Nemko-CCL, Inc. 1940 West Alexander Street Salt Lake City, UT 84119 801-972-6146 # **Test Report** Certification Test Of: RCOO900 FCC ID: SU7RCO900 **Test Specifications:** FCC PART 15, Subpart C Test Report Serial No: 289874-6.3 Applicant: Controlled Entry dBa Community Controls 2500 South 3850 West, Suite A Salt Lake City, UT 82120 U.S.A Date of Test: August 25, 2015 Report Issue Date: April 28, 2016 Accredited Testing Laboratory By: NVLAP Lab Code 100272-0 REPORT ISSUE DATE: 04/28/2016 Page 2 of 43 #### CERTIFICATION OF ENGINEERING REPORT This report has been prepared by Nemko-CCL, Inc. to document compliance of the device described below with the requirements of Federal Communications Commission (FCC) Part 15, Subpart C. This report may be reproduced in full, partial reproduction may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested. - Applicant: Controlled Entry - Manufacturer: Allmatic S.r.l. - Brand Name: Transmitter Solutions - Model Number: RCOO900 - FCC ID: SU7RCO900 On this 28th day of April 2016, I, individually and for Nemko-CCL, Inc., certify that the statements made in this engineering report are true, complete, and correct to the best of my knowledge, and are made in good faith. Although NVLAP has recognized that the Nemko-CCL, Inc. EMC testing facilities are in good standing, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. Nemko-CCL, Inc. Tested by: Norman P. Hansen Test Technician The Reviewed by: Thomas C. Jackson Certification Manager Page 3 of 43 | Revision History | | | | | |------------------|---|----------------|--|--| | Revision | Date | | | | | 1 | Original Report Release | 2 October 2015 | | | | 2 | Revised report to remove TCOO900 test data from report per TCB request. | 18 April 2016 | | | | 3 | Relabeled upper and lower radiated band edge plots per TCB | 28 April 2016 | | | Page 4 of 43 # **TABLE OF CONTENTS** | PAGE | |---| | SECTION 1.0 CLIENT INFORMATION5 | | SECTION 2.0 EQUIPMENT UNDER TEST (EUT)6 | | SECTION 3.0 TEST SPECIFICATION, METHODS & PROCEDURES9 | | SECTION 4.0 OPERATION OF EUT DURING TESTING15 | | SECTION 5.0 SUMMARY OF TEST RESULTS16 | | SECTION 6.0 MEASUREMENTS AND RESULTS17 | | APPENDIX 1 TEST PROCEDURES AND TEST EQUIPMENT31 | | APPENDIX 2 PHOTOGRAPHS35 | Nemko-CCL, Inc. TEST REPORT: 289874-6.3 REPORT ISSUE DATE: 04/28/2016 Page 5 of 43 ### **SECTION 1.0 CLIENT INFORMATION** ### 1.1 Applicant: Company Name: Controlled Entry dBa Community Controls 2500 South 3850 West, Suite A Salt Lake City, UT 84120 U.S.A Contact Name: Brad Kofford Title: President ### 1.2 Manufacturer: Company Name: Allmatic S.r.l.. Via dell'Artigiano 1 32020 Lentiai Belluno, Italy Page 6 of 43 #### **SECTION 2.0 EQUIPMENT UNDER TEST (EUT)** #### **2.1 Identification of EUT:** Brand Name: Transmitter Solutions Model Number: RCOO900 Serial Number: None Dimensions: 9.0 cm x 12.0 cm x 3.0 cm Country of Manufacture: Italy #### **2.2 Description of EUT:** The RCOO900 is a device used in gate and door automation systems that are connected to safety edges. The RCOO900 receives the information from the TCOO900 and controls the gate or door accordingly. The RCOO900 receives power via a 12/24 Vac/Vdc supply. A Basler Electric BE114820CAA, 120 Vac to 24 Vac transformer was used to power the RCOO900 for testing. The RCOO900 can be set to operate at 4 channels in the 902-928 MHz band. The RCOO900 use a wire soldered to the PCB as an antenna. | Channel | Frequency (MHz) | |---------|-----------------| | 1 | 912.9 | | 2 | 914.9 | | 3 | 916.9 | | 4 | 918.9 | This report covers the circuitry of the devices subject to FCC Part 15, Subpart C. The circuitry of the device subject to FCC Subpart B was found to be compliant and is covered in Nemko-CCL, Inc. report 289874-3. REPORT ISSUE DATE: 04/28/2016 Page 7 of 43 ### 2.3 EUT and Support Equipment: The FCC ID numbers for all the EUT and support equipment used during the test are listed below: | Brand Name
