# ENGINEERING TEST REPORT



TMX24120 Radio Module Model: TMX24120 FCC ID: SU5-TMX24120

Applicant:

## VideoComm Technologies (1156488 Ontario Inc.)

1016C Sutton Drive Unit 6 Burlington, Ontario Canada L7L 6B8

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247 Frequency Hopping Spread Spectrum (FHSS)

UltraTech's File No.: VCT-009F15C247

This Test report is Issued under the Authority of Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: November 5, 2012

Report Prepared by: Dan Huynh Tested by: Mr. Hung Trinh

Issued Date: November 5, 2012 Test Dates: August 30 – September 25, 2012

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

## **UltraTech**

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: <a href="www.ultratech-labs.com">www.ultratech-labs.com</a>, Email: <a href="www.ultratech-labs.com">www.ultratech-labs.com</a>, <a hre

 $oldsymbol{L}$ 

**FCC** 











91038 13

1309

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

#### **TABLE OF CONTENTS**

| EXHIBIT                                              | 1. INTRODUCTION                                                                                                                                                       | 1                          |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1.1.<br>1.2.<br>1.3.                                 | SCOPE                                                                                                                                                                 | 1                          |
| EXHIBIT                                              | 2. PERFORMANCE ASSESSMENT                                                                                                                                             | 2                          |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>2.5.<br>2.6.         | CLIENT INFORMATION  EQUIPMENT UNDER TEST (EUT) INFORMATION  EUT'S TECHNICAL SPECIFICATIONS  ASSOCIATED ANTENNA DESCRIPTIONS  LIST OF EUT'S PORTS  ANCILLARY EQUIPMENT | 2<br>3<br>3<br>4           |
| EXHIBIT                                              | 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS                                                                                                           | 5                          |
| 3.1.<br>3.2.                                         | CLIMATE TEST CONDITIONSOPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS                                                                                            | 5<br>5                     |
| EXHIBIT                                              | 4. SUMMARY OF TEST RESULTS                                                                                                                                            | 6                          |
| 4.1.<br>4.2.<br>4.3.                                 | LOCATION OF TESTSAPPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTSMODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES                                    | 6                          |
| EXHIBIT                                              | 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS                                                                                                           | 7                          |
| 5.1.<br>5.2.<br>5.3.<br>5.4.<br>5.5.<br>5.6.<br>5.7. | POWER LINE CONDUCTED EMISSIONS [§15.207(a)]                                                                                                                           | 10<br>12<br>38<br>40<br>50 |
| EXHIBIT                                              | 6. TEST EQUIPMENT LIST                                                                                                                                                | 82                         |
| EXHIBIT                                              | 7. MEASUREMENT UNCERTAINTY                                                                                                                                            | 83                         |
| 7.1.<br>7.2.                                         | LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTYRADIATED EMISSION MEASUREMENT UNCERTAINTY                                                                              |                            |

### **EXHIBIT 1. INTRODUCTION**

#### 1.1. SCOPE

| Reference:                    | FCC Part 15, Subpart C, Section 15.247                                                        |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Title:                        | Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15                      |  |  |
| Purpose of Test:              | Equipment Certification for Frequency Hopping Spread Spectrum (FHSS) Transmitter.             |  |  |
| Test Procedures:              | <ul> <li>ANSI C63.4-2009</li> <li>FCC Public Notice DA 00-705</li> <li>ANSI C63.10</li> </ul> |  |  |
| Environmental Classification: | [ x ] Commercial, industrial or business environment [ x ] Residential environment            |  |  |

## 1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

#### 1.3. NORMATIVE REFERENCES

| Publication                    | Year                         | Title                                                                                                                                                               |
|--------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Parts 0-<br>19          | 2011                         | Code of Federal Regulations (CFR), Title 47 – Telecommunication                                                                                                     |
| ANSI C63.4                     | 2009                         | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz |
| ANSI C63.10                    | 2009                         | American National Standard for Testing Unlicensed Wireless Devices                                                                                                  |
| CISPR 22 &<br>EN 55022         | 2008-09, Edition 6.0<br>2006 | Information Technology Equipment - Radio Disturbance<br>Characteristics - Limits and Methods of Measurement                                                         |
| CISPR 16-1-1<br>+A1<br>+A2     | 2006<br>2006<br>2007         | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus                                                     |
| CISPR 16-1-2<br>+A1<br>+A2     | 2003<br>2004<br>2006         | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances                                                  |
| FCC Public Notice<br>DA 00-705 | 2000                         | Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems                                                                                     |
| FCC ET Docket<br>No. 99-231    | 2002                         | Amendment to FCC Part 15 of the Commission's Rules Regarding to Spread Spectrum Devices                                                                             |

#### **EXHIBIT 2. PERFORMANCE ASSESSMENT**

#### 2.1. CLIENT INFORMATION

| APPLICANT       |                                                                                                               |  |
|-----------------|---------------------------------------------------------------------------------------------------------------|--|
| Name:           | VideoComm Technologies (1156488 Ontario Inc.)                                                                 |  |
| Address:        | 1016C Sutton Drive Unit 6<br>Burlington, Ontario<br>Canada L7L 6B8                                            |  |
| Contact Person: | Jeff Johnson<br>Phone #: (905) 336-9665<br>Fax #: (905) 336-9662<br>Email Address: jeff@videotransmitters.com |  |

| MANUFACTURER    |                                                                                                                        |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------|--|
| Name:           | KINGWAVE TECHNOLOGY Co. Ltd.                                                                                           |  |
| Address:        | 18F-3, No. 186, Jian-Yi Road<br>Chung-Ho City, TAIPEI<br>TAIWAN                                                        |  |
| Contact Person: | Ken Shih<br>Phone #: 1+ (886) - 2 - 8227-1868<br>Fax #: 1+ (886) - 2 - 8227-1878<br>Email Address: KEN@KINGWAVE.COM.TW |  |

## 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

| Brand Name:                    | VideoComm Technologies (1156488 Ontario Inc.) |
|--------------------------------|-----------------------------------------------|
| Product Name:                  | TMX24120 Radio Module                         |
| Model Name or Number:          | TMX24120                                      |
| Serial Number:                 | Test Sample                                   |
| Type of Equipment:             | Spread Spectrum Transmitter                   |
| Input Power Supply Type:       | External Regulated DC Sources                 |
| Primary User Functions of EUT: | Spread Spectrum OEM Transceiver               |

#### 2.3. EUT'S TECHNICAL SPECIFICATIONS

| TRANSMITTER                     |                                                                                                              |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Equipment Type:                 | <ul><li>Mobile</li><li>Base Station (fixed use)</li></ul>                                                    |  |
| Intended Operating Environment: | <ul><li>Commercial, industrial or business environment</li><li>Residential environment</li></ul>             |  |
| Power Supply Requirement:       | 5 VDC                                                                                                        |  |
| RF Output Power Rating:         | 0.1242 W                                                                                                     |  |
| Operating Frequency Range:      | 2403 – 2478 MHz (for point-to-multipoint operation)<br>2403 – 2473 MHz (for fixed, point-to-point operation) |  |
| RF Output Impedance:            | 50 Ohm                                                                                                       |  |
| Duty Cycle:                     | Continuous                                                                                                   |  |
| Modulation Type:                | 16-QAM, BPSK and QPSK,                                                                                       |  |
| Antenna Connector Type:         | SMA                                                                                                          |  |

#### 2.4. ASSOCIATED ANTENNA DESCRIPTIONS

| Antenna Type             | Maximum Gain (dBi) |
|--------------------------|--------------------|
| Omni-directional antenna | 12                 |
| Panel antenna            | 20.5               |
| Parabolic antenna        | 24                 |

The highest gain antenna from each of the above antenna types were selected for testing to represents the worst-case. Refer to user manual for antennas list information.

#### 2.5. LIST OF EUT'S PORTS

| Port<br>Number | EUT's Port Description | Number of Identical Ports | Connector Type | Cable Type<br>(Shielded/Non-shielded) |
|----------------|------------------------|---------------------------|----------------|---------------------------------------|
| 1              | RF IN/OUT Port         | 1                         | SMA            | Shielded coaxial cable                |
| 2              | DC Supply & I/O Port   | 1                         | Pin Header     | No cable, direct connection           |

#### 2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

| Ancillary Equipment # 1  |                        |  |
|--------------------------|------------------------|--|
| Description:             | Test Jig               |  |
| Brand name:              | Videocomm Technologies |  |
| Model Name or Number:    | N/A                    |  |
| Connected to EUT's Port: | I/O Port               |  |

| Ancillary Equipment # 2  |                           |  |
|--------------------------|---------------------------|--|
| Description:             | AC/DC Adapter             |  |
| Brand name:              | Videocomm Technologies    |  |
| Model Name or Number:    | GFP151U-120125-1          |  |
| Connected to EUT's Port: | Test Jig Board of the EUT |  |

| Ancillary Equipment # 3  |                     |  |
|--------------------------|---------------------|--|
| Description:             | Laptop              |  |
| Brand name:              | HP                  |  |
| Model Name or Number:    | Pavilion zd8000     |  |
| Connected to EUT's Port: | Test Jig of the EUT |  |

#### **EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS**

#### 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

| Temperature:        | 21°C               |
|---------------------|--------------------|
| Humidity:           | 51%                |
| Pressure:           | 102 kPa            |
| Power Input Source: | 12 VDC to test jig |

#### 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

| Operating Modes:                  | <ul> <li>Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements.</li> <li>The EUT operates in normal Frequency Hopping mode for occupancy duration, and frequency separation.</li> </ul> |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special Test Software & Hardware: | Special software provided by the Applicant to operate the EUT at each channel frequency continuously and in the range of typical modes of operation.                                                                                       |
| Transmitter Test Antenna:         | The EUT is tested with the antenna fitted in a manner typical of normal intended use as non-integral antenna equipment as described with the test results.                                                                                 |

| Transmitter Test Signals                                                                                          |                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Band(s):                                                                                                | <ul> <li>2403 - 2478 MHz for Point to Multipoint with<br/>Omni-directional antenna</li> <li>2403 - 2473 MHz for Point to Point with<br/>Panel and Parabolic antennas</li> </ul> |
| Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.) | <ul> <li>2403 MHz, 2438 MHz and 2478 MHz</li> <li>2403 MHz, 2438 MHz and 2473 MHz</li> </ul>                                                                                    |
| RF Power Output: (measured maximum output power at antenna terminals)                                             | 0.124 W (conducted)                                                                                                                                                             |
| Normal Test Modulation:                                                                                           | 16-QAM, QPSK and BPSK                                                                                                                                                           |
| Modulating Signal Source:                                                                                         | Internal                                                                                                                                                                        |

#### **EXHIBIT 4. SUMMARY OF TEST RESULTS**

#### 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

#### 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC Section(s)                    | Test Requirements                                                                 | Compliance<br>(Yes/No) |
|-----------------------------------|-----------------------------------------------------------------------------------|------------------------|
| 15.203                            | Antenna requirements                                                              | Yes                    |
| 15.207(a)                         | AC Power Line Conducted Emissions                                                 | Yes                    |
| 15.247(a)                         | Provisions for Frequency Hopping Systems                                          | Yes                    |
| 15.247(b)(1)                      | Peak Conducted Output Power                                                       | Yes                    |
| 15.247(d)                         | Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal | Yes                    |
| 15.247(d), 15.209 & 15.205        | Transmitter Spurious Radiated Emissions                                           | Yes                    |
| 15.247(i), 1.1307, 1.1310, 2.1091 | RF Exposure                                                                       | Yes                    |

#### 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

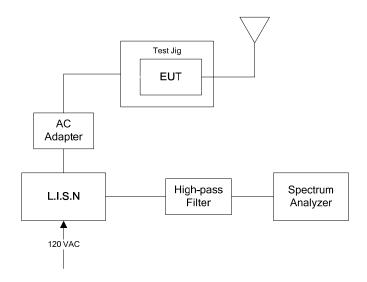
None.

