

RAE Systems Inc RF TEST REPORT

Report Type: FCC Part 15.247 & ISED RSS-247 RF report

Model: RM900B-M1

REPORT NUMBER: 180900484SHA-001

ISSUE DATE: October 12, 2018

DOCUMENT CONTROL NUMBER: TTRF15.247-02_V1 © 2018 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 www.intertek.com

Report no.: 180900484SHA-001

Applicant:	RAE Systems Inc
	1349 Moffett Park Drive Sunnyvale, CA 94089, USA
Manufacturer:	RAE Systems Inc
	1349 Moffett Park Drive Sunnyvale, CA 94089, USA
Manufacturing site:	RAE Systems (Shanghai) Inc
	990 East Huiwang Road, Jiading District, Shanghai, China

FCC ID: SU3RM900B-M1 IC: 20969-RM900BM1

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2017): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 2 (February 2017): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 5 (April 2018): General Requirements for Compliance of Radio Apparatus

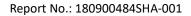
PREPARED BY:

Gnick Liu

Project Engineer Erick Liu **REVIEWED BY:**

Reviewer Daniel Zhao

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



Content

R	EVISIO	ION HISTORY	5
Μ	IEASU	UREMENT RESULT SUMMARY	6
1	e	GENERAL INFORMATION	7
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	7
	1.2		
	1.3	DESCRIPTION OF TEST FACILITY	8
2	т	TEST SPECIFICATIONS	9
	2.1	Standards or specification	9
	2.2		-
	2.3		
	2.4		
	2.5	Test environment condition:	
	2.6	INSTRUMENT LIST	
	2.7	MEASUREMENT UNCERTAINTY	
3	N	MINIMUM 6DB BANDWIDTH	
	3.1		13
	3.2		
	3.3		
	3.4		
4	-	MAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P	
•			
	4.1		
	4.2 4.3		
	4.3 4.4		
5	Р	POWER SPECTRUM DENSITY	
	5.1		
	5.2		
	5.3		
	5.4		
6	E	EMISSION OUTSIDE THE FREQUENCY BAND	
	6.1	Liмit	-
	6.2		-
	6.3		
	6.4	THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND	
7	R	RADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	20
	7.1	Liмit	20
	7.2	Measurement Procedure	
	7.3	TEST CONFIGURATION	22
	7.4	Test Results of Radiated Emissions	24
8	P	POWER LINE CONDUCTED EMISSION	27
	8.1	LIMIT	27

intertek

TOLAI Ų	Quality. Assureu.	
TEST	REPORT	
8.2	2 Test Configuration	
8.3	3 Measurement Procedure	
8.4	4 TEST RESULTS OF POWER LINE CONDUCTED EMISSION	29
9	OCCUPIED BANDWIDTH	
9.1	1 Liмit	
9.2	2 Measurement Procedure	
9.3	3 Test Configuration	
9.4	4 The results of Occupied Bandwidth	
10	ANTENNA REQUIREMENT	
APPE	NDIX A: TEST RESULTS	
RF	OUTPUT POWER	
	Test Result and Data	
Po	WER SPECTRAL DENSITY	
	Test Result and Data	
6D	B BandWidth	
	Test Result and Data	
999	% BandWidth	
	Test Result and Data	
TRA	ansmitter Spurious Emission	
	Test Result and Data	

Revision History

Report No.	Version	Description	Issued Date
180900484SHA-001	Rev. 01	Initial issue of report	October 12, 2018

Measurement result summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	RSS-247 Issue 2 Clause 5.2	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)(3)	RSS-247 Issue 2 Clause 5.4	Pass
Power spectrum density	15.247(e)	RSS-247 Issue 2 Clause 5.2	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 2 Clause 5.5	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	RSS-Gen Issue 5 Clause 8.9&8.10	Pass
Power line conducted emission	15.207(a)	RSS-Gen Issue 5 Clause 8.8	Pass
Occupied bandwidth	-	RSS-Gen Issue 5 Clause 6.6	Tested
Antenna requirement	15.203	-	Pass

Notes:

1: NA =Not Applicable

2: Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

3: Additions, Deviations and Exclusions from Standards: None.

