          | and a constant of the constant |                        |
| 00 d0 4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | V I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| 90 0600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | }                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| 80 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | للمحي المح                                                                                                      | ՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| 74.000 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | - Hay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| 70 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . borbager                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M.,                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. dut and                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mr.                    |
| 60 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Welly Later 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | where a start a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "White                 |
| 30 Berren Margh - Adale - Angra and a second and a second and a second and the se |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 40 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 30 dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 20 UBHV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 2.4 GHz 1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.35 MHz/                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4835 GHz             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Measuring 🚺 🗰 🗰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.09.2017<br>10:58:59 |

Date: 13.SEP.2017 10:58:59

# High Channel (2462 MHz) Conducted Spurious Emissions 2.4835 GHz – 10 GHz

Intertek

| MultiView                  | 🖽 Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 |                           |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|--------------|-----------------|---------------------------|
| Ref Level 74<br>Att<br>TDF | 10 dBµV<br>10 dB <b>SWT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ● RBV<br>75.2 ms ● VBV | ₩ 100 kHz<br>₩ 300 kHz Moo | <b>le</b> Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                              |              |                 |                           |
| 1 Frequency S              | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 | O 2Pk Max                 |
| 110 dBµV                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              | M            | 1[2]            | 55.34 dBµV<br>2.58490 GHz |
| 100 dBµV                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 |                           |
| 90 dBµV                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 |                           |
| 80 dBµV                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 |                           |
| 70 dBµV                    | -74.000 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 |                           |
| 60 dBµV<br>M1<br>50 dBµV   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | without the A              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Janio                 | A water and a first start of | الالمعاملة   |                 | Mar hallhang              |
| 40 dBµV                    | 4 warning to the state of the s | putliprototion         | handlande                  | white and the second of the se | hill water and a second |                              | . Manund and | have the second |                           |
| 30 dBµV                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 |                           |
| 20 dBµV                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |              |                 |                           |
| 2.4835 GHz                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                      | 1001 pt                    | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                      | 1.65 MHz/                    |              |                 | 10.0 GHz                  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              | Measuring 📲  |                 | 13.09.2017<br>10:59:41    |

Date: 13.SEP.2017 10:59:41



| MultiView           | 🗐 Spectrum   | ]            |             |              |              |                    |                                                 |                 |                        |
|---------------------|--------------|--------------|-------------|--------------|--------------|--------------------|-------------------------------------------------|-----------------|------------------------|
| Ref Level 74        | .00 dBµV     | RBW          | 100 kHz     |              |              |                    |                                                 |                 |                        |
| Att     TDF         | 10 dB SWT    | 150 ms 🖷 VBW | 300 kHz Mod | e Auto Sweep |              |                    |                                                 |                 |                        |
| 1 Frequency S       | weep         |              |             |              |              |                    |                                                 |                 | ⇔2Pk Max               |
| 110 dBuV            |              |              |             |              |              |                    | M1                                              | [2]             | 57.68 dBµV             |
|                     |              |              |             |              |              |                    |                                                 |                 | 24.7980 0112           |
| 100 In 11           |              |              |             |              |              |                    |                                                 |                 |                        |
| 100 dBµv            |              |              |             |              |              |                    |                                                 |                 |                        |
|                     |              |              |             |              |              |                    |                                                 |                 |                        |
| 90 dBµV             |              |              |             |              |              |                    |                                                 |                 |                        |
|                     |              |              |             |              |              |                    |                                                 |                 |                        |
| 80 dBµV             |              |              |             |              |              |                    |                                                 |                 |                        |
|                     | -74.000 dBuV |              |             |              |              |                    |                                                 |                 |                        |
| 70 dBµV             |              |              |             |              |              |                    |                                                 |                 |                        |
|                     |              |              |             |              |              |                    |                                                 |                 |                        |
| 60.dBuV             |              |              |             |              |              |                    |                                                 |                 | M1                     |
| 00 000              |              |              |             |              |              |                    |                                                 |                 | La partilla            |
| FO JD.44            |              | moundaylin   |             |              | why Munumump | muniporteruitation | www.www.uhububububububububububububububububububu | mouthwallowalow | uppled approved by     |
| Marin Marine Marine | www.www.     | Will         | Mutuber     | orar post    |              |                    |                                                 |                 |                        |
|                     |              |              |             |              |              |                    |                                                 |                 |                        |
| 40 dBµV             |              |              |             |              |              |                    |                                                 |                 |                        |
|                     |              |              |             |              |              |                    |                                                 |                 |                        |
| 30 dBµV             |              |              |             |              |              |                    |                                                 |                 |                        |
|                     |              |              |             |              |              |                    |                                                 |                 |                        |
| 20 dBµV             |              |              |             |              |              |                    |                                                 |                 |                        |
|                     |              |              |             |              |              |                    |                                                 |                 |                        |
| 10.0 GHz            | ~            |              | 1001 pt     | ;            | 1            | .5 GHz/            |                                                 |                 | 25.0 GHz               |
|                     | JJ           |              |             |              |              |                    | Measuring 🔳                                     |                 | 13.09.2017<br>11:00:16 |

Date: 13.SEP.2017 11:00:16

#### $\bigtriangledown$ MultiView 😁 Spectrum BBW 100 kHz SWT 1.04 ms • VBW 300 kHz Mode Auto Sweep Ref Level 105.00 dBµV Att 10 dB Att 10 TDF TFrequency Sweep PPk Ma M2[2] 72.82 dBµ<sup>t</sup> 2.4000000 GH 130 dBµ\ M1[2] 103.61 dBµ\ 2.4070150 GH 120 dBµ 110 dBµ\ .05.000 dBµ\ r.A.r. Λ Δ 100 dBµ 90 dBµV M 80 dBµV www. www 70 dBµV mm 60 dBµV 50 dBuV 40 dBµV-2.395 GHz 2.412 GHz 1001 pts 1.7 MHz/ 13.09.2017 13:15:25 Measuring...

