

1250 Peterson Dr., Wheeling, IL 60090

FCC Rules and Regulations / Intentional Radiators

Operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands

Part 15, Subpart C, Section 15.249

THE FOLLOWING **"MEETS"** THE ABOVE TEST SPECIFICATION

Formal Name:	Klipsch iFi 2.1 Audio System
Kind of Equipment:	Onboard RF Transmitter for Upgradeable Two-Way Remote Control of iFi Audio System
Test Configuration:	Control/Docking Station with integrated RF Transmitter, 2 Satellite Speakers, 1 Subwoofer with Amplifier (Tested at 120 vac, 60 Hz)
Model Number(s):	iFi
Model(s) Tested:	iFi
Serial Number(s):	NA
Date of Tests:	April 13 & 14, 2005
Test Conducted For:	Klipsch Audio Technologies 3502 Woodview Trace, Suite 200 Indianapolis, Indiana 46268

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report. This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems.

1250 Peterson Dr., Wheeling, IL 60090

SIGNATURE PAGE

Report By:

anna C Rove

Arnom C. Rowe Test Engineer EMC-001375-NE

Reviewed By:

Villiam M.S.

William Stumpf OATS Manager

Approved By:

Briand. Matt

Brian Mattson General Manager

Company Official:

Klipsch Audio Technologies

Model Tested: Report Number:

Klipsch Audio Technologies iFi 11323

ELECTROMA	GNETIC COMPATIBILITY	Page: 1 of NVLAP LAB CODE 100276
	D.L.S. ELECTRONIC 1250 Peterso Wheeling, IL 60 Mr. Brian J. N Phone: 847-537-6400 E-Mail: bmattson@ URL: http://www	SYSTEMS, INC. n Drive 0090-6454 Mattson Fax: 847-537-6488 Odlsemc.com .dlsemc.com
NVLAP Code	Designation / Description	
Emissions Test N	lethods:	
12/160D21	RTCA/DO-160D (1997): Environmer Airborne Equipment - Section 21 - En	ntal Conditions and Test Procedures for mission of Radio Frequency Energy
12/300220a	EN 300 220-1 V1.3.1 (2000-09): Elec Matters; Short Range Devices; Radio MHz frequency range with power lev characteristics and test methods	etromagnetic compatibility and Radio spectro equipment to be used in the 25 MHz to 1000 els ranging up to 500 mW; Part 1: Technical
12/300386a	EN 300 386 V.1.2.1: Electromagnetic (ERM); Telecommunication network (EMC) requirements	compatibility and radio spectrum matter equipment; Electromagnetic compatibility
12/C63.17	ANSI C63.17-1998: American Nation	nal Standard for Methods of Measurement of

1250 Peterson Dr., Wheeling, IL 6009

Page -5-

1250 Peterson Dr., Wheeling, IL 6009

1250 Peterson Dr., Wheeling, IL 6009

1250 Peterson Dr., Wheeling, IL 6009

1250 Peterson Dr., Wheeling, IL 6009

1250 Peterson Dr., Wheeling, IL 6009

(LAP-015 (00-01)

of Standards and ISO/IEC 17025:19 ISO 9002:1994	⁹⁹ Scope of A	Accredita	Laboratory Accreditation Prog
ELECTROM	AGNETIC COMPATIBILITY	Ŷ	⁸⁷ 47ES OF F Page: 12 of 1 NVLAP LAB CODE 100276-
AND TELEC	OMMUNICATIONS	-	
NVI AP Code	D.L.S. ELECTH	RONIC SYSTEM	IS, INC.
MIL-STD-462	: Radiated Emissions:		
12/D04	MIL-STD-462 Version D Met	thod RE101	
12/D05	MIL-STD-462 Version D Met	thod RE102	
12/D06	MIL-STD-462 Version D Met	thod RE103	
MIL-STD-462	Radiated Suscentibility:		
12/E08	MIL-STD-462 Version D Met	thod RS101	
12/E09	MIL-STD-462 Version D Met	thod RS103	
		· · · · ·	
S	September 30, 2005	Man	P. M.C
<u></u>		V	