Model Number
Serial No. | FCC ID Number | Description | Name of Interface Ports /
Interface Cables | |--|---------------|-----------------------------|---| | BN: Transmitter
Solutions | SU7RCO900 | Entry system control device | See Section 2.4 | | MN: RCOO900 (Note 1) | | | | | SN: None | | | | Note: (1) EUT # **2.4 Interface Ports on EUT:** | Name of Ports | No. of Ports Fitted to
EUT | Cable Descriptions/Length | |---------------|-------------------------------|------------------------------------| | Power | 1 | 2 unshielded conductors/1.5 meters | | Relay | 2 | 6 unshielded conductors/1.0 meters | | Test | 0 | No cabling | REPORT ISSUE DATE: 04/28/2016 Page 8 of 43 # **2.5 Modification Incorporated/Special Accessories on EUT:** There were no modifications or special accessories required to comply with the specification. REPORT ISSUE DATE: 04/28/2016 Page 9 of 43 #### SECTION 3.0 TEST SPECIFICATION, METHODS & PROCEDURES #### **3.1 Test Specification:** Title: FCC PART 15, Subpart C (47 CFR 15) 15.203, 15.207, and 15.247 Limits and methods of measurement of radio interference characteristics of radio frequency devices. Purpose of Test: The tests were performed to demonstrate initial compliance. #### 3.2 Methods & Procedures: #### 3.2.1 §15.203 Antenna Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded. #### 3.2.2 §15.207 Conducted Limits (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHZ to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges. Page 10 of 43 | Frequency of Emission (MHz) | Conducted Limit (dBµV) | | |-----------------------------|------------------------|-----------| | | Quasi-peak | Average | | $0.15 - 0.5^*$ | 66 to 56* | 56 to 46* | | 0.5 - 5 | 56 | 46 | | 5 - 30 | 60 | 50 | ^{*}Decreases with the logarithm of the frequency. # 3.2.3 §15.247 Operation within the bands 902 – 928 MHz, 2400 – 2483.5 MHz, and 5725 – 5850 MHz - (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: - (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. - (i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz. - (ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period. - (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used. REPORT ISSUE DATE: 04/28/2016 Page 11 of 43 (2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. - (b) The maximum peak output power of the intentional radiator shall not exceed the following: - (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. - (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section. - (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725 5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. - (c) Operation with directional antenna gains greater than 6 dBi. - (1) Fixed point-to-point operation: - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. REPORT ISSUE DATE: 04/28/2016 Page 12 of 43 (ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power. - (iii) Fixed, point-to-point operation, as used in paragraphs (b)(4)(i) and (b)(4)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility. - (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following: - (i) Different information must be transmitted to each receiver. - (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna /antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows: - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain. - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming. - (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall Page 13 of 43 be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB. - (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section. - (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). - (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. - (f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section. - (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. - (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express