

Report Number: F690501/RF-RTL003363 Page: 1 of 41

TEST REPORT

of

FCC Part 2, 27 FCC ID: STESN-WiMAX-24C

Equipment Under Test : WiMAX In-door Repeater

Model Name : RSN-WiMAX-24C

Applicant : R-tron, Inc.

Manufacturer : R-tron, Inc.

Date of Test(s) : $2009-09-21 \sim 2009-09-28$

Date of Issue : 2009-09-29

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	80	Date	2009-09-29	
_	Feel Jeong			
Approved By	C. K. Kin	Date	2009-09-29	
	Charles Kim			

Report Number: F690501/RF-RTL003363 Page: 2 of 41

INDEX

TABLE OF CONTENTS	Page
1. General Information	3
2. Maximum Channel Power	8
3. Field Strength of Spurious Radiation	14
4. Occupied Bandwidth 26 dB	17
5. Spurious Emissions at Antenna Terminal	27
6. Band Edge	34
7. Frequency Stability	37
8. RF Exposure Evaluation	40

Report Number: F690501/RF-RTL003363 Page: 3 of 41

1. General Information

1-1. Testing Laboratory

SGS Testing Korea Co., Ltd.

- 705, Dongchun-Dong Sooji-Gu, Yongin-Shi, Kyungki-Do, South Korea.

www.electrolab.kr.sgs.com

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371

1-2. Details of Applicant

Applicant : R-tron, Inc.

Address : Jisan IT Venture Center 3F, 1004-9 Doksan-Dong, Gumcheon-Gu, Seoul,

Korea 153-010

Contact Person : Yong-Hoon Kang Phone No. : +82 +2 6343 1005 Fax No. : +82 +2 6343 1050

1-3. Description of EUT

Kind of Product	WiMAX In-door Repeater
Model Name RSN-WiMAX-24C	
Serial Number	N/A
Out and the Fernander	Down link : 2502 ~ 2690 MHz
Operating Frequency	Up link : 2502 ~ 2690 MHz
Frequency Band *AB/BC/CD/EF/FH/HG	
Power	Down Link: 24 dBm Up Link: 24 dBm
Power Rating	Input: 120 Vac, 60 Hz
Modulation Technique	OFDMA
Type of Emission	9M26W7D
Operating Conditions	-10 ~ 50
Tx antenna Gain	8 dBi(Patch Antenna)

Report Number: F690501/RF-RTL003363 Page: 4 of 41

*Frequency points (channels)

Band	Low Frequency (MHz)	Middle Frequency (MHz)	High Frequency (MHz)
AB	2508.5	2518.5	2528.5
BC	2525.0	2535.0	2545.0
CD	2541.5	2551.5	2561.5
EF	2630.5	2640.5	2650.5
FH	2647.0	2657.0	2667.0
HG	2663.5	2673.5	2683.5

1-4. EUT Cables

Routing		Shielded/	Description	Cable Length
From	To	Unshielded	Description	(m)
EUT	AC power main	Unshielded	Power cable	1.5
IQ Signal Generator	EUT	Shielded(coaxial)	Coaxial cable	1.0
EUT	50 ohm load	Shielded(coaxial)	Coaxial cable	1.0

Report Number: F690501/RF-RTL003363 Page: 5 of 41

1-5. Test Equipment List

EQUIPMENT	MANUFACTURER	MODEL	CAL DUE.
Signal Generator	Rohde & Schwarz	SMJ 100A	Sep. 25, 2010
Spectrum Analyzer	Rohde & Schwarz	FSV30	May 15, 2010
Attenuator	Agilent	8498A	Apr. 01, 2010
AC Power Supply	Dea kwang	Slidacs	Sep. 25, 2010
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	Jul. 22, 2010
Horn Antenna	Rohde & Schwarz	HF906	Jan. 10, 2010
Horn Antenna	Rohde & Schwarz	HF907	May 26, 2010
Dipole Antenna	VHAP/UHAP	975/958	Jan. 18, 2010
High-pass Filter	MICROWAVE-CIRCUITS	H03G12	Apr. 01, 2010
Preamplifier	Agilent	8449B	Apr. 01, 2010
Preamplifier	Agilent	8447F	Jun. 02, 2010
Anechoic Chamber	SY Corporation	L W H 9.6 m 6.4 m 6.6 m	Jan. 31, 2010

Report Number: F690501/RF-RTL003363 Page: 6 of 41

1-6. Summary of Test Results

APPLIED STANDARD: FCC Part 2,27			
Section in FCC Part 2,27	Test Item	Result	
\$2.1046 \$27.50(h)(1)	Maximum Channel Power	Complied	
§27.53(1)(2)	Field Strength of Spurious Radiation	Complied	
§2.1049	Occupied Bandwidth 26dB	Complied	
§2.1051 §27.53(1)(6)	Spurious Emission at Antenna Terminal	Complied	
§2.1055 §27.54	Frequency Stability	Complied	
§27.53(1)(2)	Band Edge	Complied	
§1.1307(b)(1)	Maximum Permissible Exposure (Exposure of Humans to RF Fields)	Complied	

1-7 Test Report Revision

Revision	Report number		
0	F690501/RF-RTL003363		

Report Number: F690501/RF-RTL003363 Page: 7 of 41

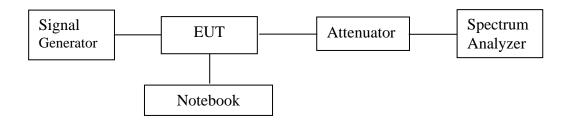
1.8 Worst-Case Configuration and Mode

Pre-test was performed on antenna terminal port to determine the worst-case mode

Down link mode

Test mode	Band	Frequency	Measured channel Power	
	Danu	(MHz)	dBm	mW
QPSK 1/2		2630.5	24.55	285.10
QPSK 3/4		2630.5	24.56	285.76
16QAM 1/2		2630.5	24.60	288.40
16QAM 3/4	EF	2630.5	24.63	290.40
64QAM 1/2		2630.5	24.61	289.07
64QAM 2/3		2630.5	24.59	287.74
64QAM 3/4		2630.5	24.64	291.07

