FCC 15.247

EMI MEASUREMENT AND TEST REPORT

For

RAE Systems, Inc

1339 Moffett Park Dr. Sunnyvale, CA 94089

FCC ID: SU3RM2420

TILL D. A. C.		T	
This Report Concerns:		Equipment Type:	
🛮 Original Report		802.15.4 Radio Communication	
		Module	
Test Engineer:	Ming Jin	Senjama Jung	
Report No.:	R0501063		
Report 140	<u>K0301003</u>		
Report Date:	2005-02-10		
-			
D	D 11D		
Reviewed By:	Daniel Deng	37.191	
Prepared By:			
	230 Commercial Street		
	Sunnyvale, CA 94085		
	Tel: (408) 732-9162		
	Fax: (408) 732 91	64	

Note: The test report is specially limited to the above company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

RAE Systems, Inc TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	6
BLOCK DIAGRAM	
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	6
Interface Ports and Cabling	
CONFIGURATION OF TEST SYSTEM	
SUMMARY OF TEST RESULTS FOR FCC PART 15	
§1.1307(B)(1) & §2.1093 - RF EXPOSURE	9
ANTENNA REQUIREMENT	
§15.207(A) - CONDUCTED EMISSION	11
MEASUREMENT UNCERTAINTY	11
TEST SETUP	11
RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
SUMMARY OF TEST RESULTS	
CONDUCTED EMISSIONS TEST DATA	
PLOT OF CONDUCTED EMISSIONS TEST DATA	12
\$15.205 & \$15.209 - RADIATED EMISSION	15
MEASUREMENT UNCERTAINTY	
TEST SETUP	
SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
Environmental Conditions	16
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
SUMMARY OF TEST RESULTS	
§2.1051 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	19
STANDARD APPLICABLE	19
EQUIPMENT LISTS	
MEASUREMENT RESULT	19
§15.247(A)(2) – 6 DB BANDWIDTH	23
STANDARD APPLICABLE	
MEASUREMENT PROCEDURE	
EQUIPMENT LISTS	
MEASUREMENT RESULT	
§15.247(B)(3) - PEAK OUTPUT POWER MEASUREMENT	
STANDARD APPLICABLE	
MEASUREMENT PROCEDURE	
EQUIPMENT LISTS	
§15.247(C) - 100 KHZ BANDWIDTH OF BAND EDGES	27

RAE Systems, Inc	FCC ID: SU3RM2420

STANDARD APPLICABLE	27
MEASUREMENT PROCEDURE	27
EQUIPMENT LISTS	
MEASURE RESULTS	
§15.247(D) & §15.407(A)(2) - POWER SPECTRAL DENSITY	30
STANDARD APPLICABLE	30
MEASUREMENT PROCEDURE	30
EQUIPMENT LISTS	30
MEASUREMENT RESULTS	

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *RAE Systems, Inc's* product, FCC ID: *SU3RM2420, Model: RM2420* or the "EUT" as referred to this report is 802.15.4 Radio Communication Module which measures approximately 255mmL x 175mmW x 153mmH. The EUT operates at the frequency range of 2405–2480MHz, with maximum output power of 1mW.

* The test data gathered are from typical production sample, serial number: 000D6F0000002E2A, provided by the manufacturer.

Objective

This type approval report is prepared on behalf of *RAE Systems, Inc* in accordance with Part 2, Subpart J, Part 15, Subparts A, B, C of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC 15.247 rules for the DTS:

- Antenna Requirement
- AC Line Conduction
- 6 dB Bandwidth
- RF Output Power
- 100 kHz Bandwidth of Frequency Band Edge
- Peak Power Spectral Density
- Spurious Emission
- Spurious Emission at Antenna Port
- RF Exposure

Related Submittal(s)/Grant(s)

No Related Submittals

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003.

Test Facility

The Open Area Test site used by BACL Corp. to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to ANSI C63.4-2003.

The final qualification test was performed with the EUT operating at normal mode.