Total Quality. Assured. TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	RAEMesh Radio Module	
Type/Model:	RM900B-M1	
	The EUT is a wireless module using the 902 ~ 928MHz frequency band and	
	only one model. It has two antennas, radiation tests were carried out on all the antennas and the worst case is antenna 2. We put the antenna 2 data	
Description of EUT:	in this report.	
Rating:	3.6 ~ 6.6V	
Category of EUT:	Class B	
EUT type:	🔀 Table top 🔲 Floor standing	
Software Version:	/	
Hardware Version:	/	
Sample received date:	Sep 03, 2018	
Date of test:	Sep 09, 2018-Sep 27, 2018	

1.2 Technical Specification

Frequency Range:	906MHz ~ 924MHz	
Support Standards:	IEEE 802.15.4	
Type of Modulation:	ВРЅК	
Channel Number:	10	
Channel Separation:	2MHz	
	Antenna 1: 2.5dBi, Monopole antenna	
Antenna Information:	Antenna 2: 3dBi, Pole antenna	

1.3 Description of Test Facility

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L0139
certified, or accredited by these organizations:	FCC Accredited Lab Designation Number: CN1175
	IC Registration Lab Registration code No.: 2042B-1
	VCCI Registration Lab Registration No.: R-4243, G-845, C-4723, T-2252
	NVLAP Accreditation Lab NVLAP LAB CODE: 200849-0
	A2LA Accreditation Lab Certificate Number: 3309.02

Total Quality. Assured.

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2017) ANSI C63.10 (2013) RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5 (April 2018) KDB 558074 (v05)

2.2 Mode of operation during the test

Three axes (X, Y, Z) were observed while the test receiver worked as "max hold" continuously and the highest reading among the whole test procedure was recorded. Compare with the test results that X axis is the worst case.

Frequency Band (MHz)		906MHz ~ 924MHz	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	906	6	916
2	908	7	918
3	910	8	920
4	912	9	922
5	914	10	924

The lowest, middle and highest channel were tested as representatives.

Data rate VS Power:

The test setting software is offered by the manufactory. The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases.

Test software and Power Setting parameter				
Test Software SSCOM V5.13.1				
Working Mode	906MHz ~ 924MHz			
Test Channel	906MHz 916MHz 924MHz		924MHz	

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

Radiated test mode: EUT transmitted signal with antenna;

Conducted test mode: EUT transmitted signal from RF port connected to SPA directly;

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	Laptop computer	HP	-
2	Adapter	PSAC10R-050	-

2.5 Test environment condition:

Test items	Temperature	Humidity	
Minimum 6dB Bandwidth			
Maximum conducted output power and e.i.r.p.			
Power spectrum density	26°C	51% RH	
Emission outside the frequency band			
Occupied bandwidth			
Radiated Emissions in restricted frequency bands	24°C	53% RH	
Power line conducted emission	26°C	52% RH	

intertek Total Quality. Assured.

TEST REPORT

2.6 Instrument list

<mark>Condu</mark>	icted Emission				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	Test Receiver	R&S	ESCS 30	EC 2107	2019-10-18
	A.M.N.	R&S	ESH2-Z5	EC 3119	2019-12-01
	Shielded room	Zhongyu	-	EC 2838	2019-01-08
Radiat	ed Emission				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	Test Receiver	R&S	ESIB 26	EC 3045	2019-10-18
	Bilog Antenna	TESEQ	CBL 6112D	EC 4206	2019-05-30
	Horn antenna	R&S	HF 906	EC 3049	2019-09-22
	Horn antenna	ETS	3117	EC 4792-1	2019-08-23
	Horn antenna	ΤΟΥΟ	HAP18-26W	EC 4792-3	2020-07-09
	Pre-amplifier	R&S	Pre-amp 18	EC5881	2019-06-19
	Semi-anechoic chamber	Albatross project	-	EC 3048	2019-09-08
<mark>RF tes</mark>	t				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2019-09-10
	Power sensor	Agilent	U2021XA	EC 5338-1	2019-03-03
	Vector Signal Generator	Agilent	N5182B	EC 5175	2019-03-06
	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2019-03-03
	Test Receiver	R&S	ESCI 7	EC 4501	2019-02-23
<mark>Additi</mark>	onal instrument				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3323	2019-06-14
>	Pressure meter	YM3	Shanghai Mengde	EC 3320	2019-06-28

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	\pm 0.74dB
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	± 2.89dB
Power line conducted emission	± 3.19dB

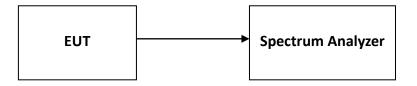
Report No.: 180900484SHA-001

Total Quality. Assured.

