FCC PART 15 SUBPART C TEST REPORT

for
 Transmitter Solutions

Model No.: T3 PLUS
FCC ID: SU7T3PLUS
of
Applicant: Controlled Entry Distributors, Inc.
Address: 2500 South 3850 West Suite A Salt Lake City Utah United States 84120

Tested and Prepared
by
Worldwide Testing Services (Taiwan) Co., Ltd.
FCC Registration No.: 930600
Industry Canada filed test laboratory Reg. No. IC 5679A-1, IC-5107A-1
A2LA Accredited No.: 2732.01

Report No.: W6M21603-15668-C-1
譀凹配

TABLE OF CONTENTS

1

1 GENERAL Information 2
1．1 Notes 2
1．2 TESTING LABORATORY ． 3
1．2．1 Location ． 3
1．2．2 Details of accreditation status ． 3
1．3 Details of approval holder 3
1．4 Application details 4
1.5 Test item 4
1．6 TEST STANDARDS 4
2 Technical test．
2．1 SUMMARY OF TEST RESULTS 5
2．2 TEST ENVIRONMENT 5
2.3 TeSt EQUIPMENT UTILIZED ．． 6
2．4 General Test Procedure 8
3 Test results（ENClosure） 9
3．1 Transmission Requirements 10
3．1．1 Limit of Transmission Time 10
3．1．2 Active Time 10
3.2 Output Power（Field Strength） 11
3．3 Out of Band Radiated Emissions 12
3.4 Transmitter Radiated Emissions in restricted Bands 13
3.5 Spurious Emission radiated，Transmitter 14
3.6 Channel Bandwidth 16
3．7 Antenna Requirement 17
3.8 Duty Cycle 18
3．9 Conducted Measurement at（AC）Power Line 19
Appendix：Diagrams and photos

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.
Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.
Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.
The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5 .
The test report may only be reproduced or published in full.
Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Tester:

March 11, 2016	Leon Chueh	Lean Chreh
Date	WTS-Lab.	Name

Technical responsibility for area of testing:

March 11, 2016	Kevin Wang	Kevin Wang	
Date	WTs	Name	Signature

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

1.2 Testing laboratory

1.2.1 Location

OATS
No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207,
Taiwan (R.O.C.)
3 meter semi-anechoic chamber
No.35, Aly. 21, Ln. 228, Ankang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)
TEL:886-2-6613-0228
FAX:886-2-2791-5046
Company
Worldwide Testing Services(Taiwan) Co., Ltd.
6F, NO. 58, LANE 188, RUEY-KUANG RD.
NEIHU, TAIPEI 114, TAIWAN R.O.C.
Tel : 886-2-66068877
Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory
A2LA accredited number: 2732.01
FCC filed test laboratory Reg. No. 930600
Industry Canada filed test laboratory Reg. No. IC 5679A-1, IC 5107A-1
Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd. :
Name:
./.
Accredited number: ./.
Street: ./.
Town: ./.
Country:
./.
Telephone:
./
Fax:

1.3 Details of approval holder

Name
: Controlled Entry Distributors, Inc.
Street $\quad: 2500$ South 3850 West Suite A Salt Lake City 84120
Town : Utah
Country : United States
Telephone : 801-972-4331
Fax : 801-972-1202

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

1.4 Application details

Date of receipt of test item:
Date of test:

March 04, 2016
from March 07, 2016 to March 11, 2016

1.5 Test item

Description of test item:
Transmitter Solutions
Type identification:
T3 Plus
Brand name:
./.
Multi-listing model number: ./.
Transmitting frequency:
433.92 MHz

Operation mode:
simplex
Voltage supply:
Battery 3Vd.c. (CR2032)
(The device is tested under fresh battery condition.)
Highest clock frequency: $\quad 433.92 \mathrm{MHz}$
Antenna type: PCB Antenna

Photos:

see Annex
Manufacturer (if applicable)
Name:
Street:
Town:
Country:

Additional information:

1.6 Test standards

Technical standard : FCC RULES PART 15 SUBPART C § 15.231 (a) (2014-10)

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.
or
The deviations as specified in 3 were ascertained in the course of the tests performed.