1250 Peterson Dr., Wheeling, IL 6009

TABLE OF CONTENTS

i.	Cover Page	1
ii.	Signature Page	2
iii.	NVLAP Certificate of Accreditation	3
iv.	NVLAP Scope of Accreditation	4
v.	Table of Contents	16
1.0	Summary of Test Report	17
2.0	Introduction	17
3.0	Object	17
4.0	Test Set-Up	18
5.0	Test Equipment	19
6.0	Ambient Measurements	20
7.0	Description of Test Sample	21
8.0	Additional Description of Test Sample	24
9.0	Photo Information and Test Set-Up	25
10.0	Radiated Photos Taken During Testing	26
10.0	Conducted Photos Taken During Testing	28
11.0	Results of Tests	30
12.0	Conclusion	30
TABI	LE 1 – EQUIPMENT LIST	31
Apper	ndix A – Electric Field Radiated Emissions Test	33
1.0	Conducted Emission Measurements	34
1.0	Conducted Data and Graph(s) taken during testing	35
2.0	Band Edge and Restrict Band Compliance	40
3.0	Field Strength of Spurious Emission Measurements	41
3.0	Radiated Data and Graph(s) taken for Fundamental Emission Measurements	43
3.0	Radiated Data and Graph(s) taken for Field Strength Spurious Emission Measurements	50

Company:Klipsch AuModel Tested:iFiReport Number:11323

Klipsch Audio Technologies iFi : 11323

1250 Peterson Dr., Wheeling, IL 6009

1.0 SUMMARY OF TEST REPORT

It was found that the Klipsch iFi 2.1 Audio System, Model Number(s) iFi, "<u>meets</u>" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.249 for operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands. For the receiver portion, a DOC is available upon request.

This test report relates only to the items tested and contains the following number of pages.

Text: 56

2.0 INTRODUCTION

On April 13 & 14, 2005, a series of radio frequency interference measurements was performed on Klipsch iFi 2.1 Audio System, Model Number(s) iFi, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in the "Methods of Measurement of Radio-Noise Emissions for Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" found in the American National Standards Institute, ANSI C63.4-2003. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Sections 15.35(b), 15.37(d), 15.209 & 15.249 for Intentional Radiators operating in the Bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24-24.25 GHz.

Company: Klipso Model Tested: iFi Report Number: 11323

Klipsch Audio Technologies iFi 11323

1250 Peterson Dr., Wheeling, IL 6009

4.0 TEST SET-UP

All emission tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-2003, Section 8, (Figures 11a and 11b). The conducted tests were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the American National Standards Institute, ANSI C63.4-2003, Section 4, (Figure 2).

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-2003, Sections 6 and 8.

Company:Klipsch AModel Tested:iFiReport Number:11323

1250 Peterson Dr., Wheeling, IL 6009

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and/or ESI 26/40 Fixed Tuned Receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/40 Fixed Tuned Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the Spectrum Analyzer.

The bandwidths shown below are specified by ANSI C63.4-2003, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

Company:KlipseModel Tested:iFiReport Number:11323

1250 Peterson Dr., Wheeling, IL 6009

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emissions that have the highest amplitude relative to the limit. These methods are performed to the specifications in MP-5 or ANSI C63.4-2003, as appropriate.

Company:KlipschModel Tested:iFiReport Number:11323

Klipsch Audio Technologies iFi 11323

1250 Peterson Dr., Wheeling, IL 6009

7.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

7.1 Description:

The iFi system consist of a base unit to cradle an iPod, satellite speakers, and a subwoofer/amplifier that contains additional power supply circuitry. The dock/controller unit of the iFi system contains a system processor operating at a crystal frequency of 9.8304Mhz. This microcontroller is responsible for overall control of the iFi system including communicating to the iPod via a serial-like connection at 19.2K baud, and to an internal integrated FSK based RF transceiver device. The RF transceiver section uses FSK to send and receive data, incorporates a PLL and VCO, and operates with a 16.0Mhz reference crystal for a final transmit/receive frequency of 916.7Mhz. When in transmit mode, data is sent via FSK at a carrier of 916.7Mhz with the deviation set at 170Khz. And as data is transmitted, a "1" corresponds to 916.78Mhz, and a "0" corresponds to 916.61Mhz.