Lower Band Edge Emissions

Date: 13.SEP.2017 13:15:25

MultiView 😁 Spectrum  $\bigtriangledown$ Ref Level 74.00 dBμV Att 10 dB TDF ● RBW 100 kHz SWT 1.01 ms ● VBW 300 kHz Mode Auto Sweep 1 Frequency Sweep 2Pk Max 55.11 dBµ' 2.4835000 GH M2[2] 110 dBuV M1[2] 101.63 dBµ 2.4645050 GH when have how how ADBY ABUR - MABUR www. 90 dBµ∿ h 80 dBµV 4.000 dBuV 70 dBµV 60 dBuV montrand 50 dBµV 40 dBu∿ 30 dBuV 20 dBuV 2.458 GHz 1001 pts 3.2 MHz/ 2.49 GHz 13.09.2017 11:04:04 Measuring... (.....) 🦇

Higher Band Edge Emissions

Date: 13.SEP.2017 11:04:04

|                                  |                        | Intertek              |                             |
|----------------------------------|------------------------|-----------------------|-----------------------------|
| Report Number: 103               | 3097968BOX-024         |                       | Issued: 09/24/2017          |
|                                  |                        |                       |                             |
| Test Personnel                   | Naga Survadevara N-5   | Test Date:            | 00/13/2017                  |
| Supervising/Reviewing            | Naga Sulyadevala ( 4 S |                       | 03/13/2011                  |
| Engineer:                        | Ν/Δ                    |                       |                             |
| Product Standard:                | FCC Part 15 Subpart C  | Limit Applied:        | As specified in section 9.3 |
| Input Voltage:                   | 3.3 VDC                |                       |                             |
| Pretest Verification w/          |                        | Ambient Temperature:  | 22°C                        |
| Ambient Signals or<br>BB Source: | Yes – Signal generator | Relative Humidity:    | 44 %                        |
|                                  |                        | Atmospheric Pressure: | 1003 mbars                  |
|                                  |                        |                       |                             |

Deviations, Additions, or Exclusions: None

# **10** Transmitter Spurious Emissions

# 10.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, ANSI C63.10.

### TEST SITE: 10m ALSE

**The 10m ALSE** is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

### Measurement Uncertainty

|                         | Frequency   | Expanded<br>Uncertainty |        |
|-------------------------|-------------|-------------------------|--------|
| Measurement             | Range       | (k=2)                   | Ucispr |
| Radiated Emissions, 10m | 30-1000 MHz | 4.6 dB                  | 6.3 dB |
| Radiated Emissions, 3m  | 30-1000 MHz | 5.3 dB                  | 6.3 dB |
| Radiated Emissions, 3m  | 1-6 GHz     | 4.5 dB                  | 5.2 dB |
| Radiated Emissions, 3m  | 6-15 GHz    | 5.2 dB                  | 5.5 dB |
| Radiated Emissions, 3m  | 15-18 GHz   | 5.0 dB                  | 5.5 dB |
| Radiated Emissions, 3m  | 18-40 GHz   | 5.0 dB                  | 5.5 dB |

As shown in the table above our radiated emissions  $U_{lab}$  is less than the corresponding  $U_{CISPR}$  reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

## Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

| FS = RA + AF + | CF - AG                                                       |
|----------------|---------------------------------------------------------------|
| Where          | $FS = Field Strength in dB\mu V/m$                            |
|                | RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ |
|                | CF = Cable Attenuation Factor in dB                           |
|                | AF = Antenna Factor in dB                                     |
|                | AG = Amplifier Gain in dB                                     |
|                |                                                               |

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

 $\label{eq:result} \begin{array}{l} {\sf RA} = 52.0 \ {\sf dB}\mu {\sf V} \\ {\sf AF} = \ 7.4 \ {\sf dB}/{\sf m} \\ {\sf CF} = \ 1.6 \ {\sf dB} \\ {\sf AG} = 29.0 \ {\sf dB} \\ {\sf FS} = 32 \ {\sf dB}\mu {\sf V}/{\sf m} \end{array}$ 

To convert from  $dB\mu V$  to  $\mu V$  or mV the following was used:

 $UF = 10^{(NF / 20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$  $NF = \text{Net Reading in } dB\mu\text{V}$ 

## Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 $UF = 10^{(32 \ dB\mu V / 20)} = 39.8 \ \mu V/m$ 

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

#### **10.2 Test Equipment Used:**

| Asset    | Description                             | Manufacturer         | Model              | Serial      | Cal Date   | Cal Due    |
|----------|-----------------------------------------|----------------------|--------------------|-------------|------------|------------|
| DAV003'  | Weather Station                         | Davis Instruments    | 7400               | PE80529A39A | 11/28/2016 | 11/28/2017 |
| ETS001'  | 1-18GHz DRG Horn Antenna                | ETS-Lindgren         | 3117               | 00143259    | 02/13/2017 | 02/13/2018 |
| 145-416' | Cables 145-420 145-423 145-425 145-408  | Huber + Suhner       | 3m Track B cables  | multiple    | 07/25/2017 | 07/25/2018 |
| 145108'  | EMI Test Receiver (20Hz - 40GHz)        | Rohde & Schwarz      | ESIB40             | 100209      | 05/23/2017 | 05/23/2018 |
| PRE-10'  | EMI Test Receiver (20Hz - 40GHz)        | Rohde & Schwarz      | ESIB40             | 100209      | 05/23/2017 | 05/23/2018 |
| 145145'  | Broadband Hybrid Antenna 30 MHz - 3 GHz | Sunol Sciences Corp. | JB3                | A122313     | 05/02/2017 | 05/02/2018 |
| 145-410' | Cables 145-420 145-421 145-422 145-406  | Huber + Suhner       | 10m Track A Cables | multiple    | 07/25/2017 | 07/25/2018 |
| 145014'  | Preamplifier (1 GHz to 26.5 GHz)        | Hewlett Packard      | 8449B              | 3008A00232  | 06/03/2017 | 06/03/2018 |
| REA004'  | 3GHz High Pass Filter                   | Reactel, Inc         | 7HSX-3G/18G-S11    | 06-1        | 02/17/2017 | 02/17/2018 |

#### Software Utilized:

| Name    | Manufacturer | Version   |
|---------|--------------|-----------|
| BAT-EMC | Nexio        | 3.16.0.69 |

### 10.3 Results:

The sample tested was found to Comply.

