

FCC 47 CFR MPE REPORT

Klipsch Group, Inc.

Wireless Surrounds

Model Number: Flexus SURR 100

FCC ID: STI-XSURR100

Applicant:	Klipsch Group, Inc.			
Address:	3502 Woodview Trace, Suite 200, Indianapolis, IN 46268, USA			
Prepared By:	EST Technology Co., Ltd.			
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R2312068		
Date of Test:	Oct. 17~Dec. 08, 2023		
Date of Report:	Dec .11, 2023		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times	
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$\mid E \mid^2$, $\mid H \mid^2$ or S	
	(V/m)	(A/m)		(minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-10000			1.0	30	

Report No. ESTE-R2312068

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)		
	2402	6.90	4.898		
GFSK	2442	5.79	3.793		
	2481	4.88	3.076		

3. Calculated Result and Limit

			Antenna gain			Limited		
Mode	Peak output power (dBm)	Target power (dBm)	MAX Target power (dBm)	(dBi)	(Linear)	Power Density (S) (mW /cm²)	of Power Density (S) (mW /cm²)	Test Result
GFSK	6.90	6±1	7	1.7	1.479	0.00147	1	Complies

End of Test Report