Up link mode


Test made	Dond	Frequency (MHz)	Measured	channel Power
Test mode	Band		dBm	mW
QPSK 1/2	EF	2630.5	24.12	258.23
QPSK 3/4		2630.5	24.00	251.19
16QAM 1/2		2630.5	24.33	271.02
16QAM 3/4		2630.5	24.40	275.42

Report Number: F690501/RF-RTL003363 Page: 8 of 41

2. Maximum Channel Power

2.1. Set up

2.2. Limit

According to 47 CFR Part 2 section § 2.1046 and Part 27 section § 27.50(h)(1), the maximum EIRP of a base station shall not exceed 33 dBW + 10 lg (X/Y) dBW, where X is the actual channel width in MHz and Y is either 6 MHz if prior to transition or the station is in the MBS following transition or 5.5 MHz if the station is in the LBS and UBS following transition.

As to the limit, the X is 10 MHz and Y is 5.5 MHz for the EUT, so the limit is calculated to be 33 dBW + $10 \log(10 \text{ MHz}/5.5 \text{ MHz}) = 65.60 \text{ dBm}$.

2.3. Test Procedure

- 1. The transmitter was tested while in a continuous transmit mode.
- 2. The EUT was tuned to a low, middle, and high channel in both the downlink (base to mobile) and uplink (mobile to base) directions.
- 3. RF power output was measured with an RF input level at the point just before the compression point of the amplifier.
- 4. This is the point of maximum RF output power. If the RF input level is increased beyond this point, the amplifier gain (and consequently output power) is automatically reduced.

Report Number: F690501/RF-RTL003363 Page: 9 of 41

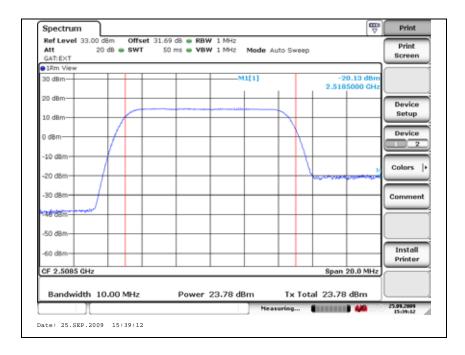
2.4. Test Results

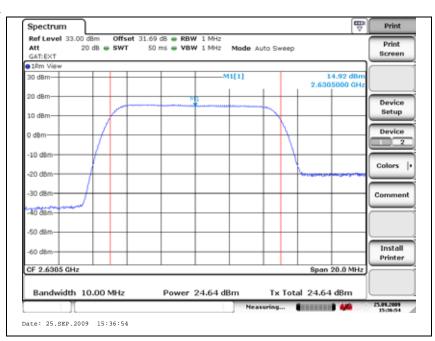
Ambient temperature : 21 Relative humidity : 50 %R.H.

Down link mode

Toot made	Channel	Frequency (MHz)	Measured	Channel Power
Test mode	Chamiei		dBm	mW
64QAM 3/4	Low	2508.5	23.78	238.78
64QAM 3/4	Middle	2630.5	24.64	291.07
64QAM 3/4	High	2683.5	23.39	218.27

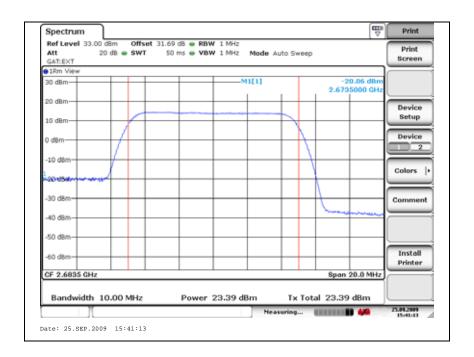
Up link mode


Tost made	Channal	Frequency (MHz)	Measured (Channel Power
Test mode	Channel		dBm	mW
16QAM 3/4	Low	2508.5	23.78	238.78
16QAM 3/4	Middle	2630.5	24.40	275.42
16QAM 3/4	High	2683.5	23.45	221.31