Block Diagram

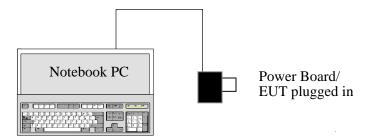
Please refer to Exhibit D.

Equipment Modifications

No modifications were made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Compaq	Laptop PC	Presario 2100	N/A	N/A
RAE	Power board	N/A	N/A	N/A


Power Supply Information

Manufacturer	Description	Model	Serial Number	FCC ID
RAE	Power board	N/A	N/A	DOC

Interface Ports and Cabling

Cable Description	Length (M)	From	То
		J1 Connecter /EUT	J9 Connecter / Power Board
Shielded Cable	0.3	RSS232 Port /Power board	RSS232 Port / Laptop PC

Configuration of Test System

SUMMARY OF TEST RESULTS FOR FCC PART 15

FCC RULES	DESCRIPTION OF TEST	RESULT
§2.1093, §15.247(b)(4)	RF Exposure Requirement	Compliant
§15.203	Antenna Requirement	Compliant
§ 15.207(a)	AC Line Conduction	Compliant
§ 15.205 & § 15.209	Radiated Emission	Compliant
§15.247(a)(2)	6 dB Bandwidth	Compliant
§15.247(b)(3)	RF Output Power	Compliant
§ 15.247(c)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(d)	Peak Power Spectral Density	Compliant
§2.1051	Spurious Emission at Antenna Port	Compliant

§1.1307(b)(1) & §2.1093 - RF EXPOSURE

According to §15.247(b)(4) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Runge (WITIZ)	<u> </u>	eneral Population/Uncontrolled Expos		(minute)
	Limits for Gen	crai i opulation/crico	ntroned Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P =power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: $\underline{0 \text{ (dBm)}}$ Maximum peak output power at antenna input terminal: $\underline{1 \text{ (mW)}}$

Predication frequency: 2400 (MHz)
Antenna Gain (typical): 2 (dBi)
antenna gain: 1.58 (numeric)

Prediction distance: 2.5 (cm)

Power density at predication frequency at 2.5 cm: 0.02 (mW/cm²)

MPE limit for uncontrolled exposure at prediction frequency: 1.0 (mW/cm²)

Test Result

The EUT is a portable device. The Power density at predication frequency at 2.5 cm is 0.02 mW/cm² within the limit of 1.0 mW/cm².

^{* =} Plane-wave equivalent power density

ANTENNA REQUIREMENT

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (1), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The gain of antenna used for transmitting is 2 dBi. It is an external antenna.

§15.207(a) - CONDUCTED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

Test Setup

The measurement was performed at shield room, using the same setup per ANSI C63.4 - 2003 measurement procedure. The specification used was FCC Class B limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The Notebook PC was connected with LISN-1.

Receiver Setup

The receiver was set to investigate the spectrum from 150 kHz to 30MHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	
Rohde &	LICNI	EGII2 75	071004/020	2004 09 16	
Schwarz	LISN	ESH2-Z5	871884/039	2004-08-16	
Rohde &	EMI Test Dessions	EgGg20	100176	2004.00.15	
Schwarz	EMI Test Receiver	ESCS30	100176	2004-09-15	
Fluke	Calibrated Voltmeter	189	18485-38	2004-07-18	

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

During the conducted emission test, the power cord of the host system was connected to the mains outlet of the LISN-1.

Maximizing procedure were performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Qusi-Peak readings are distinguished with an "QP". Average readings are distinguished with an "Ave".

Environmental Conditions

Temperature:	13° C
Relative Humidity:	82%
ATM Pressure:	1018 mbar

The testing was performed by Ming Jin on 2005-01-10.