### **EXHIBIT 5.** MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

#### 5.1. POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

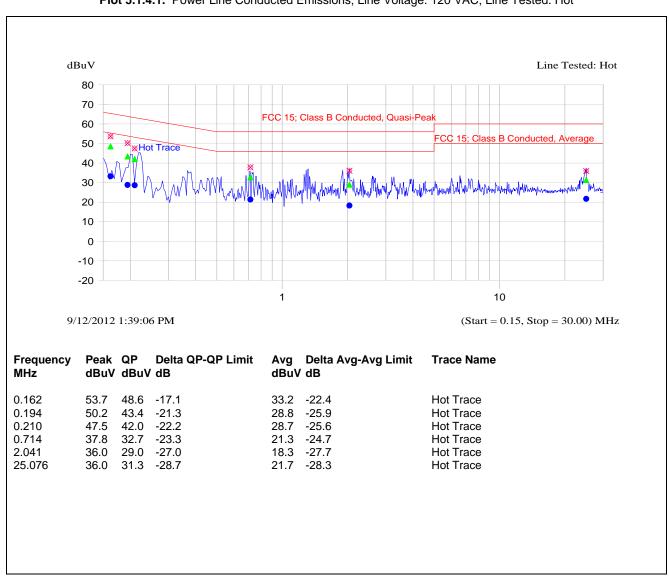
#### 5.1.1. Limit(s)

The equipment shall meet the limits of the following table:


| Frequency of emission     | Conducted Limits (dB <sub>µ</sub> V) |                       |
|---------------------------|--------------------------------------|-----------------------|
| (MHz)                     | Quasi-peak                           | Average               |
| 0.15–0.5<br>0.5–5<br>5-30 | 66 to 56*<br>56                      | 56 to 46*<br>46<br>50 |

<sup>\*</sup>Decreases linearly with the logarithm of the frequency

#### 5.1.2. Method of Measurements


ANSI C63.4-2009

#### 5.1.3. Test Arrangement



#### 5.1.4. Test Data

Plot 5.1.4.1. Power Line Conducted Emissions; Line Voltage: 120 VAC; Line Tested: Hot



dBuV Line Tested: Neutral 80 70 FCC 15; Class B Conducted, Quasi-Pea 60 Neutral Trace 50 40 30 20 10 0 -10 -20 10 9/12/2012 1:48:49 PM (Start = 0.15, Stop = 30.00) MHzFrequency Peak QP **Delta QP-QP Limit** Avg Delta Avg-Avg Limit **Trace Name** MHz dBuV dBuV dB dBuV dB 0.169 51.7 45.7 -19.8 30.2 -25.2 **Neutral Trace** 0.452 42.5 33.7 -23.6 22.7 -24.6 **Neutral Trace** 0.726 30.0 -26.0 20.5 -25.5 **Neutral Trace** 35.6 25.101 36.7 31.4 -28.6 21.3 -28.7 **Neutral Trace** 

Plot 5.1.4.2. Power Line Conducted Emissions; Line Voltage: 120 VAC; Line Tested: Neutral

File #: VCT-009F15C247

#### 5.2. **COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS**

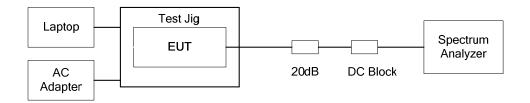
| FCC Section | FCC Rules                                                                                                                                                                                                                                                                                                              | Manufacturer's Clarification          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 15.31       | The hoping function must be disabled for tests, which should be performed with the EUT transmitting on the number of frequencies specified in this Section. The measurements made at the upper and lower ends of the band of operation should be made with the EUT tuned to the highest and lowest available channels. | See Operational Description           |
| 15.203      | Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.  The exception is in those cases where EUT                                                                        | Required professionally installation. |
|             | must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed:  > The application (or intended use) of the EUT  > The installation requirements of the EUT  > The method by which the EUT will be marketed                            |                                       |
| 15.204      | Provided the information for every antenna proposed for use with the EUT:  > type (e.g. Yagi, patch, grid, dish, etc),  > manufacturer and model number  > gain with reference to an isotropic radiator                                                                                                                | See proposed antenna list.            |
| 15.247(a)   | Description of how the EUT meets the definition of a frequency hopping spread spectrum, found in Section 2.1. Based on the technical description.                                                                                                                                                                      | See Operational Description           |
| 15.247(a)   | Pseudo Frequency Hopping Sequence: Describe how the hopping sequence is generated. Provide an example of the hopping sequence channels, in order to demonstrate that the sequence meets the requirements specified in the definition of a frequency hopping spread spectrum system, found in Section 2.1               | See Operational Description           |

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

| FCC Section                | FCC Rules                                                                                                                                                                                                                                                                                                 | Manufacturer's Clarification |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 15.247(a)                  | Equal Hopping Frequency Use: Describe how each individual EUT meets the requirement that each of its hopping channels is used equally on average (e.g. that each new transmission event begins on the next channel in the hopping sequence after final channel used in the previous transmission events). | See Operational Description  |
| 15.247(g)                  | Describe how the EUT complies with the requirement that it be designed to be capable of operating as a true frequency hopping system                                                                                                                                                                      | See Operational Description  |
| 15.247(h)                  | Describe how the EUT complies with the requirement that it not have the ability to coordinated with other FHSS is an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters                                                                                | See Operational Description  |
| Public Notice<br>DA 00-705 | System Receiver Input Bandwidth: Describe how the associated receiver(s) complies with the requirement that its input bandwidth (either RF or IF) matches the bandwidth of the transmitted signal.                                                                                                        | See Operational Description  |
| Public Notice<br>DA 00-705 | System Receiver Hopping Capability: Describe how the associated receiver(s) has the ability to shift frequencies in synchronization with the transmitted signals                                                                                                                                          | See Operational Description  |

#### 5.3. PROVISIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)]

#### 5.3.1. Limit


§ 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

§ 15.247(a)(1)(iii): Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### 5.3.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10-2009.

#### 5.3.3. Test Arrangement

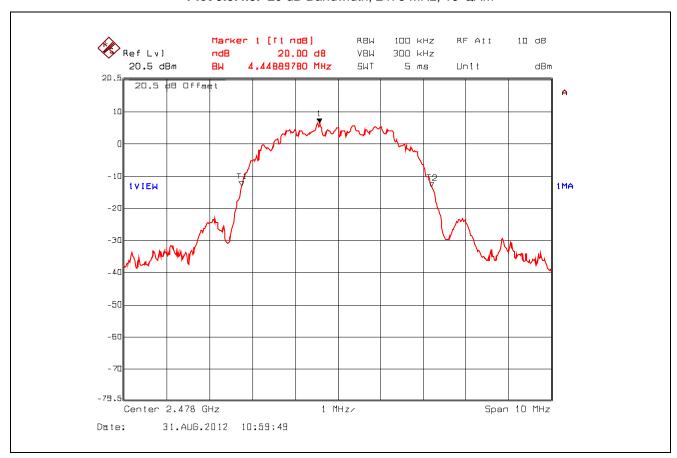


#### 5.3.4. Test Data

| Test Description                          | FCC Specification                                                                                                                                                                                                                                                                                                                                                                                                                        | Measured Values         | Comments            |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|
| Frequency Hopping<br>Systems Requirements | The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. |                         | See Note 1          |
| 20 dB BW of the hopping channel           |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.55 MHz                | See Note 2          |
| Channel Hopping<br>Frequency Separation   | Minimum of 25 kHz or 20dB BW whichever is greater or 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW                                                                                                                                                                                                                  | 5 MHz                   | See Note 2          |
| Number hopping frequencies                | Shall use at least 15 channels                                                                                                                                                                                                                                                                                                                                                                                                           | ≥15 hopping frequencies | See Note 1<br>and 2 |
| Average Time of Occupancy                 | The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed                                                                                                                                                                                                                                                                  | 14.98 ms, maximum       | See Note 2          |

Note 1: See operational description exhibit for details.

Note 2: See the following plots for details.


Plot 5.3.4.1. 20 dB Bandwidth, 2403 MHz, 16-QAM



Marker 1 [T1 ndB] RBW 100 kHz RF Ali 111 dB Ref Lv] 2D.DO dB VBW 300 kHz 20.5 dBm 4,44889780 MHz dBm В₩ 5WT 5 ms Unit 20.5 dB Offset 1 V I EW 1MA -20 -50 -60 1 MHz/ Span 10 MHz Center 2,438 GHz Date: 31.AUG.2012 10:56:51

Plot 5.3.4.2. 20 dB Bandwidth, 2438 MHz, 16-QAM

Plot 5.3.4.3. 20 dB Bandwidth, 2478 MHz, 16-QAM



100 kHz Marker 1 [T1 ndB] RBW RF All 111 dB Ref Lv] 2D.DO dB  $\mathsf{VBW}$ 300 kHz 20 dBm 4,52905812 MHz dBm В₩ 5WT 5 ms Unit 20.5 dB Offset - 10 1MA **1VIEW** -20 -30 -50 -60 Span 10 MHz Center 2,403 GHz 1 MHz/ Date: 31.AUG.2012 11:11:30

Plot 5.3.4.4. 20 dB Bandwidth, 2403 MHz, BPSK

100 kHz Marker 1 [T1 ndB] RBW RF Ali 111 dB Ref Lv] 2D.DO dB VBW300 kHz 20 dBm 4,54909820 MHz dBm В₩ 5WT 5 ms Unit 20.5 #B Offset - 10 1MA 1 V I EW -20 -30 -50 -60

1 MHz/

Plot 5.3.4.5. 20 dB Bandwidth, 2438 MHz, BPSK

Date:

Center 2,438 GHz

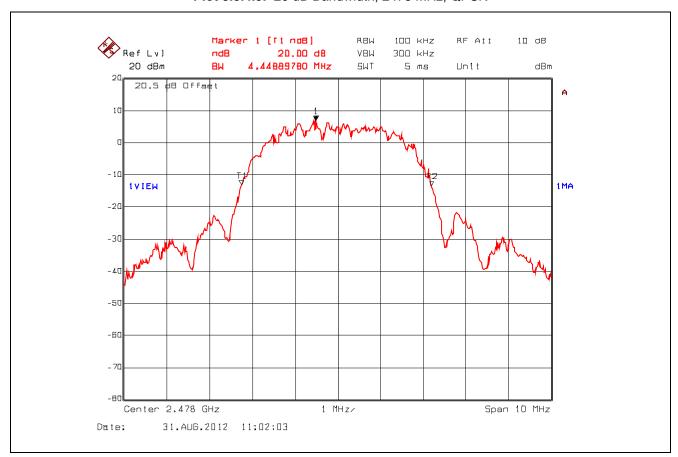
31.AUG.2012 11:13:41

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Span 10 MHz

Plot 5.3.4.6. 20 dB Bandwidth, 2478 MHz, BPSK




100 kHz Marker 1 [T1 ndB] RBW RF All 111 dB Ref Lv] 2D.DO dB VBW 300 kHz 20 dBm 4,46893788 MHz dBm В₩ 5WT 5 ms Unit 20.5 dB Offset - 10 1MA **1VIEW** -20 -30 -50 -60 Span 10 MHz Center 2,403 GHz 1 MHz/ Date: 31.AUG.2012 11:09:31

Plot 5.3.4.7. 20 dB Bandwidth, 2403 MHz, QPSK

100 kHz Marker 1 [T1 ndB] RBW RF All 111 dB Ref Lv] 2D.DO dB VBW 300 kHz 20 dBm 4,44889780 MHz dBm В₩ 5WT 5 ms Unit 20.5 dB Offset 1MA **1VIEW** -20 -30 -50 -60 Span 10 MHz Center 2,438 GHz 1 MHz/ Date: 31.AUG.2012 11:04:14

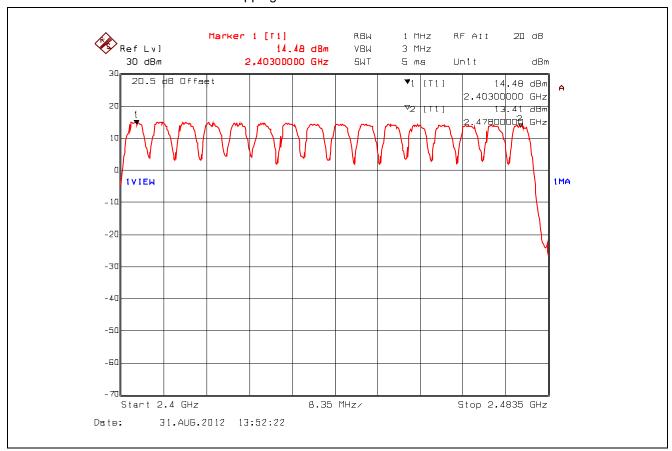
Plot 5.3.4.8. 20 dB Bandwidth, 2438 MHz, QPSK