1250 Peterson Dr., Wheeling, IL 6009

7.0 DESCRIPTION OF TEST SAMPLE: (CON'T)

7.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Dock: Length: 5.5" x Width: 4" x Height: 1" Subwoofer: Length: 14" x Width: 10.5" x Height: 11.5" Satellite Speaker: Length: 5.75" x Width: 5" x Height: 9"

7.3 LINE FILTER USED:

KAT 1400-06 B

7.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

NA

Clock Frequencies:

16.000 MHz, 9.8304 MHz, 300 kHz (oscillator in audio amplifier)

1250 Peterson Dr., Wheeling, IL 60090

7.0 DESCRIPTION OF TEST SAMPLE: (CON'T)

7.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

1.	Preamplifier and Power Supply	PN: 1000-07D
2.	Power Amplifier	PN: 1100-06C
3.	AC Filter Board	PN: 1400-06B
4.	Transmitter/Receiver and controller board	PN: ifi_d2
5.	Switch and Rotary encoder board	PN: ifi2_d

1250 Peterson Dr., Wheeling, IL 60090

- 8.0 ADDITIONAL DESCRIPTION OF TEST SAMPLE: (See also Paragraph 7.0)
- 1: There were no additional descriptions noted at the time of test.

I certify that the above, as described in paragraph 7.0, describes the equipment tested and will be manufactured as stated.

By:

Signature

Title

For:

Company

Date

1250 Peterson Dr., Wheeling, IL 60090

9.0 PHOTO INFORMATION AND TEST SET-UP

- Item 0 Klipsch iFi 2.1 Audio System Model Number: iFi, Serial Number: NA
- Item 1 Non-shielded AC Power Line Cord. 6'
- Item 2 Shielded Auxiliary Input Cable. 1m
- Item 3 Right Satellite Speaker and non-shielded Right Satellite Speaker Cable.
- Item 4 Left Satellite Speaker and non-shielded Left Satellite Speaker Cable.
- Item 5 Apple iPOD, Model Number: A1051, SN: JQ50915N543

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING: (CON'T)

1250 Peterson Dr., Wheeling, IL 60090

10.0 CONDUCTED PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

10.0 CONDUCTED PHOTOS TAKEN DURING TESTING: (CON'T)

1250 Peterson Dr., Wheeling, IL 60090

11.0 RESULTS OF TESTS

The radio interference emission charts results can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report. Points on the emission charts shown with a yellow mark are background frequencies that were verified during testing.

12.0 CONCLUSION

It was found that the Klipsch iFi 2.1 Audio System, Model Number(s) iFi "<u>meets</u>" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.249 for operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands. For the receiver portion, a DOC is available upon request.

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

Test	Manufacturer	Model	el Serial Freque		Cal Due
Equipment		Number	Number	Range	Dates
Spectrum	Hewlett/	8566B	2240A002041	100 Hz – 22 GHz	10/05
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	0A 2043A00121 10 kHz – 1 GHz 10/05		10/05
Adapter	Packard				
Spectrum	Hewlett/	8566B	566B 2421A00452 100 Hz – 22 GHz 2/06		2/06
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	50A 2043A00450 10 kHz – 1 GHz 2/06		2/06
Adapter	Packard				
Spectrum	Hewlett/	8591A	3009A00700	9 kHz – 1.8 GHz	3/06
Analyzer	Packard				
Receiver	Electrometrics	EMC-30	44168	44168 10 kHz – 1 GHz 9	
Receiver	Rohde &	ESI 26	837491/010	20 Hz – 26 GHz	11/05
	Schwarz				
Receiver	Rohde &	ESI 40	837808/006	20 Hz – 40 GHz	12/05
	Schwarz				
Receiver	Rohde &	ESI 40	837808/005	20 Hz – 40 GHz	12/05
	Schwarz				
Antenna	EMCO	3104C	00054891	20 MHz – 200 MHz	2/06
Antenna	Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/06
					2 / 2 /
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	3/06