Summary of Test Results

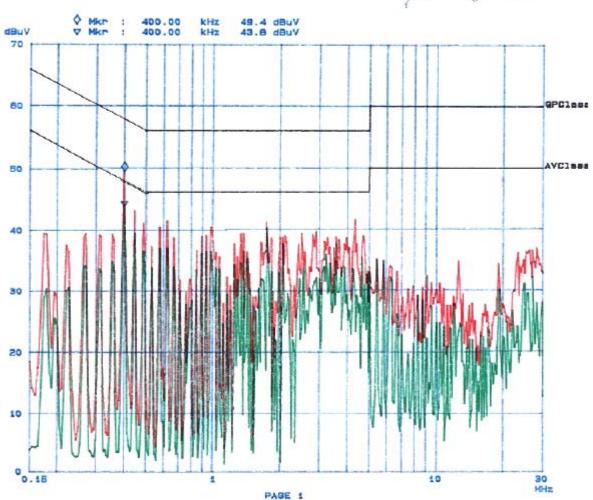
According to the data in section 8.6, the EUT complied with the FCC 15.247, and had the worst margin of:

-5.8 dB at 1.740 MHz in the Line conductor

Conducted Emissions Test Data

	Line Con	FCC C	LASS B		
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dΒμV	Qp/Ave/Peak	Line/Neutral	dΒμV	dB
1.740	40.2	AVE	Line	46	-5.8
0.400	43.8	AVE	Line	53	-9.2
0.400	49.4	QP	Line	63	-13.6
1.740	41.1	QP	Line	56	-14.9
26.500	33.9	AVE	Line	50	-16.1
0.400	44.1	QP	Neutral	63	-18.9
0.400	33.3	AVE	Neutral	53	-19.7
2.030	32.9	QP	Neutral	56	-23.1
26.400	35.1	QP	Line	60	-24.9
26.400	34.2	QP	Neutral	60	-25.8
2.030	20.0	AVE	Neutral	46	-26.0
26.500	22.0	AVE	Neutral	50	-28.0

Plot of Conducted Emissions Test Data

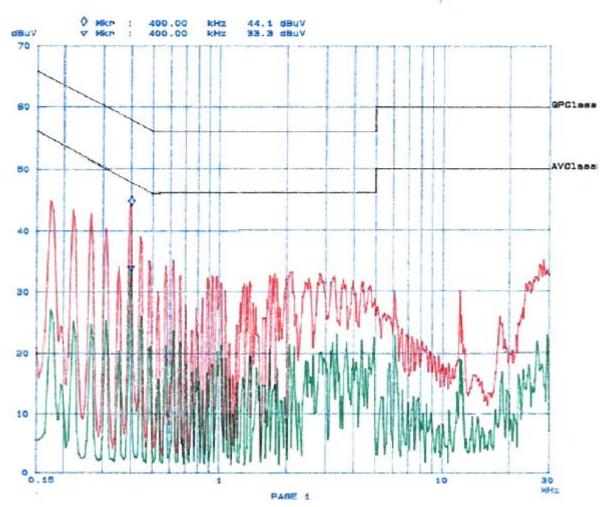

Plot(s) of Conducted Emissions Test Data is presented in the following page as reference.

BayArea Compliance Laboratory Corp 10. Jan 08 15: 01 Class B

RM2420 RAE EUT: Manuf: Op Gond: Operator: Comment: Normal Ming

Scan Settin	nge (3 Range	9)					
	Frequencies		1	Receiv	er Sett	inge	
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Prosing
150k	1.M	Bik	94	QP+AV	2000	15dBLN	OFF
134	5M	10k	9k	QP+AV	100	15dBLN	OFF
5M	30M	100k	9K	QP+AV	ims	15dBLN	OFF

m Jus /6 - 20 t


BayArea Compliance Laboratory Corp Class B

10. Jan 08 14: 34

EUT: RM2420 Manuf: RAE Op Cond: Normal Openator: Ming Comment: N

Scan Settin	ngs (3 Ranges	al .					
1	Frequencies			Receiv	er Sett!	inga	
Start	Stop	Step	IF BW	Detector	M-Time	Atton	Preamp
150k	1M	£5k;	sk	QP+AV	20ma	15dBLN	OFF
1 M	EM	10k	Sik	QP+AV	1me	15dBLN	OFF
5M	MOE	100k	9k	QP+AV	1ma	15dBLN	OFF

m/ -- - 5

§15.205 & §15.209 - RADIATED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