Plot 5.3.4.9. 20 dB Bandwidth, 2478 MHz, QPSK

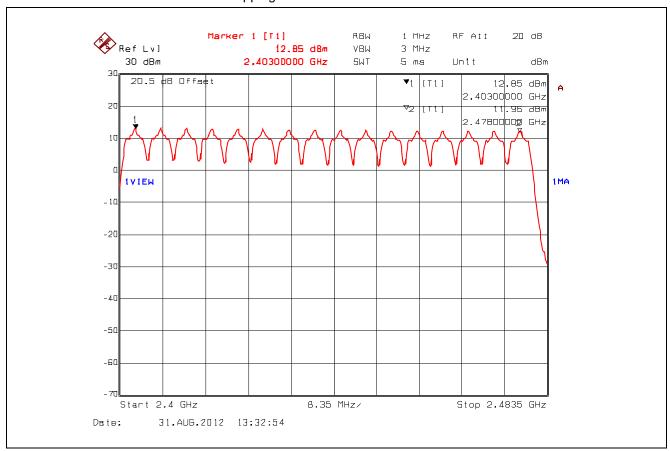


Delta 2 [T1] RBW 300 kHz RF All 211 dB Ref Lvl -2.16 dB VBW 500 kHz 30 dBm 5,020040D8 MHz dBm 5WT 5 ms Unit 20.5 dB Offset 9.34 dBm [T1] 13804509 GH*z* 02004008 MHz 10 1MA 1/V I EW -20 -30 2438 MHz -40 2443 MHz -50 Center 2,438 GHz 1.5 MHz/ Span 15 MHz Date: 31.AUG.2012 12:42:58

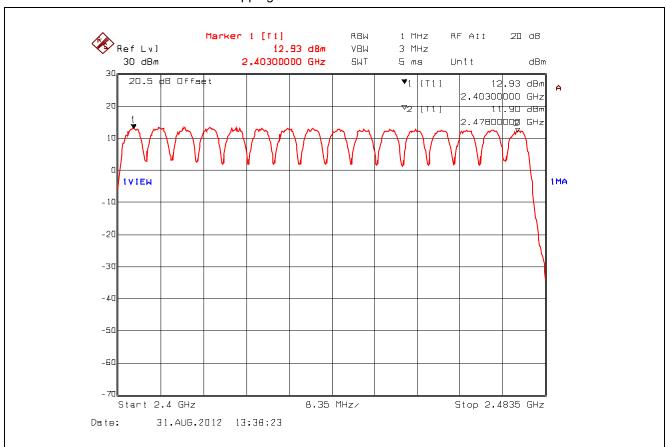
Plot 5.3.4.10. Carrier Frequency Separation, 16-QAM


Delta 2 [T1] RBW 300 kHz RF All 211 dB Ref Lvl -D.27 dB VBW 500 kHz 5.020040D8 MHz 30 dBm dBm 5WT 5 ms Unit 20.5 dB Offset 10.11 dBm [T1] 13804509 GH*z* -U.27 dB 2004008 MHz 10 1MA 1∦IEW -20 -30 2438 MHz -40 2443 MHz -50 Center 2,438 GHz 1.5 MHz/ Span 15 MHz Date: 31.AUG.2012 13:01:18

Plot 5.3.4.11. Carrier Frequency Separation, BPSK

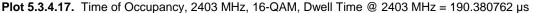

Delta 2 [T1] RBW 300 kHz RF All 211 dB Ref Lvl D.D1 dB VBW 500 kHz 30 dBm 5,020040D8 MHz dBm 5WT 5 ms Unit 20.5 dB Offset 9.98 dBm [T1] 13804509 GH*z* U. U1 aB 2004008 MHz 10 1MA VIEW -20 2438 MHz -30 -40 2443 MHz -50 Center 2,438 GHz 1.5 MHz/ Span 15 MHz Date: 31.AUG.2012 12:53:57

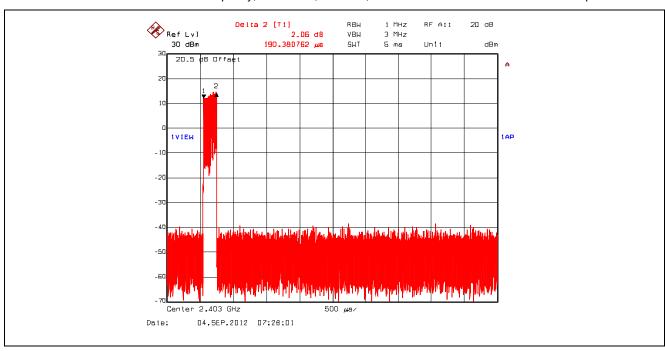
Plot 5.3.4.12. Carrier Frequency Separation, QPSK


**Plot 5.3.4.13.** Number of Hopping Frequencies, 16-QAM 16 Hopping Channels from 2403-2478 MHz



**Plot 5.3.4.14.** Number of Hopping Frequencies, BPSK 16 Hopping Channels from 2403-2478 MHz

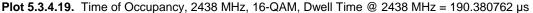


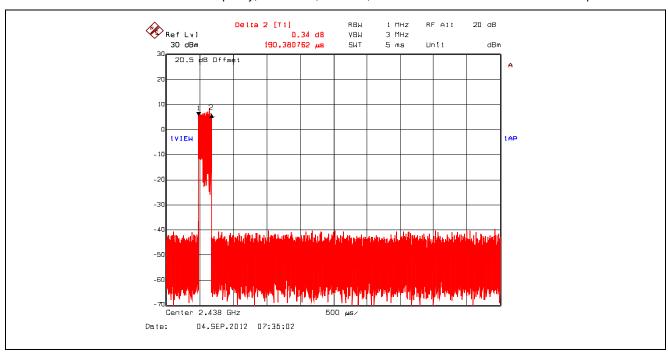


**Plot 5.3.4.15.** Number of Hopping Frequencies, QPSK 16 Hopping Channels from 2403-2478 MHz



Ref Lvl 1 MHZ RF Att 211 dB VBW 3 MHz 30 dBm 5WT 6.4 sUnit dBm 20.5 dB Offset Center 2.403 GHz 640 ms/ 04.SEP.2012 07:23:28 Date:

Plot 5.3.4.16. Time of Occupancy, 2403 MHz, 16-QAM

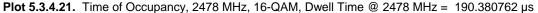


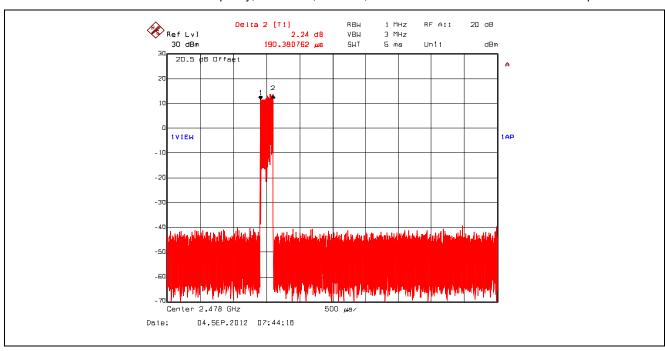




Average time of occupancy = (Dwell Time @ 2403 MHz) x (number of hops within a period)  $= 190.380762 \mu s \times 47$ = 8.95 ms

Ref Lvl 1 MHZ RF Att VBW 3 MHz 30 dBm 5WT 6.4 sUnit dBm 20.5 dB Offset Center 2.438 GHz 640 ms/ 04.SEP.2012 07:37:35 Date:

Plot 5.3.4.18. Time of Occupancy, 2438 MHz, 16-QAM




Average time of occupancy = (Dwell Time @ 2438 MHz) x (number of hops within a period)  $= 190.380762 \mu s \times 66$ = 12.57 ms

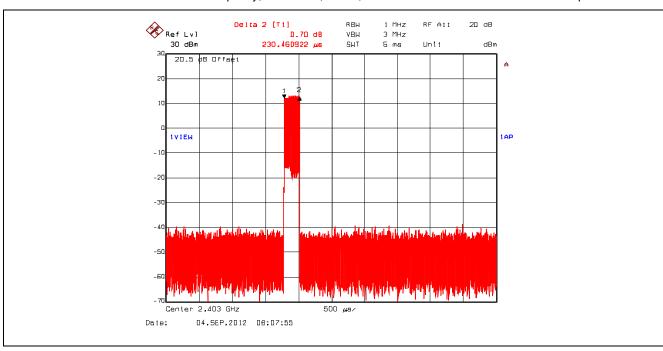
Ref Lvl 1 MHZ RF AII 211 dB VBW 3 MHz 30 dBm 5WT 6.4 sUnit dBm 20.5 dB Offset 1AP 640 ms/ Center 2.478 GHz 04.SEP.2012 07:41:57 Date:

Plot 5.3.4.20. Time of Occupancy, 2478 MHz, 16-QAM



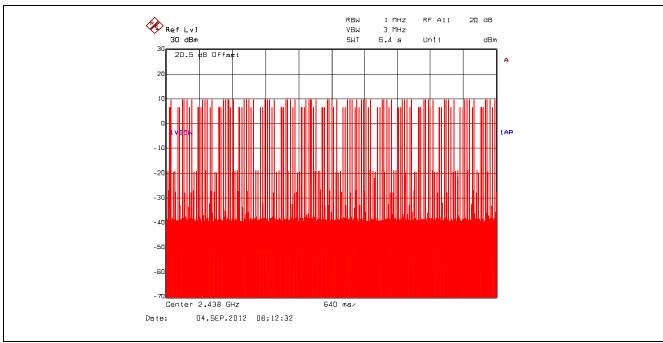


Average time of occupancy = (Dwell Time @ 2478 MHz) x (number of hops within a period)  $= 190.380762 \mu s \times 17$ = 3.24 ms

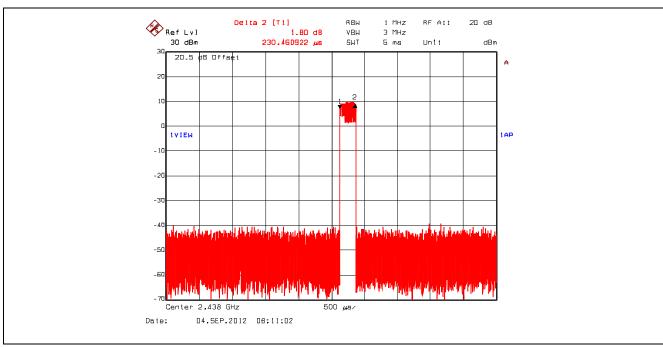

Ref Lvl 1 MHZ RF Att 211 dB VBW 3 MHz 30 dBm 5WT 6.4 sUnit dBm 20.5 dB Offset Center 2.403 GHz 640 ms/

Plot 5.3.4.22. Time of Occupancy, 2403 MHz, BPSK




04.SEP.2012 08:05:55

Date:

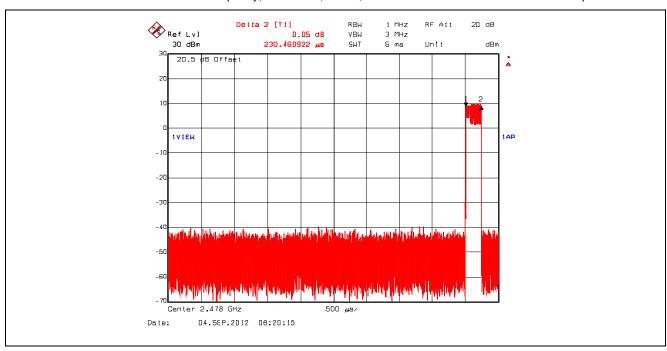



Average time of occupancy = (Dwell Time @ 2403 MHz) x (number of hops within a period)  $= 230.460922 \mu s \times 49$ = 11.29 ms

Plot 5.3.4.24. Time of Occupancy, 2438 MHz, BPSK



Plot 5.3.4.25. Time of Occupancy, 2438 MHz, BPSK, Dwell Time @ 2438 MHz = 230.460922 µs

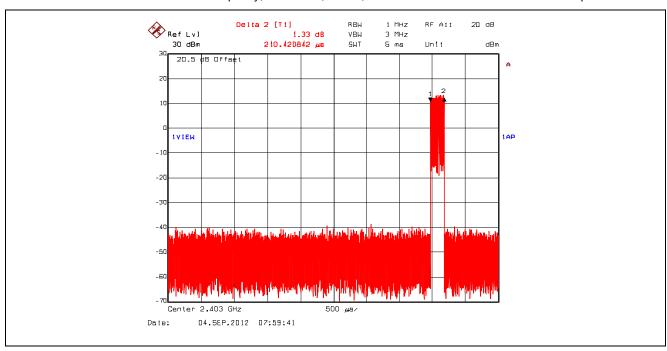



Average time of occupancy = (Dwell Time @ 2438 MHz) x (number of hops within a period)  $= 230.460922 \mu s \times 65$ = 14.98 ms

Ref Lvl 1 MHZ RF Att 211 dB VBW 3 MHz 30 dBm 5WT 6.4 sUnit dBm 20.5 dB Offset 1V EW 1 AP 640 ms/ Center 2.478 GHz 04.SEP.2012 08:16:58 Date:

Plot 5.3.4.26. Time of Occupancy, 2478 MHz, BPSK






Average time of occupancy = (Dwell Time @ 2478 MHz) x (number of hops within a period)  $= 230.460922 \mu s \times 15$ = 3.46 ms