§15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

# 10.4 Setup Photographs:







18-25 GHz

# 10.5 Plots/Data:

## Tx Low Channel, 30-1000 MHz

# Test Information:

| Date and Time             | 06/14/2017                                                    |
|---------------------------|---------------------------------------------------------------|
| Client and Project Number | Simbex_G103097968                                             |
| Engineer                  | Vathana Ven                                                   |
| Temperature               | 26 deg C                                                      |
| Humidity                  | 33%                                                           |
| Atmospheric Pressure      | 1003 mB                                                       |
| Comments                  | Battery power, Mx Encoder, 802.11n 20MHz, Lo Channel, Tx mode |

# Graph:



# Results:

| QuasiPeak | (PAS | S) (4)   |          |        |         |        |          |          |            |
|-----------|------|----------|----------|--------|---------|--------|----------|----------|------------|
| Frequency | SR   | Level    | Limit    | Margin | Azimuth | Height | Pol.     | Meas.    | Correction |
| (MHz)     |      | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |          | time (s) | (dB)       |
| 30.06     | 1    | 17.49    | 30.00    | -12.51 | 110.00  | 1.34   | Vertical | 0.10     | -12.52     |
| 33.24     | 1    | 14.96    | 30.00    | -15.04 | 71.00   | 2.78   | Vertical | 0.10     | -14.91     |
| 200.7     | 1    | 9.77     | 33.50    | -23.73 | 129.00  | 2.35   | Vertical | 0.10     | -19.53     |
| 711.6     | 1    | 17.12    | 36.00    | -18.88 | 46.00   | 2.37   | Vertical | 0.10     | -10.11     |

## Scan 1-25 GHz, Tx mode, Low Channel, X-Axis

#### Test Information:

| Date and Time             | 8/4/2017 5:26:38 PM                      |
|---------------------------|------------------------------------------|
| Client and Project Number | Simbex_G103097968                        |
| Engineer                  | Vathana Ven                              |
| Temperature               | 25 deg C                                 |
| Humidity                  | 45%                                      |
| Atmospheric Pressure      | 1004 mB                                  |
| Comments                  | RE 3 to 13 GHz_Tx mode_Lo Channel_X-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

### Results:

#### Peak (PASS) (5)

| Frequency   | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
|-------------|----------|----------|--------|---------|--------|------------|------------|------------|
| (MHz)       | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3216.052632 | 51.34    | 74.00    | -22.66 | 142.00  | 2.80   | Vertical   | 1000000.00 | 6.44       |
| 4832.631579 | 46.00    | 74.00    | -28.00 | 47.00   | 3.59   | Vertical   | 1000000.00 | 9.20       |
| 7220.263158 | 49.58    | 74.00    | -24.42 | 83.00   | 2.19   | Vertical   | 1000000.00 | 11.99      |
| 9697.631579 | 50.99    | 74.00    | -23.01 | 4.00    | 3.04   | Vertical   | 1000000.00 | 13.13      |
| 12065.52632 | 56.26    | 74.00    | -17.74 | 141.00  | 4.00   | Horizontal | 1000000.00 | 21.37      |

#### Average (PASS) (5)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Azimuth<br>(°) | Height<br>(m) | Pol.       | RBW        | Correction<br>(dB) |
|--------------------|-------------------|-------------------|----------------|----------------|---------------|------------|------------|--------------------|
| 3216.052632        | 38.03             | 54.00             | -15.97         | 142.00         | 2.80          | Vertical   | 100000.00  | 6.44               |
| 4832.631579        | 35.00             | 54.00             | -19.00         | 47.00          | 3.59          | Vertical   | 1000000.00 | 9.20               |
| 7220.263158        | 36.33             | 54.00             | -17.67         | 83.00          | 2.19          | Vertical   | 1000000.00 | 11.99              |
| 9697.631579        | 37.30             | 54.00             | -16.70         | 4.00           | 3.04          | Vertical   | 1000000.00 | 13.13              |
| 12065.52632        | 44.60             | 54.00             | -9.40          | 141.00         | 4.00          | Horizontal | 1000000.00 | 21.37              |

## Scan 1-25 GHz, Tx mode, Low Channel, Y-Axis

#### Test Information:

| Date and Time             | 8/4/2017 6:07:00 PM                      |
|---------------------------|------------------------------------------|
| Client and Project Number | Simbex_G103097968                        |
| Engineer                  | Vathana Ven                              |
| Temperature               | 25 deg C                                 |
| Humidity                  | 45%                                      |
| Atmospheric Pressure      | 1004 mB                                  |
| Comments                  | RE 3 to 13 GHz_Tx mode_Lo Channel_Y-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

### Results:

| Peak (PASS) ( | 6)       |          |        |         |        |            |            |            |
|---------------|----------|----------|--------|---------|--------|------------|------------|------------|
| Frequency     | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)         | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3216.052632   | 51.86    | 74.00    | -22.14 | 127.00  | 1.00   | Vertical   | 1000000.00 | 6.44       |
| 4560          | 48.01    | 74.00    | -25.99 | 181.00  | 1.95   | Horizontal | 1000000.00 | 10.00      |
| 4812.894737   | 45.98    | 74.00    | -28.02 | 195.00  | 2.57   | Vertical   | 1000000.00 | 9.19       |
| 7206.578947   | 49.57    | 74.00    | -24.43 | 297.00  | 2.46   | Vertical   | 1000000.00 | 11.98      |
| 9594.473684   | 49.78    | 74.00    | -24.22 | 84.00   | 2.53   | Horizontal | 1000000.00 | 12.98      |
| 12154.73684   | 57.07    | 74.00    | -16.93 | 18.00   | 2.92   | Horizontal | 1000000.00 | 21.51      |
| Average (PASS | S) (6)   |          |        |         |        |            |            |            |
| Frequency     | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)         | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3216.052632   | 38.65    | 54.00    | -15.35 | 127.00  | 1.00   | Vertical   | 1000000.00 | 6.44       |
| 4560          | 35.50    | 54.00    | -18.50 | 181.00  | 1.95   | Horizontal | 1000000.00 | 10.00      |
| 4812.894737   | 33.45    | 54.00    | -20.55 | 195.00  | 2.57   | Vertical   | 1000000.00 | 9.19       |
| 7206.578947   | 36.15    | 54.00    | -17.85 | 297.00  | 2.46   | Vertical   | 1000000.00 | 11.98      |
| 9594.473684   | 37.06    | 54.00    | -16.94 | 84.00   | 2.53   | Horizontal | 100000.00  | 12.98      |
| 12154.73684   | 45.03    | 54.00    | -8.97  | 18.00   | 2.92   | Horizontal | 100000.00  | 21.51      |

