

Test report

466676TRFWL

Date of issue: 2022-07-15

Applicant for ISED:

--

Applicant for FCC:

Controlled Entry Distributors Inc.

2500 South 3850 West, Suite A Salt Lake City, UT 84120

Product:

Remote Control Key

Model:

S8TL318E4

FCC ID: ISED Registration number:

SU7318TRS8 --

Specifications:

FCC 47 CFR Part 15 Subpart C, §15.231

Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

This test report shall not be partially reproduced without the prior written consent of Nemko S.p.A. The phase of sampling of equipment under test is carried out by the customer. Results indicated in this test report refer exclusively to the tested samples and apply to the sample as received. This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory, or by a laboratory having special agreement with Nemko. Doc. n. TRF001; Rev. 0; Date: 2020-11-30

Test location

Company name	Nemko Spa	
Address	Via del Carroccio, 4 – 20853 Biassono (MB) – Italy	
City	Biassono –	
Province	(MB) – Italy	
Postal code	20853	
Country	Italy	
Telephone	+39 2201201	
Facsimile		
Toll free		
Website	www.nemko.com	
Site number	FCC: 682159	

Tested by	Giuseppe Bazzi Outher
Reviewed by	Roberto Giampaglia
Date	15 July, 2022
Signature of	
reviewer	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Table of contents

Table of	f contents	
Section	T	
1.1	Applicant and manufacturer info	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Applicability	4
1.6	Test report revision history	4
Section	2. Summary of test results	5
2.1	FCC Part 15 Subpart C test results	5
Section	3. Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	6
3.5	Test plan and measurement techniques	6
3.6	EUT setup diagram	7
3.7	EUT sub assemblies	8
Section	4. Engineering considerations	9
4.1	Modifications incorporated in the EUT	9
4.2	Technical judgment	9
4.3	Deviations from laboratory tests procedures	9
Section	5. Test conditions	10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section	6. Measurement uncertainty	11
6.1	Uncertainty of measurement	11
Section	7. Test equipment	12
7.1	Test equipment list	12
Section	8. Testing data	14
8.1	FCC 15.31(m) 9 Number of frequencies	14
8.2	FCC 15.203 section 6.8 Antenna requirement	15
8.3	FCC 15.231(a) Conditions for intentional radiators to comply with periodic operation	
8.4	FCC 15.231(b) Field strength of emissions.	19
8.5	FCC 15.231(c) Emission bandwidth of momentary signals	26
Section	9. Block diagrams of test set-ups	28
9.1	Radiated emissions set-up for frequencies below 1 GHz	28
9.2	Radiated emissions set-up for frequencies above 1 GHz	29
9.3	Photo set up	30

Section 1. Report summary

1.1 Applicant and manufacturer info

	Manufacturer:	ISED applicant:	FCC applicant:
Company name	CDVI Wireless Spa		Controlled Entry Distributors Inc.
Address	Via Piave, 23		2500 South 3850 West, Suite A
City	S. Pietro di Feletto		Salt Lake City
Province/State	Treviso		UT
Postal/Zip code	31020		84120
Country	Italy		United States of America

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.231 Periodic operation in the band 40.66–40.70 MHz and above 70 MHz

1.3 Test methods

ANSI C63.10 v 2013	American National Standard for Procedures for Compliance Testing of Unsilenced Wireless Devices
--------------------	---

1.4 Statement of compliance

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test does not comply in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Applicability

Due to a nature of the equipment under test some parts of the standards could not be fulfilled and required special authorization from the government authorities. It is up to manufacturer to obtain permission to operate in the frequency range and with the field strength of fundamental as tested and reported in this document.

1.6 Test report revision history

Revision #	Details of changes made to test report
466676TRFWL	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable
§15.203	Antenna requirement	Pass ²
§15.231(a)	Conditions for intentional radiators to comply with periodic operation	Pass
§15.231(b)	Field strength of emissions	Pass
§15.231(c)	Emission bandwidth	Pass
§15.231(d)	Requirements for devices operating within 40.66–40.70 MHz band	Not applicable
§15.231(e)	Conditions for intentional radiators to comply with periodic operation	Not applicable

Notes: ¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

² The Antennas are located within the enclosure of EUT and not user accessible.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	June 06, 2022
Nemko sample ID number	4666760001