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit


For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

The minimum 6dB bandwidth is measured using the Spectrum Analyzer according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 8.2) for compliance requirements.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

TTRF15.247-02_V1 © 2018 Intertek

Report No.: 180900484SHA-001

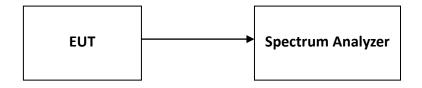
4 Maximum conducted output power and e.i.r.p.

Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).


4.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 9.1.1) for compliance requirements.

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq 3 × RBW.
- c) Set span \ge 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

Please refer to Appendix A

Intertek Total Quality. Assured. TEST REPORT

5 Power spectrum density

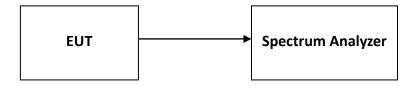
Test result: Pass

5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure


The power output was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 10.2) for compliance requirements.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

Report No.: 180900484SHA-001

6 Emission outside the frequency band

Test result: Pass

6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

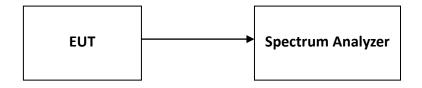
6.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 11.0) for compliance requirements.

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.


Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

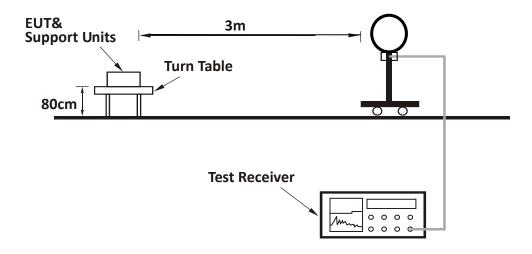
intertek Total Quality. Assured.

TEST REPORT

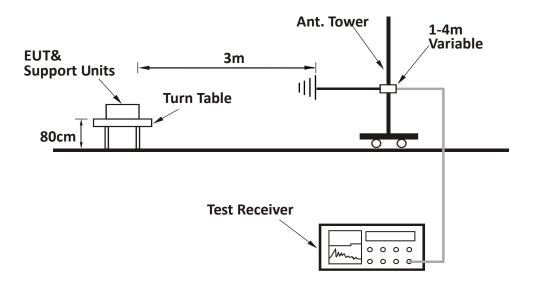
For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

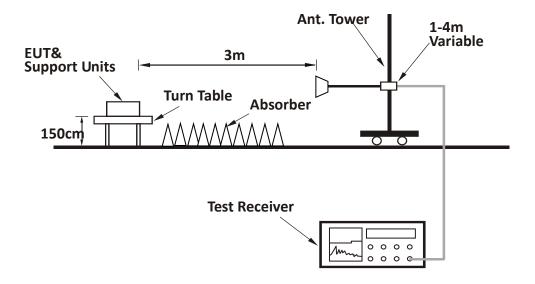

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\ge 1/T$ (Duty cycle < 98%) or 3 x RBW (Duty cycle \ge 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported

Report No.: 180900484SHA-001



7.3 Test Configuration

For Radiated emission below 30MHz:


For Radiated emission 30MHz to 1GHz:

Report No.: 180900484SHA-001

For Radiated emission above 1GHz:

7.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Test data below 1GHz

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	119.42	30.20	13.20	43.50	13.30	РК
	Н	142.75	28.40	12.20	43.50	15.10	РК
	Н	191.34	37.40	10.80	43.50	6.10	РК
	Н	251.60	36.50	14.20	46.00	9.50	РК
	Н	383.79	33.70	17.10	46.00	12.30	РК
	Н	906.00	103.10	23.50	Fundamental	/	РК
L	V	47.49	31.20	9.70	40.00	8.80	РК
	V	115.53	30.80	13.00	43.50	12.70	РК
	V	203.01	27.10	10.90	43.50	16.40	РК
	V	263.27	29.10	15.10	46.00	16.90	РК
	V	679.26	28.30	21.20	46.00	17.70	РК
	V	906.00	102.10	23.50	Fundamental	/	РК
	Н	168.02	32.10	10.80	43.50	11.40	РК
	Н	191.34	34.80	10.80	43.50	8.70	РК
	Н	288.54	35.50	14.60	46.00	10.50	РК
	Н	480.98	31.50	19.10	46.00	14.50	РК
м	Н	527.64	29.40	19.80	46.00	16.60	РК
	Н	916.00	103.30	23.60	Fundamental	/	РК
	V	47.49	32.20	9.70	40.00	7.80	РК
	V	96.09	30.80	11.10	43.50	12.70	РК
	V	168.02	35.40	10.80	43.50	8.10	РК

intertek Total Quality. Assured.