2.2 Test environment

Temperature:
Relative humidity content:
Air pressure:
Details of power supply:
Battery 3Vd.c. (CR2032)

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

2.3 Test equipment utilized

No.	Test equipment	Type	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R\&S	2015/9/4	2016/9/3
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function Test	
ETSTW-CE 008	HF-EICHLEITUNG RF STEP ATTENUATOR 139dB DPSP	334.6010 .02	844581/024	R\&S	Function Test	
ETSTW-CE 009	TEMP.\&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2015/7/13	2016/7/12
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R\&S	2015/9/7	2016/9/6
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R\&S	2015/8/14	2016/8/13
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R\&S	2015/9/4	2016/9/3
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R\&S	2015/8/14	2016/8/13
ETSTW-RE 012	TUNABLE BANDREJECT FILTER	D.C 0309	146	K\&L	Function Test	
ETSTW-RE 013	TUNABLE BANDREJECT FILTER	D.C 0336	397	K\&L	Function Test	
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2015/6/22	2016/6/21
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	ETS-Lindgren	2015/6/16	2016/6/15
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	ETS-Lindgren	2015/3/17	2016/3/16
ETSTW-RE 042	Biconical Antenna	HK116	100172	R\&S	2016/1/25	2017/1/24
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R\&S	2015/3/19	2016/3/18
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R\&S	2015/3/31	2016/3/30
ETSTW-RE 045	ESA-E SERIES SPECTRUM ANALYZER	E4404B	MY45111242	Agilent	Pre-test Use	
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2015/3/19	2016/3/18
ETSTW-RE 050	Attenuator 10dB	50HF-010-1	None	JFW	2016/3/1	2017/2/28
ETSTW-RE 051	Attenuator 6dB	50HF-006-1	None	JFW	2016/3/1	2017/2/28
ETSTW-RE 053	Attenuator 3dB	50HF-003-1	None	JFW	2016/3/1	2017/2/28
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R\&S	2016/2/27	2017/2/26
ETSTW-RE 060	Attenuator 30dB	5015-30	F651012z-01	ATM	2016/3/1	2017/2/28
ETSTW-RE 062	Amplifier Module	CHC 2	None	KMIC	2015/11/25	2016/11/24
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function Test	
ETSTW-RE 069	Double-Ridged Guide Horn Antenna	3117	00069377	ETS-Lindgren	Function Test	
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2015/9/6	2016/9/5
ETSTW-RE 088	SOLID STATE AMPLIFIER	KMA180265A01	99057	KMIC	2015/9/21	2016/9/20
ETSTW-RE 099	DC Block	50DB-007-1	None	JFW	2016/3/1	2017/2/28
ETSTW-RE 111	TRILOG Super Broadband test Antenna	VULB 9160	9160-3309	Schwarz beck	2015/9/18	2016/9/17
ETSTW-RE 112	AC POWER SOURCE	TFC-1005	T-0A023536	T-Power	Function test	
ETSTW-RE 115	2.4GHz Notch Filter	N0124411	473874	$\begin{gathered} \text { MICROWAVE } \\ \text { CIRCUITS } \\ \hline \end{gathered}$	2016/1/13	2017/1/12