Report Number: F690501/RF-RTL003363 Page: 10 of 41

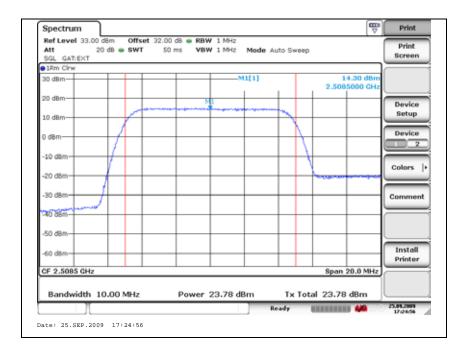
Down link mode

Low Channel


Middle Channel

Report Number: F690501/RF-RTL003363 Page: 11 of 41

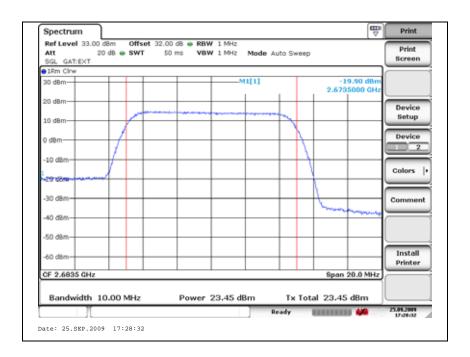
High Channel



Report Number: F690501/RF-RTL003363 Page: 12 of 41

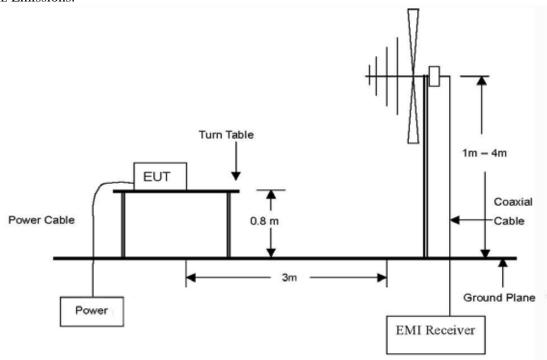
Up link mode

Low Channel

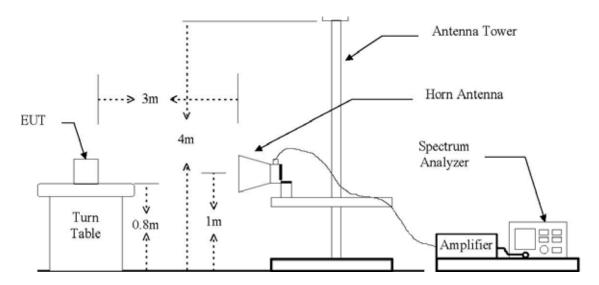

Middle Channel

Report Number: F690501/RF-RTL003363 Page: 13 of 41

High Channel



Report Number: F690501/RF-RTL003363 Page: 14 of 41


3. Field Strength of Spurious Radiation

3.1. Set up

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 18 GHz Emissions.

Report Number: F690501/RF-RTL003363 Page: 15 of 41

3.2. Limit

According to 47 CFR Part 2 section § 2.1053 and Part 27 section § 27.53(1)(2) and § 27.53(1)(6), the power of any emissions outside the licensee's frequency bands of operation must be attenuated below the transmitter power (P in watts) by at least 43 +10 log (P) dB. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater.

The limit is calculated to be $P(W) - \{43 dB + 10 \log [P(W)]\} = 10 \log [1000 P(W)] (dBm) - 43 dB - 10 \log [1000 P(W)] (dBm) - 43 dB - 10 \log [1000 P(W)] (dBm) - 43 dB - 10 log [1000 P(W)] (dBm) - 43$ [P(W)] = 30 dBm - 43 dB = -13 dBm.

3.3. Test Procedure

- 1. On a test site, the EUT shall be placed at 0.8cm height on a turn table, and in the position closest to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 5. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6. The transmitter shall then the rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8. The maximum signal level detected by the measuring receiver shall be noted.
- 9. The transmitter shall be replaced by a horn (substitution antenna).
- 10. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11. The substitution antenna shall be connected to a calibrated signal generator.
- 12. In necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase he sensitivity of the measuring receiver.
- 13. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 14. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 15. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- 17. The measure of the effective radiated power is the large of the two levels recorded, at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary

Report Number: F690501/RF-RTL003363 Page: 16 of 41

3.4. Test Result

Ambient temperature : 21 Relative humidity : 47 % R.H.

Down Link

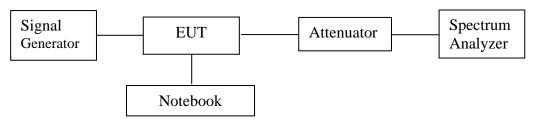
Frequency (MHz)	Ant.Pol. (H/V)	S.G. reading (dBm)	CL (dB)	Gain (dBi)	Gain (dBd)	EIRP (dBm)	Limit (dBm)	Margin (dB)
Low C								
(2508.5	MHz)							
100.20	Н	-48.41	0.13	-7.81	-9.96	-56.35	-13.00	43.35
202.40	Н	-45.12	0.22	-7.47	-9.62	-52.81	-13.00	39.81
Middle (Channel							
(2630.5	MHz)							
100.20	Н	-47.84	0.13	-7.81	-9.96	-55.78	-13.00	42.78
202.40	Н	-45.04	0.22	-7.47	-9.62	-52.73	-13.00	39.73
High Cl	hannel							
(2683.5	MHz)							
100.20	Н	-48.68	0.13	-7.81	-9.96	-56.62	-13.00	43.62
202.40	Н	-45.58	0.22	-7.47	-9.62	-53.27	-13.00	40.27

Up Link

Frequency (MHz)	Ant.Pol. (H/V)	S.G. reading (dBm)	CL (dB)	Gain (dBi)	Gain (dBd)	EIRP (dBm)	Limit (dBm)	Margin (dB)
Low Cl	nannel MHz)							
100.10	H	-48.54	0.13	-7.81	-9.96	-56.48	-13.00	43.48
202.30	Н	-43.47	0.22	-7.47	-9.62	-51.16	-13.00	38.16
301.80	Н	-42.50	0.40	-7.05	-9.20	-49.95	-13.00	36.95
Middle ((2630.5								
100.10	H	-48.98	0.13	-7.81	-9.96	-56.92	-13.00	43.92
202.30	Н	-43.41	0.22	-7.47	-9.62	-51.10	-13.00	38.10
301.80	Н	-42.42	0.40	-7.05	-9.20	-49.87	-13.00	36.87
High Cl (2683.5								
100.10	Н	-48.05	0.13	-7.81	-9.96	-55.99	-13.00	42.99
202.30	Н	-43.14	0.22	-7.47	-9.62	-50.83	-13.00	37.83
301.80	Н	-42.66	0.40	-7.05	-9.20	-50.11	-13.00	37.11

Remake: 1. No more spurious emissions above 310 MHz for all channel.