Ref Lvl 1 MHZ RF Att 211 dB VBW 3 MHz 30 dBm 5WT 6.4 sUnit dBm 20.5 dB Offset Center 2.403 GHz 640 ms/ 04.SEP.2012 08:01:58 Date:

Plot 5.3.4.28. Time of Occupancy, 2403 MHz, QPSK

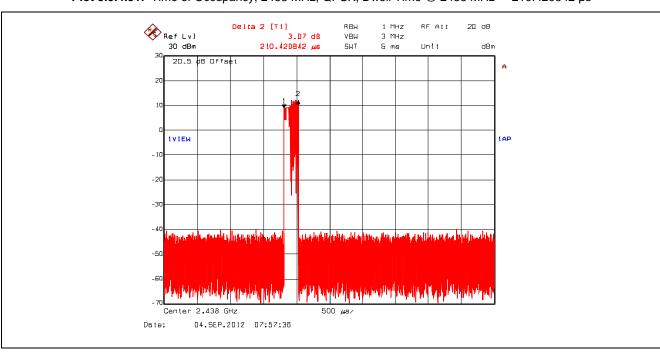




Average time of occupancy = (Dwell Time @ 2403 MHz) x (number of hops within a period)  $= 210.420842 \mu s \times 50$ = 10.52 ms

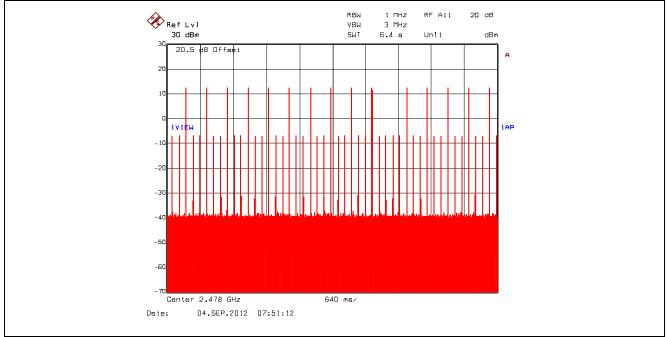
Ref Lvl 1 MHZ RF Att 211 dB VBW 3 MHz 30 dBm 5WT 6.4 sUnit dBm 20.5 dB Offset

Plot 5.3.4.30. Time of Occupancy, 2438 MHz, QPSK

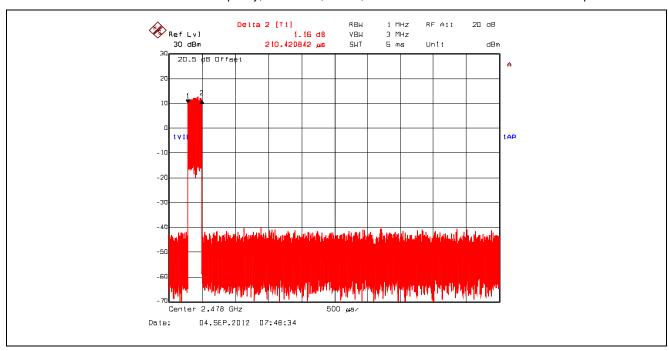



640 ms/

Center 2.438 GHz


Date:

04.SEP.2012 07:54:51




Average time of occupancy = (Dwell Time @ 2438 MHz) x (number of hops within a period)  $= 210.420842 \mu s \times 61$ = 12.84 ms

Plot 5.3.4.32. Time of Occupancy, 2478 MHz, QPSK



Plot 5.3.4.33. Time of Occupancy, 2478 MHz, QPSK, Dwell Time @ 2478 MHz = 210.420842 µs

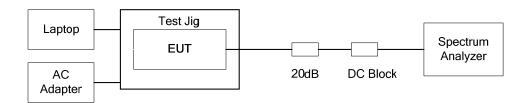


Average time of occupancy = (Dwell Time @ 2478 MHz) x (number of hops within a period) = 210.420842 µs x 15 = 3.16 ms

# 5.4. PEAK CONDUCTED OUTPUT POWER [§ 15.247(b)(2)]

#### 5.4.1. Limit

§15.247(b)(1): For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.


§15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247(b)(4)(i): Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

#### 5.4.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10.

## 5.4.3. Test Arrangement



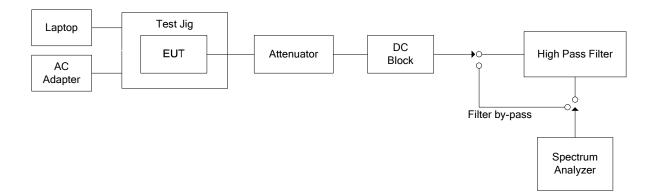
5.4.4. Test Data

| Operating                | Frequency | Peak Output Power a | at Antenna Terminal | Peak Output Power Limit |      |  |
|--------------------------|-----------|---------------------|---------------------|-------------------------|------|--|
| Mode                     | (MHz)     | (dBm)               | (mW)                | (dBm)                   | (mW) |  |
|                          | 2403      | 20.94               | 124.17              | 21                      | 125  |  |
| 16-QAM,                  | 2438      | 20.17               | 103.99              | 21                      | 125  |  |
| software power setting 8 | 2473      | 20.09               | 102.09              | 21                      | 125  |  |
| _                        | 2478      | 20.04               | 100.93              | 21                      | 125  |  |
|                          | 2403      | 18.91               | 77.80               | 21                      | 125  |  |
| BPSK,                    | 2438      | 18.32               | 67.92               | 21                      | 125  |  |
| software power setting 8 | 2473      | 18.21               | 66.22               | 21                      | 125  |  |
|                          | 2478      | 18.20               | 66.07               | 21                      | 125  |  |
|                          | 2403      | 19.15               | 82.22               | 21                      | 125  |  |
| QPSK,                    | 2438      | 18.91               | 77.80               | 21                      | 125  |  |
| software power setting 8 | 2473      | 18.89               | 77.45               | 21                      | 125  |  |
| 3 -                      | 2478      | 18.67               | 73.62               | 21                      | 125  |  |

NOTE 1: Except as provided in NOTE 2, the EIRP shall not exceed 36 dBm for all proposed antennas.

NOTE 2: For fixed, point-to-point operation for all proposed antennas, the power shall be reduced as specified in §15.247(b)(4)(i).

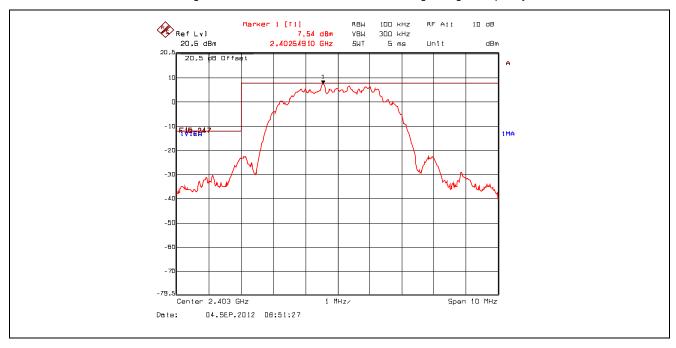
# 5.5. TRANSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]


#### 5.5.1. Limit

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 5.5.2. Method of Measurements

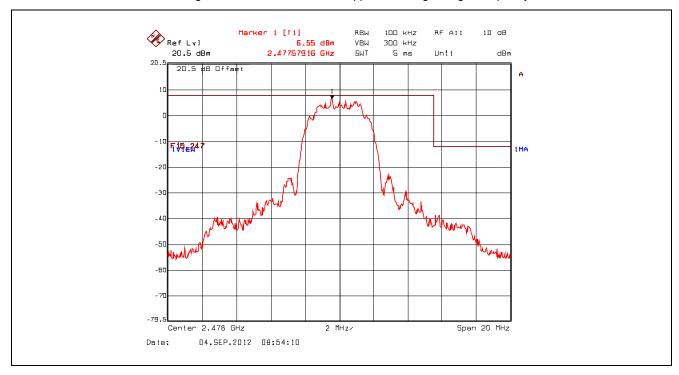
FCC Public Notice DA 00-705 and ANSI C63.10


### 5.5.3. Test Arrangement

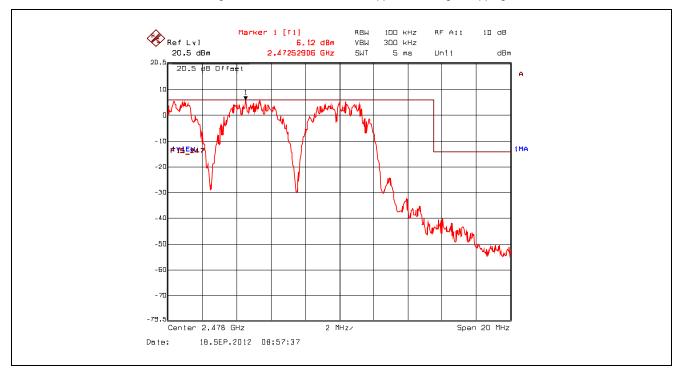


#### 5.5.4. Test Data

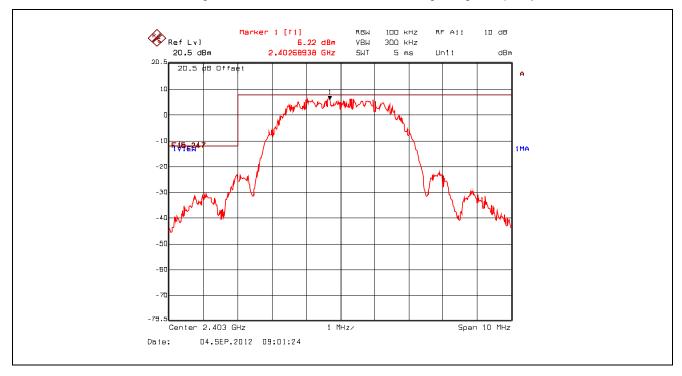
# 5.5.4.1. Band-Edge RF Conducted Emissions


Plot 5.5.4.1.1. Band-Edge RF Conducted Emissions, Lower Band-edge, Single Frequency Mode, 16-QAM




Plot 5.5.4.1.2. Band-Edge RF Conducted Emissions, Lower Band-edge, Hopping Mode, 16-QAM

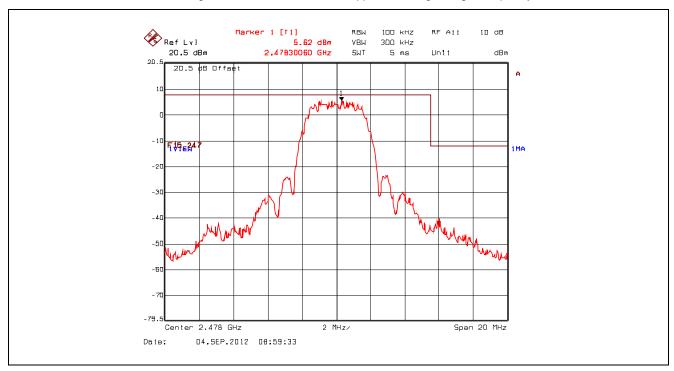



Plot 5.5.4.1.3. Band-Edge RF Conducted Emissions, Upper Band-edge, Single Frequency Mode, 16-QAM



Plot 5.5.4.1.4. Band-Edge RF Conducted Emissions, Upper Band-edge, Hopping Mode, 16-QAM

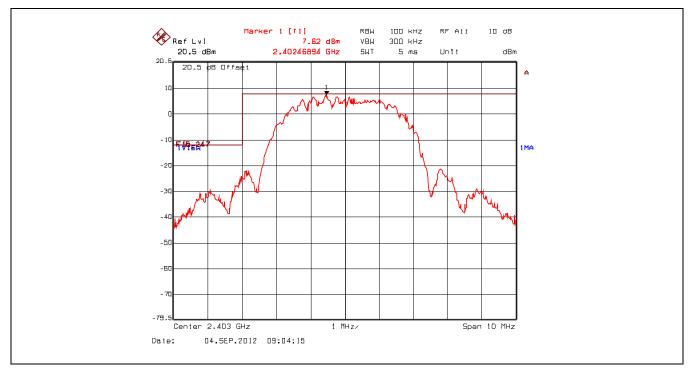



Plot 5.5.4.1.5. Band-Edge RF Conducted Emissions, Lower Band-edge, Single Frequency Mode, BPSK



Plot 5.5.4.1.6. Band-Edge RF Conducted Emissions, Lower Band-edge, Hopping Mode, BPSK




Plot 5.5.4.1.7. Band-Edge RF Conducted Emissions, Upper Band-edge, Single Frequency Mode, BPSK



Plot 5.5.4.1.8. Band-Edge RF Conducted Emissions, Upper Band-edge, Hopping Mode, BPSK