## Scan 1-25 GHz, Tx mode, Low Channel, Z-Axis

#### Test Information:

| Date and Time             | 8/4/2017 6:41:44 PM                      |
|---------------------------|------------------------------------------|
| Client and Project Number | Simbex_G103097968                        |
| Engineer                  | Vathana Ven                              |
| Temperature               | 25 deg C                                 |
| Humidity                  | 45%                                      |
| Atmospheric Pressure      | 1004 mB                                  |
| Comments                  | RE 3 to 13 GHz_Tx mode_Lo Channel_Z-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

### Results:

| Peak (PASS) (7 | 7)       |          |        |         |        |            |            |            |
|----------------|----------|----------|--------|---------|--------|------------|------------|------------|
| Frequency      | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)          | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3835           | 45.84    | 74.00    | -28.16 | 69.00   | 2.28   | Horizontal | 1000000.00 | 7.45       |
| 4508.157895    | 47.85    | 74.00    | -26.15 | 143.00  | 2.18   | Vertical   | 1000000.00 | 10.12      |
| 4836.842105    | 45.60    | 74.00    | -28.40 | 262.00  | 1.88   | Horizontal | 1000000.00 | 9.21       |
| 7237.631579    | 49.18    | 74.00    | -24.82 | 341.00  | 1.84   | Vertical   | 1000000.00 | 11.99      |
| 7780.789474    | 49.25    | 74.00    | -24.75 | 291.00  | 3.37   | Horizontal | 1000000.00 | 11.79      |
| 9680           | 49.50    | 74.00    | -24.50 | 210.00  | 3.08   | Horizontal | 1000000.00 | 13.11      |
| 12141.31579    | 57.34    | 74.00    | -16.66 | 10.00   | 2.07   | Horizontal | 1000000.00 | 21.49      |
| Average (PASS  | S) (7)   |          |        |         |        |            |            |            |
| Frequency      | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)          | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3835           | 32.31    | 54.00    | -21.69 | 69.00   | 2.28   | Horizontal | 1000000.00 | 7.45       |
| 4508.157895    | 34.90    | 54.00    | -19.10 | 143.00  | 2.18   | Vertical   | 1000000.00 | 10.12      |
| 4836.842105    | 33.29    | 54.00    | -20.71 | 262.00  | 1.88   | Horizontal | 1000000.00 | 9.21       |
| 7237.631579    | 36.07    | 54.00    | -17.93 | 341.00  | 1.84   | Vertical   | 1000000.00 | 11.99      |
| 7780.789474    | 36.31    | 54.00    | -17.69 | 291.00  | 3.37   | Horizontal | 1000000.00 | 11.79      |
| 9680           | 37.37    | 54.00    | -16.63 | 210.00  | 3.08   | Horizontal | 1000000.00 | 13.11      |
| 12141.31579    | 44.82    | 54.00    | -9.18  | 10.00   | 2.07   | Horizontal | 100000.00  | 21.49      |

## Scan 1-25 GHz, Tx mode, MId Channel, X-Axis

#### Test Information:

| Date and Time             | 8/4/2017 8:30:32 PM                       |
|---------------------------|-------------------------------------------|
| Client and Project Number | Simbex_G103097968                         |
| Engineer                  | Vathana Ven                               |
| Temperature               | 25 deg C                                  |
| Humidity                  | 45%                                       |
| Atmospheric Pressure      | 1004 mB                                   |
| Comments                  | RE 3 to 13 GHz_Tx mode_Mid Channel_X-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

#### Results:

| Peak (PASS) (6 | 6)       |          |        |         |        |            |            |            |
|----------------|----------|----------|--------|---------|--------|------------|------------|------------|
| Frequency      | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)          | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3291.052632    | 44.57    | 74.00    | -29.43 | 179.00  | 3.41   | Vertical   | 1000000.00 | 6.03       |
| 4891.842105    | 46.05    | 74.00    | -27.95 | 26.00   | 3.16   | Horizontal | 1000000.00 | 9.26       |
| 7289.473684    | 49.46    | 74.00    | -24.54 | 77.00   | 2.11   | Horizontal | 1000000.00 | 12.00      |
| 9765.263158    | 49.51    | 74.00    | -24.49 | 0.00    | 3.77   | Horizontal | 1000000.00 | 13.37      |
| 12139.21053    | 57.48    | 74.00    | -16.52 | 253.00  | 3.80   | Vertical   | 1000000.00 | 21.49      |
| 12653.15789    | 59.02    | 74.00    | -14.98 | 224.00  | 3.60   | Vertical   | 1000000.00 | 23.32      |

#### Average (PASS) (6)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Azimuth<br>(°) | Height<br>(m) | Pol.       | RBW        | Correction<br>(dB) |
|--------------------|-------------------|-------------------|----------------|----------------|---------------|------------|------------|--------------------|
| 3291.052632        | 31.38             | 54.00             | -22.62         | 179.00         | 3.41          | Vertical   | 1000000.00 | 6.03               |
| 4891.842105        | 34.03             | 54.00             | -19.97         | 26.00          | 3.16          | Horizontal | 1000000.00 | 9.26               |
| 7289.473684        | 36.25             | 54.00             | -17.75         | 77.00          | 2.11          | Horizontal | 1000000.00 | 12.00              |
| 9765.263158        | 37.27             | 54.00             | -16.73         | 0.00           | 3.77          | Horizontal | 1000000.00 | 13.37              |
| 12139.21053        | 44.41             | 54.00             | -9.59          | 253.00         | 3.80          | Vertical   | 1000000.00 | 21.49              |
| 12653.15789        | 45.81             | 54.00             | -8.19          | 224.00         | 3.60          | Vertical   | 100000.00  | 23.32              |

# Scan 1-25 GHz, Tx mode, Mid Channel, Y-Axis

Intertek

## Test Information:

| Date and Time             | 8/4/2017 7:55:42 PM                       |
|---------------------------|-------------------------------------------|
| Client and Project Number | Simbex_G103097968                         |
| Engineer                  | Vathana Ven                               |
| Temperature               | 25 deg C                                  |
| Humidity                  | 45%                                       |
| Atmospheric Pressure      | 1004 mB                                   |
| Comments                  | RE 3 to 13 GHz_Tx mode_Mid Channel_Y-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