3.2 EUT information

Product name	Remote Control Key
Model	S8TL318E4
Serial number	466676 assigned by Nemko

3.3 Technical information

Frequency band	(TX) 318 MHz
Frequency Min (MHz)	318 MHz
Frequency Max (MHz)	318 MHz
RF power Max (W)	N/A
Field strength (dBµV/m @ 3 m)	69.1 dBuV/m (average)
Measured BW (kHz) (99%)	14.98
Calculated BW (kHz), as per TRC-43	-
Type of modulation	AM/ASK
Emission classification (F1D, G1D, D1D)	15K0F1D
Transmitter spurious, (dBμV/m @ 3 m)	
Power requirements	3 Vdc
Antenna information	Integral

3.4 Product description and theory of operation

Radium series S8 is 4 buttons transmitter operating at 318 MHz in AM/ASK modulation.

It has been designed for the programmable telephone entry systems, anti burglar systems and access control systems.

3.5 Test plan and measurement techniques

3.6 EUT setup diagram

Figure 3.6-1: EUT overview

Figure 3.6-2: EUT setup block diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

Due to a nature of the equipment under test some parts of the standards could not be fulfilled and required special authorization from the government authorities. It is up to manufacturer to obtain permission to operate in the frequency range and with the field strength of fundamental as tested and reported in this document.

EUT was tested as proposed in specially developed test plan for this project.

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15-30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 6.1-1: Measurement uncertainty

EUT	Туре	Test	Range	Measurement Uncertainty	Notes	
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)	
			0.009 MHz ÷ 30 MHz	1.1 dB	(1)	
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)	
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)	
		·	40 MHz ÷ 140 GHz	5.0 dB	(1)	
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)	
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)	
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)	
		·	40 GHz ÷ 220 GHz	6.0 dB	(1)	
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)	
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)	
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)	
		Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)	
	Conducted	Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)	
		Transient behaviour of the transmitter-			` '	
		Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)	
Transmitter		Transient behaviour of the transmitter – Power	1 MHz ÷ 18 GHz	9%	(1)	
		level slope Frequency deviation - Maximum permissible	0.004 MHz + 40 CHz	4.20/	(4)	
		frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)	
			Frequency deviation - Response of the transmitter to modulation frequencies above 3	0.001 MHz ÷ 18 GHz	0.5 dB	(1)
			kHz		201	(4)
		Dwell time	-	3%	(1)	
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)	
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)	
		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)	
		5	0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)	
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)	
	Radiated		66 GHz ÷ 220 GHz	10 dB	(1)	
	· taalatoa		10 kHz ÷ 26.5 GHz	6.0 dB	(1)	
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)	
			66 GHz ÷ 220 GHz	10 dB	(1)	
			0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)	
	Radiated	Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)	
	radiatod		66 GHz ÷ 220 GHz	10 dB	(1)	
Receiver		Sensitivity measurement	1 MHz ÷ 18 GHz	6.0 dB	(1)	
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)	
	Conducted	Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)	
			40 GHz ÷ 220 GHz	6.0 dB	(1)	

NOTES

⁽¹⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

		Tuble 7.1 1. Equipment in			
Description	Manufacturer	Model	Identifier	Cal Date	Due Date
EMI Receiver	Rohde & Schwarz	ESW44	101620	2021-08	2022-08
EMI Receiver	Rohde & Schwarz	ESU8	100202	2021-09	2022-09
Antenna Trilog 25MHz - 8GHz	Schwarzbeck Mess- Elektronik	VULB9162	9162-025	2021-07	2024-07
Antenna Trilog 25-2000 MHz	Schwarzbeck Mess- Elektronik	VULB9168	9168-242	2021-06	2024-06
Antenna 1 - 18 GHz	Schwarzbeck Mess- Elektronik	STLP9148	STLP 9148-152	2021-09	2024-09
Antenna 1 - 18 GHz	Schwarzbeck Mess- Elektronik	STLP9148	STPL 9148-123	2021-06	2024-06
Double Ridge Horn Antenna	RFSpin	DRH40	061106A40	2020-04	2023-04
Broadband Bench Top Amplifier	Sage	STB-1834034030- KFKF-L1	18490-01	2022-05	2023-05
Broadband Amplifier	Schwarzbeck Mess- Elektronik	BBV9718C	00121	2022-03	2023-03
Preamplifier	Schwarzbeck Mess- Elektronik	BBV9718	BBV9718-137	2022-04	2023-04
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530	2021-09	2023-09
Common Mode Absorption Device	Schwarzbeck Mess- Elektronik	CMAD1614	00041	2022-05	2023-05
LISN	Rohde & Schwarz	ESH2-Z5	881 362/006	2022-03	2023-03
LISN	Rohde & Schwarz	ESH2-Z5	872 460/041	2021-09	2022-09
V-network	Rohde & Schwarz	ESH3-Z5	840 731/004	2021-09	2022-09
Oscilloscope	Agilent	54846A	MY40000254	2020-11	2022-11
Multimeter	Rohde & Schwarz	HMC8012	101577		
Barometer	Castle	GBP 3300	072015	2022-04	2023-04
Data logger con diagnosi in campo	Testo	175-H2	20012380/305	2020-12	2022-12
Data logger con diagnosi in campo	Testo	175-H2	38203337/703	2020-12	2022-12