Test Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The EUT was connected to support board, which powered by the AC adapter. And the AC adapter was connected with 120Vac/60Hz power source.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 25GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	10kHz	10kHz
30-1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

For average measurement: RBW = 1 MHz, VBW = 10Hz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
НР	Amplifier, Pre, microwave	8449B	3147A00400	2004-03-14
HP	Amplifier, Pre	8447E	1937A01057	2004-08-04
HP	Analyzer, Spectrum	8565EC	3946A00131	2004-06-30
ETS	Antenna, Biconical	3110B	9603-2315	2004-01-11
A.R.A.	Antenna, Horn, DRG	DRG-118/A	1132	2004-09-30
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	2455-261	2004-08-01
ETS	Antenna, logperiodic	3148	0004-1155	2004-10-11

^{*} **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Environmental Conditions

Temperature:	13° C
Relative Humidity:	82%
ATM Pressure:	1018 mbar

The testing was performed by Ming Jin on 2005-01-07.

Test Procedure

For the radiated emissions test, both the laptop and all peripheral power cords were connected to the AC floor outlet since the power supply used in the laptop did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**Op**" in the data table.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Class B Limit

Summary of Test Results

According to the data in section 10.7, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section 15.205</u>, 15.207, and 15.247, and had the worst margin of:

- -18.5 dB at 4810.0000 MHz in the Vertical polarization, Low Channel.
- -18.3 dB at 4880.0000 MHz in the Vertical polarization, Mid Channel.
- -18.7 dB at 4960.0000 MHz in the Vertical polarization, High Channel.
- -5.0 dB at 492.69 MHz in the Horizontal polarization, Unintentional Emission.

	Indicated		Antenna	An	tenna	Сс	rrection Fa	ictor		FCC 15 Subpa	art C
Freqency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Comments
MHz	$\text{dB}\mu\text{V/m}$	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB	
	Low Channel										•
2405.00	94.2	90	1.5	V	28.1	2.0	35.5	88.8			Fund/Peak
2405.00	93.6	90	1.6	h	28.1	2.0	35.5	88.2			Fund/Peak
2405.00	37.4	90	1.5	V	28.1	2.0	35.5	32.0			Fund/Ave.
2405.00	36.8	90	1.6	h	28.1	2.0	35.5	31.4			Fund/Ave.
4810.00	54.5	30	1.5	V	32.5	3.1	34.6	55.5	74	-18.5	Peak
7215.00	31.5	60	1.2	V	34.1	3.4	34.5	34.5	54	-19.5	Ave.
4810.00	32.4	30	1.5	V	32.5	3.1	34.6	33.4	54	-20.6	Ave.
7215.00	30.2	110	1.5	h	34.1	3.4	34.5	33.2	54	-20.8	Ave.
4810.00	31.8	120	1.8	h	32.5	3.1	34.6	32.8	54	-21.2	Ave.
2390.00	57.3	90	1.5	V	28.1	2.0	35.5	51.9	74	-22.1	Peak
2390.00	36.7	90	1.5	V	28.1	2.0	35.5	31.3	54	-22.7	Ave.
7215.00	47.8	60	1.2	V	34.1	3.4	34.5	50.8	74	-23.2	Peak
2390.00	55.1	90	1.6	h	28.1	2.0	35.5	49.7	74	-24.3	Peak
4810.00	48.3	120	1.8	h	32.5	3.1	34.6	49.3	74	-24.7	Peak
2390.00	34.3	90	1.6	h	28.1	2.0	35.5	28.9	54	-25.1	Ave.
7215.00	42.1	110	1.5	h	34.1	3.4	34.5	45.1	74	-28.9	Peak
					Middl	e Channe	1				
2440.00	94.5	60	1.6	V	28.1	2.0	35.5	89.1			Fund/Peak
2440.00	93.8	0	1.5	h	28.1	2.0	35.5	88.4			Fund/Peak
2440.00	37.7	60	1.6	V	28.1	2.0	35.5	32.3			Fund/Ave.
2440.00	36.9	0	1.5	h	28.1	2.0	35.5	31.5			Fund/Ave.
4880.00	54.7	45	1.2	V	32.5	3.1	34.6	55.7	74	-18.3	Peak
7320.00	31.7	90	1.6	V	34.1	3.4	34.5	34.7	54	-19.3	Ave.
4880.00	32.6	45	1.2	V	32.5	3.1	34.6	33.6	54	-20.4	Ave.
7320.00	30.5	310	1.8	h	34.1	3.4	34.5	33.5	54	-20.5	Ave.
4880.00	31.9	120	1.5	h	32.5	3.1	34.6	32.9	54	-21.1	Ave.
7320.00	48.2	90	1.6	V	34.1	3.4	34.5	51.2	74	-22.8	Peak
4880.00	48.5	120	1.5	h	32.5	3.1	34.6	49.5	74	-24.5	Peak
7320.00	42.3	310	1.8	h	34.1	3.4	34.5	45.3	74	-28.7	Peak