#### Results:

| Peak (PASS) (7 | 7)       |          |        |         |        |            |            |            |
|----------------|----------|----------|--------|---------|--------|------------|------------|------------|
| Frequency      | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)          | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3249.473684    | 49.01    | 74.00    | -24.99 | 47.00   | 1.22   | Vertical   | 1000000.00 | 6.24       |
| 4515.526316    | 47.83    | 74.00    | -26.17 | 32.00   | 1.53   | Horizontal | 1000000.00 | 10.11      |
| 4872.894737    | 48.31    | 74.00    | -25.69 | 209.00  | 1.00   | Vertical   | 1000000.00 | 9.24       |
| 7355.263158    | 48.96    | 74.00    | -25.04 | 40.00   | 2.10   | Vertical   | 1000000.00 | 11.89      |
| 9760.526316    | 50.14    | 74.00    | -23.86 | 299.00  | 2.77   | Horizontal | 1000000.00 | 13.35      |
| 12230.26316    | 57.31    | 74.00    | -16.69 | 76.00   | 2.85   | Horizontal | 1000000.00 | 21.61      |
| 12698.42105    | 59.07    | 74.00    | -14.93 | 311.00  | 3.30   | Vertical   | 1000000.00 | 23.37      |

#### Average (PASS) (7)

| Frequency   | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
|-------------|----------|----------|--------|---------|--------|------------|------------|------------|
| (MHz)       | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3249.473684 | 35.43    | 54.00    | -18.57 | 47.00   | 1.22   | Vertical   | 1000000.00 | 6.24       |
| 4515.526316 | 35.05    | 54.00    | -18.95 | 32.00   | 1.53   | Horizontal | 1000000.00 | 10.11      |
| 4872.894737 | 33.76    | 54.00    | -20.24 | 209.00  | 1.00   | Vertical   | 1000000.00 | 9.24       |
| 7355.263158 | 35.97    | 54.00    | -18.03 | 40.00   | 2.10   | Vertical   | 1000000.00 | 11.89      |
| 9760.526316 | 37.15    | 54.00    | -16.85 | 299.00  | 2.77   | Horizontal | 1000000.00 | 13.35      |
| 12230.26316 | 44.63    | 54.00    | -9.37  | 76.00   | 2.85   | Horizontal | 100000.00  | 21.61      |
| 12698.42105 | 45.86    | 54.00    | -8.14  | 311.00  | 3.30   | Vertical   | 100000.00  | 23.37      |

## Scan 1-25 GHz, Tx mode, Mid Channel, Z-Axis

Intertek

#### Test Information:

| Date and Time             | 8/4/2017 7:17:43 PM                       |
|---------------------------|-------------------------------------------|
| Client and Project Number | Simbex_G103097968                         |
| Engineer                  | Vathana Ven                               |
| Temperature               | 25 deg C                                  |
| Humidity                  | 45%                                       |
| Atmospheric Pressure      | 1004 mB                                   |
| Comments                  | RE 3 to 13 GHz_Tx mode_Mid Channel_Z-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

#### Results:

| Peak (PASS) (7 | 7)       |          |        |         |        |            |            |            |
|----------------|----------|----------|--------|---------|--------|------------|------------|------------|
| Frequency      | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)          | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3249.210526    | 47.51    | 74.00    | -26.49 | 150.00  | 1.00   | Vertical   | 1000000.00 | 6.24       |
| 4525           | 47.41    | 74.00    | -26.59 | 357.00  | 1.38   | Horizontal | 1000000.00 | 10.08      |
| 4878.947368    | 46.43    | 74.00    | -27.57 | 123.00  | 3.81   | Horizontal | 1000000.00 | 9.25       |
| 7310           | 49.57    | 74.00    | -24.43 | 329.00  | 1.91   | Horizontal | 1000000.00 | 11.98      |
| 9747.894737    | 49.55    | 74.00    | -24.45 | 180.00  | 1.25   | Vertical   | 1000000.00 | 13.30      |
| 12272.89474    | 57.48    | 74.00    | -16.52 | 150.00  | 3.89   | Vertical   | 1000000.00 | 21.78      |
| 12663.15789    | 59.03    | 74.00    | -14.97 | 187.00  | 3.74   | Vertical   | 1000000.00 | 23.33      |

#### Average (PASS) (7)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Azimuth<br>(°) | Height<br>(m) | Pol.       | RBW        | Correction<br>(dB) |
|--------------------|-------------------|-------------------|----------------|----------------|---------------|------------|------------|--------------------|
| 3249.210526        | 34.14             | 54.00             | -19.86         | 150.00         | 1.00          | Vertical   | 1000000.00 | 6.24               |
| 4525               | 35.88             | 54.00             | -18.12         | 357.00         | 1.38          | Horizontal | 1000000.00 | 10.08              |
| 4878.947368        | 33.50             | 54.00             | -20.50         | 123.00         | 3.81          | Horizontal | 1000000.00 | 9.25               |
| 7310               | 36.32             | 54.00             | -17.68         | 329.00         | 1.91          | Horizontal | 1000000.00 | 11.98              |
| 9747.894737        | 37.38             | 54.00             | -16.62         | 180.00         | 1.25          | Vertical   | 1000000.00 | 13.30              |
| 12272.89474        | 45.00             | 54.00             | -9.00          | 150.00         | 3.89          | Vertical   | 1000000.00 | 21.78              |
| 12663.15789        | 46.04             | 54.00             | -7.96          | 187.00         | 3.74          | Vertical   | 1000000.00 | 23.33              |

## Scan 1-25 GHz, Tx mode, High Channel, X-Axis

#### Test Information:

| Date and Time             | 8/4/2017 8:59:50 PM                      |
|---------------------------|------------------------------------------|
| Client and Project Number | Simbex_G103097968                        |
| Engineer                  | Vathana Ven                              |
| Temperature               | 25 deg C                                 |
| Humidity                  | 45%                                      |
| Atmospheric Pressure      | 1004 mB                                  |
| Comments                  | RE 3 to 13 GHz_Tx mode_Hi Channel_X-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

#### Results:

| Peak (PASS) (      | 5)                |                   |                |                |               |            |            |                    |
|--------------------|-------------------|-------------------|----------------|----------------|---------------|------------|------------|--------------------|
| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Azimuth<br>(°) | Height<br>(m) | Pol.       | RBW        | Correction<br>(dB) |
| 3277.368421        | 44.77             | 74.00             | -29.23         | 85.00          | 2.18          | Vertical   | 1000000.00 | 6.10               |
| 4805               | 45.57             | 74.00             | -28.43         | 40.00          | 1.52          | Vertical   | 1000000.00 | 9.18               |
| 7416.315789        | 49.15             | 74.00             | -24.85         | 0.00           | 2.80          | Vertical   | 1000000.00 | 11.83              |
| 9773.157895        | 49.92             | 74.00             | -24.08         | 180.00         | 1.53          | Vertical   | 1000000.00 | 13.40              |
| 12739.21053        | 59.55             | 74.00             | -14.45         | 150.00         | 2.04          | Horizontal | 1000000.00 | 23.40              |