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

Test	Manufacturer	Model	Serial	Frequency	Cal Due
Equipment		Number	Number	Range	Dates
Antenna	Electrometrics	3146	1205	200 MHz – 1 GHz	3/06
Antenna	EMCO	MCO 3104C 97014		20 MHz – 200 MHz	2/06
Antenna	na EMCO 3146		97024895	200 MHz – 1 GHz	3/06
Antenna	EMCO	3115	2479	1 GHz – 18 GHz	8/05
Antenna	EMCO	3115	99035731	1 GHz – 18 GHz	4/06
Antenna	Rohde & Schwarz	HUF-Z1	829381001	20 MHz – 1 GHz	2/06
Antenna	Rohde & Schwarz	HUF-Z1	829381005	20 MHz – 1 GHz	8/05
LISN	Solar	8012-50-R- 24-BNC	8305116	10 MHz – 30 MHz	8/05
LISN	Solar	8012-50-R- 24-BNC	814548	10 MHz – 30 MHz	8/05
LISN	Solar	9252-50-R- 24-BNC	961019	10 MHz – 30 MHz	12/05
LISN	Solar	9252-50-R- 24-BNC	971612	10 MHz – 30 MHz	10/05
LISN	Solar	9252-50-R- 24-BNC	92710620	10 MHz – 30 MHz	7/05

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Part 15, Subpart C, Section 15.249a-e

OPERATION WITHIN THE BANDS 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz MHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1.0 CONDUCTED EMISSION MEASUREMENTS

Conducted emissions were measured over the frequency range from 150 kHz to 30 MHz in accordance with the power line measurements as specified in FCC Part 15, Subpart C, Section 15.207 & ANSI C63.4-2003. Since the device is operated from the public utility lines, the 120 Vac, 60 Hz power leads, high (hot) and low (neutral) sides, were measured by connecting the measuring equipment to the appropriate meter terminal of the LISN. During the test, the cables were placed and items moved (when appropriate) to maximize emissions. All signals were then recorded. The allowed levels for Intentional Radiators which is designed to connected to the public utility (AC) power line shall not exceed 250 uV (47.96 dBuV) from 150 kHz to 30 MHz

NOTE:

All test measurements were made at a screen room temperature of 71°F at 36% relative humidity.

Company: Klipsc Model Tested: iFi Report Number: 11323

Klipsch Audio Technologies iFi 11323

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

CONDUCTED <u>DATA</u> AND GRAPH(S) TAKEN DURING TESTING

PART 15.207

FCC Part 15 Class B

Voltage Mains Test

EUT:	iFi
Manufacturer:	Klipsch
Operating Condition:	71 deg. F, 36% R.H.
Test Site:	DLS O.F. Screen Room
Operator:	Jason L
Test Specification:	120 VAC @ 60 Hz
Comment:	Line 1 - Tx Mode: 916.7 MHz
	Date: 04-14-2005

SCAN TABLE: "FCC ClassB Voltage"

Short Desc	ription:]	FCC Class B	Voltage			
Start	Stop	Step	Detector	Meas.	IF	Transducer	
Frequency	Frequency	Width		Time	Bandw.		
150.0 kHz	30.0 MHz	4.0 kHz	MaxPeak	10.0 ms	9 kHz	LISN DLS#128	
			Average				

MEASUREMENT RESULT: "klipifitxl1_fin QP"

4/1	4/2005 9:1	7AM					
	Frequency	Level	Transd	Limit	Margin	Line	PE
	MHz	dBµV	dB	dBµV	dB		
	0.154000	34.20	11.4	66	31.6		
	0.262000	19.50	10.6	61	41.8		
	0.438000	9.80	10.3	57	47.3		
	0.622000	11.60	10.3	56	44.4		
	1.054000	7.60	10.2	56	48.4		
	1.562000	7.00	10.3	56	49.0		
	3.222000	8.40	10.5	56	47.6		
	4.814000	9.00	10.5	56	47.0		
	19.682000	16.60	10.8	60	43.4		
	24.002000	16.10	11.0	60	43.9		
	29.522000	21.70	11.2	60	38.3		

MEASUREMENT RESULT: "klipifitxl1_fin AV"