					High	Channel					
2480.00	93.8	90	1.6	V	28.1	2.0	35.5	88.4			Fund/Peak
2480.00	93.1	110	1.5	h	28.1	2.0	35.5	87.7			Fund/Peak
2480.00	36.9	90	1.6	v	28.1	2.0	35.5	31.5			Fund/Ave.
2480.00	36.2	110	1.5	h	28.1	2.0	35.5	30.8			Fund/Ave.
4960.00	54.3	180	1.8	V	32.5	3.1	34.6	55.3	74	-18.7	Peak
7440.00	31.3	0	1.6	V	34.1	3.4	34.5	34.3	54	-19.7	Ave.
4960.00	32.2	180	1.8	V	32.5	3.1	34.6	33.2	54	-20.8	Ave.
7440.00	30.1	310	1.2	h	34.1	3.4	34.5	33.1	54	-20.9	Ave.
4960.00	31.6	290	1.5	h	32.5	3.1	34.6	32.6	54	-21.4	Ave.
2483.50	56.8	90	1.6	v	28.1	2.0	35.5	51.4	74	-22.6	Peak
2483.50	36.4	90	1.6	v	28.1	2.0	35.5	31.0	54	-23.0	Ave.
7440.00	47.5	0	1.6	v	34.1	3.4	34.5	50.5	74	-23.5	Peak
2483.50	54.7	110	1.5	h	28.1	2.0	35.5	49.3	74	-24.7	Peak
4960.00	48.1	290	1.5	h	32.5	3.1	34.6	49.1	74	-24.9	Peak
2483.50	34.1	110	1.5	h	28.1	2.0	35.5	28.7	54	-25.3	Ave.
7440.00	41.9	310	1.2	h	34.1	3.4	34.5	44.9	74	-29.1	Peak
					Unintentio	onal Emis	ssion				
492.69	48.1	120	1.2	h	17.6	3.1	27.8	41.0	46	-5.0	
536.34	47.9	310	1.5	h	17.9	3.0	28.0	40.8	46	-5.2	
169.68	50.8	210	1.5	V	12.9	1.9	27.5	38.1	43.5	-5.4	
670.21	46.3	60	1.2	V	18.1	3.3	27.7	40.0	46	-6.0	
218.18	52.4	90	1.5	V	11.8	2.2	27.2	39.2	46	-6.8	
90.20	48.9	290	1.5	h	10.1	1.3	28.1	32.2	40	-7.8	
303.10	47.5	0	1.5	V	14.4	2.3	26.9	37.3	46	-8.7	
116.33	49.3	15	1.5	V	11.5	1.6	27.9	34.5	43.5	-9.0	
76.56	47.7	60	1.6	V	9.5	1.2	28.1	30.3	40	-9.7	

Note:

Note:

1) FUND: Fundamental

2) AVG: Average3) The level is too low to be tested for frequencies above fourth harmonic

§2.1051 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Standard Applicable

Requirements: CFR 47, § 2.1051.