^{2.} EIRP= SG Reading -Cable Loss +Gain


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003363 Page: 17 of 41

4. Occupied Bandwidth 26 dB

4.1. Set up

4.2. Limit

According to 47 CFR Part 2 section § 2.1049 and Part 27, no specific modulation characteristics requirement limits is applicable.

The occupied bandwidth is defined in section § 2.1049: the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The occupied bandwidth is normally called 99% bandwidth.

According to section § 27.53(l)(6), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. The emission bandwidth is normally called 26 dB bandwidth.

4.3. Test Procedure

- 1. The transmitter was tested while in a continuous transmit mode.
- 2. The EUT was tuned to a low, middle, and high channel in both the downlink (base to mobile) and uplink (mobile to base) directions.
- 3. The resolution bandwidth of the spectrum analyzer was set at 100 kHz.

Report Number: F690501/RF-RTL003363 Page: 18 of 41

4.4 Test Results

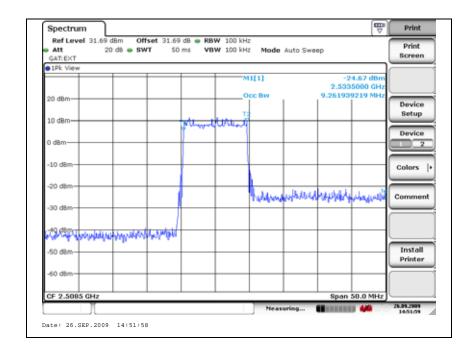
Ambient temperature : 21 Relative humidity : 50 %R.H.

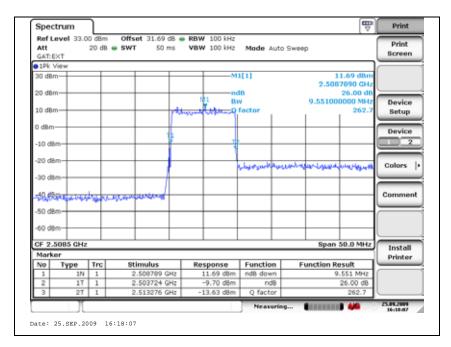
Down link mode

Test mode	Channel	Frequency	Measured Occupied Bandwidth		
rest mode	Chamie	(MHz)	99%	26dB	
64QAM 3/4	Low	2508.5	9.26	9.55	
64QAM 3/4	Middle	2630.5	9.26	9.77	
64QAM 3/4	High	2683.5	9.26	9.77	

Up link mode

Tost made	Channel	Frequency	Measured Occupied Bandwidth		
Test mode	Chamiei	(MHz)	99%	26dB	
16QAM 3/4	Low	2508.5	9.19	10.06	
16QAM 3/4	Middle	2630.5	9.19	10.06	
16QAM 3/4	High	2683.5	9.19	10.42	

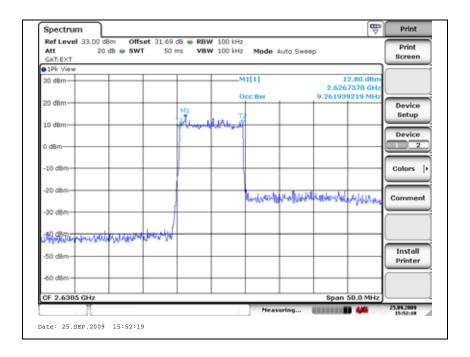

Please refer to the following plots.