TEST REPORT

	V	195.23	31.80	10.90	43.50	11.70	РК
	V	267.15	30.20	14.90	46.00	15.80	РК
	V	916.00	102.60	23.60	Fundamental	/	РК
	Н	168.02	30.30	10.80	43.50	13.20	РК
	Н	191.34	33.90	10.80	43.50	9.60	РК
	Н	288.54	35.50	14.60	46.00	10.50	РК
	Н	383.79	31.40	17.10	46.00	14.60	РК
	Н	527.64	29.90	19.80	46.00	16.10	РК
н	Н	924.00	103.20	23.70	Fundamental	/	РК
	V	47.49	32.40	9.70	40.00	7.60	РК
	V	96.09	32.20	11.10	43.50	11.30	РК
	V	168.02	36.40	10.80	43.50	7.10	РК
	V	199.12	33.50	10.90	43.50	10.00	РК
	V	286.59	34.40	14.50	46.00	11.60	РК
	V	924.00	102.90	23.70	Fundamental	/	РК

Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	1697.39	55.10	-8.20	74.00	18.90	PK
	Н	1697.39	39.30	-8.20	54.00	14.70	AV
	Н	1813.63	52.30	-7.40	74.00	21.70	PK
	Н	2719.44	52.20	-4.30	74.00	21.80	PK
	н	3601.20	43.20	-0.90	74.00	30.80	РК
	Н	5434.87	50.90	4.10	74.00	23.10	РК
L	Н	17969.94	51.20	21.30	74.00	22.80	РК
	V	1693.39	48.40	-8.20	74.00	25.60	PK
	V	1813.63	50.00	-7.40	74.00	24.00	РК
	V	2719.44	54.60	-4.30	74.00	19.40	РК
	V	2719.44	40.90	-4.30	54.00	13.10	AV
	V	6096.19	47.70	6.70	74.00	26.30	PK
	V	14963.93	47.60	14.70	74.00	26.40	PK

intertek

Total Quality. Assured.

TEST REPORT

			0	1	r		
	V	17128.26	51.90	20.30	74.00	22.10	РК
-	Н	1709.42	53.90	-8.10	74.00	20.10	РК
	Н	1833.67	51.00	-7.30	74.00	23.00	РК
	Н	2751.50	51.40	-4.20	74.00	22.60	РК
	Н	6246.49	44.90	6.60	74.00	29.10	РК
	Н	14843.69	46.90	14.40	74.00	27.10	РК
	Н	17699.40	51.20	21.00	74.00	22.80	РК
Μ	V	1709.42	47.80	-8.10	74.00	26.20	РК
	V	1833.67	50.40	-7.30	74.00	23.60	РК
	V	2751.50	53.70	-4.20	74.00	20.30	РК
	V	5374.75	49.10	4.00	74.00	24.90	РК
	V	14783.57	47.20	14.20	74.00	26.80	РК
	V	17699.40	52.10	21.00	74.00	21.90	РК
	Н	1721.44	51.50	-8.00	74.00	22.50	РК
	Н	1849.70	45.40	-7.20	74.00	28.60	РК
	Н	2775.55	50.00	-4.20	74.00	24.00	РК
	Н	4743.49	48.00	3.00	74.00	26.00	РК
	Н	5434.87	50.90	4.10	74.00	23.10	РК
	Н	14873.75	47.20	14.50	74.00	26.80	РК
Н	V	1721.44	46.70	-8.00	74.00	27.30	РК
	V	1849.70	43.20	-7.20	74.00	30.80	РК
	V	2775.55	53.10	-4.20	74.00	20.90	РК
	V	4743.49	49.40	3.00	74.00	24.60	РК
	V	6096.19	47.70	6.70	74.00	26.30	РК
	V	12348.70	47.20	14.00	74.00	26.80	РК