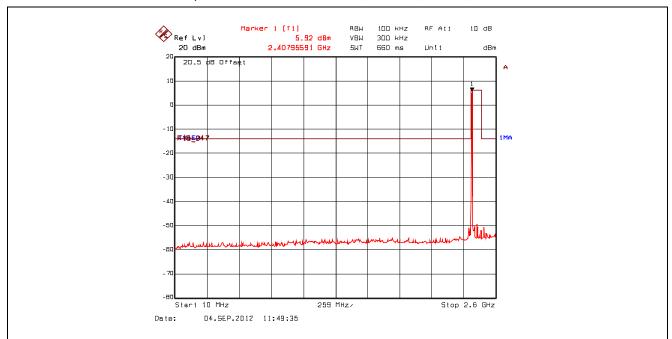
Plot 5.5.4.1.9. Band-Edge RF Conducted Emissions, Lower Band-edge, Single Frequency Mode, QPSK




Plot 5.5.4.1.10. Band-Edge RF Conducted Emissions, Lower Band-edge, Hopping Mode, QPSK

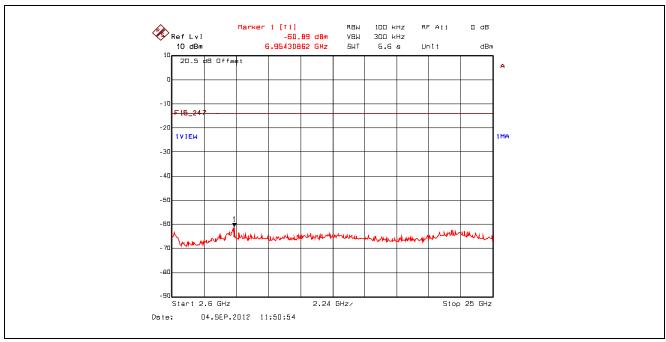


Plot 5.5.4.1.11. Band-Edge RF Conducted Emissions, Upper Band-edge, Single Frequency Mode, QPSK



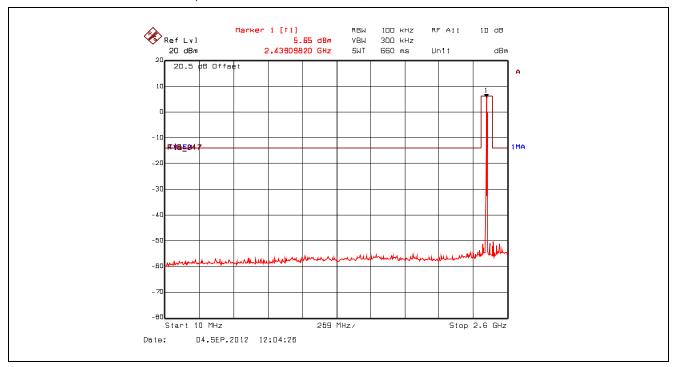

Plot 5.5.4.1.12. Band-Edge RF Conducted Emissions, Upper Band-edge, Hopping Mode, QPSK




# 5.5.4.2. Spurious RF Conducted Emissions

**Remark**: The power output of signal from 16-QAM modulation has the highest power output, therefore it was selected as a final test configuration for worst-case.

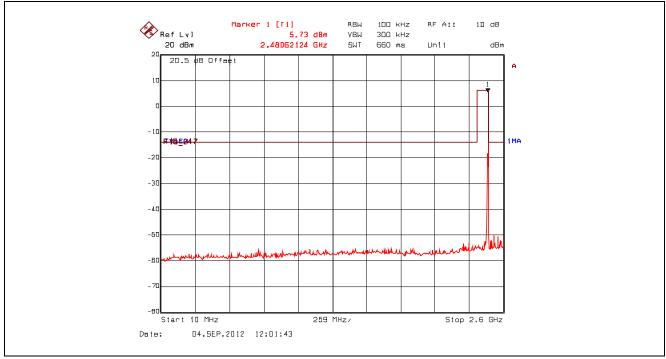



Plot 5.5.4.2.1. Spurious RF Conducted Emissions, 2403 MHz, 16-QAM, 10 MHz – 2.6 GHz

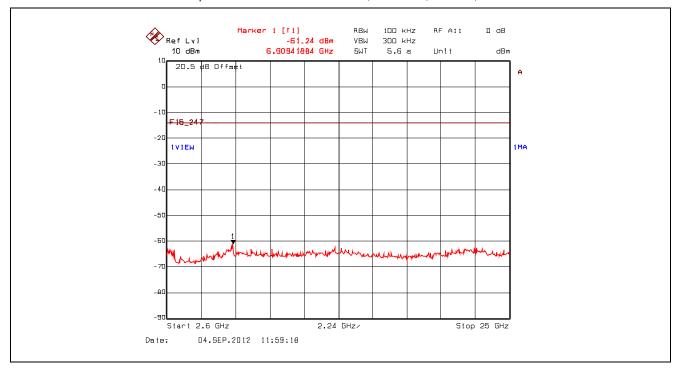




File #: VCT-009F15C247


Plot 5.5.4.2.3. Spurious RF Conducted Emissions, 2438 MHz, 16-QAM, 10 MHz - 2.6 GHz




Plot 5.5.4.2.4. Spurious RF Conducted Emissions, 2438 MHz, 16-QAM, 2.6 GHz - 25 GHz



Plot 5.5.4.2.5. Spurious RF Conducted Emissions, 2478 MHz, 16-QAM, 10 MHz – 2.6 GHz



Plot 5.5.4.2.6. Spurious RF Conducted Emissions, 2478 MHz, 16-QAM, 2.6 GHz - 25 GHz



#### 5.6. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

#### 5.6.1. Limit

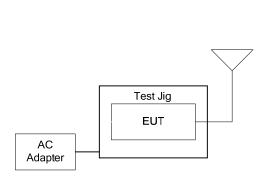
§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Section 15.205(a) - Restricted Bands of Operation

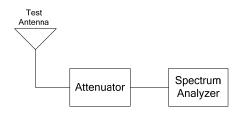
| MHz               | MHz                 | MHz           | GHz         |  |
|-------------------|---------------------|---------------|-------------|--|
| 0.090–0.110       | 16.42–16.423        | 399.9–410     | 4.5–5.15    |  |
| 1 0.495–0.505     | 16.69475-16.69525   | 608–614       | 5.35-5.46   |  |
| 2.1735–2.1905     | 16.80425-16.80475   | 960–1240      | 7.25–7.75   |  |
| 4.125–4.128       | 25.5-25.67          | 1300–1427     | 8.025–8.5   |  |
| 4.17725–4.17775   | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |  |
| 4.20725–4.20775   | 73–74.6             | 1645.5–1646.5 | 9.3–9.5     |  |
| 6.215–6.218       | 74.8–75.2           | 1660–1710     | 10.6–12.7   |  |
| 6.26775–6.26825   | 108-121.94          | 1718.8–1722.2 | 13.25–13.4  |  |
| 6.31175–6.31225   | 123–138             | 2200–2300     | 14.47–14.5  |  |
| 8.291–8.294       | 149.9–150.05        | 2310–2390     | 15.35–16.2  |  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5–2500   | 17.7–21.4   |  |
| 8.37625-8.38675   | 156.7-156.9         | 2655–2900     | 22.01–23.12 |  |
| 8.41425–8.41475   | 162.0125-167.17     | 3260-3267     | 23.6–24.0   |  |
| 12.29–12.293      | 167.72-173.2        | 3332–3339     | 31.2–31.8   |  |
| 12.51975–12.52025 | 240–285             | 3345.8–3358   | 36.43–36.5  |  |
| 12.57675–12.57725 | 322-335.4           | 3600–4400     | (2)         |  |
| 13.36–13.41.      |                     |               | , ,         |  |

<sup>&</sup>lt;sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

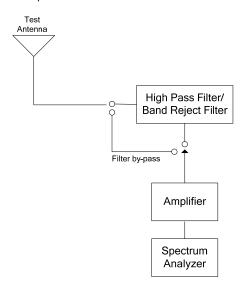
Section 15.209(a) - Field Strength Limits within Restricted Frequency Bands


| Frequency (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009 - 0.490   | 2,400 / F (kHz)                   | 300                           |
| 0.490 - 1.705   | 24,000 / F (kHz)                  | 30                            |
| 1.705 - 30.0    | 30                                | 30                            |
| 30 – 88         | 100                               | 3                             |
| 88 – 216        | 150                               | 3                             |
| 216 – 960       | 200                               | 3                             |
| Above 960       | 500                               | 3                             |

<sup>&</sup>lt;sup>2</sup> Above 38.6


### 5.6.2. Method of Measurements

FCC Public Notice DA 00-705, ANSI C63.10 and ANSI 63.4 procedures.


### 5.6.3. Test Arrangement



### For Fundamental and Band-edge



### For Spurious and Harmonics



#### 5.6.4. Test Data

## Remark(s):

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- The following test results are the worst-case measurements with 16-QAM modulation.

### 5.6.4.1. EUT with 12 dBi Omni-directional Antenna and 1.31 dB Assembly Cable Loss

# 5.6.4.1.1. Spurious Radiated Emissions

Fundamental Frequency: 2403 MHz

Software Power Setting: 8

Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2403               | 118.84                       |                             | V                         |                             |                             |                |               |
| 2403               | 118.61                       |                             | Н                         |                             |                             |                |               |
| 4806               | 54.66                        | 34.08                       | Н                         | 54.0                        | 98.8                        | -19.9          | Pass*         |

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 2438 MHz

Software Power Setting: 8

Frequency Test Range: 30 MHz – 25 GHz

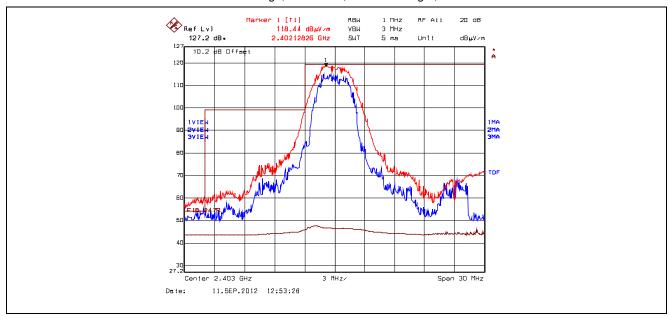
| 1 roquonoy ro      | ot italigo.                  | 00 1111 12                  | 20 02                     |                             |                             |                |               |  |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|--|
| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |  |
| 2438               | 117.56                       |                             | V                         |                             |                             |                |               |  |
| 2438               | 117.32                       |                             | Н                         |                             |                             |                |               |  |
| 30-25000           | *                            | *                           | V/H                       | *                           | 97.6                        | *              | Pass          |  |

<sup>\*</sup>All spurious emissions/harmonics are more than 20 dB below the applicable limit.

<sup>\*</sup>Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental Frequency: 2478 MHz

Software Power Setting: 8


Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2478               | 117.12                       |                             | V                         |                             |                             |                |               |
| 2478               | 116.74                       |                             | Н                         |                             |                             |                |               |
| 30-25000           | *                            | *                           | V/H                       | *                           | 97.1                        | *              | Pass          |

<sup>\*</sup>All spurious emissions/harmonics are more than 20 dB below the applicable limit.