Section 7:

Test equipment

Attenuator	Aeroflex / Weinschel	2	CC8577	2021-07	2022-07

Specification

FCC Part 15 Subpart A

Section 8. Testing data

8.1 FCC 15.31(m) 9 Number of frequencies

8.1.1 Definitions and limits

FCC:

Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

Table 8.1-1: Frequency Range of Operation

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Note: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.1.2 Test date

|--|

8.1.3 Observations, settings and special notes

None

8.1.4 Test data

Table 8.1-2: Test channels selection

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
318	318				

FCC Part 15 Subpart C

8.2 FCC 15.203 section 6.8 Antenna requirement

8.2.1 Definitions and limits

FCC:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

Q	2	2	7	'es	t d	ati	Δ

Start date 15 July, 2022

8.2.3 Observations, settings and special notes

None

8.2.4 Test data

If detachable, is the antenna connector(s) non-standard? \qed YES \qed NO \qed N/A

8.3 FCC 15.231(a) Conditions for intentional radiators to comply with periodic operation

Section 8 Testing data

Test name FCC 15.231(a) Conditions for intentional radiators to comply with periodic operation

Specification FCC Part 15 Subpart C

8.3.1 Definitions and limits

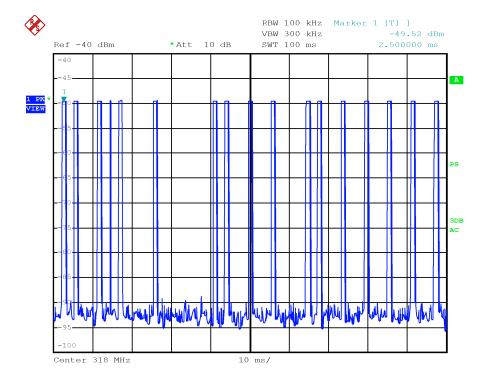
FCC:

- (a) The provisions of this section are restricted to periodic operation within the band 40.66–40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:
 - (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
 - (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
 - (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
 - (4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.
 - (5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

8.3.2 Test summary

Test date 15 July, 2022

8.3.3 Observations, settings and special notes


The timing details were declared and provided by the manufacturer.

8.3.4 Test data

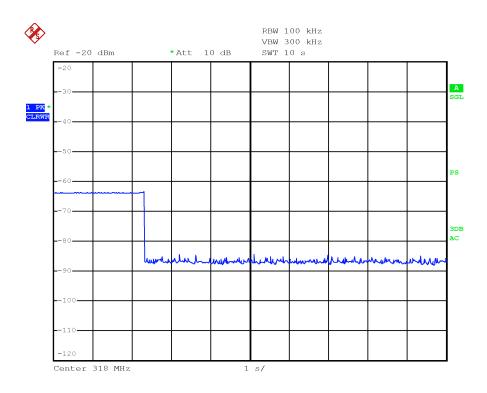
1)	The EUT is manually triggered?	⋈ YES	\square NO
2)	The EUT is activated automatically?	☐ YES	\boxtimes NO
3)	The EUT is a periodic transmitter?	☐ YES	\boxtimes NO
4)	The EUT's usage is for radio control purposes during emergencies?	☐ YES	\boxtimes NO
5)	The EUT transmits set-up information?	☐ YES	\boxtimes NO