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

ETSTW-RE 120	RF Player	MP9200	MP9210-111022	ADIVIC	Function test	
ETSTW-RE 122	SIGNAL GENERATOR	SMF100A	102149	R\&S	2015/6/8	2016/6/7
ETSTW-RE 125	5GHz Notch filter	$\begin{gathered} \hline \text { 5NSL11- } \\ \text { 5200/E221.3-O/O } \end{gathered}$	1	K\&L Microwave	2015/8/11	2016/8/10
ETSTW-RE 126	5GHz Notch filter	$\begin{gathered} \hline \text { 5NSL11- } \\ \text { 5800/E221.3-O/O } \\ \hline \end{gathered}$	1	K\&L Microwave	2015/8/11	2016/8/10
ETSTW-RE 127	RF Switch Box	RFS-01	None	WTS	2016/3/1	2017/2/28
ETSTW-RE 128	5.3 GHz Notch filter	N0153001	SN487233	Microwave Circuits	2015/8/11	2016/8/10
ETSTW-RE 129	5.5GHz Notch filter	N0555984	SN487234	Microwave Circuits	2015/8/11	2016/8/10
ETSTW-RE 130	Handheld RF Spectrum Analyzer	N9340A	CN0147000204	Agilent	Pre-test Use	
ETSTW-RE 143	Humidity Temperature Meter	TES-1260	110104623	TES	2015/9/9	2016/9/8
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R\&S	2015/8/14	2016/8/13
ETSTW-GSM 003	Radio Communication Analyzer	MT8820C	6201342073	Anritsu	2016/2/3	2017/2/2
ETSTW-GSM 019	Band Reject Filter	$\begin{array}{\|c\|} \hline \text { WRCTF824/849- } \\ 822 / 851-40 / 12+9 \text { SS } \\ \hline \end{array}$	3	WI	2016/1/13	2017/1/12
ETSTW-GSM 020	Band Reject Filter	$\begin{aligned} & \hline \text { WRCD1747/1748- } \\ & \text { 1743/1752-32/5SS } \\ & \hline \end{aligned}$	1	WI	2016/1/13	2017/1/12
ETSTW-GSM 021	Band Reject Filter	$\begin{gathered} \hline \text { WRCD1879.5/1880.5 } \\ -1875.5 / 1884.5- \\ 32 / 5 S S \\ \hline \end{gathered}$	3	WI	2016/1/13	2017/1/12
ETSTW-GSM 022	Band Reject Filter	$\begin{gathered} \hline \text { WRCT901.9/903.1- } \\ 904.25-50 / 8 \mathrm{SS} \\ \hline \end{gathered}$	1	WI	2016/1/13	2017/1/12
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2015/9/16	2016/9/15
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2015/9/11	2016/9/10
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	Pre-test Use NCR	
ETSTW-Cable 012	N TYPE To SMA Cable	Cable 012	None	JYE BAO CO.,LTD.	2015/9/11	2016/9/10
ETSTW-Cable 016	BNC Cable	Switch Box	B Cable 1	Schwarz beck	2016/2/24	2017/2/23
ETSTW-Cable 017	BNC Cable	X Cable	B Cable 2	Schwarz beck	2016/2/24	2017/2/23
ETSTW-Cable 018	BNC Cable	Y Cable	B Cable 3	Schwarz beck	2016/2/24	2017/2/23
ETSTW-Cable 019	BNC Cable	Z Cable	B Cable 4	Schwarz beck	2016/2/24	2017/2/23
ETSTW-Cable 020	N TYPE Cable	OATS Cable 1	N30N30-L335-15M	JYE BAO CO.,LTD.	2015/4/23	2016/4/22
ETSTW-Cable 022	N TYPE Cable	5006	0002	JYE BAO CO.,LTD.	2015/3/19	2016/3/18
ETSTW-Cable 026	Microwave Cable	SUCOFLEX 104	279075	HUBER+SUHNER	2016/3/1	2017/2/28
ETSTW-Cable 027	Microwave Cable	SUCOFLEX 104	279083	HUBER+SUHNER	2015/5/14	2016/5/13
ETSTW-Cable 028	Microwave Cable	FA147A0015M2020	30064-2	UTIFLEX	2015/9/21	2016/9/20
ETSTW-Cable 029	Microwave Cable	FA147A0015M2020	30064-3	UTIFLEX	2015/9/21	2016/9/20
ETSTW-Cable 030	Microwave Cable	$\begin{gathered} \hline \text { SUCOFLEX } 104 \\ (\text { S_Cable 9) } \end{gathered}$	279067	HUBER+SUHNER	2016/3/1	2017/2/28
ETSTW-Cable 031	Microwave Cable	$\begin{gathered} \hline \text { SUCOFLEX } 104 \\ (\text { S_Cable } 10) \end{gathered}$	238092	HUBER+SUHNER	2015/11/25	2016/11/24
ETSTW-Cable 043	Microwave Cable	SUCOFLEX 104	317576	HUBER+SUHNER	2015/11/25	2016/11/24
ETSTW-Cable 048	Microwave Cable	SUCOFLEX 104	325518	HUBER+SUHNER	2015/11/25	2016/11/24
ETSTW-Cable 053	N TYPE To SMA Cable	RG142	None	JYE BAO CO.,LTD.	2015/3/19	2016/3/18
ETSTW-Cable 058	Microwave Cable	SUCOFLEX 104	none	HUBER+SUHNER	2015/3/19	2016/3/18
WTSTW-SW 002	EMI TEST SOFTWARE	EZ_EMC	None	Farad	Version ETS-03A1	

