# RF EXPOSURE REPORT 

REPORT NO.: SA931216H05<br>MODEL NO.: NS-5GT-WIRELESS

## ACCORDING: FCC Guidelines for Human Exposure IEEE C95.1

APPLICANT: Juniper Networks
ADDRESS: 1194 North Mathilda Avenue, Sunnyvale, California 94089

ISSUED BY: Advance Data Technology Corporation
LAB LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan, R.O.C.

## FCC ID: SU25GTW

## RF Exposure Measurement

## 1. Introduction

In this document, we try to prove the safety of radiation harmfulness to the human body for our product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The Gain of the antenna used in this product is measured in a Fully Anechoic Chamber (FAC) calibrated for antenna measurement in ADT, and also the maximum total power input to the antenna is measured. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.
Although the Friis transmission formula is a far field assumption, the calculated result of that is an over-prediction for near field power density. We will take that as the worst case to specify the safety range.

## 2. RF Exposure Limit

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

## LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency <br> Range <br> $(\mathrm{MHz})$ | Electric Field <br> Strength (V/m) | Magnetic Field <br> Strength (A/m) | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Average Time <br> (minutes) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (A)Limits For Occupational / Control Exposures |  |  |  |  |  |
| $300-1500$ | $\ldots$ | $\ldots$ | F/300 | 6 |  |
| $1500-100,000$ | $\ldots$ | $\ldots$ | 5 | 6 |  |
| (B)Limits For General Population / Uncontrolled Exposure |  |  |  |  |  |
| $300-1500$ | $\ldots$ | $\ldots$ | F/1500 | 6 |  |
| $1500-100,000$ | $\ldots$ | $\ldots$ | 1.0 | 30 |  |

[^0]
## FCC ID: SU25GTW

## 3. Friis Formula

Friis transmission formula : $\mathrm{Pd}=\left(\right.$ Pout $\left.^{*} G\right) /\left(4^{*} \mathrm{pi}^{*} \mathrm{r}^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
G = gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

Pd is the limit of MPE, $1 \mathrm{~mW} / \mathrm{cm}^{2}$. If we know the maximum Gain of the antenna and the total power input to the antenna, through the calculation, we will know the MPE value at distance 20 cm .

Ref. : David K. Cheng, Field and Wave Electromagnetics, Second Edition, Page 640, Eq. (11-133).

## 4.EUT Operating condition

The software provided by Manufacturer enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

## 5. Classification

This device is not fixed inside the host equipment, it is connected with host through wire. So it is easy to be re-located in the place where at least 20 cm far away from the body of the user. Warning statement to the user for keeping at least 20 cm or more separation distance with the antenna should be included in users manual. So, this device is classified as Mobile Device.

## FCC ID: SU25GTW

## 6. Test Results

### 6.1 Antenna Gain

Antenna 1: The maximum Gain of the antenna is 2.0 dBi .
Antenna 2: The maximum Gain of the antenna with cable loss is 2.0 dBi .
Antenna 3: The maximum Gain of the antenna with cable loss is 2.0 dBi .

| Antenna <br> No. | Brand | Model No. | Gain <br> $(\mathrm{dBi})$ | Cable <br> Loss | Antenna Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Arcadyan | 120300009100 J | 2 dBi | 0 dB | Dipole |
| 2 | Arcadyan | 120300009300 J | 5 dBi | 3 dB | Dipole |
| 3 | Arcadyan | FWM094505006J | 6 dBi | 4 dB | Directional |

### 6.2 Output Power Into Antenna \& RF Exposure value at distance 20cm:

## For Part 802.11b:

| Channel | Channel <br> Frequency <br> $(\mathrm{MHz})$ | Output Power to <br> Antenna $(\mathrm{mW})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit of <br> Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2412 | 142.5607594 | 0.044949941 | 1.0 |
| 6 | 2437 | 129.7179271 | 0.040900548 | 1.0 |
| 11 | 2462 | 128.2330583 | 0.040432364 | 1.0 |

## For Part 802.11g:

| Channel | Channel <br> Frequency <br> $(\mathrm{MHz})$ | Output Power to <br> Antenna $(\mathrm{mW})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit of <br> Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2412 | 152.4052754 | 0.048053954 | 1.0 |
| 6 | 2437 | 159.2208727 | 0.050202937 | 1.0 |
| 11 | 2462 | 122.179966 | 0.038523801 | 1.0 |


[^0]:    F = Frequency in MHz