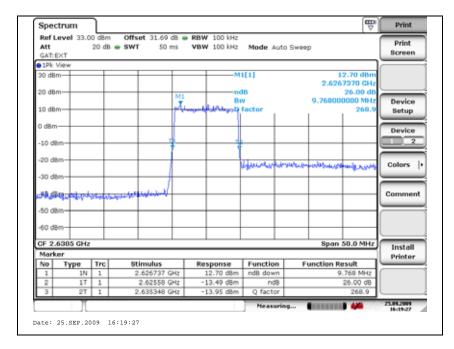


Report Number: F690501/RF-RTL003363 Page: 19 of 41

Down link mode

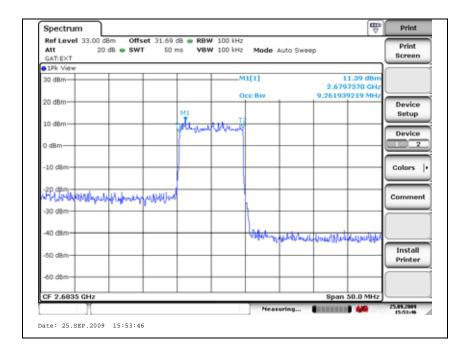
Low Channel

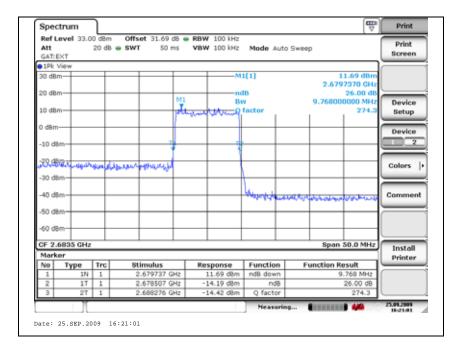




Report Number: F690501/RF-RTL003363 Page: 20 of 41

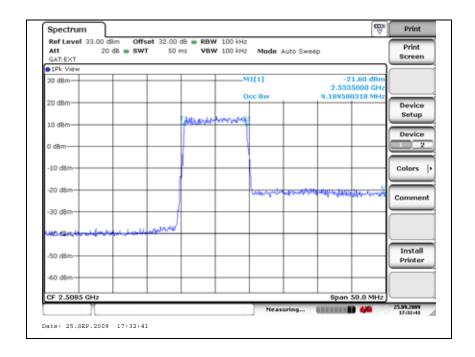
Middle Channel

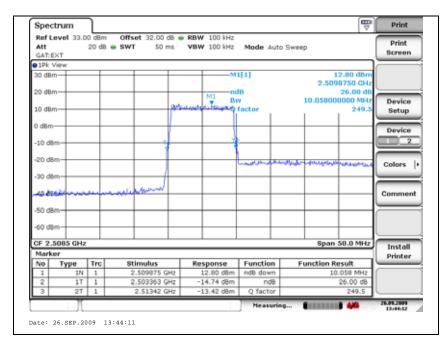




Report Number: F690501/RF-RTL003363 Page: 21 of 41

High Channel

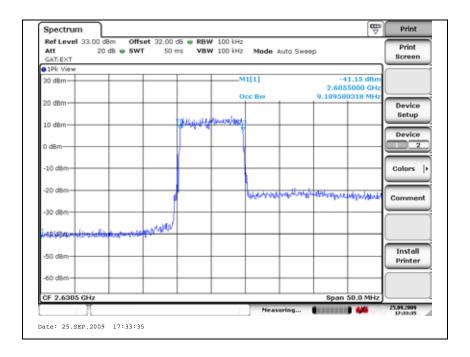


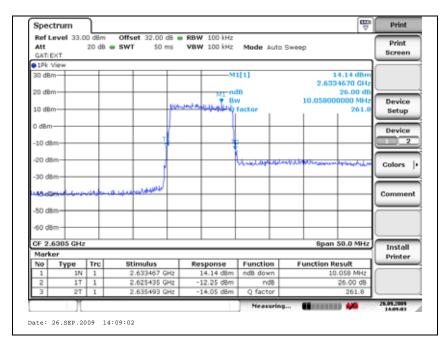


Report Number: F690501/RF-RTL003363 Page: 22 of 41

Up link mode

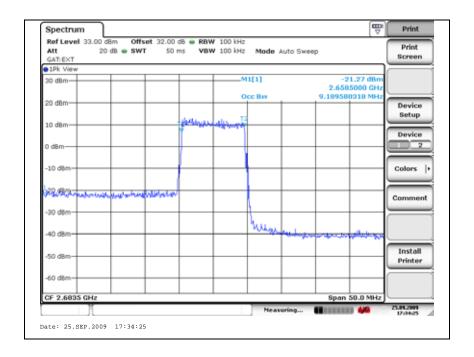
Low Channel

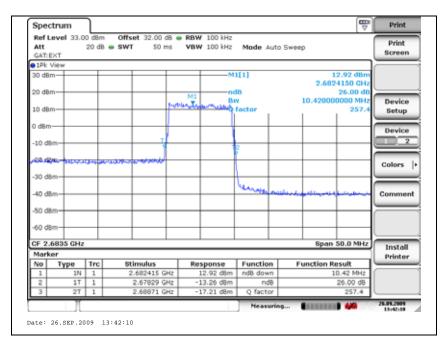




Report Number: F690501/RF-RTL003363 Page: 23 of 41

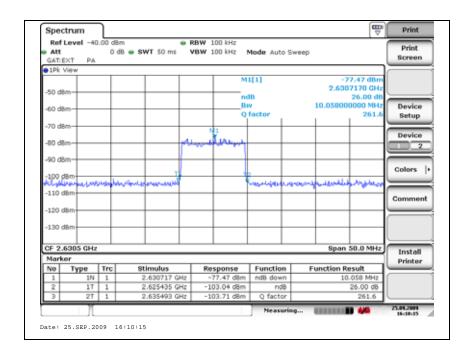
Middle Channel



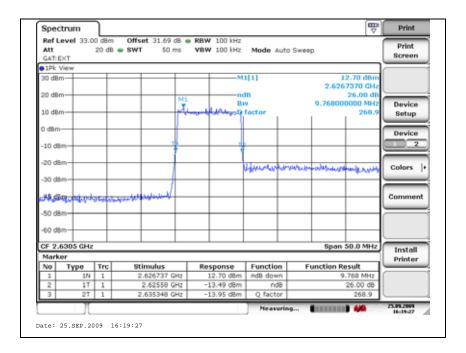


Report Number: F690501/RF-RTL003363 Page: 24 of 41

High Channel



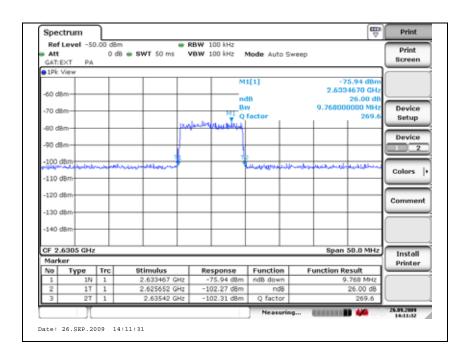
Report Number: F690501/RF-RTL003363 Page: 25 of 41