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.420095.2 using a $50 \mu \mathrm{H}$ LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2009 6.4 using a spectrum analyzer. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was the 100 kHz and the video bandwidth was 300 kHz .

FORMULA OF CONVERSION FACTORS: The Field Strength at 3 m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $\mathrm{dB} \mu \mathrm{V}$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB .
Example:
Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS
33
$20 \mathrm{~dB} \mu \mathrm{~V}+10.36 \mathrm{~dB} / \mathrm{m}+6 \mathrm{~dB}=36.36 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} @ 3 \mathrm{~m}$

ANSI STANDARD C63.4-2009 6.3.1 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1 m by 1.5 m (non metallic table). The EUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to $10^{\text {th }}$ harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings.
Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located at. The Registration Number: 930600

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1 m to 4 m . The antenna was placed in both the horizontal and vertical planes.

ANSI STANDARD C63.4-2009 10.2.7: Any measurements that utilize special test software shall be indicated and referenced in the test report. During testing, test software 'EZ EMC' was used for setting up different operation modes.

Registration number：W6M21603－15668－C－1
FCC ID：SU7T3PLUS

$3 \quad$ Test results（enclosure）

区 1st testtest after modification
\square production test

TEST CASE	Para．Number	Required	Test passed	Test failed
Transmission Requirements	FCC 15．231（a）	区	区	\square
Radiated Emission	FCC 15．231（b）	区	区	\square
Bandwidth of Emission	FCC 15．231（c）	区	囚	\square
Frequency Tolerance	FCC 15．231（d）	\square	\square	\square
Period Alternate Field Strength Requirements	FCC 15．231（e）	区	区	\square
Antenna Requirement	FCC 15.203	区	区	\square
Conducted Measurement at（AC）Power Line	FCC 15.207	\square	\square	\square

The following is intentionally left blank．

3.1 Transmission Requirements

FCC 15.231(a)

3.1.1 Limit of Transmission Time

区 According to 15.231 (a)(1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
\square According to $15.231(\mathrm{a})(2)$, a transmitter activated automatically shall cease transmission within 5 seconds after activation.
\square According to 15.231 (a)(3), periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
\square According to $15.231(\mathrm{a})(4)$, intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.According to $15.231(a)(5)$, transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmission are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

3.1.2 Active Time

This manually operated transmitter employs a switch that automatically deactivate the transmitter within 1.182364729 s of being released.This transmitter is operated by automatic activation and active will cease transmission in \qquad ms after activation..
\square Others: This product is employed for radio control purpose during emergencies. When emergency switch is pulled down, the EUT will transmit a signal around \qquad ms and continue to retransmit the signal every 5 minutes during the pendency of the alarm condition.