Page 14 of 43 purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. (i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter. Note: Spread spectrum systems are sharing these bands on a noninterference basis with systems supporting critical Government requirements that have been allocated the usage of these bands, secondary only to ISM equipment operated under the provisions of Part 18 of this Chapter. Many of these Government systems are airborne radiolocation systems that emit a high EIRP which can cause interference to other users. Also, investigations of the effect of spread spectrum interference to U. S. Government operations in the 902-928 MHz band may require a future decrease in the power limits allowed for spread spectrum operation. #### **3.3 Test Procedure** The testing was performed according to the procedures in ANSI C63.4: 2003 and 47 CFR Part 15. Testing was performed at the Nemko-CCL, Inc. Wanship open area test site #2, located at 29145 Old Lincoln Highway, Wanship, UT. This site has been registered with the FCC, and was renewed January 22, 2015 (90504). This registration is valid for three years. Nemko-CCL, Inc. is accredited by National Voluntary Laboratory Accreditation Program (NVLAP); NVLAP Lab Code: 100272-0, which is effective until September 30, 2016. REPORT ISSUE DATE: 04/28/2016 Page 15 of 43 #### **SECTION 4.0 OPERATION OF EUT DURING TESTING** #### **4.1 Operating Environment:** Power Supply: 120 VAC/60 Hz ### **4.2 Operating Modes:** The transmitters were tested while in a constant transmit mode at the upper and lower channels. The AC mains voltage to the AC adapter that powered the RCOO900 was varied as required by §15.31(e) with no change seen in the transmitter characteristics. ### **4.3 EUT Exercise Software:** Allmatic test software was used to exercise the transmitter. Page 16 of 43 ### **SECTION 5.0 SUMMARY OF TEST RESULTS** # 5.1 FCC Part 15, Subpart C The RCOO900 transceiver was subjected to each of the tests shown in the summary table below. ### **5.1.1 Summary of Tests:** | Section | Environmental Phenomena | Frequency Range
(MHz) | Result | | | |---|---|--------------------------|-------------------|--|--| | 15.203 | Antenna Requirements | Structural requirement | Complied | | | | 15.207 | Conducted Disturbance at Mains
Ports | 0.15 to 30 | Complied | | | | 15.247(a) | Bandwidth Requirement | 902-928 | Complied | | | | 15.247(b) | Peak Output Power | 902-928 | Complied | | | | 15.247(d) | Spurious Emissions | 0.009 - 9280 | Complied | | | | 15.247(e) | Peak Power Spectral Density | 902-928 | Complied | | | | 15.247(i) | RF Exposure | 902-928 | Complied (Note 1) | | | | Note 1: Compliance with these requirements is shown in documents filed with the FCC at the time of Certification. | | | | | | ### 5.2 Result In the configuration tested, the transceivers complied with the requirements of the specification. Page 17 of 43 #### SECTION 6.0 MEASUREMENTS AND RESULTS ### **6.1 General Comments:** This section contains the test results only. Details of the test methods used and a list of the test equipment used during the measurements can be found in Appendix 1 of this report. #### **6.2 Test Results:** #### 6.2.1 §15.203 Antenna Requirements The EUT uses a wire soldered to the PCB as an antenna and is not user replaceable. #### **RESULT** The EUT complied with the specification. ### 6.2.2 §15.207 Conducted Disturbance at the AC Mains Ports | Frequency (MHz) | AC Mains Lead | AC Mains Lead Detector Measured Limit Level $(dB\mu V)$ | | | Margin (dB) | |-----------------|---------------|---|------|------|-------------| | 0.15 | Hot Lead | ad Peak (Note 1) | | 56.0 | -8.9 | | 0.24 | Hot Lead | Peak (Note 1) | 42.2 | 52.2 | -10.0 | | 0.28 | Hot Lead | Peak (Note 1) | 35.2 | 50.9 | -15.7 | | 0.32 | Hot Lead | Peak (Note 1) | 32.0 | 49.8 | -17.8 | | 0.35 | Hot Lead | Peak (Note 1) | 28.6 | 48.9 | -20.3 | | 0.64 | Hot Lead | Peak (Note 1) | 27.0 | 46.0 | -19.0 | | 13.43 | Hot Lead | Peak (Note 1) | 24.4 | 50.0 | -25.6 | | 0.15 | Neutral Lead | Peak (Note 1) | 26.2 | 56.0 | -29.8 | | 0.28 | Neutral Lead | Peak (Note 1) | 23.1 | 50.8 | -27.7 | | 0.40 | Neutral Lead | Peak (Note 1) | 24.5 | 47.8 | -23.3 | | 1.04 | Neutral Lead | Peak (Note 1) | 24.8 | 46.0 | -21.2 | | 2.69 | Neutral Lead | Peak (Note 1) | 24.1 | 46.0 | -21.9 | | 4.62 | Neutral Lead | Peak (Note 1) | 23.6 | 46.0 | -22.4 | Page 18 of 43 | Frequency (MHz) | AC Mains Lead | Detector | Measured
Level
(dBμV) | Limit
(dBµV) | Margin
(dB) | |-----------------|---------------|---------------|-----------------------------|-----------------|----------------| | 8.40 | Neutral Lead | Peak (Note 1) | 24.5 | 50.0 | -25.5 | Note 1: The reference detector used for the measurements was Quasi-Peak or Peak and the data was compared to the average limit; therefore, the EUT was deemed to meet both the average and quasi-peak limits. #### **RESULT** In the configuration tested, the EUT complied with the specification by 8.9 dB. #### **6.2.3** §15.247(a)(2) Emission Bandwidth | Frequency
(MHz) | Emission 6 dB bandwidth (MHz) | |--------------------|-------------------------------| | 912.9 | 616.0 | | 918.9 | 618.0 | #### **RESULT** In the configuration tested, the 6 dB bandwidth was greater than 500 kHz; therefore, the EUT complied with the requirements of the specification (see spectrum analyzer plots below). Page 19 of 43 1 912.984000 MHz ∇ 96.3000 dBuV ²⁻¹ -424.000000 kHz 7 -5.9000 dB 3-2 616.000000 kHz #### Lowest Channel Bandwidth Trace A 15.247 6 dB BW RC00900 Page 20 of 43 1 918.976002 MHz ∇ 94.9000 dBuV $^{3\text{-}2}$ 618.001235 kHz $\overline{\lor}$ -0.1000 dB ### Highest Channel Bandwidth Trace A 15.247 6 dB BW RC00900 Page 21 of 43 #### 6.2.4 §15.247(b)(3) Peak Output Power The EUT uses a wire soldered to the PCB as an antenna and the gain is not known. The FCC allows a maximum conducted power of 30 dBm to a 6 dBi antenna which is an EIRP limit of 36 dBm. The radiated field strength measurements were converted to EIRP in dBm and compared to the limit of 36.0 dBm. The results are shown below. | Frequency (MHz) | Measured Field
Strength at 3
meters
(dBµV/m) | EIRP
(dBm) | EIRP Limit (dBm) | |-----------------|---|---------------|------------------| | 912.9 | 98.0 | 2.77 | 36.0 | | 918.9 | 98.1 | 2.87 | 36.0 | #### **RESULT** In the configuration tested, the maximum EIRP was less than 36.0 dBm; therefore, the EUT complied with the requirements of the specification (see spectrum analyzer plots below). Page 22 of 43 # Lowest Channel Output Power Plot Trace A 15.247 Peak powerRC00900 Page 23 of 43 # Highest Channel Output Power Plot 1 918.223002 MHz∇ 98.1000 dBuV Trace A 15.247 Peak powerRC00900 Page 24 of 43 #### **6.2.5 §15.247(d) Spurious Emissions** The frequency range from the lowest frequency generated or used in the device to the tenth harmonic of the highest fundamental emission was investigated to measure any emissions. The following tables show measurements of the emissions found in testing. The tables show the worst-case emission measured from the EUT. The noise floor was a minimum of 6 dB below the limit. Emissions outside the restricted bands of \$15.205 must be attenuated 20 dB below the fundamental emission when measured using a 100 kHz RBW. The emissions in the restricted bands must meet the limits specified in \$15.209. Tabular data for each of the spurious emissions is shown below for each of the units. Plots of the band edges are also shown. Note that all emissions seen, were compared to the tighter limits of \$15.209 and were found compliant. #### **RESULT** All emissions met the limits specified in §15.209; therefore, the EUT complies with the specification. #### Transmitting at the Lowest Frequency | Frequency