					17AM	4/14/2005 9:1
PE	Line	Margin	Limit	Transd	Level	Frequency
		dB	dBµV	dB	dBµV	MHz
		33.9	56	11.5	22.10	0.150000
		33.9	54	11.0	20.10	0.190000
		34.7	51	10.6	16.60	0.266000
		38.8	46	10.3	7.20	0.622000
		42.1	46	10.3	3.90	2.194000
		36.3	50	10.8	13.70	19.682000
		35.8	50	11.0	14.20	23.998000
		38.8	50	11.0	11.20	24.602000
		29.9	50	11.2	20.10	29.522000

FCC Part 15 Class B

Voltage Mains Test

EUT:	iFi
Manufacturer:	Klipsch
Operating Condition:	71 deg. F, 36% R.H.
Test Site:	DLS O.F. Screen Room
Operator:	Jason L
Test Specification:	120 VAC @ 60 Hz
Comment:	Line 2 - Tx Mode: 916.7 MHz
	Date: 04-14-2005

SCAN TABLE: "FCC ClassB Voltage"

Short Desc	ription:]	FCC Class B	Voltage		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.0 kHz	MaxPeak	10.0 ms	9 kHz	LISN DLS#128
			Average			

MEASUREMENT RESULT: "klipifitxl2_fin QP"

4/14/2005	9:25AN	4					
Frequer	ncy I	Level 7	Fransd	Limit	Margin	Line	ΡE
Ν	/Hz	dBµV	dB	dBµV	dB		
0.1540	000	33.90	11.4	66	31.9		
0.3020	000 1	L9.60	10.5	60	40.6		
0.3740	000	L3.10	10.4	58	45.3		
0.6220	000	9.90	10.3	56	46.1		
1.3020	000	7.00	10.3	56	49.0		
1.6780	000	7.00	10.3	56	49.0		
2.5180	000	8.30	10.3	56	47.7		
4.9180	000	9.00	10.5	56	47.0		
23.9980	000	L7.00	11.0	60	43.0		
29.5220	000 2	22.10	11.2	60	37.9		

MEASUREMENT RESULT: "klipifitxl2_fin AV"

					25AM	4/14/2005 9:2
PE	Line	Margin	Limit	Transd	Level	Frequency
		dB	dBµV	dB	dBµV	MHz
		33.8	56	11.5	22.20	0.150000
		33.7	54	11.0	20.40	0.190000
		34.7	51	10.6	16.60	0.266000
		39.9	48	10.4	8.50	0.378000
		41.3	46	10.5	4.70	4.826000
		37.7	50	10.8	12.30	19.682000
		36.5	50	11.0	13.50	23.998000
		39.5	50	11.0	10.50	24.602000
		29.5	50	11.2	20.50	29.522000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

2.0 BAND EDGE AND RESTRICT BAND COMPLIANCE

The field strength of any emissions appearing outside the 902 to 928 MHz band shall not exceed the general radiated emissions limits as stated Section 15.209. The fundamental from the Klipsch iFi 2.1 Audio System transmitter shall not be inside the restrict band 960 to 1240 MHz.

NOTE: See the following page (s) for the graph (s) made showing compliance for Band Edge and Restrict Band:

See the radiated data taken of the Fundamental and Spurious Emissions on pages 43 to 56.

Company:Klipsch AModel Tested:iFiReport Number:11323

Klipsch Audio Technologies iFi 11323

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

3.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (SECTION 15.249a-d)

The radiated measurements made at D.L.S. Electronic Systems, Inc., for the Klipsch iFi 2.1 Audio System, Model Number: iFi, are shown in tabulated and graph form. Preliminary radiation measurements were performed at a 3 meter test distance with the limits adjusted linearly when required. The frequency range from 30 MHz to over 960 MHz, depending upon the fundamental frequency as stated in Part 15.33a, was automatically scanned and plotted at various angles.

Measurements for the Klipsch iFi 2.1 Audio System were made up to 10000 MHz, in accordance with Section 15.33a for Intentional Radiators with a fundamental frequency of 916.7 MHz. For intentional radiators, the frequency range to be investigated is determined by the lowest radio frequency generated by the device without going below 30 MHz, up to at least the tenth harmonic of the highest fundamental frequency or 10 GHz, whichever is lower. At those frequencies where significant signals were detected, measurements were made over the entire frequency range specified in FCC Part 15, Subpart C, Section 15.249 at the open field test site, located at Genoa City, Wisconsin, FCC file number **31040/SIT**. When required, levels were extrapolated from 10 meters to 3 meters using a linear extrapolation.