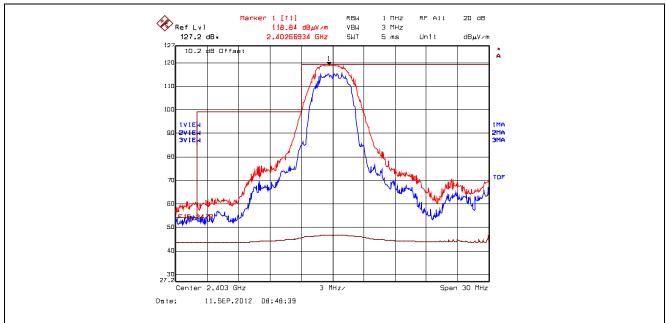
# 5.6.4.1.2. Band-Edge RF Radiated Emissions

**Plot 5.6.4.1.2.1.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM



**Plot 5.6.4.1.2.2.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM




Trace 1: RBW = 1 MHz, VBW = 3 MHz

Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 30.24 dB

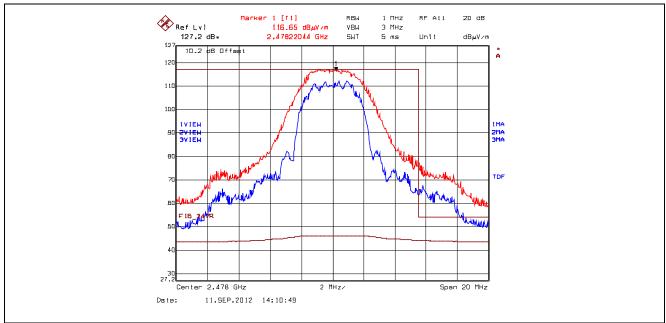
Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak =  $118.44 \text{ dB}\mu\text{V/m} - 30.24 \text{ dB} = 88.20 \text{ dB}\mu\text{V/m}$  (limit  $98.44 \text{ dB}\mu\text{V/m}$ )

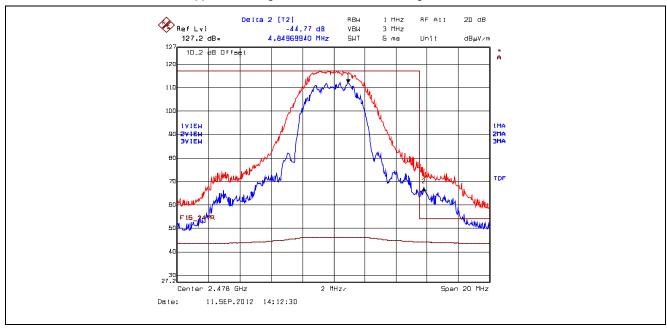
**Plot 5.6.4.1.2.3.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM



Plot 5.6.4.1.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM




Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 29.00 dB

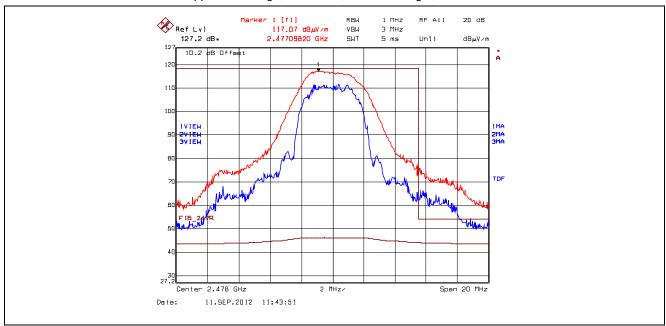

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak = 118.84 dB $\mu$ V/m - 29.00 dB = 89.84 dB $\mu$ V/m (limit 98.84 dB $\mu$ V/m)

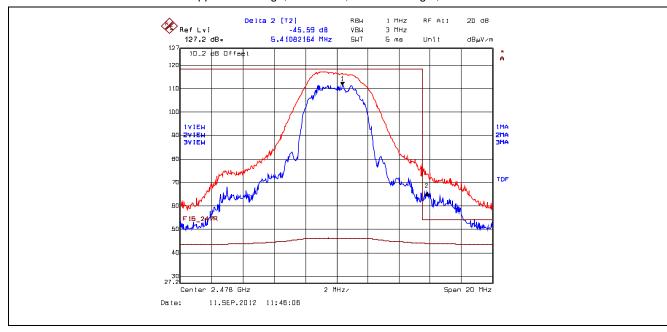
**Plot 5.6.4.1.2.5.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, 2478 MHz, Power Setting 8, 16-QAM



**Plot 5.6.4.1.2.6.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, 2478 MHz, Power Setting 8, 16-QAM




Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 44.77 dB

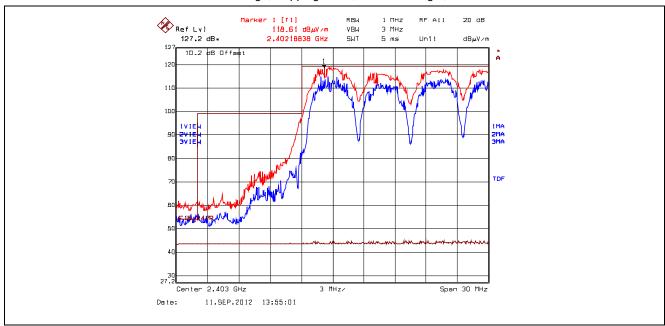

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak = 116.65 dBµV/m - 44.77dB= 71.88 dBµV/m (limit 74 dBµV/m)

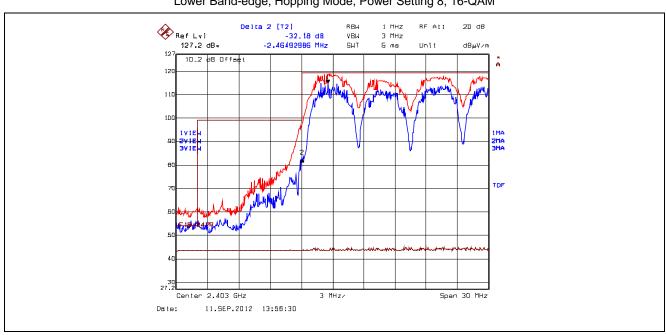
**Plot 5.6.4.1.2.7.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, 2478 MHz, Power Setting 8, 16-QAM



**Plot 5.6.4.1.2.8.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, 2478 MHz, Power Setting 8, 16-QAM




Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 45.59 dB

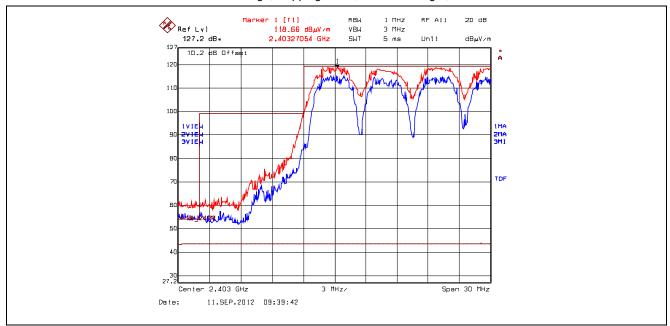

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $117.07 \text{ dB}\mu\text{V/m} - 45.59 \text{ dB} = 71.48 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

Plot 5.6.4.1.2.9. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Plot 5.6.4.1.2.10. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM




Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 32.18 dB

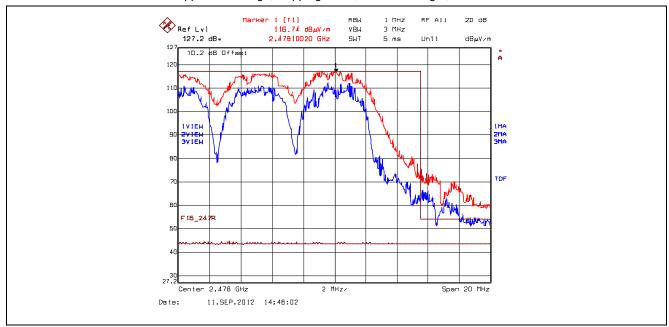
Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak = 118.61dBµV/m - 32.18 dB = 86.43 dBµV/m (limit 98.61 dBµV/m)

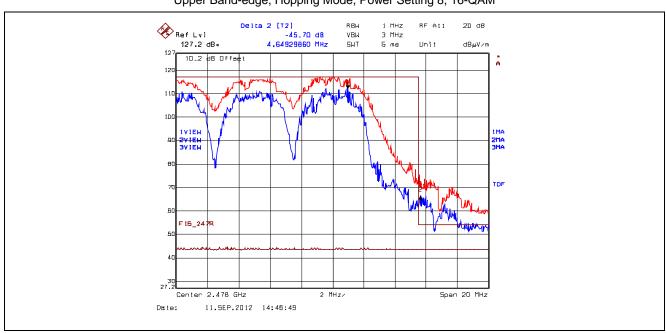
**Plot 5.6.4.1.2.11.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Plot 5.6.4.1.2.12. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM




Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 29.47 dB


Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak =  $118.66 \text{ dB}\mu\text{V/m} - 29.47\text{dB} = 89.19 \text{ dB}\mu\text{V/m}$  (limit  $98.66 \text{ dB}\mu\text{V/m}$ )

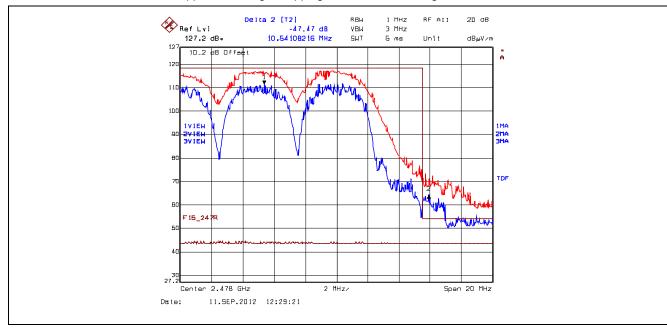
Plot 5.6.4.1.2.13. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM



**Plot 5.6.4.1.2.14.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM




Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 45.70 dB


Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $116.74 \text{ dB}\mu\text{V/m} - 45.70 \text{ dB} = 71.04 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

**Plot 5.6.4.1.2.15.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM



**Plot 5.6.4.1.2.16.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 47.47 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $117.12 \text{ dB}\mu\text{V/m} - 47.47 \text{ dB} = 69.65 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

File #: VCT-009F15C247

# 5.6.4.2. EUT with 20.5 dBi Panel Antenna and 2.31 dB Assembly Cable Loss

# 5.6.4.2.1. Spurious Radiated Emissions

Fundamental Frequency: 2403 MHz

Software Power Setting: 8

Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2403               | 126.98                       |                             | V                         |                             |                             |                |               |
| 2403               | 126.47                       |                             | Н                         |                             |                             |                |               |
| 4806               | 53.78                        | 34.06                       | V                         | 54.0                        | 107.0                       | -19.9          | Pass*         |
| 4806               | 54.04                        | 34.23                       | Н                         | 54.0                        | 107.0                       | -19.8          | Pass*         |

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 2438 MHz

Software Power Setting: 8

Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2438               | 127.08                       |                             | V                         |                             |                             |                |               |
| 2438               | 125.47                       |                             | Н                         |                             |                             |                |               |
| 30-25000           | *                            | *                           | V/H                       | *                           | 107.1                       | *              | Pass          |

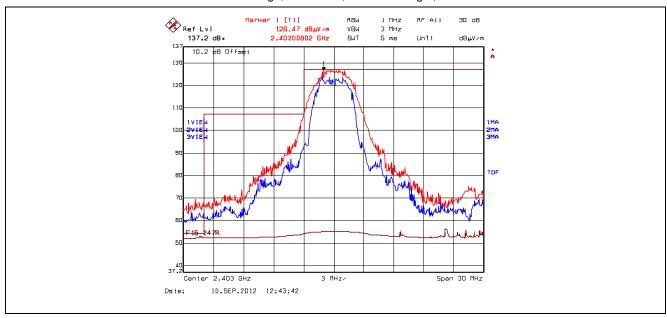
<sup>\*</sup>All spurious emissions/harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 2473 MHz

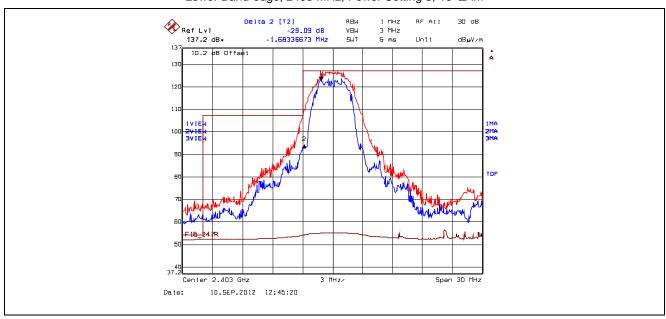
Software Power Setting: 8

Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2473               | 127.11                       |                             | V                         |                             |                             |                |               |
| 2473               | 125.35                       |                             | Н                         |                             |                             |                |               |
| 30-25000           | *                            | *                           | V/H                       | *                           | 107.1                       | *              | Pass          |


\*All spurious emissions/harmonics are more than 20 dB below the applicable limit.