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

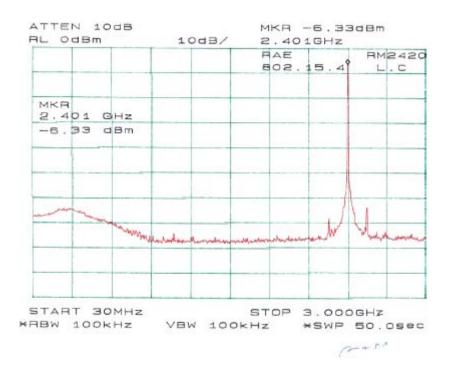
Measurement Procedure

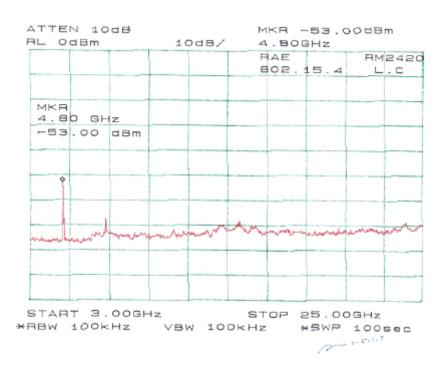
The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

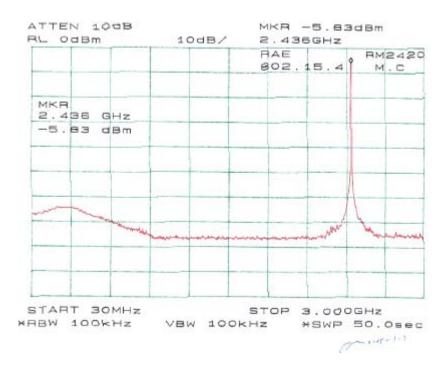
Equipment Lists

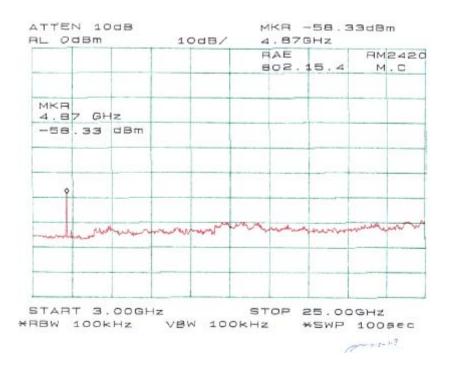
Manufacturer	Description	Model	Serial Number	Cal. Date	
HP	Spectrum Analyzer	HP8564E	3943A01781	2004-10-04	
HP	Plotter	HP7470A	2541A49659	Not Required	

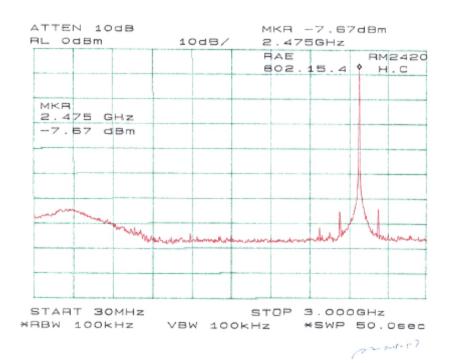
^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

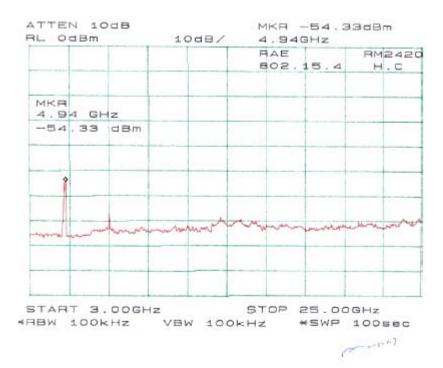

Measurement Result


Environmental Conditions


Temperature:	18° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar


The testing was performed by Ming Jin on 2005-01-07.


Please refer to following pages for plots of spurious emission.