Explanation: See attached diagrams in appendix.
Test equipment used: ETSTW-RE 055, ETSTW-RE 004

3.2 Output Power (Field Strength)

Model:	T3 Plus		Date:		2016/03/07				Engineer: Roy	
Mode:	Pow		Tempe	ture:						
Polarization: Horizontal			Humidity: 60			60 \%				
Frequency	Reading (dBuV)			Resul (dBu	$\begin{aligned} & @ 3 m \\ & \mathrm{~V} / \mathrm{m}) \end{aligned}$	Limit (dBu	$\begin{aligned} & @ 3 m \\ & \text { V/m) } \end{aligned}$	Margin	Table Degree	Ant. High (cm)
(MHz)	Peak	Corr.	Duty	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	
433.8512	60.39	19.60	-2.84	79.99	77.15	100.83	80.83	-3.68	80	100

Polarization: Vertical

Frequency (MHz)	Reading (dBuV) Peak	Factor (dB)		Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
		Corr.	Duty	Peak	Ave.	Peak	Ave.			
433.8542	49.90	19.60	-2.84	69.50	66.66	100.83	80.83	-14.17	145	100

Limit 15.231(b)

Fundamental Frequency (MHz)	Field strength of fundamental, limit $\mu \mathrm{V} / \mathrm{m}$
$40.66-40.70$	2,250
$70-130$	1,250
$130-174$	1,250 to 3,750
$174-260$	3,750
$260-470$	3,750 to $12,500^{* *}$
	$(433.92 \mathrm{MHz}: 80.83 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}=10996.68 \mu \mathrm{~V} / \mathrm{m})$
Above 470	12,500

** linear interpolation
Explanation: See attached diagrams in appendix.
Test equipment used: ETSTW-RE 004, ETSTW-RE 111

Registration number: W6M21603-15668-C-1

FCC ID: SU7T3PLUS

3.3 Out of Band Radiated Emissions

FCC Rule: 15.231(b) , 15.35
For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

Guidance on Measurement of pulsed emission: 15.35(c)
"the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value."

Duty Cycle correction $=20 \log ($ dwell time/100ms or one period)
Limits:
For frequencies (Average measurements)
Correction factor conform 15.35 (c) (Average measurements)
Duty cycle correction :
Max. Peak reading - duty cycle correction
Max permitted average Limits $=$ Max permitted Fundamental limit -20 dB
For example for 310 fundamental carrier:
Max permitted average Limit: $80.83 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}-20 \mathrm{~dB}=60.83 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$
For frequencies above 1 GHz (Peak measurements).
Modified Limits for peak conform 15.35 (b) = Max Permitted average Limits + 20dB (because Peak detector is used)

Explanation: See attached diagrams in appendix.
Test equipment used: ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 111

Registration number：W6M21603－15668－C－1

FCC ID：SU7T3PLUS

3．4 Transmitter Radiated Emissions in restricted Bands

FCC Rules： 15.231 （b），15．205，15．209， 15.35
Radiated emission measurements were performed from 30 MHz to 8000 MHz ．
For radiated emission tests，the analyzer setting was as followings：
RES BW VID BW
Frequency $<1 \mathrm{GHz} 100 \mathrm{kHz} 100 \mathrm{kHz}$（Peak measurements）
Frequency $>1 \mathrm{GHz} 1 \mathrm{MHz} 1 \mathrm{MHz}$（Peak measurements）
1 MHz 1 MHz （Average measurements）
Limits：
For frequencies below 1 GHz ：

Frequency of Emission (MHz)	Field strength （microvolts／meter）	Field Strength （dB microvolts／meter）
$30-88$	100	40.0
$88-216$	150	43.5
$216-960$	200	46.0
Above 960	500	54.0

For frequencies above 1 GHz （Average measurements）．
Guidance on Measurement of pulsed emission：
＂If the emission is pulsed，modify the unit for continues operation，use the settings shown above， then correct the reading by subtracting the peak－average correction factor，derived from the appropriate duty cycle calculation．

For frequencies above 1 GHz （Average measurements）．

The correction factor，based on the channel dwell tine in a 100 ms period，may be mathematically applied to a measurement made with an average detector，to further reduce the value．