#### Average (PASS) (5)

| Frequency   | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
|-------------|----------|----------|--------|---------|--------|------------|------------|------------|
| (MHz)       | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3277.368421 | 31.52    | 54.00    | -22.48 | 85.00   | 2.18   | Vertical   | 1000000.00 | 6.10       |
| 4805        | 34.04    | 54.00    | -19.96 | 40.00   | 1.52   | Vertical   | 1000000.00 | 9.18       |
| 7416.315789 | 35.91    | 54.00    | -18.09 | 0.00    | 2.80   | Vertical   | 1000000.00 | 11.83      |
| 9773.157895 | 37.21    | 54.00    | -16.79 | 180.00  | 1.53   | Vertical   | 1000000.00 | 13.40      |
| 12739.21053 | 46.22    | 54.00    | -7.78  | 150.00  | 2.04   | Horizontal | 100000.00  | 23.40      |

## Scan 1-25 GHz, Tx mode, High Channel, Y-Axis

#### Test Information:

| Date and Time             | 8/4/2017 9:26:51 PM                      |
|---------------------------|------------------------------------------|
| Client and Project Number | Simbex_G103097968                        |
| Engineer                  | Vathana Ven                              |
| Temperature               | 25 deg C                                 |
| Humidity                  | 45%                                      |
| Atmospheric Pressure      | 1004 mB                                  |
| Comments                  | RE 3 to 13 GHz_Tx mode_Hi Channel_Y-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

#### Results:

| Peak (PASS) ( | 7)       |          |        |         |        |            |            |            |
|---------------|----------|----------|--------|---------|--------|------------|------------|------------|
| Frequency     | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)         | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3276.315789   | 44.38    | 74.00    | -29.62 | 1.00    | 3.34   | Vertical   | 1000000.00 | 6.11       |
| 4921.315789   | 48.38    | 74.00    | -25.62 | 210.00  | 1.22   | Vertical   | 1000000.00 | 9.31       |
| 6510.526316   | 49.23    | 74.00    | -24.77 | 47.00   | 2.66   | Horizontal | 1000000.00 | 11.23      |
| 7394.210526   | 48.89    | 74.00    | -25.11 | 237.00  | 1.65   | Horizontal | 1000000.00 | 11.82      |
| 9846.842105   | 49.78    | 74.00    | -24.22 | 25.00   | 3.72   | Horizontal | 1000000.00 | 13.64      |
| 10393.94737   | 51.49    | 74.00    | -22.51 | 291.00  | 2.08   | Horizontal | 1000000.00 | 15.50      |
| 12686.84211   | 59.06    | 74.00    | -14.94 | 283.00  | 2.84   | Horizontal | 1000000.00 | 23.35      |

#### Average (PASS) (7)

| Frequency   | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
|-------------|----------|----------|--------|---------|--------|------------|------------|------------|
| (MHz)       | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3276.315789 | 31.53    | 54.00    | -22.47 | 1.00    | 3.34   | Vertical   | 1000000.00 | 6.11       |
| 4921.315789 | 34.33    | 54.00    | -19.67 | 210.00  | 1.22   | Vertical   | 1000000.00 | 9.31       |
| 6510.526316 | 36.33    | 54.00    | -17.67 | 47.00   | 2.66   | Horizontal | 1000000.00 | 11.23      |
| 7394.210526 | 36.51    | 54.00    | -17.49 | 237.00  | 1.65   | Horizontal | 1000000.00 | 11.82      |
| 9846.842105 | 37.35    | 54.00    | -16.65 | 25.00   | 3.72   | Horizontal | 1000000.00 | 13.64      |
| 10393.94737 | 38.53    | 54.00    | -15.47 | 291.00  | 2.08   | Horizontal | 1000000.00 | 15.50      |
| 12686.84211 | 46.27    | 54.00    | -7.73  | 283.00  | 2.84   | Horizontal | 1000000.00 | 23.35      |

## Scan 1-25 GHz, Tx mode, High Channel, Z-Axis

#### Test Information:

| Date and Time             | 8/4/2017 9:58:23 PM                      |
|---------------------------|------------------------------------------|
| Client and Project Number | Simbex_G103097968                        |
| Engineer                  | Vathana Ven                              |
| Temperature               | 25 deg C                                 |
| Humidity                  | 45%                                      |
| Atmospheric Pressure      | 1004 mB                                  |
| Comments                  | RE 3 to 13 GHz_Tx mode_Hi Channel_Z-axis |

#### Graph:



Note: Scans from 1-3 and 13-25 GHz were performed manually, no emissions were detected above the measuring equipment noise floor. High Pass Filter was used for frequency above 3 GHz scans.

#### Results:

| Peak (PASS) (7 | 7)       |          |        |         |        |            |            |            |
|----------------|----------|----------|--------|---------|--------|------------|------------|------------|
| Frequency      | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
| (MHz)          | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3827.631579    | 45.83    | 74.00    | -28.17 | 283.00  | 2.48   | Vertical   | 1000000.00 | 7.44       |
| 4916.052632    | 46.22    | 74.00    | -27.78 | 165.00  | 1.70   | Horizontal | 1000000.00 | 9.30       |
| 7428.421053    | 48.76    | 74.00    | -25.24 | 0.00    | 1.30   | Horizontal | 1000000.00 | 11.83      |
| 9920.789474    | 50.10    | 74.00    | -23.90 | 173.00  | 2.87   | Horizontal | 1000000.00 | 13.84      |
| 10955.26316    | 53.40    | 74.00    | -20.60 | 41.00   | 2.95   | Vertical   | 1000000.00 | 17.42      |
| 12675.78947    | 59.32    | 74.00    | -14.68 | 160.00  | 1.45   | Vertical   | 1000000.00 | 23.34      |
| 12911.57895    | 58.64    | 74.00    | -15.36 | 180.00  | 3.68   | Vertical   | 1000000.00 | 23.91      |