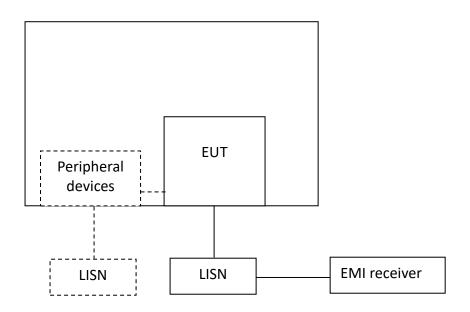
Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m; Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

Report No.: 180900484SHA-001


8 Power line conducted emission

Test result: Pass

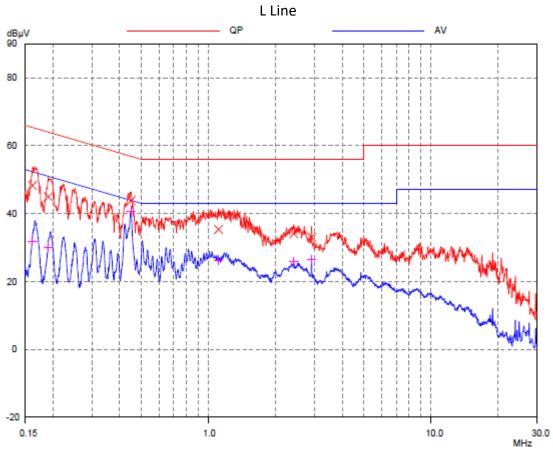
8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	QP	AV			
0.15-0.5	66 to 56*	56 to 46 *			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

8.2 Test Configuration

8.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

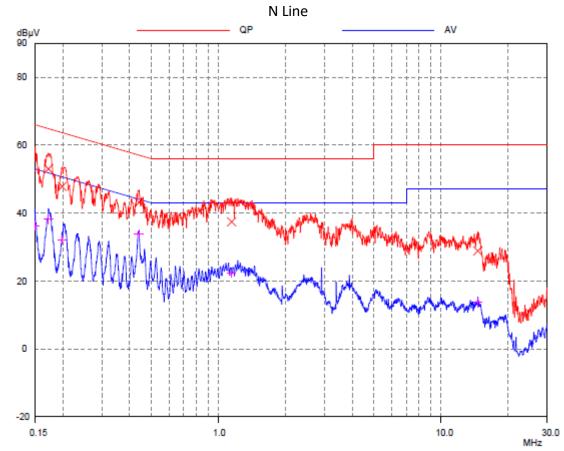

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

Total Quality. Assured. TEST REPORT

8.4 Test Results of Power line conducted emission

Test Curve:



Test Data:

Frequency	Quasi-peak			Average			
(MHz)	level dB(μV)	Limit dB(µV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)	
0.162	48.28	65.34	17.06	31.83	52.34	20.51	
0.191	44.96	63.98	19.02	30.16	50.98	20.82	
0.450	43.80	56.88	13.08	40.73	43.88	3.15	
1.113	35.31	56.00	20.69	26.30	43.00	16.70	
2.424	34.09	56.00	21.91	25.93	43.00	17.07	
2.912	33.03	56.00	22.97	26.41	43.00	16.59	

Total Quality. Assured. TEST REPORT

Test Curve:

Test Data:

Frequency		Quasi-peak			Average		
(MHz)	level dB(μV)	Limit dB(µV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)	
0.151	52.49	65.97	13.48	36.32	52.97	16.65	
0.172	52.99	64.84	11.85	38.17	51.84	13.67	
0.199	47.81	63.65	15.84	32.07	50.65	18.58	
0.441	43.16	57.05	13.89	33.86	44.05	10.19	
1.149	37.41	56.00	18.59	22.40	43.00	20.60	
14.669	28.85	60.00	31.15	13.69	47.00	33.31	

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

2. Corrected Reading = Original Receiver Reading + Correct Factor

3. Margin = Limit - Corrected Reading

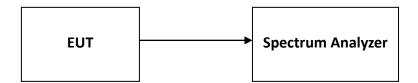
4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

9 Occupied Bandwidth

Test result: Tested

9.1 Limit

None


9.2 Measurement Procedure

The occupied bandwidth per RSS-Gen was measured using the Spectrum Analyzer.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