All signals in the frequency range of 30 MHz to 2000 MHz were measured with a Biconical Antenna or tuned dipoles and from 200 MHz to 1000 MHz, a Log Periodic or Tuned Dipoles were used. From 1000 MHz to 10 GHz Horn Antennas were used. During the test the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level of emissions. In order to find maximum emissions, the cables were moved through all the positions the equipment would be expected to experience in the field. The EUT, peripheral equipment and cables were configured to meet the conditions in ANSI C63.4-2003, Clauses 6 & 8. Tests were made with the receive antenna(s) in both the horizontal and vertical planes of polarization. In each case, the table was rotated to find the maximum emissions.

Company: Model Tested: iFi Report Number: 11323

Klipsch Audio Technologies

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

30 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T)

For operation in the bands 902 to 928 MHz, 2400 to 2483.5 MHz, 5725 to 5875 MHz, and 24.0 to 24.25 GHz the field strength of any emissions within this band shall not exceed the field strength levels specified in the following table as stated in FCC, Part 15, Section 15.249(a).

Frequency	Field Strength of	Field Strength of	Field Strength of	Field Strength of
range in	Fundamental	Fundamental	Harmonics	Harmonics
MHz	millivolts/meter	dBuV/meter	microvolts/meter	dBuV/meter
902 to 928	50	93.98	500	53.98
2400 to 2483.5	50	93.98	500	53.98
5725 to 5875	50	93.98	500	53.98
24000 to 24250	250	107.96	2500	67.96

Field strength limits are at a distance of 3 meters. The emission limits shown are based on measurement instrumentation employing an average detector.

Emissions radiated outside of the specified frequency bands, except for harmonics are attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Preliminary radiated emission measurements were performed at a 3 meter test distance. The frequency range from 30 MHz to 1000 MHz was automatically scanned and plotted at various angles.

NOTE:

All radiated emissions measurements were made at a test room temperature of 70°F at 43% relative humidity.

Company: Klipsc Model Tested: iFi Report Number: 11323

Klipsch Audio Technologies iFi 11323

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED DATA AND GRAPH(S) TAKEN FOR

FUNDAMENTAL EMISSION MEASUREMENTS

PART 15.249

FCC Part 15.249 Fundamental and Spurious Emissions

Electric Field Strength

EUT: iFi Docking System Manufacturer: Klipsch Operating Condition: 70 degF; 38% R.H. Test Site: DLS O.F. Site 2 Operator: Jason L. Test Specification: 120 VAC; 60 Hz Comment: Date: 04/13/2005

TEXT: "Site 2 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

> Antennas ---Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004

TEST SET-UP: EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

MEASUREMENT RESULT: "Akli2_F1V_Final"

4/13/2005 1:00	6PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
	<u> </u>	00.11		00.0			1 0 0	1.0.0		
916./00000	63.03	23.11	7.4	93.6	47.0	-46.6	1.20	180	QUASI-PEAK	Fundamental

FCC Part 15.249 Fundamental and Spurious Emissions

Electric Field Strength

EUT: iFi Docking System Manufacturer: Klipsch Operating Condition: 70 degF; 38% R.H. Test Site: DLS O.F. Site 2 Operator: Jason L. Test Specification: 120 VAC; 60 Hz Comment: Date: 04/13/2005

TEXT: "Site 2 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

> Antennas ---Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004

TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

MEASUREMENT RESULT: "Akli2_F1H_Final"

4/13/2005 1:12	2PM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant	EuT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	2000001	
916.700000	60.97	23.11	7.4	91.5	47.0	-44.5	1.00	325	QUASI-PEAK	Fundamental

Company:KlipsciModel Tested:iFiReport Number:11323

Klipsch Audio Technologies iFi 11323

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED DATA AND GRAPH(S) TAKEN FOR