#### Average (PASS) (7)

| Frequency   | Level    | Limit    | Margin | Azimuth | Height | Pol.       | RBW        | Correction |
|-------------|----------|----------|--------|---------|--------|------------|------------|------------|
| (MHz)       | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            |            | (dB)       |
| 3827.631579 | 32.54    | 54.00    | -21.46 | 283.00  | 2.48   | Vertical   | 1000000.00 | 7.44       |
| 4916.052632 | 34.07    | 54.00    | -19.93 | 165.00  | 1.70   | Horizontal | 1000000.00 | 9.30       |
| 7428.421053 | 35.92    | 54.00    | -18.08 | 0.00    | 1.30   | Horizontal | 1000000.00 | 11.83      |
| 9920.789474 | 37.65    | 54.00    | -16.35 | 173.00  | 2.87   | Horizontal | 1000000.00 | 13.84      |
| 10955.26316 | 40.54    | 54.00    | -13.46 | 41.00   | 2.95   | Vertical   | 1000000.00 | 17.42      |
| 12675.78947 | 46.05    | 54.00    | -7.95  | 160.00  | 1.45   | Vertical   | 1000000.00 | 23.34      |
| 12911.57895 | 46.19    | 54.00    | -7.81  | 180.00  | 3.68   | Vertical   | 1000000.00 | 23.91      |

# Intertek



#### Lower Band Edge Mx Encoder





# Higher Band Edge Mx Encoder

# Intertek

# Report Number: 103097968BOX-024

|           | Ant.        |           |         | Antenna | Cable | Pre-amp | Distance |          |          |        |           |
|-----------|-------------|-----------|---------|---------|-------|---------|----------|----------|----------|--------|-----------|
| Detector  | Pol.        | Frequency | Reading | Factor  | Loss  | Factor  | Factor   | Net      | Limit    | Margin | Bandwidth |
| Туре      | (V/H)       | MHz       | dB(uV)  | dB(1/m) | dB    | dB      | dB       | dB(uV/m) | dB(uV/m) | dB     |           |
| PK        | Н           | 2483.500  | 29.02   | 32.24   | 5.18  | 0.00    | 3.52     | 62.92    | 74.00    | -11.08 | 1/3 MHz   |
| AVG       | Н           | 2483.500  | 14.39   | 32.24   | 5.18  | 0.00    | 3.52     | 48.29    | 54.00    | -5.71  | 1/3 MHz   |
| Limit Dis | stance (m): | 3         |         |         |       |         |          |          |          |        |           |
| Test Dis  | stance (m): | 2         |         |         |       |         |          |          |          |        |           |

| Test Personnel:                         | Vathana Ven            | Test Date:            | 08/04/2017             |
|-----------------------------------------|------------------------|-----------------------|------------------------|
| (Where Applicable)<br>Product Standard: | N/A<br>FCC Part 15.247 | Limit Applied:        | Below Specified limits |
| Input Voltage:                          | Battery power          |                       |                        |
| Pretest Verification w/                 |                        | Ambient Temperature:  | 25 °C                  |
| Ambient Signals or<br>BB Source:        | Yes                    | Relative Humidity:    | 45 %                   |
|                                         |                        | Atmospheric Pressure: | 1004 mbars             |

Deviations, Additions, or Exclusions: None

# 11 Digital Device Radiated Spurious Emissions

# 11.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, ANSI C63.10.

TEST SITE: 10m ALSE

**The 10m ALSE** is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

## Measurement Uncertainty

|                         | Frequency   | Expanded<br>Uncertainty |        |
|-------------------------|-------------|-------------------------|--------|
| Measurement             | Range       | (k=2)                   | Ucispr |
| Radiated Emissions, 10m | 30-1000 MHz | 4.6 dB                  | 6.3 dB |
| Radiated Emissions, 3m  | 30-1000 MHz | 5.3 dB                  | 6.3 dB |
| Radiated Emissions, 3m  | 1-6 GHz     | 4.5 dB                  | 5.2 dB |
| Radiated Emissions, 3m  | 6-15 GHz    | 5.2 dB                  | 5.5 dB |
| Radiated Emissions, 3m  | 15-18 GHz   | 5.0 dB                  | 5.5 dB |
| Radiated Emissions, 3m  | 18-40 GHz   | 5.0 dB                  | 5.5 dB |

As shown in the table above our radiated emissions  $U_{lab}$  is less than the corresponding  $U_{CISPR}$  reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

## Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

| FS = RA + AF + | CF - AG                                                       |
|----------------|---------------------------------------------------------------|
| Where          | $FS = Field Strength in dB\mu V/m$                            |
|                | RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ |
|                | CF = Cable Attenuation Factor in dB                           |
|                | AF = Antenna Factor in dB                                     |
|                | AG = Amplifier Gain in dB                                     |
|                |                                                               |

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

 $\label{eq:RA} \begin{array}{l} = 52.0 \ dB\mu V \\ AF = \ 7.4 \ dB/m \\ CF = \ 1.6 \ dB \\ AG = 29.0 \ dB \\ FS = 32 \ dB\mu V/m \end{array}$ 

To convert from  $dB\mu V$  to  $\mu V$  or mV the following was used:

 $UF = 10^{(NF / 20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$  $NF = \text{Net Reading in } dB\mu\text{V}$ 

# Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 $UF = 10^{(32 \ dB\mu V / 20)} = 39.8 \ \mu V/m$ 

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

## **11.2 Test Equipment Used:**

| Asset    | Description                             | Manufacturer         | Model              | Serial      | Cal Date   | Cal Due    |
|----------|-----------------------------------------|----------------------|--------------------|-------------|------------|------------|
| DAV003'  | Weather Station                         | Davis Instruments    | 7400               | PE80529A39A | 11/28/2016 | 11/28/2017 |
| ETS001'  | 1-18GHz DRG Horn Antenna                | ETS-Lindgren         | 3117               | 00143259    | 02/13/2017 | 02/13/2018 |
| 145-416' | Cables 145-420 145-423 145-425 145-408  | Huber + Suhner       | 3m Track B cables  | multiple    | 07/25/2017 | 07/25/2018 |
| 145108'  | EMI Test Receiver (20Hz - 40GHz)        | Rohde & Schwarz      | ESIB40             | 100209      | 05/23/2017 | 05/23/2018 |
| PRE-10'  | EMI Test Receiver (20Hz - 40GHz)        | Rohde & Schwarz      | ESIB40             | 100209      | 05/23/2017 | 05/23/2018 |
| 145145'  | Broadband Hybrid Antenna 30 MHz - 3 GHz | Sunol Sciences Corp. | JB3                | A122313     | 05/02/2017 | 05/02/2018 |
| 145-410' | Cables 145-420 145-421 145-422 145-406  | Huber + Suhner       | 10m Track A Cables | multiple    | 07/25/2017 | 07/25/2018 |
| 145014'  | Preamplifier (1 GHz to 26.5 GHz)        | Hewlett Packard      | 8449B              | 3008A00232  | 06/03/2017 | 06/03/2018 |
| REA004'  | 3GHz High Pass Filter                   | Reactel, Inc         | 7HSX-3G/18G-S11    | 06-1        | 02/17/2017 | 02/17/2018 |