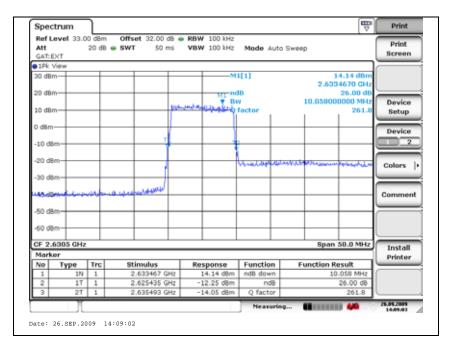

Input/Output comparison_26 dB Occupied Bandwidth

Down link mode

Middle Channel_64QAM 3/4

Input

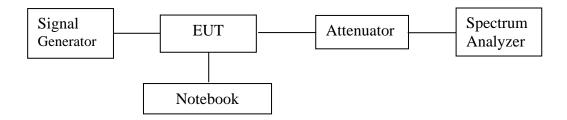

Output


Report Number: F690501/RF-RTL003363 Page: 26 of 41

Up link mode

Middle Channel_16QAM 3/4

Input


Output

Report Number: F690501/RF-RTL003363 Page: 27 of 41

5. Spurious Emissions at Antenna Terminal

5.1. Set up

5.2. Limit

According to 47 CFR Part 2 section § 2.1053 and Part 27 section § 27.53(1)(2) and § 27.53(1)(6), the power of any emissions outside the licensee's frequency bands of operation must be attenuated below the transmitter power (P in watts) by at least 43 +10 log (P) dB. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater.

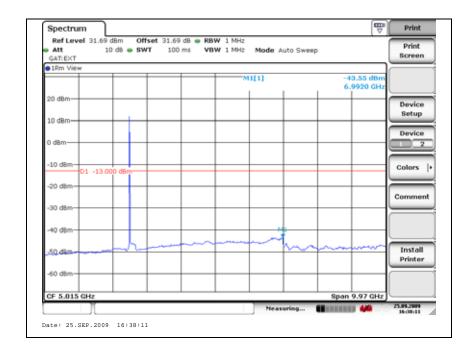
The limit is calculated to be $P(W) - \{43 dB + 10 \log [P(W)]\} = 10 \log [1000 P(W)] (dBm) - 43 dB - 10 \log [P(W)] = 30 dBm - 43 dB = -13 dBm.$

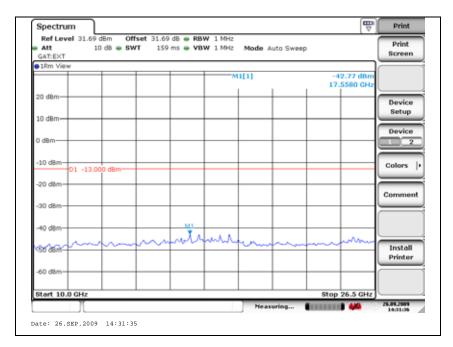
5.3. Test Procedure

- 1. The transmitter was tested while in a continuous transmit mode.
- 2. The EUT was tuned to a low, middle, and high channel in both the downlink (base to mobile) and uplink (mobile to base) directions.
- 3. The resolution bandwidth of the spectrum analyzer was set at 1 MHz.

5.4. Test Results

Ambient temperature : 21 Relative humidity : 50 % R.H.

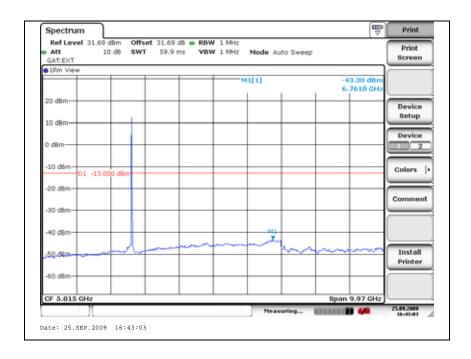

Please refer to the following plots.