\$15.247(a)(2) - 6 dB BANDWIDTH

Standard Applicable

According to §15.247(a)(2), for direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

Measurement Procedure

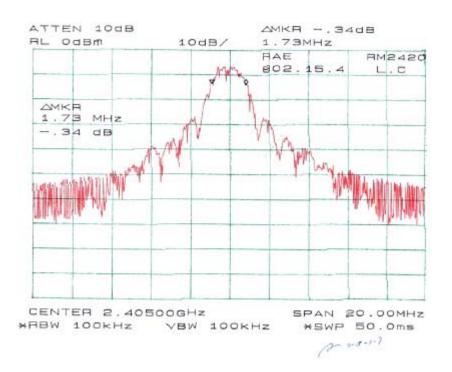
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth. (6 dB bandwidth for DTS)
- 4. Repeat above procedures until all frequencies measured were complete.

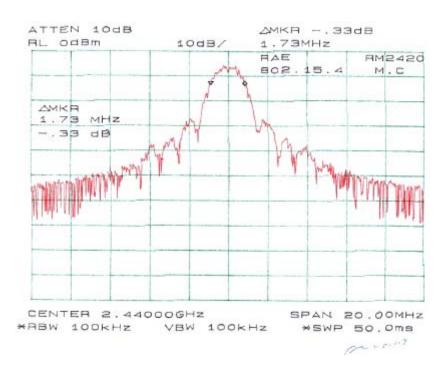
Equipment Lists

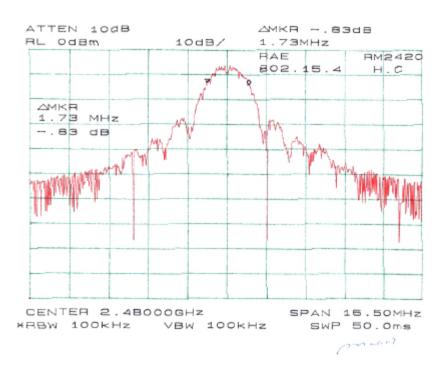
Manufacturer	Model No.	Description	Calibration Date
HP	8565EC	Spectrum Analyzer	2004-08-06

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Measurement Result


Environmental Conditions


Temperature:	18° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar


The testing was performed by Ming Jin on 2005-01-07.

Test Result

Channel	Frequency (MHz)	Measured	Standard	Result
		(MHz)	(kHz)	
Low	2405	1.73 MHz	≥ 500	Compliant
Mid	2440	1.73 MHz	≥ 500	Compliant
High	2480	1.73 MHz	≥ 500	Compliant

§15.247(b)(3) - PEAK OUTPUT POWER MEASUREMENT

Standard Applicable

According to §15.247(b) (3), for systems using digital modulation in 2400-2483.5 MHz: 1 Watt

Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a Peak Power Meter.

Equipment Lists

Manufacturer	Model No.	Description	Calibration Date
HP	432A	Peak Power Meter	2004-09-26

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Measurement Result

Environmental Conditions

Temperature:	18° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2005-01-07.

802.15.4

Channel	Frequency MHz	Peak RF Power	Peak RF Power mW	Limit
Low	2405	-0.03	0.99	1W (30dBm)
Mid	2440	0	1	1W (30dBm)
High	2480	-0.07	0.98	1W (30dBm)

§15.247(c) - 100 KHZ BANDWIDTH OF BAND EDGES

Standard Applicable

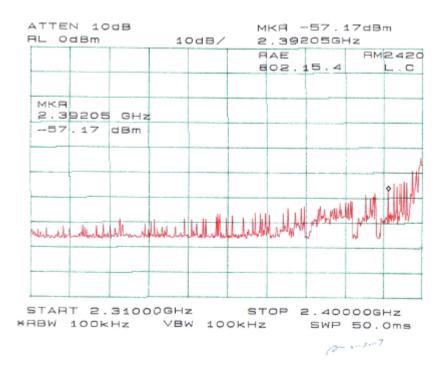
According to \$15.247(c), in *any* 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) see \$15.205(c)).