(MHz) | Detection
Mode | Antenna
Polarity | Receiver
Reading
(dBµV) | Correction
Factor
(dB) | Field Strength (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | |--------------------|-------------------|---------------------|-------------------------------|------------------------------|-------------------------|-------------------|----------------| | 1825.8 | Peak | Vertical | 16.3 | 30.0 | 46.3 | 74.0 | -27.7* | | 1825.8 | Average | Vertical | 6.2 | 30.0 | 36.2 | 54.0 | -17.8* | | 1825.8 | Peak | Horizontal | 18.9 | 30.0 | 48.9 | 74.0 | -25.1* | | 1825.8 | Average | Horizontal | 9.0 | 30.3 | 39.3 | 54.0 | -14.7* | | 2738.7 | Peak | Vertical | 8.9 | 33.8 | 42.7 | 74.0 | -31.3 | | 2738.7 | Average | Vertical | 0.8 | 33.8 | 34.6 | 54.0 | -19.4 | | 2738.7 | Peak | Horizontal | 9.8 | 33.8 | 43.6 | 74.0 | -30.4 | | 2738.7 | Average | Horizontal | 1.0 | 33.8 | 34.8 | 54.0 | -19.2 | | 3654.6 | Peak | Vertical | 6.5 | 36.8 | 43.3 | 74.0 | -30.7 | | 3654.6 | Average | Vertical | -3.7 | 36.8 | 33.1 | 54.0 | -20.9 | | 3654.6 | Peak | Horizontal | 8.3 | 36.8 | 45.1 | 74.0 | -28.9 | | 3654.6 | Average | Horizontal | -1.8 | 36.8 | 35.0 | 54.0 | -19.0 | | 4564.5 | Peak | Vertical | 17.3 | 38.4 | 55.7 | 74.0 | -18.3 | | 4564.5 | Average | Vertical | 6.0 | 38.4 | 44.4 | 54.0 | -9.6 | | 4564.5 | Peak | Horizontal | 13.7 | 38.4 | 52.1 | 74.0 | -21.9 | | 4564.5 | Average | Horizontal | 4.7 | 38.4 | 43.1 | 54.0 | -10.9 | | 5477.4 | Peak | Vertical | 23.2 | 40.5 | 63.7 | 74.0 | -10.3* | | 5477.4 | Average | Vertical | 12.8 | 40.5 | 53.3 | 54.0 | -0.7* | | 5477.4 | Peak | Horizontal | 23.8 | 40.5 | 64.3 | 74.0 | -9.7* | | 5477.4 | Average | Horizontal | 11.9 | 40.5 | 52.4 | 54.0 | -1.6* | TEST REPORT: 289874-6.3 REPORT ISSUE DATE: 04/28/2016 Page 25 of 43 | Frequency (MHz) | Detection
Mode | Antenna
Polarity | Receiver
Reading
(dBµV) | Correction
Factor
(dB) | Field Strength (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | |-----------------|-------------------|---------------------|-------------------------------|------------------------------|-------------------------|-------------------|----------------| | 6390.3 | Peak | Vertical | 17.0 | 41.4 | 58.4 | 74.0 | -15.6* | | 6390.3 | Average | Vertical | 6.8 | 41.4 | 48.2 | 54.0 | -5.8* | | 6390.3 | Peak | Horizontal | 21.5 | 41.4 | 62.9 | 74.0 | -11.1* | | 6390.3 | Average | Horizontal | 10.9 | 41.4 | 52.3 | 54.0 | -1.7* | | 7303.2 | Peak | Vertical | 18.6 | 43.6 | 62.2 | 74.0 | -11.8 | | 7303.2 | Average | Vertical | 6.9 | 43.6 | 50.5 | 54.0 | -3.5 | | 7303.2 | Peak | Horizontal | 13.5 | 43.6 | 57.1 | 74.0 | -16.9 | | 7303.2 | Average | Horizontal | 2.9 | 43.6 | 46.5 | 54.0 | -7.5 | | 8216.1 | Peak | Vertical | 6.3 | 45.1 | 51.4 | 74.0 | -22.6 | | 8216.1 | Average | Vertical | -4.6 | 45.1 | 40.5 | 54.0 | -13.5 | | 8216.1 | Peak | Horizontal | 6.4 | 45.1 | 51.5 | 74.0 | -22.5 | | 8216.1 | Average | Horizontal | -6.0 | 45.1 | 39.1 | 54.0 | -14.9 | | 9129.0 | Peak | Vertical | 4.3 | 46.4 | 50.7 | 74.0 | -23.3 | | 9129.0 | Average | Vertical | -6.7 | 46.4 | 39.7 | 54.0 | -14.3 | | 9129.0 | Peak | Horizontal | 6.2 | 46.4 | 52.6 | 74.0 | -14.3 | | 9129.0 | Average | Horizontal | -6.1 | 46.4 | 40.3 | 54.0 | -21.4 | ^{*}These emissions are not in restricted bands and only have to be attenuated 20 dBc to 79.2 dBuV/m peak; however, they meet the tighter limits of the restricted bands. ### Transmitting at the Highest Frequency | Frequency
(MHz) | Detection
Mode | Antenna
Polarity | Receiver
Reading
(dBµV) | Correction
Factor
(dB) | Field Strength