### **ULTRATECH GROUP OF LABS**


<sup>\*</sup>Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

#### 5.6.4.2.2. **Band-Edge RF Radiated Emissions**

Plot 5.6.4.2.2.1. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM



Plot 5.6.4.2.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM



Trace 1: RBW = 1 MHz, VBW = 3 MHz


Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 29.09 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak = 126.47 dBμV/m - 29.09 dB = 97.38 dBμV/m (limit 106.47 dBμV/m)

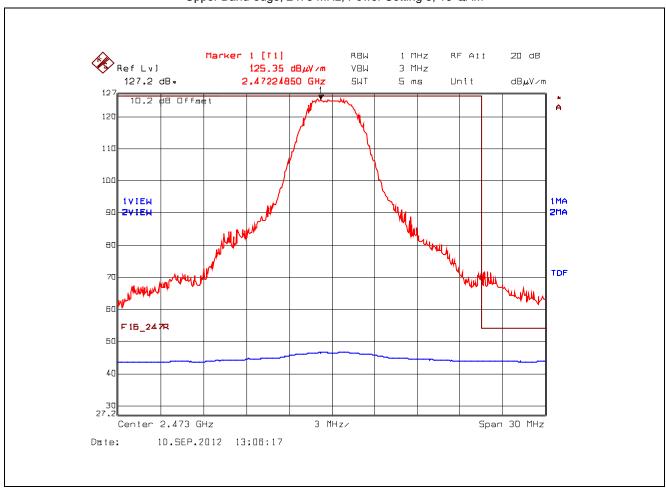
File #: VCT-009F15C247

Plot 5.6.4.2.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM



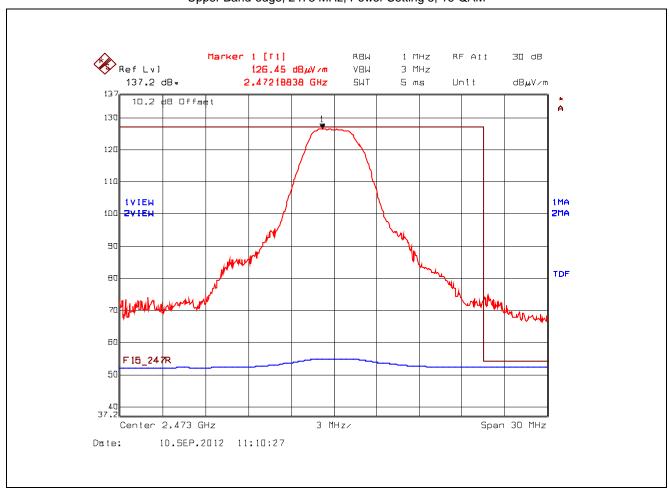
Plot 5.6.4.2.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM




Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 30.99 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak =  $126.98 \text{ dB}\mu\text{V/m} - 30.99 \text{ dB} = 95.99 \text{ dB}\mu\text{V/m}$  (limit  $106.98 \text{ dB}\mu\text{V/m}$ )

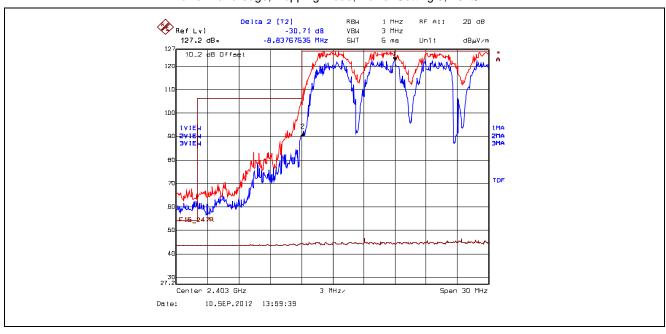

File #: VCT-009F15C247

**Plot 5.6.4.2.2.5.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, 2473 MHz, Power Setting 8, 16-QAM



Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 1 MHz, VBW = 10 Hz

Plot 5.6.4.2.2.6. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, 2473 MHz, Power Setting 8, 16-QAM



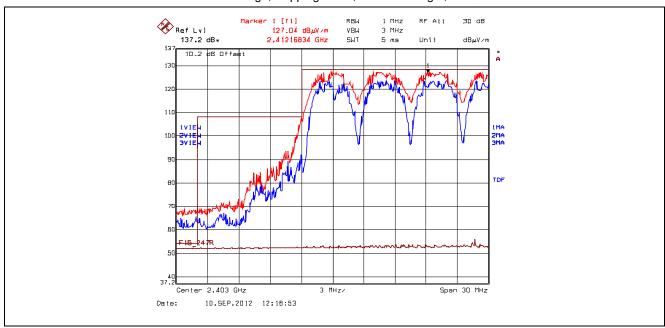

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 1 MHz, VBW = 10 Hz

**Plot 5.6.4.2.2.7.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM

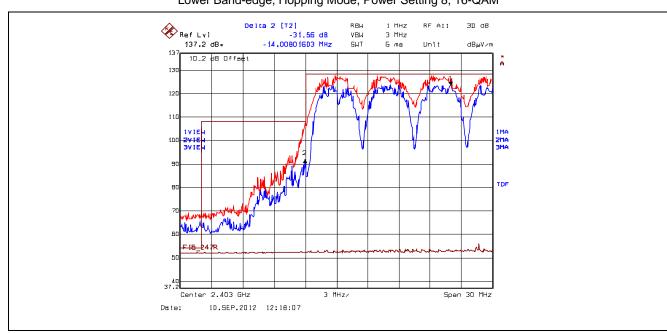


**Plot 5.6.4.2.2.8.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM




Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 30.71 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz


Peak Band-Edge at 2400 MHz: Peak =  $125.95 \text{ dB}\mu\text{V/m} - 30.71 \text{ dB} = 95.24 \text{ dB}\mu\text{V/m}$  (limit  $105.95 \text{ dB}\mu\text{V/m}$ )

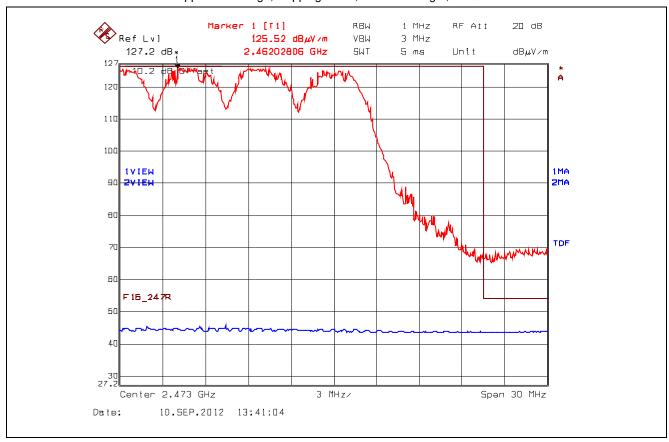
FCC ID: SU5-TMX24120

**Plot 5.6.4.2.2.9.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM



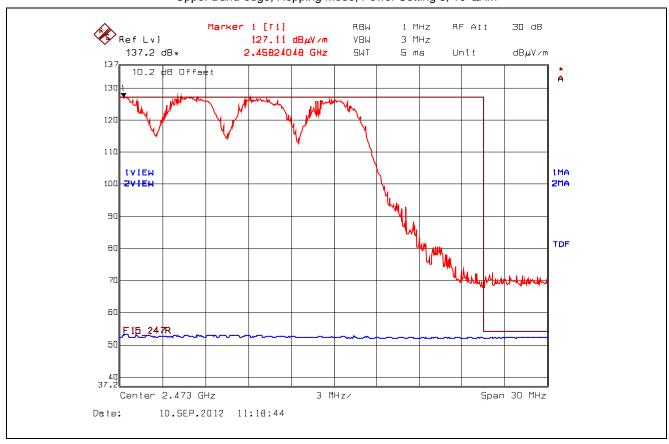
**Plot 5.6.4.2.2.10.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM




Trace 1: RBW = 1 MHz, VBW = 3 MHz

Trace 2: RBW= 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 31.56 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz


Peak Band-Edge at 2400 MHz: Peak = 127.04 dB $\mu$ V/m - 31.56 dB = 95.48 dB $\mu$ V/m (limit 107.04 dB $\mu$ V/m)

**Plot 5.6.4.2.2.11.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 1 MHz, VBW = 10 Hz

**Plot 5.6.4.2.2.12.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 1 MHz, VBW = 10 Hz

File #: VCT-009F15C247

# 5.6.4.3. EUT with 24 dBi Parabolic Antenna and 3.31 dB Assembly Cable Loss

# 5.6.4.3.1. Spurious Radiated Emissions

Fundamental Frequency: 2403 MHz

Software Power Setting: 8

Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2403               | 127.52                       |                             | V                         |                             |                             |                |               |
| 2403               | 127.45                       |                             | Н                         |                             |                             |                |               |
| 30-25000           | *                            | *                           | V/H                       | *                           | 107.5                       | *              | Pass          |

<sup>\*</sup>All spurious emissions/harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 2438 MHz

Software Power Setting: 8

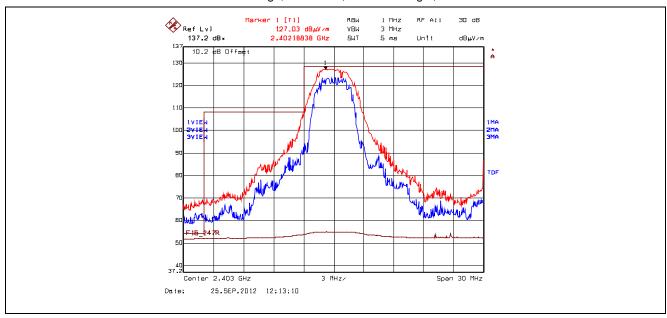
Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2438               | 127.05                       |                             | V                         |                             |                             |                |               |
| 2438               | 126.85                       |                             | Н                         |                             |                             |                |               |
| 30-25000           | *                            | *                           | V/H                       | *                           | 107.1                       | *              | Pass          |

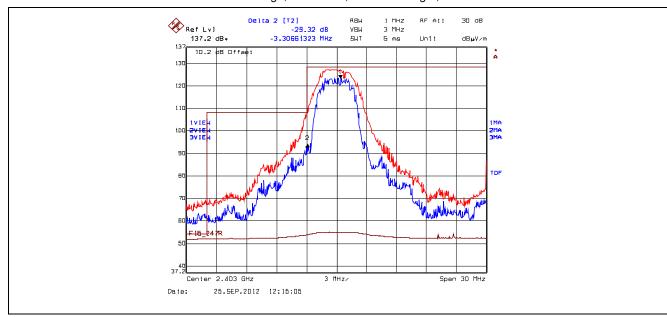
<sup>\*</sup>All spurious emissions/harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 2473 MHz

Software Power Setting: 8


Frequency Test Range: 30 MHz – 25 GHz

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| 2473               | 126.97                       |                             | V                         |                             |                             |                |               |
| 2473               | 126.59                       |                             | Н                         |                             |                             |                |               |
| 30-25000           | *                            | *                           | V/H                       | *                           | 107.0                       | *              | Pass          |


<sup>\*</sup>All spurious emissions/harmonics are more than 20 dB below the applicable limit.

# 5.6.4.3.2. Band-Edge RF Radiated Emissions

**Plot 5.6.4.3.2.1.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM



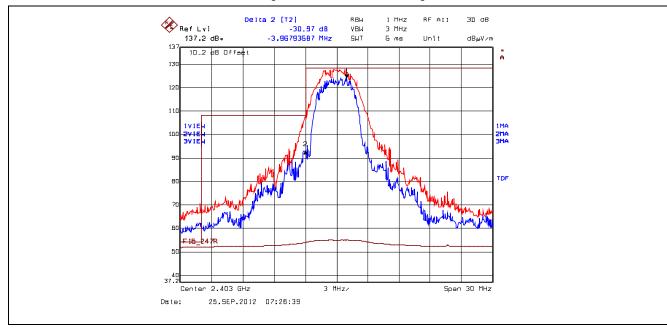
**Plot 5.6.4.3.2.2.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM



Trace 1: RBW = 1 MHz, VBW = 3 MHz

Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 29.32 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz


Peak Band-Edge at 2400 MHz: Peak =  $127.03 \text{ dB}\mu\text{V/m} - 29.32 \text{ dB} = 97.71 \text{ dB}\mu\text{V/m}$  (limit  $107.03 \text{ dB}\mu\text{V/m}$ )

File #: VCT-009F15C247

**Plot 5.6.4.3.2.3.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM

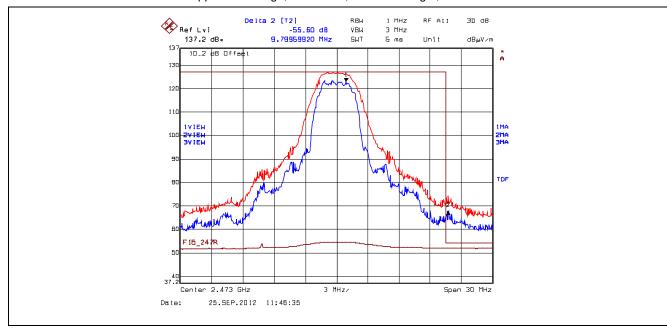


Plot 5.6.4.3.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, 2403 MHz, Power Setting 8, 16-QAM




Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 30.97 dB

Trace 3: RBW= 1 MHz, VBW = 10 Hz

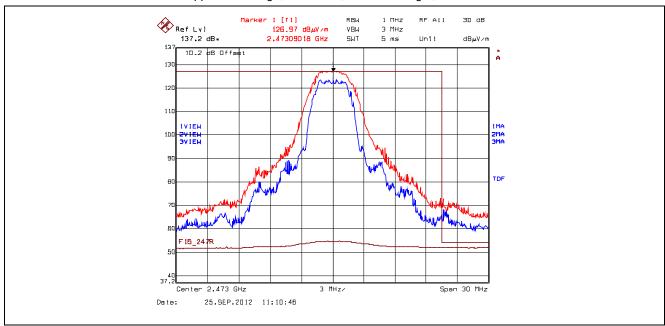

 $Peak\ Band-Edge\ at\ 2400\ MHz.\ Peak=127.52\ dB\mu V/m-30.97\ dB=96.55\ dB\mu V/m\ (limit\ 107.52\ dB\mu V/m)$ 