§15.35(c) When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed; the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Date: 13.JUN.2022 12:01:16

Tx on= 1.002 ms *17 =17.034 ms on 100 ms

Duty cycle correction factor for pulse duration = $20 \times log_{10} (17.034 / 100) = -15.38 dB$


Section 8 Testing data

Test name FCC 15.231(a) Conditions for intentional radiators to comply with periodic operation

Specification FCC Part 15 Subpart C

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released

Date: 14.JUN.2022 12:33:35

Specification FCC Part 15 Subpart C

8.4 FCC 15.231(b) Field strength of emissions

8.4.1 Definitions and limits

FCC:

- (b) In addition to the provisions of §15.205 the field strength of emissions from intentional radiators operated under this section shall not exceed the following table.
 - 1) The field strength limits in the table are specified at a distance of 3 meters. The tighter limits apply at the band edges.
 - Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
 - 3) The limits on the field strength of the spurious emissions in the table below are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Table 8.4-1: Field strength limits

Fundamental frequency	Field strength of fundamental		Field strength of s	purious emissions
(MHz)	(μV/m)	(dBμV/m)	(μV/m)	(dBμV/m)
40.66-40.70	2,250	67	225	47
70–130	1,250	61.9	125	41.9
130–174	1,250 to 3,750*	61.9 to 71.5*	125 to 375*	41.9 to 51.5*
174–260	3,750	71.5	375	51.5
260–470	3,750 to 12,500*	71.5 to 81.9*	375 to 1,250*	51.5 to 61.9*
Above 470	12,500	81.9	1,250	61.9

^{*} Linear interpolations

Note:

^{*} Linear interpolation with frequency F in MHz

Table 8.4-2: FCC §15.209 – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBμV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	$87.6 - 20 \times \log_{10}(F)$	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.4-3: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36-13.41	608-614	8.025-8.5
2.1735-2.1905	16.42-16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435-1626.5	9.3-9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5-25.67	1660-1710	13.25-13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677-5.683	73–74.6	2200–2300	15.35-16.2
6.215-6.218	74.8–75.2	2310–2390	17.7-21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175-6.31225	149.9–150.05	2655–2900	23.6-24.0
8.291-8.294	156.52475-156.52525	3260-3267	31.2-31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125-167.17	3345.8-3358	
8.41425-8.41475	167.72–173.2	3500–4400	Above 39 6
12.29–12.293	240–285	4500–5150	Above 38.6
12.51975-12.52025	322–335.4	5350–5460	

Note: Certain frequency bands listed in Table 8.4-3 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

Table 8.4-4: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9-150.05	2310-2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6-24.0
12.29-12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

Section 8
Test name

Testing data

FCC 15.231(b) Field strength of emissions

Specification

FCC Part 15 Subpart C

8.4.2 Test summary

Test date 15-Jul-2022

8.4.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to the 6 GHz.

Radiated measurements were performed at a distance of 3 m. Where the distance was reduced to increase dynamic range appropriate distance correction factor was applied to the measurement results.

Average radiated emissions were obtained by subtracting duty cycle / correction factor from the peak measurement results.

Spectrum analyzer settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold

Spectrum analyzer settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold

8.4.4 Test data

Duty cycle/average factor calculations

§15.35(c) When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed; the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Duty cycle or average factor =
$$20 \times \log_{10} \left(\frac{Tx_{100_{ms}}}{100_{ms}} \right)$$

Duty cycle correction factor for pulse duration = $20 \times log_{10} (17.034 / 100) = -15.38 dB$

 Table 8.4-5: Radiated field strength of fundamental measurement results

E.U.T in horizontal position

Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
318	Н	69.1	-15.4	53.7	54.4	-0.7
Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
318	V	54.6	-15.4	39.2	54.4	-15.2
Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
636	V		-15.4			
954	V		-15.4			
1272	V		-15.4			
1590	V		-15.4			
1908	V		-15.4			
Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
636	Н		-15.4			
954	Н		-15.4		-	
1272	Н		-15.4			-
1590	Н		-15.4		-	-
1908	Н		-15.4			

The correction factor was calculated as follows: $20 \times log10 (17.034 / 100) = -15.38 dB$