FIELD STRENGTH

SPURIOUS EMISSION MEASUREMENTS

PART 15.209

FCC Part 15.249 Spurious Emissions

Electric Field Strength

EUT: Manufacturer: Operating Condition: Test Site: Operator: Test Specification: Comment: Dis Official Station Fi Docking Station Klipsch DLS O.F. Site 2 Jason L. Test Specification: Date: 04/13/05

TEXT: "Site 2 6204&106 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 18 GHz -- Miteq AMF-6D-010100-50 SN: 213976 18 - 26 GHz -- Miteq AMF-6B-100200-50 SN: 313936

TEST SET-UP: EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

MEASUREMENT RESULT: "Akli3_sv_Final"

4/13/2005 2:08PM

Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
66.70	29.35	-35.5	60.5	54.0	-6.5	1.10	200	MAX PEAK	3rd Harmonic
67.69	26.57	-36.2	58.1	54.0	-4.1	1.10	180	MAX PEAK	2nd Harmonic
58.12	26.57	-36.2	48.5	54.0	5.5	1.10	180	AVERAGE	2nd Harmonic
48.21	32.47	-34.5	46.2	54.0	7.8	1.10	180	MAX PEAK	5th Harmonic
52.26	29.35	-35.5	46.1	54.0	7.9	1.10	200	AVERAGE	3rd Harmonic
49.14	31.67	-35.3	45.5	54.0	8.5	1.10	180	MAX PEAK	4th Harmonic
34.81	32.47	-34.5	32.8	54.0	21.2	1.10	180	AVERAGE	5th Harmonic
35.21	31.67	-35.3	31.6	54.0	22.4	1.10	180	AVERAGE	4th Harmonic
	Level dBµV 66.70 67.69 58.12 48.21 52.26 49.14 34.81 35.21	Level Antenna Factor dBµV dBµV/m 66.70 29.35 67.69 26.57 58.12 26.57 48.21 32.47 52.26 29.35 49.14 31.67 34.81 32.47 35.21 31.67	Level Antenna System Factor Loss dBµV dBµV/m dB 66.70 29.35 -35.5 67.69 26.57 -36.2 58.12 26.57 -36.2 48.21 32.47 -34.5 52.26 29.35 -35.5 49.14 31.67 -35.3 34.81 32.47 -34.5 35.21 31.67 -35.3	Level Antenna System Total Factor Loss Level dBµV dBµV/m dB dBµV/m 66.70 29.35 -35.5 60.5 67.69 26.57 -36.2 58.1 58.12 26.57 -36.2 48.5 48.21 32.47 -34.5 46.2 52.26 29.35 -35.5 46.1 49.14 31.67 -35.3 45.5 34.81 32.47 -34.5 32.8 35.21 31.67 -35.3 31.6	Level Antenna System Total Limit Factor Loss Level dBµV dBµV/m dB dBµV/m dBµV/m 66.70 29.35 -35.5 60.5 54.0 67.69 26.57 -36.2 58.1 54.0 58.12 26.57 -36.2 48.5 54.0 48.21 32.47 -34.5 46.2 54.0 52.26 29.35 -35.5 46.1 54.0 49.14 31.67 -35.3 45.5 54.0 34.81 32.47 -34.5 32.8 54.0 35.21 31.67 -35.3 31.6 54.0	Level Antenna System Total Limit Margin Factor Loss Level dBµV dBµV/m dB dBµV/m dBµV/m dB 66.70 29.35 -35.5 60.5 54.0 -6.5 67.69 26.57 -36.2 58.1 54.0 -4.1 58.12 26.57 -36.2 48.5 54.0 5.5 48.21 32.47 -34.5 46.2 54.0 7.8 52.26 29.35 -35.5 46.1 54.0 7.9 49.14 31.67 -35.3 45.5 54.0 8.5 34.81 32.47 -34.5 32.8 54.0 21.2 35.21 31.67 -35.3 31.6 54.0 22.4	Level Antenna System Total Limit Margin Height ABµV ABµV/m Loss Level Ant. ABµV ABµV/m AB ABµV/m AB m 66.70 29.35 -35.5 60.5 54.0 -6.5 1.10 67.69 26.57 -36.2 58.1 54.0 -4.1 1.10 58.12 26.57 -36.2 48.5 54.0 5.5 1.10 48.21 32.47 -34.5 46.2 54.0 7.8 1.10 52.26 29.35 -35.5 46.1 54.0 7.9 1.10 49.14 31.67 -35.3 45.5 54.0 8.5 1.10 34.81 32.47 -34.5 32.8 54.0 21.2 1.10 35.21 31.67 -35.3 31.6 54.0 22.4 1.10	Level Antenna System Total Limit Margin Height EuT Factor Loss Level Ant. Angle dBµV dBµV/m dB dBµV/m dB m deg 66.70 29.35 -35.5 60.5 54.0 -6.5 1.10 200 67.69 26.57 -36.2 58.1 54.0 -4.1 1.10 180 58.12 26.57 -36.2 48.5 54.0 5.5 1.10 180 48.21 32.47 -34.5 46.2 54.0 7.8 1.10 180 52.26 29.35 -35.5 46.1 54.0 7.9 1.10 200 49.14 31.67 -35.3 45.5 54.0 8.5 1.10 180 34.81 32.47 -34.5 32.8 54.0 21.2 1.10 180 35.21 31.67 -35.3 31.6 54.0 22.4 1.10 180	Level Antenna System Total Limit Margin Height EuT Final Factor Loss Level Ant. Angle Detector dBµV dBµV/m dB dBµV/m dB m deg 66.70 29.35 -35.5 60.5 54.0 -6.5 1.10 200 MAX PEAK 67.69 26.57 -36.2 58.1 54.0 -4.1 1.10 180 MAX PEAK 58.12 26.57 -36.2 48.5 54.0 5.5 1.10 180 AVERAGE 48.21 32.47 -34.5 46.2 54.0 7.8 1.10 180 MAX PEAK 52.26 29.35 -35.5 46.1 54.0 7.9 1.10 200 AVERAGE 49.14 31.67 -35.3 45.5 54.0 8.5 1.10 180 MAX PEAK 34.81 32.47 -34.5 32.8 54.0 21.2 1.10 180 AVERAGE 35.21 31.67 -35.3 31.6