File #: VCT-009F15C247

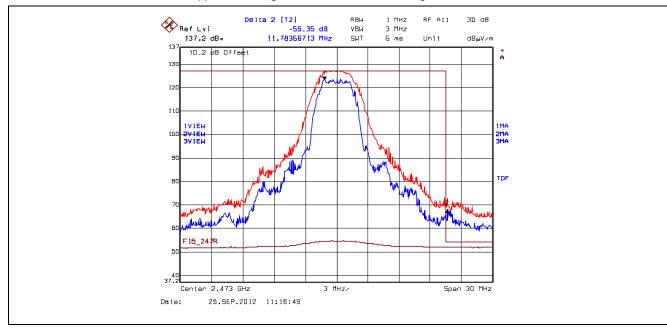
**Plot 5.6.4.3.2.5.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, 2473 MHz, Power Setting 8, 16-QAM



**Plot 5.6.4.3.2.6.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, 2473 MHz, Power Setting 8, 16-QAM




Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 55.60 dB


Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $126.56 \text{ dB}\mu\text{V/m} - 55.60 \text{ dB} = 70.96 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

**Plot 5.6.4.3.2.7.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, 2473 MHz, Power Setting 8, 16-QAM



**Plot 5.6.4.3.2.8.** Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, 2473 MHz, Power Setting 8, 16-QAM



Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 55.35 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $126.97 \text{ dB}\mu\text{V/m} - 55.35 \text{ dB} = 71.62 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

Plot 5.6.4.3.2.9. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Plot 5.6.4.3.2.10. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 29.69 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

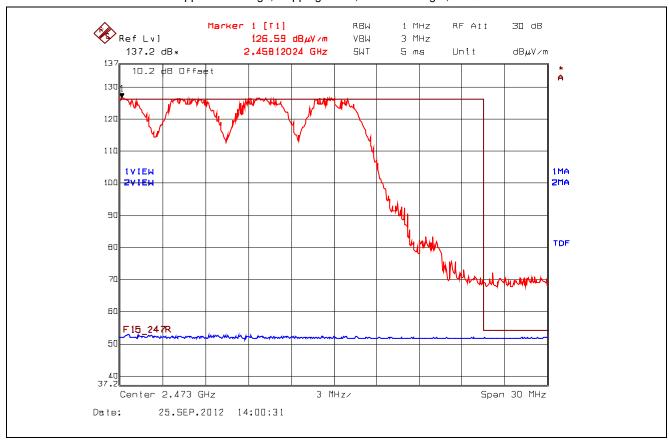
Peak Band-Edge at 2400 MHz: Peak =  $127.45 \text{ dB}\mu\text{V/m} - 29.69 \text{ dB} = 97.76 \text{ dB}\mu\text{V/m}$  (limit  $107.45 \text{ dB}\mu\text{V/m}$ )

Plot 5.6.4.3.2.11. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM



Plot 5.6.4.3.2.12. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Lower Band-edge, Hopping Mode, Power Setting 8, 16-QAM

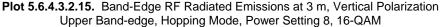


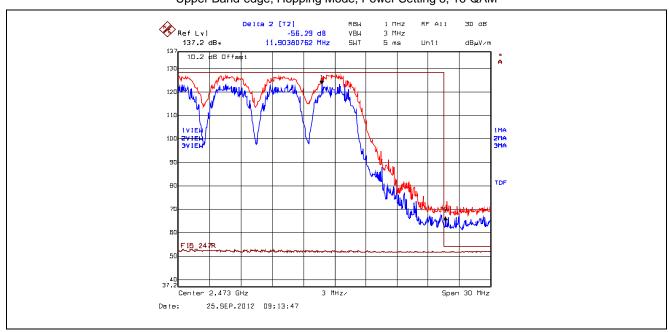

Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 29.54 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2400 MHz: Peak =  $127.37 \text{ dB}\mu\text{V/m} - 29.54 \text{ dB} = 97.83 \text{ dB}\mu\text{V/m}$  (limit  $107.37 \text{ dB}\mu\text{V/m}$ )

File #: VCT-009F15C247


**Plot 5.6.4.3.2.13.** Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM




Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 1 MHz, VBW = 10 Hz

1 [71] RF AII Ref Lv] 126.77 dBµV/m 2,47236874 GHz VBW 3 MHz 137.2 dB\* 5WT 5 ms Unit dBµV/m 10.2 dB Offse 100 3V I EW Center 2,473 GHz 3 MHz/ Span 30 MHz 25.SEP.2012 09:12:13 Date:

Plot 5.6.4.3.2.14. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Upper Band-edge, Hopping Mode, Power Setting 8, 16-QAM





Trace 2: RBW = 300 kHz, VBW = 1 MHz, Delta (Peak to Band-Edge): 56.29 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $126.77dB\mu V/m - 56.29 dB = 70.48 dB\mu V/m$  (limit 74 dB $\mu V/m$ )

Page 80

FCC ID: SU5-TMX24120

#### RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091] 5.7.

The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation.

### FCC 47 CFR § 1.1310:

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency range<br>(MHz) | Electric field<br>strength<br>(V/m)              | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²) | Averaging time (minutes) |  |  |  |  |  |
|--------------------------|--------------------------------------------------|-------------------------------------|---------------------------|--------------------------|--|--|--|--|--|
| (A) Lim                  | (A) Limits for Occupational/Controlled Exposures |                                     |                           |                          |  |  |  |  |  |
| 0.3–3.0                  | 614                                              | 1.63                                | *(100)                    | 6                        |  |  |  |  |  |
| 3.0–30                   | 1842/f                                           | 4.89/f                              | *(900/f <sup>2</sup> )    | 6                        |  |  |  |  |  |
| 30–300                   | 61.4                                             | 0.163                               | 1.0                       | 6                        |  |  |  |  |  |
| 300–1500                 |                                                  |                                     | f/300                     | 6                        |  |  |  |  |  |
| 1500–100,000             |                                                  |                                     | 5                         | 6                        |  |  |  |  |  |
| (B) Limits               | for General Populati                             | on/Uncontrolled Exp                 | oosure                    |                          |  |  |  |  |  |
| 0.3–1.34                 | 614                                              | 1.63                                | *(100)                    | 30                       |  |  |  |  |  |
| 1.34–30                  | 824/f                                            | 2.19/f                              | *(180/f <sup>2</sup> )    | 30                       |  |  |  |  |  |
| 30–300                   | 27.5                                             | 0.073                               | 0.2                       | 30                       |  |  |  |  |  |
| 300-1500                 |                                                  |                                     | f/1500                    | 30                       |  |  |  |  |  |
| 1500–100,000             |                                                  |                                     | 1.0                       | 30                       |  |  |  |  |  |

f = frequency in MHz

\* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

#### 5.7.1. Method of Measurements

Refer to Sections 1.1310, 2.1091

In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:

- (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
- (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
- (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure
- (4) Any other RF exposure related issues that may affect MPE compliance

# **Calculation Method of RF Safety Distance:**

$$S = \frac{P \cdot G}{4 \cdot \pi \cdot r^2} = \frac{EIRP}{4 \cdot \pi \cdot r^2}$$

Where: P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power

S: power density mW/cm<sup>2</sup>

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

#### 5.7.2. RF Evaluation

| Evaluation of RF Exposure Compliance Requirements                                                                                                                                          |                                                                                                                                                         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RF Exposure Requirements                                                                                                                                                                   | Compliance with FCC Rules                                                                                                                               |  |  |  |  |
| Minimum calculated separation distance between antenna and persons required: *36 cm                                                                                                        | Manufacturer' instruction for separation distance between antenna and persons required: <b>40 cm.</b>                                                   |  |  |  |  |
| Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement | Antenna installation and device operating instructions shall be provided to installers to maintain and ensure compliance with RF exposure requirements. |  |  |  |  |
| Caution statements and/or warning labels that are necessary in order to comply with the exposure limits                                                                                    | Refer to User's Manual for RF Exposure Information.                                                                                                     |  |  |  |  |
| Any other RF exposure related issues that may affect MPE compliance                                                                                                                        | None.                                                                                                                                                   |  |  |  |  |

<sup>\*</sup>The minimum separation distance between the antenna and bodies of users are calculated using the following formula:

### **RF EXPOSURE DISTANCE LIMITS**

$$r = \sqrt{\frac{P \cdot G}{4 \cdot \pi \cdot S}} = \sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}}$$

 $S = 1.0 \text{ mW/cm}^2$ EIRP = 42 dBm =  $10^{42/10}$  mW = 15849 mW (Worst Case)

(Minimum Safe Distance, r) = 
$$\sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}} = \sqrt{\frac{15849}{4 \cdot \pi \cdot (1.0)}} \approx 35.5cm$$

#### **EXHIBIT 6. TEST EQUIPMENT LIST**

| Test Instruments   | Manufacturer            | Model No.              | Serial No.  | Frequency Range           | Cal. Due Date |
|--------------------|-------------------------|------------------------|-------------|---------------------------|---------------|
| Spectrum Analyzer  | Agilent                 | E7401A                 | US40240432  | 9 kHz–1.5 GHz             | 15 Feb 2013   |
| Attenuator         | Pasternack              | PE7010-20              | -           | DC-2 GHz                  | 09 Jan 2013   |
| L.I.S.N            | EMCO                    | 3825/2                 | 8907-1531   | 10 kHz -100 MHz           | 05 Apr 2013   |
| High Pass Filter   | Telemeter<br>Electronic | MTA-HPF-150            | 2110465-007 | 9 kHz – 250 MHz           | 17 Aug 2013   |
| Spectrum Analyzer  | Rohde & Schwarz         | FSEK20                 | 834157      | 9 kHz–40 GHz              | 30 July 2013  |
| Attenuator         | Narda                   | 4768-20                | -           | DC-40 GHz                 | Cal on use    |
| DC Block           | Hewlett Packard         | 11742A                 | 12460       | 0.045–26.5 GHz            | Cal on use    |
| Spectrum Analyzer  | Rohde & Schwarz         | ESU40                  | 100037      | 20 Hz – 40 GHz            | 19 Mar 2013   |
| RF Amplifier       | Hewlett Packard         | 84498                  | 3008A00769  | 1 – 26.5 GHz              | 06 Aug 2013   |
| RF Amplifier       | AH System               | PAM-0118               | 225         | 20 MHz – 18 GHz           | 16 Mar 2013   |
| Attenuator         | Pasternack              | PE7024-10              | -           | DC-26.5 GHz               | Cal on use    |
| High Pass Filter   | K&L                     | 11SH10-<br>4000/T12000 | 4           | Cut off 2.4 GHz           | Cal on use    |
| Horn Antenna       | ETS Lindgren            | 3155                   | 6570        | 1 – 18 GHz                | 02 Apr 2013   |
| Horn Antenna       | ETS Lindgren            | 3160-09                | 00118385    | 18 – 26.5 GHz             | 30 Jul 2014   |
| Biconi-Log Antenna | ETS Lindgren            | 3142B                  | 1575        | 26 – 3000 MHz             | 04 May 2013   |
| Band Reject Filter | Micro-Tronics           | BRM50701               | 105         | Cut off<br>2.4-2.4835 GHz | Cal on use    |

# **EXHIBIT 7. MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

### 7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

|                | Line Conducted Emission Measurement Uncertainty (150 kHz – 30 MHz):                        | Measured      | Limit        |
|----------------|--------------------------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 1.57 | <u>+</u> 1.8 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                                         | <u>+</u> 3.14 | <u>+</u> 3.6 |

# 7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

|                | Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):                  | Measured      | Limit        |
|----------------|--------------------------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 2.15 | <u>+</u> 2.6 |
| U              | Expanded uncertainty U: $U = 2u_c(y)$                                                      | <u>+</u> 4.30 | <u>+</u> 5.2 |

|                | Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):                       | Measured      | Limit        |
|----------------|-----------------------------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt[M]{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 2.39 | <u>+</u> 2.6 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                                            | <u>+</u> 4.78 | <u>+</u> 5.2 |

|                | Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):    | Measured      | Limit               |
|----------------|-----------------------------------------------------------------------------------------|---------------|---------------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt[m]{\sum_{i=1}^{m} \sum_{i} u_i^2(y)}$ | <u>+</u> 1.87 | Under consideration |
| U              | Expanded uncertainty U:<br>$U = 2u_c(y)$                                                | <u>+</u> 3.75 | Under consideration |