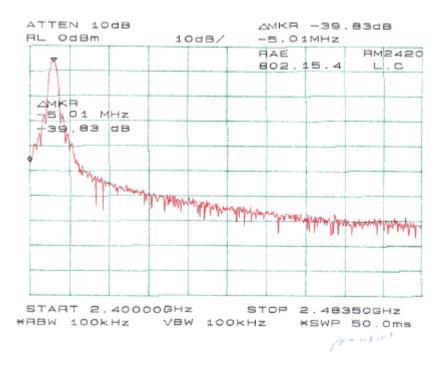
Measurement Procedure

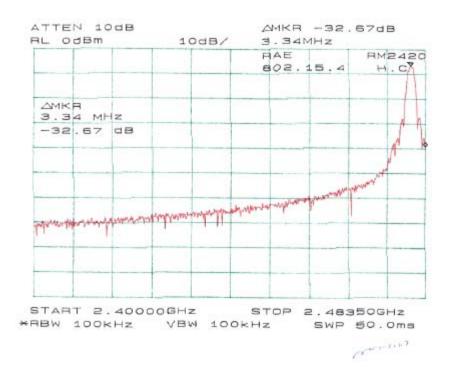
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

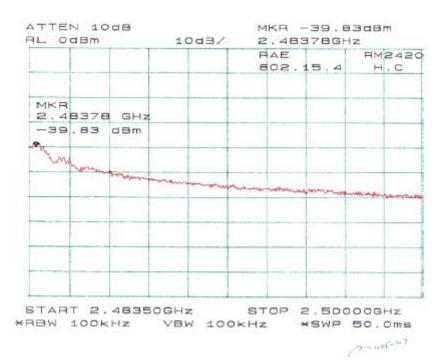
Equipment Lists

Manufacturer	Model No.	Description	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04


^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.


Measure Results


Environmental Conditions


Temperature:	18° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2005-01-07.

§15.247(d) & §15.407(a)(2) - POWER SPECTRAL DENSITY

Standard Applicable

According to §15.247 (d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Measurement Procedure

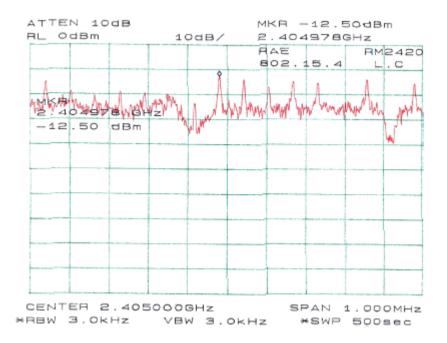
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 1MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value. (DTS)
- 4. Repeat above procedures until all frequencies measured were complete.

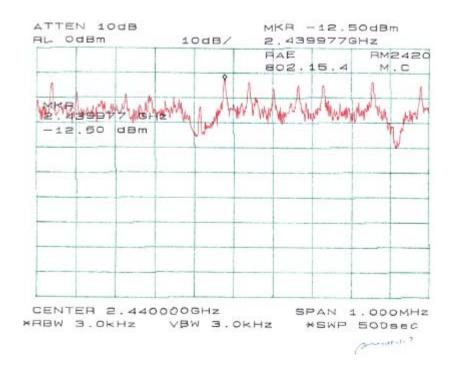
Equipment Lists

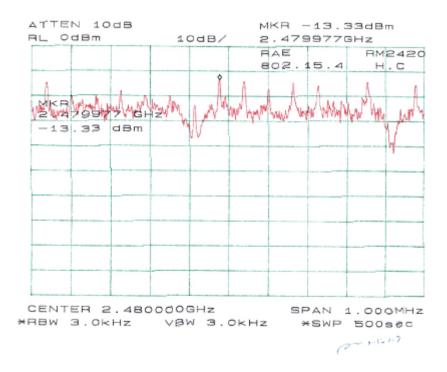
Manufacturer	Model No.	Description	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Measurement Results


Environmental Conditions


Temperature:	18° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar


The testing was performed by Ming Jing on 2005-01-07.

Test Result

Channel	Frequency	Peak Power Spectral	Standard (dBm)	Result
	(MHz)	Density (dBm)		
Low	2405	-12.50	≤ 8	Compliant
Mid	2440	-12.50	≤ 8	Compliant
High	2480	-13.33	≤ 8	Compliant