FCC Part 15.249 Spurious Emissions

Electric Field Strength

EUT: Manufacturer: Operating Condition: Test Site: Operator: Test Specification: Comment: Dis Official Station Fi Docking Station Klipsch DLS O.F. Site 2 Jason L. Test Specification: Date: 04/13/05

TEXT: "Site 2 6204&106 H3M"

Short Description: Test Set-up Horz1GHz-TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 18 GHz -- Miteq AMF-6D-010100-50 SN: 213976 18 - 26 GHz -- Miteq AMF-6B-100200-50 SN: 313936

TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

MEASUREMENT RESULT: "Akli3_sh_Final"

4/13/2005 2:25PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
2750.100000	69.15	29.35	-35.5	63.0	54.0	-9.0	1.20	225	MAX PEAK	3rd Harmonic
1833.400000	65.32	26.57	-36.2	55.7	54.0	-1.7	1.20	290	MAX PEAK	2nd Harmonic
3666.800000	57.38	31.67	-35.3	53.7	54.0	0.3	1.10	160	MAX PEAK	4th Harmonic
5500.200000	48.47	34.10	-33.5	49.1	54.0	4.9	1.20	290	MAX PEAK	6th Harmonic
2750.100000	54.67	29.35	-35.5	48.5	54.0	5.5	1.20	225	AVERAGE	3rd Harmonic
4583.500000	48.74	32.47	-34.5	46.7	54.0	7.3	1.20	270	MAX PEAK	5th Harmonic
1833.400000	55.27	26.57	-36.2	45.7	54.0	8.3	1.20	290	AVERAGE	2nd Harmonic
3666.800000	43.70	31.67	-35.3	40.0	54.0	14.0	1.10	160	AVERAGE	4th Harmonic
5500.200000	35.31	34.10	-33.5	35.9	54.0	18.1	1.20	290	AVERAGE	6th Harmonic
4583.500000	35.05	32.47	-34.5	33.0	54.0	21.0	1.20	270	AVERAGE	5th Harmonic