9.3 Test Configuration

9.4 The results of Occupied Bandwidth

Please refer to Appendix A

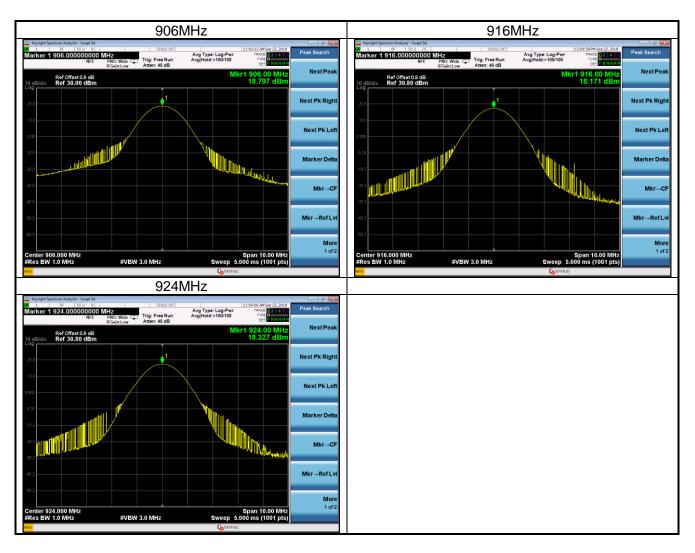
10 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

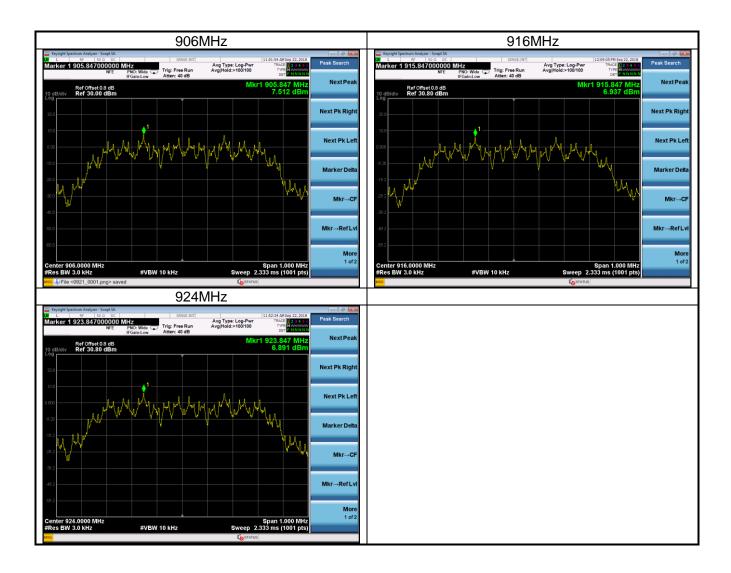
EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.


Appendix A: Test results

RF Output Power

Test Result and Data

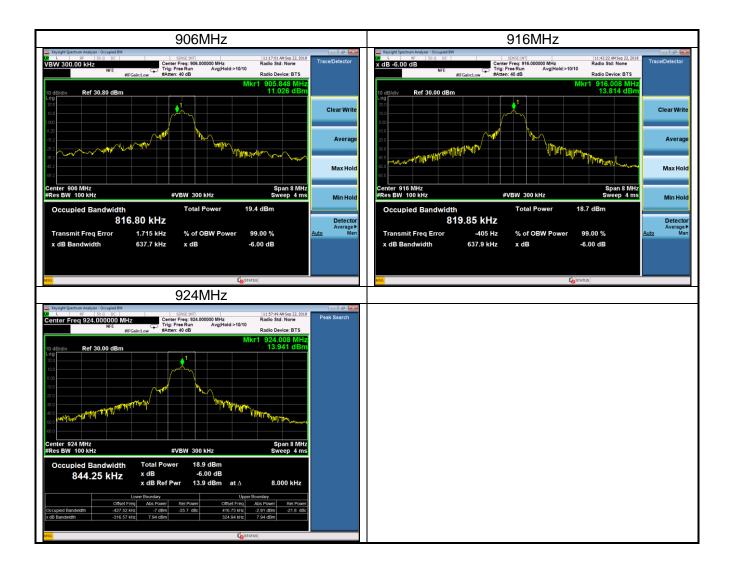
Maximum Output Power					
Test Frequency (MHz)	Power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	Result	
906	18.797	3	21.797	Pass	
916	18.171	3	21.171	Pass	
924	18.327	3	21.327	Pass	


The Max EIRP is 21.797dBm=1.5125W<4W, complies with IC requirements.