#### Software Utilized:

| Name    | Manufacturer | Version   |
|---------|--------------|-----------|
| BAT-EMC | Nexio        | 3.16.0.69 |

## 11.3 Results:

The sample tested was found to Comply.

# 11.4 Setup Photographs:





# 11.5 Plots/Data:

## 30-1000 MHz

# Test Information:

| Date and Time             | 06/14/2017                         |
|---------------------------|------------------------------------|
| Client and Project Number | Simbex_G103097968                  |
| Engineer                  | Vathana Ven                        |
| Temperature               | 26 deg C                           |
| Humidity                  | 33%                                |
| Atmospheric Pressure      | 1003 mB                            |
| Comments                  | Battery power, Mx Encoder, Rx mode |

## Graph:



## Results:

QuasiPeak (PASS) (4)

| Frequency | SR | Level    | Limit    | Margin | Azimuth | Height | Pol.       | Meas.    | Correction |
|-----------|----|----------|----------|--------|---------|--------|------------|----------|------------|
| (MHz)     |    | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            | time (s) | (dB)       |
| 31.5      | 1  | 16.28    | 30.00    | -13.72 | 136.00  | 3.77   | Vertical   | 0.10     | -13.59     |
| 122.28    | 1  | 10.24    | 33.50    | -23.26 | 47.00   | 3.00   | Vertical   | 0.10     | -19.00     |
| 288.54    | 1  | 14.64    | 36.00    | -21.36 | 32.00   | 1.50   | Vertical   | 0.10     | -18.71     |
| 712.5     | 2  | 17.13    | 36.00    | -18.87 | 143.00  | 3.68   | Horizontal | 0.10     | -10.10     |

## 1-13 GHz

# Test Information:

| Date and Time             | 06/14/2017                         |  |  |  |
|---------------------------|------------------------------------|--|--|--|
| Client and Project Number | Simbex_G103097968                  |  |  |  |
| Engineer                  | Vathana Ven                        |  |  |  |
| Temperature               | 26 deg C                           |  |  |  |
| Humidity                  | 33%                                |  |  |  |
| Atmospheric Pressure      | 1003 mB                            |  |  |  |
| Comments                  | Battery power, Mx Encoder, Rx mode |  |  |  |

## Graph:



## Results:

# Avg (PASS) (4)

| Frequency | SR | Level    | Limit    | Margin | Azimuth | Height | Pol.       | Meas.    | Correction |
|-----------|----|----------|----------|--------|---------|--------|------------|----------|------------|
| (MHz)     |    | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            | time (s) | (dB)       |
| 2438      | 1  | 32.60    | 54.00    | -21.40 | 278.00  | 4.00   | Vertical   | 0.10     | 3.01       |
| 6748.5    | 1  | 40.57    | 54.00    | -13.43 | 305.00  | 4.00   | Vertical   | 0.10     | 11.74      |
| 12487.5   | 1  | 46.35    | 54.00    | -7.65  | 0.00    | 4.00   | Vertical   | 0.10     | 19.31      |
| 1323      | 2  | 31.11    | 54.00    | -22.89 | 97.00   | 4.00   | Horizontal | 0.10     | -1.76      |

#### Peak (PASS) (4)

| Frequency | SR | Level    | Limit    | Margin | Azimuth | Height | Pol.       | Meas.    | Correction |
|-----------|----|----------|----------|--------|---------|--------|------------|----------|------------|
| (MHz)     |    | (dBµV/m) | (dBµV/m) | (dB)   | (°)     | (m)    |            | time (s) | (dB)       |
| 2438      | 1  | 52.80    | 74.00    | -21.20 | 278.00  | 4.00   | Vertical   | 0.10     | 3.01       |
| 6748.5    | 1  | 52.72    | 74.00    | -21.28 | 305.00  | 4.00   | Vertical   | 0.10     | 11.74      |
| 12487.5   | 1  | 57.77    | 74.00    | -16.23 | 0.00    | 4.00   | Vertical   | 0.10     | 19.31      |
| 1323      | 2  | 44.72    | 74.00    | -29.28 | 97.00   | 4.00   | Horizontal | 0.10     | -1.76      |

# Report Number: 103097968BOX-024

# Intertek

| Test Personnel:         | Vathana Ven           | Test Date:            | 06/14/2017 |
|-------------------------|-----------------------|-----------------------|------------|
| Supervising/Reviewing   |                       |                       |            |
| (Where Applicable)      | N/A                   |                       |            |
| Product Standard:       | FCC Part 15 Subpart B | Limit Applied:        | Class B    |
| Input Voltage:          | Battery power         |                       |            |
| Pretest Verification w/ |                       | Ambient Temperature:  | 26 °C      |
| Ambient Signals or      |                       |                       |            |
| BB Source:              | Yes                   | Relative Humidity:    | 33 %       |
|                         |                       |                       |            |
|                         |                       | Atmospheric Pressure: | 1003 mbars |

# 12 Revision History

| Revision | Date       | Report Number    | Prepared | Reviewed | Notes                        |
|----------|------------|------------------|----------|----------|------------------------------|
| LEVEI    |            |                  | Бу       | Ъу       |                              |
| 0        | 09/19/2017 | 103097968BOX-024 | N.5      | KPS      | Original Issue               |
| 1        | 09/24/2017 | 103097968BOX-024 | N-5      | KPS 43   | Revised Human RF<br>Exposure |
|          |            |                  |          |          |                              |
|          |            |                  |          |          |                              |
|          |            |                  |          |          |                              |
|          |            |                  |          |          |                              |