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | |--------------------|-------------------|---------------------|-------------------------------|------------------------------|----------------------------|-------------------|----------------| | 1837.8 | Peak | Vertical | 16.8 | 30.4 | 47.2 | 74.0 | -26.8* | | 1837.8 | Average | Vertical | 6.5 | 30.4 | 36.9 | 54.0 | -17.1* | | 1837.8 | Peak | Horizontal | 18.3 | 30.4 | 48.7 | 74.0 | -25.3* | | 1837.8 | Average | Horizontal | 9.2 | 30.4 | 39.6 | 54.0 | -14.4* | | 2756.7 | Peak | Vertical | 9.6 | 33.9 | 43.5 | 74.0 | -30.5 | | 2756.7 | Average | Vertical | 1.1 | 33.9 | 35.0 | 54.0 | -19.0 | | 2756.7 | Peak | Horizontal | 10.0 | 33.9 | 43.9 | 74.0 | -30.1 | | 2756.7 | Average | Horizontal | 1.3 | 33.9 | 35.2 | 54.0 | -18.8 | | 3675.6 | Peak | Vertical | 7.4 | 36.9 | 44.3 | 74.0 | -29.7 | | 3675.6 | Average | Vertical | -3.3 | 36.9 | 33.6 | 54.0 | -20.4 | | 3675.6 | Peak | Horizontal | 7.7 | 36.9 | 44.6 | 74.0 | -29.4 | TEST REPORT: 289874-6.3 REPORT ISSUE DATE: 04/28/2016 Page 26 of 43 | Frequency (MHz) | Detection
Mode | Antenna
Polarity | Receiver
Reading
(dBµV) | Correction
Factor
(dB) | Field Strength
(dBμV/m) | Limit
(dBµV/m) | Margin
(dB) | |-----------------|-------------------|---------------------|-------------------------------|------------------------------|----------------------------|-------------------|----------------| | 3675.6 | Average | Horizontal | -1.6 | 36.9 | 35.3 | 54.0 | -18.7 | | 4594.5 | Peak | Vertical | 18.0 | 38.4 | 56.4 | 74.0 | -17.6 | | 4594.5 | Average | Vertical | 8.3 | 38.4 | 46.7 | 54.0 | -7.3 | | 4594.5 | Peak | Horizontal | 14.4 | 38.4 | 52.8 | 74.0 | -21.2 | | 4594.5 | Average | Horizontal | 4.8 | 38.4 | 43.2 | 54.0 | -10.8 | | 5513.4 | Peak | Vertical | 22.5 | 40.5 | 63.0 | 74.0 | -11.0* | | 5513.4 | Average | Vertical | 12.2 | 40.5 | 52.7 | 54.0 | -1.3* | | 5513.4 | Peak | Horizontal | 23.5 | 40.5 | 64.0 | 74.0 | -10.0* | | 5513.4 | Average | Horizontal | 13.1 | 40.5 | 53.6 | 54.0 | -0.4* | | 6432.3 | Peak | Vertical | 17.7 | 41.5 | 59.2 | 74.0 | -14.8* | | 6432.3 | Average | Vertical | 6.8 | 41.5 | 48.3 | 54.0 | -5.7* | | 6432.3 | Peak | Horizontal | 22.1 | 41.5 | 63.6 | 74.0 | -10.4* | | 6432.3 | Average | Horizontal | 11.3 | 41.5 | 52.8 | 54.0 | -1.2* | | 7351.2 | Peak | Vertical | 18.3 | 43.8 | 62.1 | 74.0 | -11.9 | | 7351.2 | Average | Vertical | 6.2 | 43.8 | 50.0 | 54.0 | -4.0 | | 7351.2 | Peak | Horizontal | 14.1 | 43.8 | 57.9 | 74.0 | -16.1 | | 7351.2 | Average | Horizontal | 2.7 | 43.8 | 46.5 | 54.0 | -7.5 | | 8270.1 | Peak | Vertical | 7.0 | 45.2 | 52.2 | 74.0 | -21.8 | | 8270.1 | Average | Vertical | -4.8 | 45.2 | 40.4 | 54.0 | -13.6 | | 8270.1 | Peak | Horizontal | 6.7 | 45.2 | 51.9 | 74.0 | -22.1 | | 8270.1 | Average | Horizontal | -5.0 | 45.2 | 40.2 | 54.0 | -13.8 | | 9189.0 | Peak | Vertical | 5.2 | 46.4 | 51.6 | 74.0 | -22.4 | | 9189.0 | Average | Vertical | -5.9 | 46.4 | 40.5 | 54.0 | -13.5 | | 9189.0 | Peak | Horizontal | 6.0 | 46.4 | 52.4 | 74.0 | -13.5 | | 9189.0 | Average | Horizontal | -5.7 | 46.4 | 40.7 | 54.0 | -21.6 | ^{*}These emissions are not in restricted bands and only have to be attenuated 20 dBc to 76.3 dBuV/m peak; however, they meet the tighter limits of the restricted bands. No other emissions were seen. Page 27 of 43 ### Radiated Upper Band Edge Plot Trace A 15.247 BE RC00900 Page 28 of 43 ### Radiated Lower Band Edge Plot Trace A 15.247 BE RC00900 #### 6.2.6 §15.247(e) Peak Power Spectral Density The EUT uses a wire soldered to the PCB as an antenna and the gain is not known. The FCC allows a maximum conducted 3 kHz power spectral density of 8 dBm to a 6 dBi antenna which is an EIRP limit of 14 dBm. The radiated field strength measurements were converted to EIRP in dBm and compared to the limit of 14.0 dBm. The results are shown below. | Frequency
(MHz) | Measured Field Strength at 3 meters (dBµV/m) | 3 kHz Power
Spectral Density
EIRP
(dBm) | 3 kHz Power
Spectral Density
EIRP Limit