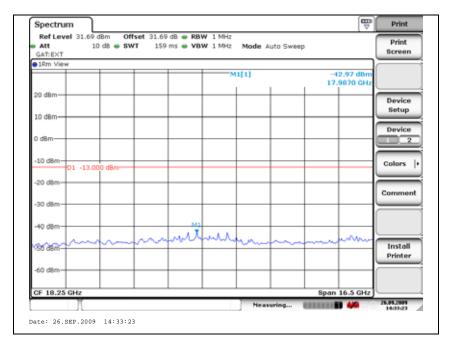


Report Number: F690501/RF-RTL003363 Page: 28 of 41

Down link mode

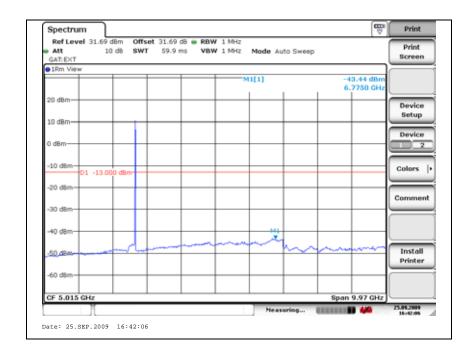
Low Channel

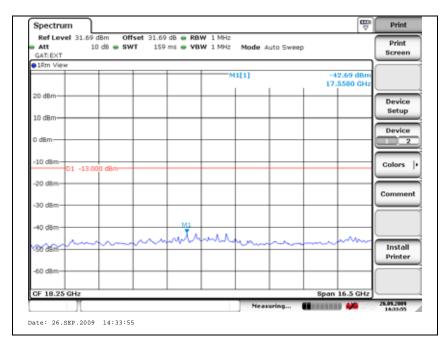




Report Number: F690501/RF-RTL003363 Page: 29 of 41

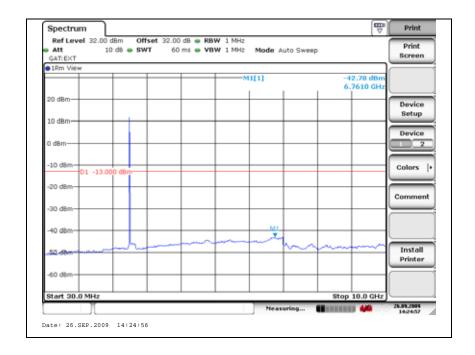
Middle Channel

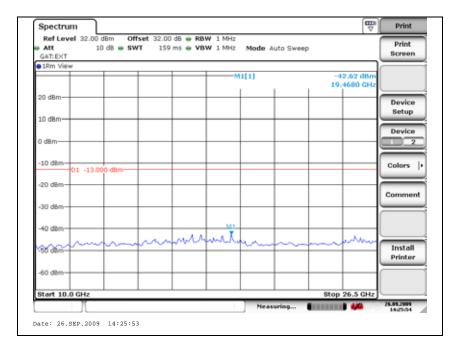




Report Number: F690501/RF-RTL003363 Page: 30 of 41

High Channel

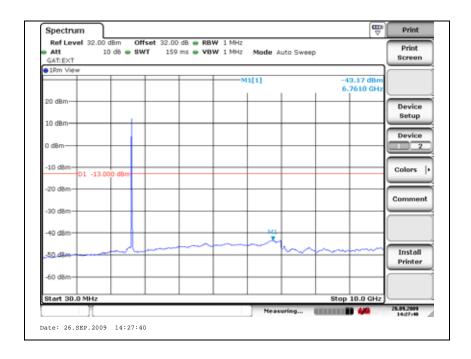


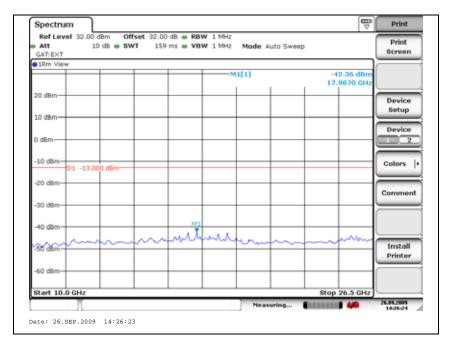


Report Number: F690501/RF-RTL003363 Page: 31 of 41

Up link mode

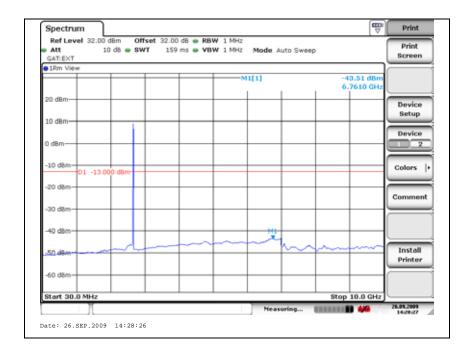
Low Channel

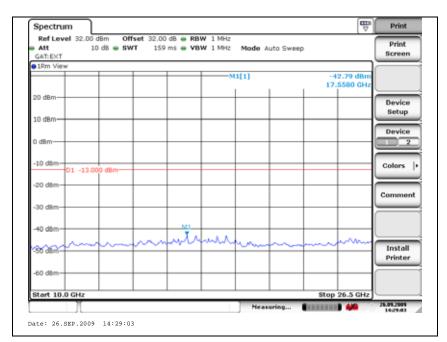




Report Number: F690501/RF-RTL003363 Page: 32 of 41

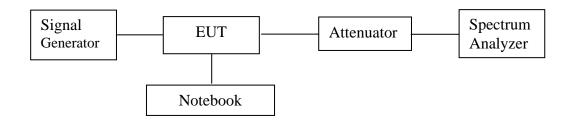
Middle Channel





Report Number: F690501/RF-RTL003363 Page: 33 of 41

High Channel



Report Number: F690501/RF-RTL003363 Page: 34 of 41

6. Band Edge

6.1. Set up

6.2. Limit

According to 47 CFR Part 2 section § 2.1053 and Part 27 section § 27.53(1)(2) and § 27.53(1)(6), the power of any emissions outside the licensee's frequency bands of operation must be attenuated below the transmitter power (P in watts) by at least 43 +10 log (P) dB. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater.

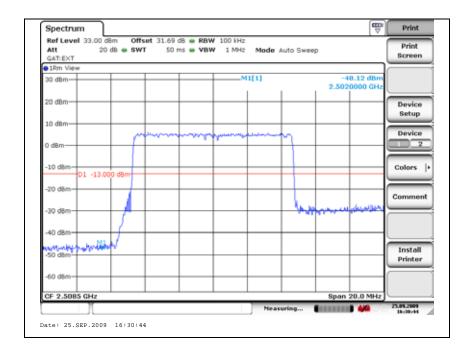
The limit is calculated to be $P(W) - \{43 dB + 10 \log [P(W)]\} = 10 \log [1000 P(W)] (dBm) - 43 dB - 10 \log [P(W)] = 30 dBm - 43 dB = -13 dBm.$

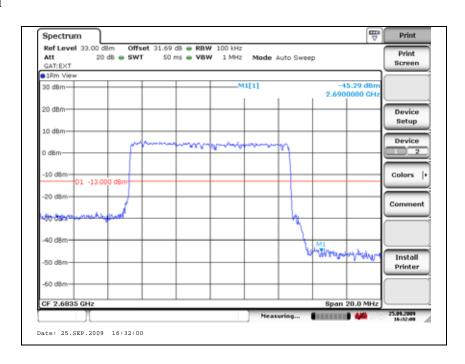
6.3. Test Procedure

- 1. The transmitter was tested while in a continuous transmit mode.
- 2. The EUT was tuned to a low, middle, and high channel in both the downlink (base to mobile) and uplink (mobile to base) directions.
- 3. The resolution bandwidth of the spectrum analyzer was set at 100 kHz.

6.4. Test Results

Ambient temperature : 21 Relative humidity : 50 % R.H.