Duty cycle correction $=20 \log$（dwell time／100ms）
No duty cycle correction was added to the reading
Modified Limits for peak conform 15.35 （b）＝Max Permitted average Limits＋20dB（because Peak detector is used）

Above 960 MHz
For mode DSSS CW： $54 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}+20 \mathrm{~dB}=74 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$
Explanation：See attached diagrams in appendix．

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

3.5 Spurious Emission radiated, Transmitter

Spurious emission was measured with modulation (declared by manufacturer).
The limits on the field strength of the spurious emission in the table § 15.231(b) are based on the fundamental frequency of the intentional radiator. Spurious emission shall be attenuated to the average (or alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

In addition, radiated emission which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209 (a) (See § 15.205(c)).
SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

Calculation of test results:
Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.
In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

Summary table with radiated data of the test plots

Model: Mode: Polarization	T3 Plus $433.92 \mathrm{MHz}$ orizontal			Date: $2016 / 3 / 7$ Temperature: $24^{\circ} \mathrm{C}$ Humidity: 60%			Engineer: Roy	
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	$\begin{gathered} \text { Result } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
112.2445	13.48	peak	13.00	26.48	43.50	-17.02	275	100
127.9360	8.10	peak	14.35	22.45	43.50	-21.05	95	100
611.4228	3.24	peak	23.14	26.38	46.00	-19.62	90	100

Frequency(MHz)	Reading (dBuV) Peak	Factor (dB)		Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
		Corr.	Duty	Peak	Ave.	Peak	Ave.			
868.1363	20.29	26.98	-2.84	47.27	44.43	80.83	60.83	-22.46	155	100
1735.4710	70.62	-7.10	-2.84	63.52	60.68	80.83	60.83	-0.15	85	110
2168.3370	62.62	-5.37	-2.84	57.25	54.41	80.83	60.83	-6.42	290	100
3907.8160	57.94	-1.26	-2.84	56.68	53.84	74.00	54.00	-0.16	100	100
4336.6730	53.45	-0.89	-2.84	52.56	49.72	74.00	54.00	-4.28	45	100

Registration number：W6M21603－15668－C－1
FCC ID：SU7T3PLUS

Polarization：Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Table Degree $($ Deg．$)$	Ant． High (cm)
113.3267	8.71	peak	13.10	21.81	43.50	-21.69	225	100
136.0520	7.75	peak	14.93	22.68	43.50	-20.82	60	100
610.0200	3.86	peak	23.12	26.98	46.00	-19.02	190	100

Frequency （MHz）	Reading （dBuV） Peak	Factor （dB）		Result＠3m （ $\mathrm{dBuV} / \mathrm{m}$ ）		Limit＠3m （dBuV／m）		$\begin{gathered} \text { Margin } \\ (\mathrm{dB}) \\ \hline \end{gathered}$	Table Degree （Deg．）	Ant．High （cm）
		Corr．	Duty	Peak	Ave．	Peak	Ave．			
868.1363	18.56	26.98	－2．84	45.54	42.70	80.83	60.83	－18．13	225	100
2168.3370	63.77	－5．37	－2．84	58.40	55.56	80.83	60.83	－5．27	215	100
3907.8160	57.97	－1．26	－2．84	56.71	53.87	74.00	54.00	－0．13	170	100
4336.6730	56.87	－0．89	－2．84	55.98	53.14	74.00	54.00	－0．86	265	100
4769.5390	51.86	－0．44	－2．84	51.42	48.58	74.00	54.00	－5．42	80	100

Note 1．Correction Factor＝Antenna factor＋Cable loss－Preamplifier
2． The formula of measured value as：Test Result $=$ Reading + Correction Factor
3．Detector function in the form ：PK＝Peak，QP＝Quasi Peak，AV＝Average
4．All not in the table noted test results are more than 20 dB below the relevant limits．
5．Measurement uncertainty for 3 m measurement： $\mathbf{3 0 - 1 0 0 0 ~ M H z}= \pm 3.90 \mathrm{~dB}, 1-18 \mathrm{GHz}= \pm 4.78$ $\mathrm{dB}, 18-40 \mathrm{GHz}= \pm 2.44 \mathrm{~dB}$ ；Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathbf{k}=2$ ．
6．See attached diagrams in appendix．