(dBm) | |--------------------|--|--|--| | 912.9 | 88.2 | -7.03 | 14.0 | | 918.9 | 88.0 | -7.23 | 14.0 | #### **RESULT** The maximum peak power spectral density was -7.03 dBm, less than the limit of 14.0 dBm; therefore, the EUT complies with the specification. #### Lowest Channel 3 kHz PSD Plot 1 912.866833 MHz ∇ 88.2000 dBuV Page 30 of 43 ### Highest Channel 3 kHz PSD Plot 1 918.864002 MHz∇ 88.0000 dBuV Page 31 of 43 #### APPENDIX 1 TEST PROCEDURES AND TEST EQUIPMENT #### **A1.1 Conducted Disturbance at the AC Mains** The conducted disturbance at mains ports from the EUT was measured using a spectrum analyzer with a quasi-peak adapter for peak, quasi-peak and average readings. The quasi-peak adapter uses a bandwidth of 9 kHz, with the spectrum analyzer's resolution bandwidth set at 100 kHz, for readings in the 150 kHz to 30 MHz frequency ranges. The conducted disturbance at mains ports measurements are performed in a screen room using a (50 Ω /50 μ H) Line Impedance Stabilization Network (LISN). Where mains flexible power cords are longer than 1 m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length. Where the EUT is a collection of equipment with each device having its own power cord, the point of connection for the LISN is determined from the following rules: - (a) Each power cord, which is terminated in a mains supply plug, shall be tested separately. - (b) Power cords, which are not specified by the manufacturer to be connected via a host unit, shall be tested separately. - (c) Power cords which are specified by the manufacturer to be connected via a host unit or other power supplying equipment shall be connected to that host unit and the power cords of that host unit connected to the LISN and tested. - (d) Where a special connection is specified, the necessary hardware to effect the connection is supplied by the manufacturer for the testing purpose. - (e) When testing equipment with multiple mains cords, those cords not under test are connected to an artificial mains network (AMN) different than the AMN used for the mains cord under test. For AC mains port testing, desktop EUT are placed on a non-conducting table at least 0.8 meters from the metallic floor and placed 40 cm from the vertical coupling plane (copper plating in the wall behind EUT table). Floor standing equipment is placed directly on the earth grounded floor. Page 32 of 43 | Type of Equipment | Manufacturer | Model Number | Barcode
Number | Date of Last
Calibration | Due Date of
Calibration | |-----------------------------------|-----------------|--------------|-------------------|-----------------------------|----------------------------| | Spectrum Analyzer | Hewlett Packard | 8566B | 644 | 03/23/2015 | 03/23/2016 | | Quasi-Peak Detector | Hewlett Packard | 85650A | 1130 | 03/16/2015 | 03/16/2016 | | LISN | Nemko | LISN-COMM-50 | 1424 | 02/25/2015 | 02/25/2016 | | Conductance Cable Wanship Site #2 | Nemko | Cable J | 840 | 12/23/2014 | 12/23/2015 | | Transient Limiter | Hewlett Packard | 11947A | 768 | 12/23/2014 | 12/23/2015 | An independent calibration laboratory or Nemko-CCL, Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request. #### Conducted Emissions Test Setup Page 33 of 43 #### **A1.2 Radiated Emissions** The radiated emissions from the intentional radiator were measured using a spectrum analyzer with a quasi-peak adapter for peak and quasi-peak readings. A loop antenna was used to measure emissions below 30 MHz. Emission readings more than 20 dB below the limit at any frequency may not be listed in the reported data. For frequencies between 9 kHz and 30 MHz, or the lowest frequency generated or used in the device greater than 9 kHz, and less than 30 MHz, the spectrum analyzer resolution bandwidth was set to 9 kHz and the video bandwidth was set to 30 kHz. For average measurements, the spectrum analyzer average detector was used. For frequencies above 30 MHz, an amplifier and preamplifier were used to increase the sensitivity of the measuring instrumentation. The quasi-peak adapter uses a bandwidth of 120 kHz, with