Total Quality. Assured.

Power Spectral Density

Peak Power Spectral Density				
Test Frequency (MHz)	PSD (dBm/3kHz)	Result		
906	7.512	Pass		
916	6.937	Pass		
924	6.891	Pass		



intertek Total Quality. Assured.

TEST REPORT

6dB BandWidth

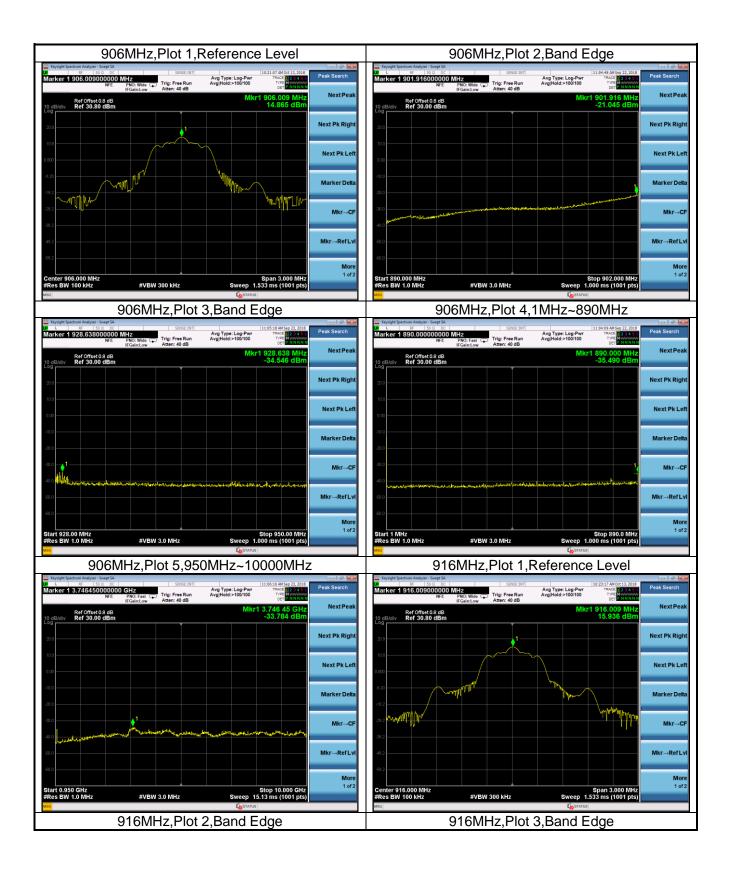
Occupied 6dB Bandwidth				
Test Frequency (MHz)	Occupied Bandwidth (kHz)	Min Limit (kHz)	Result	
906	637.7	500	Pass	
916	637.9	500	Pass	
924	611.2	500	Pass	

Intertek Total Quality. Assured.

