4. CLIENT INFORMATION

Company Name	Simoco Australasia Pty Ltd			
Address	1270 Ferntree Gully Rd, Scoresby, Victoria, 3179			
Country	Australia			
Contact	Mr Robert Stowell			

5. TEST SAMPLE DESCRIPTION

Brand Name	Simoco
Model Number	Pulse Air Data Modem AC
Manufacturer	Simoco Australia Pty Ltd
Designed in	Australia
Manufactured in	Taiwan
Serial Number	5PDAC1646 04NR 000100
FCC ID	STZAIR600AC

The sample tested has the following specifications:

Rated Transmitter Output Power

5.0 Watts (+37 dBm) burst which is a DMR 50% TDMA

Transmitter Certification Range

 $150-174 \; MHz$

Test frequencies

Channel	Frequency (MHz)	Power (Watts)	
1	151.0750	5.0	
2	161.5000	5.0	
3	173.3750	5.0	

20th February 2017

Exposure of humans to RF fields

As per FCC KDB 447498 D01 and Section 2.1091 radio frequency transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels.

Calculations have been made using the General Public/Uncontrolled Exposure limits that are defined in Section 1.1310.

Minimum safe distances have been calculated below.

Power density, $mW/cm^2 = E^2/3770$

- General Population / Uncontrolled exposure is 0.2 mW/cm²

The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V/m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:

Power Density = $0.2 \text{ mW/cm}^2 = E^2/3770$ E = $\sqrt{0.2*3770}$ E = 27.4 V/m

The rated maximum transmitter power (PC) = 5 watts (+37 dBm).

A duty cycle (DC) of 50% (0.5) has been applied as the device uses source based 50% TDMA which relates to the carrier duty cycle.

The client has declared that this transmitter can be operated using a non-directional antenna with a gain of 0 dBd or a directional antenna with a gain of up to 6 dBd.

Calculations of the safe distance for these types of antenna are detailed in the table below.

Antenna Gain (dBd)	Max Gain (dBi)	Tx Power (dBm)	EIRP (dBm)	EIRP (Watts)	E Limit (V/m)	Safe Distance (Metres)
0.0	2.15	37.0	39.15	8.22	27.4	0.40
6.0	8.15	37.0	45.15	32.73	27.4	0.80

A sample calculation for the safe distance would be:

 $d = \sqrt{(30 * P * G*DC) / E}$

 $d = \sqrt{(30 * 32.73 * 0.5) / 27.4}$ d = 0.80 metres or 80 cm

Result: Complies if the safe distances defined above are applied.