the spectrum analyzer's resolution bandwidth set at 1 MHz, for readings in the 30 to 1000 MHz frequency ranges. For peak emissions above 1000 MHz the spectrum analyzer's resolution bandwidth was set to 1 MHz and the video bandwidth was set to 3 MHz. For average measurements above 1000 MHz the spectrum analyzer's resolution bandwidth was set to 1 MHz and the average detector of the analyzer was used. A biconilog antenna was used to measure the frequency range of 30 to 1000 MHz and a Double Ridge Guide Horn antenna was used to measure the frequency range of 1 GHz to 18 GHz, and a Pyramidal Horn antenna was used to measure the frequency range of 18 GHz to 25 GHz, at a distance of 3 meters and/or 1 meter from the EUT. The readings obtained by the antenna are correlated to the levels obtained with a tuned dipole antenna by adding antenna factors. The configuration of the EUT was varied to find the maximum radiated emission. The EUT was connected to the peripherals listed in Section 2.3 via the interconnecting cables listed in Section 2.4. A technician manually manipulated these interconnecting cables to obtain worst-case radiated disturbance. The EUT was rotated 360 degrees, and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission. Where there were multiple interface ports all of the same type, cables are either placed on all of the ports or cables added to these ports until the emissions do not increase by more than 2 dB. Desktop EUT are measured on a non-conducting table 0.8 meters above the ground plane. The table is placed on a turntable, which is level with the ground plane. For equipment normally placed on floors, the equipment shall be placed directly on the turntable. For radiated emission testing at 30 MHz or above that is performed at distances closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance. Page 34 of 43 | Type of Equipment | Manufacturer | Model Number | Barcode
Number | Date of Last
Calibration | Due Date of
Calibration | |--|-----------------|----------------------------|-------------------|-----------------------------|----------------------------| | Spectrum
Analyzer/Receiver | Rohde & Schwarz | ESU40 | 1229 | 04/07/2015 | 04/07/2016 | | Spectrum Analyzer | Hewlett Packard | 8566B | 644 | 03/23/2015 | 03/23/2016 | | Quasi-Peak Detector | Hewlett Packard | 85650A | 1130 | 03/16/2015 | 03/16/2016 | | Loop Antenna | EMCO | 6502 | 176 | 03/17/2015 | 03/17/2017 | | Biconilog Antenna | EMCO | 3142 | 713 | 10/22/2014 | 10/22/2016 | | Double Ridged Guide Antenna | EMCO | 3115 | 735 | 03/17/2015 | 03/17/2017 | | High Frequency
Amplifier | Miteq | AFS4-00102650-
35-10P-4 | 1299 | 12/23/2014 | 12/23/2015 | | 20' High Frequency Cable | Microcoax | UFB197C-1-3120-
000000 | 1297 | 12/23/2014 | 12/23/2015 | | 3 Meter Radiated
Emissions Cable Wanship
Site #2 | Microcoax | UFB205A-0-4700-
000000 | 1295 | 12/23/2014 | 12/23/2015 | | Pre/Power-Amplifier | Hewlett Packard | 8447F | 762 | 09/05/2014 | 09/05/2015 | | 6 dB Attenuator | Hewlett Packard | 8491A | 1103 | 12/23/2014 | 12/23/2015 | An independent calibration laboratory or Nemko-CCL, Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request. #### Radiated Emissions Test Setup Page 35 of 43 ### **APPENDIX 2 PHOTOGRAPHS** Photograph 1 – Front View Radiated Test Setup – RCOO900 Page 36 of 43 Photograph 2 – Back View Radiated Test Setup – RCOO900 Page 37 of 43 Photograph 3 – Front View Conducted Disturbance Worst Case Configuration REPORT ISSUE DATE: 04/28/2016 Page 38 of 43 Photograph 4 – Back View Conducted Disturbance Worst Case Configuration Page 39 of 43 Photograph 5 – Front View of the RCOO900 Page 40 of 43 Photograph 6 – Back View of the RCOO900 Page 41 of 43 Photograph 7 – Internal View of the RCOO900 Page 42 of 43 Photograph 8 – View of the Component Side of the RCOO900 Page 43 of 43 Photograph 9 – View of the Trace Side of the RCOO900