TEST REPORT

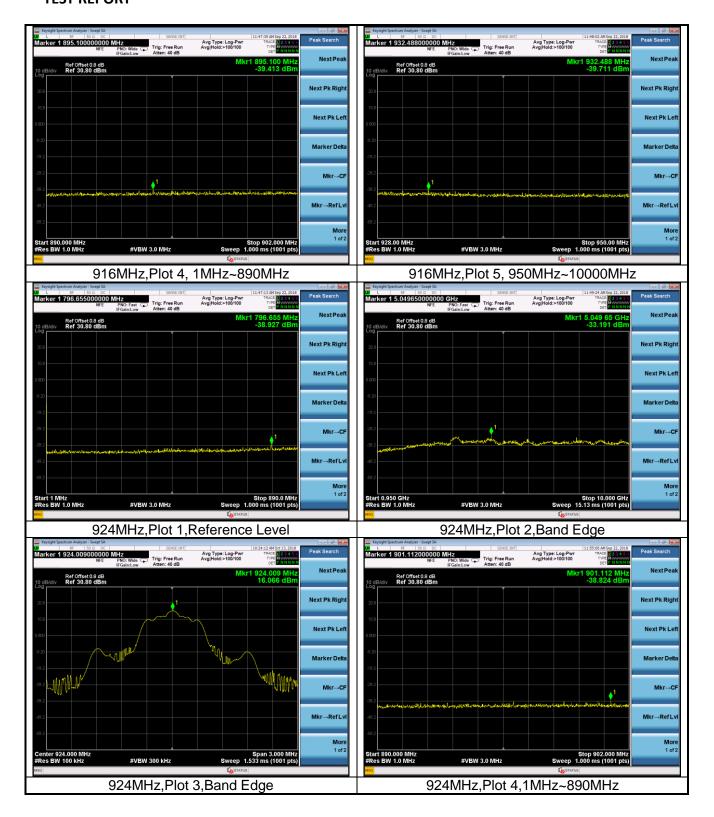
99% BandWidth

99% Occupied Bandwidth			
Test Frequency (MHz)	99% Occupied Bandwidth (kHz)	Result	
906	737.35	Pass	
916	739.31	Pass	
924	746.32	Pass	


intertek Total Quality. Assured.

TEST REPORT

Transmitter Spurious Emission


Transmitter Spurious Emission				
Test Frequency (MHz)	Test Range	Power (dBm)	Result	
906	Reference Level	14.865	Pass	
906	Band Edge	-21.045	Pass	
906	1MHz~890MHz	-25.490	Pass	
906	950MHz~10000MHz	-33.784	Pass	
916	Reference Level	15.936	Pass	
916	Band Edge	-39.413	Pass	
916	1MHz~890MHz	-38.927	Pass	
916	950MHz~10000MHz	-33.191	Pass	
924	Reference Level	16.066	Pass	
924	Band Edge	-34.209	Pass	
924	1MHz~890MHz -39.832 Pass		Pass	
924	950MHz~10000MHz	-34.219	Pass	

Intertek Total Quality. Assured. TEST REPORT

intertek Total Quality. Assured.

TEST REPORT

intertek Total Quality. Assured.

TEST REPORT

Keysight Spectrum Analyzer - Swept SA	A				Keysight Spectrum Analyzer - Swept SA
L RF 50 Ω DC larker 1 934.90800000 NFE	C SENSE:INT DO MHZ PNO: Wide IFGain:Low Atten: 40 dB	Avg Type: Log-Pwr Avg Hold:>100/100	11:55:38 AM Sep 22, 2018 TRACE 2 3 4 5 6 TYPE MWWWWWW DET P NNNNN	Peak Search	Marker 1 853,5510000 MHz StopEut[1] Trig: Free Run Avg[Hold>100/100 Avg Type: Log-Pur Avg[Hold>100/100 Trig: Free Run Trig: Free Run Avg[Hold>100/100 Trig: Free Run Run Avg Type: Log-Pur Run Trig: Free Run Avg Type: Log-Pur Run Trig: F
Ref Offset 0.8 dB 0 dB/div Ref 30.80 dBn		Mkr1	934.908 MHz -34.209 dBm	Next Peak	Ref Offset 0.8 dB Nkr1 853.551 MHz Next P
0g			N	Next Pk Right	20.8 Next PK R
800				Next Pk Left	0.00 Next Pk
9.2				Marker Delta	9 20 Marker D
22	1			Mkr→CF	592 592 101 In the second state of the secon
2	an a	4,2*2013;e,14219;e;2*4,644;e49;s*13;e=0;3;=4		Mkr→RefLvl	existence and a set of a
art 928.00 MHz les BW 1.0 MHz	#VBW 3.0 MHz	Sween 1 Of	Stop 950.00 MHz 00 ms (1001 pts)	More 1 of 2	Start 1 MHz Stop 890.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)
		K STATUS			
	MHz,Plot 5,95	0MHz~10	000MHz		
Keysight Spectrum Analyzer - Swept SA L RF 50 Ω DC arker 1 3.8188500000 NFE	C SENSE:INT	Avg Type: Log-Pwr Avg Hold:>100/100	11:56:25 AM Sep 22, 2018 TRACE 2 3 4 5 6 TYPE MWWWWW DET P NNNNN	Peak Search	
Ref Offset 0.8 dB dB/div Ref 30.80 dBn	3 m	Mkr1	3.818 85 GHz -34.219 dBm	NextPeak	
8			N	Next Pk Right	
8				Next Pk Left	
2				Marker Delta	
2 2 Descharterenterenterenterenterenterenterenter	ward and the stand of the stand	ي. مەرومەرومەر مەرومەر	-	Mkr→CF	
2				Mkr→RefLvl	
				More 1 of 2	
art 0.950 GHz			Stop 10.000 GHz		
Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 15.	13 ms (1001 pts)		