All other not noted test plots do not contain significant test results in relation to the limits Test results：The unit meet the FCC requirements．

Test equipment used：ETSTW－RE 004，ETSTW－RE 030，ETSTW－RE 111

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

3.6 Channel Bandwidth

Measurement of Necessary Bandwidth (BN)

Used frequency	Bandwidth	Limit
433.92 MHz	57.11422846 kHz	1.0848 MHz

Explanation: The bandwidth fulfills the requirements of FCC § 15.231, See attached diagrams in appendix.

Limits:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz . For devices operating above 900 MHz , the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test equipment used: ETSTW-RE 055, ETSTW-RE 004

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

3.7 Antenna requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections $15.211,15.213,15.217,15.219$, or 15.221 . Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Explanation: This PCB antenna is integral antenna which passes antenna requirement.

The equipment meets the	yes	no
requirements	$\boxed{\square}$	

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

3.8 Duty Cycle

The correction factor, based on the channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the measured value.

Average Reading $=$ Peak Reading $(\mathrm{dBuV} / \mathrm{m})+$ Duty Cycle Correction
Duty Cycle Correction = $20 \log$ (Cycle)
In order to determine the Duty Cycle, the EUT is measured as:

Testing Mode	T period (ms)	T on (ms)	Duty Cycle	Duty Cycle Correction $20 * \log ($ Duty Cycle)
Transmitting Mode	100	72.07214	0.720721443	-2.84

Explanation: See attached diagrams in appendix.

Test equipment used: ETSTW-RE 055, ETSTW-RE 004

3.9 Conducted Measurement at (AC) Power Line

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Frequency	Level	
	quasi-peak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	average $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$
--kHz	--	--

Note

1. The formula of measured value as: Test Result = Reading + Correction Factor
2. The Correction Factor $=$ Cable Loss + LISN Insertion Loss + Pulse Limit Loss
3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
4. All not in the table noted test results are more than 20 dB below the relevant limits.
5. Measurement uncertainty $= \pm 1.67 \mathrm{~dB}$; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathbf{k}=2$.
6. This test is not required because the EUT is battery-used.

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
$0.15-0.5$	Quasi Peak	Average
	66 to 56	56 to 46
	$5-30$	56
	60	56

Test equipment used: ETSTW-CE 001, ETSTW-CE 003, ETSTW-CE 016, ETSTW-RE 045

Appendix

A Measurement diagrams

1. Active Time
2. Output Power
3. Spurious Emissions radiated
4. Bandwidth
5. Duty Cycle

B Photos

1. External Photos
2. Internal Photos
3. Set Up Photos

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS
Active Time

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS
Output Power
Antenna Polarization H

Antenna Polarization V

Note:

Up Line: Peak Limit Line, Down Line: Ave Limit Line

1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
3. For corrected test results are listed in the relevant table of Field Strength test data of this test report.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Spurious Emissions radiated

Antenna Polarization H

Note:

Up Line: Peak Limit Line, Down Line: Ave Limit Line

1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Note:

Up Line: Peak Limit Line, Down Line: Ave Limit Line

1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Antenna Polarization V

Note:

Up Line: Peak Limit Line, Down Line: Ave Limit Line

1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Note:

Up Line: Peak Limit Line, Down Line: Ave Limit Line

1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Note:

Up Line: Peak Limit Line, Down Line: Ave Limit Line

1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS
Bandwidth

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Duty Cycle

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS
External Photos

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1 FCC ID: SU7T3PLUS

$\begin{array}{lllllllll}0 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{~mm}\end{array}$

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Internal Photos

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS

Registration number: W6M21603-15668-C-1 FCC ID: SU7T3PLUS

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21603-15668-C-1
FCC ID: SU7T3PLUS
Set Up Photos of Radiated emission