Section 8 Test name Specification Testing data

FCC 15.231(b) Field strength of emissions

FCC Part 15 Subpart C

E.U.T in vertical position

Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
318	Н	63.2	-15.4	47.8	54.4	-6.6
Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
318	V	68.7	-15.4	53.3	54.4	-1.1
Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
636	V		-15.4			
954	V		-15.4			
1272	V		-15.4			
1590	V		-15.4			
1908	V		-15.4			
Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBµV/m)	Avg limit (dBµV/m)	Avg margin (dB)
636	Н		-15.4			
954	Н		-15.4			
1272	Н		-15.4			
1590	Н		-15.4			
1908	Н	-	-15.4		1	

The correction factor was calculated as follows: $20 \times log10 (17.034 / 100) = -15.38 dB$

here is no limit for the fundamental at the tested frequencies in the specifications tested, therefore the final result is subject for special authorization.

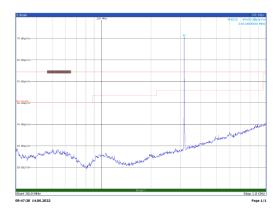


Figure 8.4-1: Horizontal polarization, Radiated spurious emissions below 1 GHz, E.U.T in horizontal position

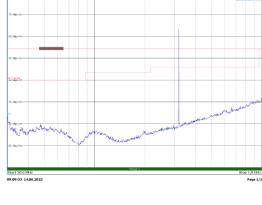


Figure 8.4-2: Vertical polarization, Radiated spurious emissions below 1 GHz, E.U.T in horizontal position

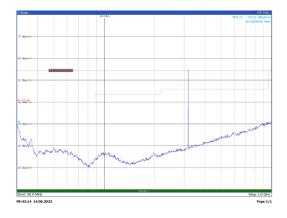


Figure 8.4-3: Horizontal polarization, Radiated spurious emissions below 1 GHz, E.U.T in vertical position

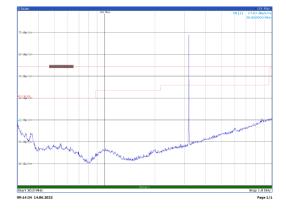


Figure 8.4-4: Vertical polarization, Radiated spurious emissions below 1 $$\operatorname{GHz}$, \;\; \operatorname{E.U.T}$ in vertical position

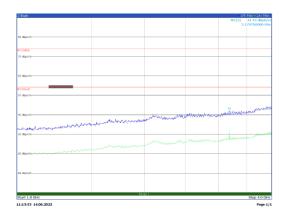


Figure 8.4-5: Horizontal polarization, Radiated spurious emissions above 1 GHz, ${\sf E.U.T} \ in \ horizontal \ position$

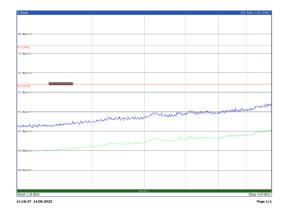


Figure 8.4-7: Horizontal polarization, Radiated spurious emissions above 1 GHz, E.U.T in vertical position

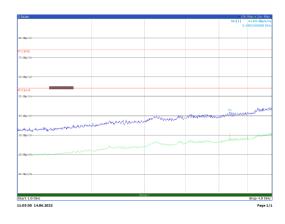


Figure 8.4-6: Vertical polarization, Radiated spurious emissions above 1 GHz, E.U.T in horizontal position

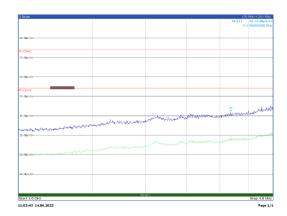


Figure 8.4-8: Vertical polarization, Radiated spurious emissions above 1 GHz, E.U.T in vertical position

Section 8 Testing data

Test name FCC 15.231(c) Emission bandwidth of momentary signals

Specification FCC Part 15 Subpart C

8.5 FCC 15.231(c) Emission bandwidth of momentary signals

8.5.1 Definitions and limits

FCC:

The bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

8.5.2 Test summary

Test date: 2022-07-15

8.5.3 Observations, settings and special notes

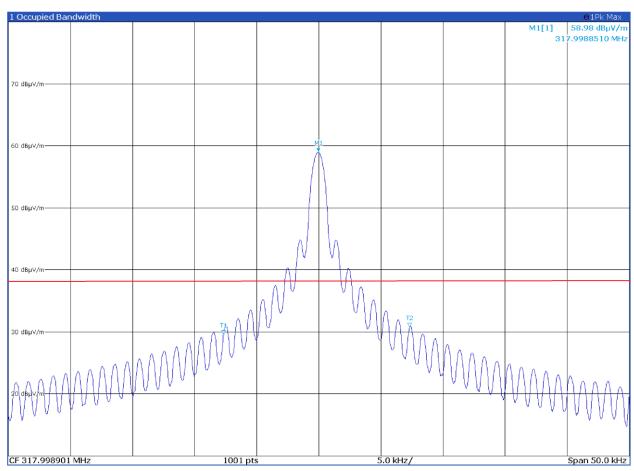
Limit: 0.5 % of 318 GHz is 0.795 MHz

Spectrum analyzer settings:

Resolution bandwidth	≥ 1 % of emission bandwidth		
Video bandwidth	≥3×RBW		
Frequency span	Wider than emission bandwidth		
Detector mode	Peak		

8.5.4 Test data

Table 8.5-1: Occupied bandwidth measurement result

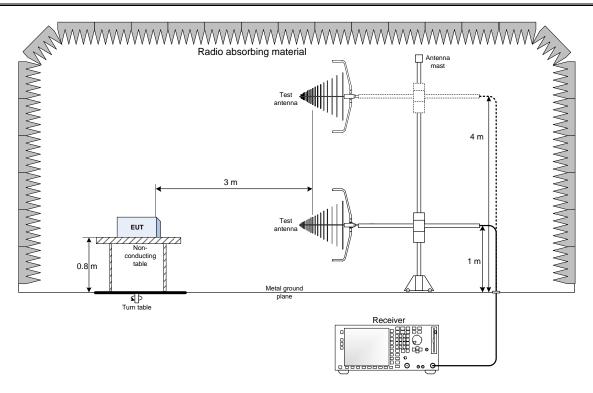

Occupied bandwidth per frequency, MHz	Limit, MHz	Margin, MHz
0.01498	0.79500	0.78002

Section 8 Testing data

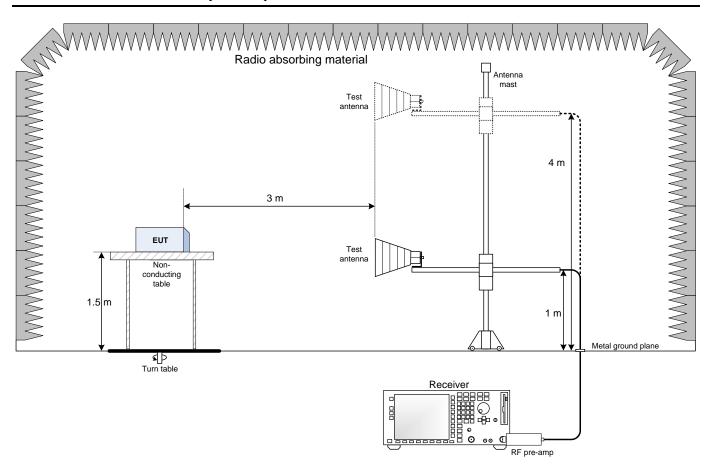
Test name FCC 15.231(c) Emission bandwidth of momentary signals

10:00:14 14.06.2022 Page 1/2

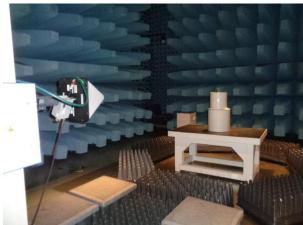
2 Marker 1	Γable				
Type	Ref Trc	X-Value	Y-Value	Function	Function Result
M1	1	317.998851 MHz	58.98 dBµV/m	Occ Bw	14.980710784 kHz
T1	1	317.9912175 MHz	29.52 dBµV/m	Occ Bw Centroid	317.998707842 MHz
T2	1	318.0061982 MHz	30.77 dBµV/m	Occ Bw Freq Offset	-193.157635868 Hz


Figure 8.5-1: Occupied bandwidth 20 dB = 5.6 KHz

Occupied bandwidth 99% = 14.98 kHz


Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up for frequencies below 1 GHz


9.2 Radiated emissions set-up for frequencies above 1 GHz

9.3 Photo set up