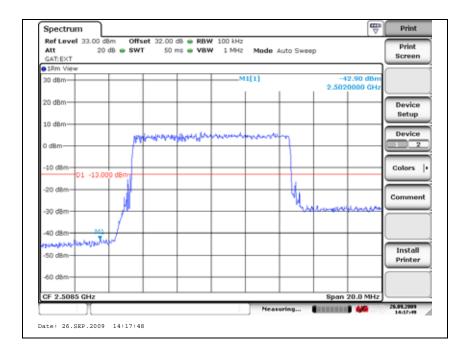

Please refer to the following plots.

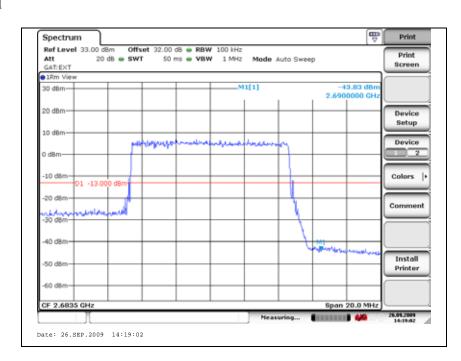

Report Number: F690501/RF-RTL003363 Page: 35 of 41

Down link mode

Low Channel

High Channel

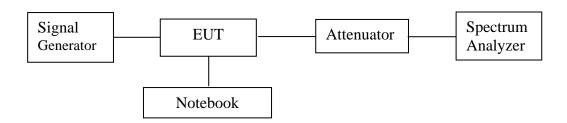



Report Number: F690501/RF-RTL003363 Page: 36 of 41

Up link mode

Low Channel

High Channel



Report Number: F690501/RF-RTL003363 Page: 37 of 41

7. Frequency Stability

7.1. set up

7.2. Limit

According to 47 CFR Part 2 section § 2.1055 and Part 27 section § 27.54, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

According to WiMAX MRCT, the frequency tolerance is limited to ±2ppm.

7.3. Test Procedure

- 1. Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed-through attenuators.
- 2. The EUT was placed inside the temperature chamber. The AC leads and RF output cable exited the chamber through an opening made for the purpose.
- 3. After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.
- 4. Frequency Stability vs. Voltage: An external variable AC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the AC end point. The output frequency was recorded for each AC.

Report Number: F690501/RF-RTL003363 Page: 38 of 41

7.4. Test Results

Ambient temperature : 20 Relative humidity : 50 % R.H.

Frequency Stability versus Temperature

Down Link

	Reference Frequency: 2630.5 MHz, Limit: ±2 ppm					
Environment	Power	Frequency Measure with Time Elapse				
Temperature ()	Supplied (Vac)	Frequency Error (Hz)	ppm			
20(Ref.)	120	0	0.0000			
50	120	-2	-0.0001			
40	120	-5	-0.0002			
30	120	-1	0.0000			
10	120	3	0.0001			
0	120	2	0.0001			
-10	120	-4	-0.0002			
-20	120	-2	-0.0001			
-30	120	3	0.0001			

Up Link

Reference Frequency: 2630.5 MHz, Limit: ±2 ppm					
Environment	Power	Frequency Measure with Time Elapse			
Temperature ()	Supplied (Vac)	Frequency Error (Hz)	ppm		
20(Ref.)	120	0	0.0000		
50	120	-4	-0.0002		
40	120	-5	-0.0002		
30	120	-3	-0.0001		
10	120	-1	0.0000		
0	120	2	0.0001		
-10	120	2	0.0001		
-20	120	4	0.0002		
-30	120	3	0.0001		

Report Number: F690501/RF-RTL003363 Page: 39 of 41

Frequency Stability versus AC

Down Link

Reference Frequency: 2630.5 MHz, Limit: ±2 ppm						
Power Supplied (Vac)	Environment Temperature ()	Frequency Error (Hz)	ppm			
102	20	0	0.0000			
138	20	0	0.0000			

Up Link

Reference Frequency: 2630.5 MHz, Limit: ±2 ppm						
Power Supplied (Vac)	ppm					
102	20	0	0.0000			
138	20	0	0.0000			

Report Number: F690501/RF-RTL003363 Page: 40 of 41

8. RF Exposure Evaluation

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength(V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time	
	(A) Limits for	Occupational /Cor	ntrol Exposures		
300 – 1500			F/300	6	
1500 - 100000			5	6	
	(B) Limits for General Population/Uncontrol Exposures				
300 – 1500			F/1500	6	
<u>1500 - 100000</u>			1	30	

8.1 Friis transmission formula : $Pd = (Pout*G)/(4*pi*R^2)$

Where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Report Number: F690501/RF-RTL003363 Page: 41 of 41

8.2 Test Result of RF Exposure Evaluation

Test Item: RF Exposure Evaluation Data

Test Mode: Normal Operation

8.2.1 Output Power into Antenna & RF Exposure Evaluation Distance

Antenna: 8 dBi(Patch Antenna)

Test Mode: Down link_64QAM 3/4

Channel	Frequency (MHz)	Output Power to Antenna (dBm)	Antenna Gain (dBi)	R (cm)
Low	2508.5	23.78	8	10.9523
Middle	2630.5	24.64	8	12.0922
High	2683.5	23.39	8	10.4714

Test Mode Mode: Up link_16QAM 3/4

Channel	Frequency (MHz)	Output Power to Antenna (dBm)	Antenna Gain (dBi)	R (cm)
Low	2508.5	23.78	8	10.9523
Middle	2630.5	24.40	8	11.7627
High	2683.5	23.45	8	10.5440

Test setup photos of EUT

A. Photo of Spurious Emission Test

