Test Report

Report Number	ESTR0503-009						
	Company Name	R-TRON, Inc.					
Applicant	Address	Jisan IT Venture Bldg., 2/3F, 1004-9/10, Doksan-Dong, Gumcheon-Gu, Seoul, Korea					
	Telephone	82-2-896-4101					
	Product Name	RF Repeater(CDMA)					
	Model No.	RTNR 1900CA-20S	Manufacturer	R-TRON, Inc.			
Product	Serial No.	NONE	Country of origin	Korea			
	Date of Issue	2005-03-31	Date of Test	2005-03-23 ~2005-03-30			
Testing Lab.		ESTECH. Co., Ltd					
Standard	FCC PART 24 , PART 2						
Tested by	S.R. Kim/ Engineer (Signature)						
Approved by	Jay Kim/ Engineering Manager (Signature)						

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned

Report Number: ESTR0503-009 **Dates: March 31, 2005** Page 1 of 33

TABLE OF CONTENTS

A	TTACHMENT: TEST RESULT CERTIFICATION
1.	INTRODUCTION3
2.	DESCRIPTION OF EUT4
3.	DESCRIPTION OF TEST5
4.	TEST DATA
	4.1 RF POWER OUTPUT7
	4.2 OCCUPIED BANDWIDTH8
	4.3 FIELD STRENGTH OF SPURIOUS RADIATION9
	4.4 SPURIOUS EMISSION AT ANTENNA TERMINAL 11
	4.5 FREQUENCY STABILITY
5.	TEST PLOTS
	5.1 RF POWER OUTPUT
	5.2 OCCUPIED BANDWIDTH19
	5.3 SPURIOUS EMISSION AT ANTENNA TERMINAL 23
	5.4 INPUT SIGNAL OUTPUT POWER
	5 5 INTER-MODULATION SIGNAL.

Dates: March 31, 2005 Report Number: ESTR0503-009 Page 2 of 33

1. INSTROCTION

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and tested in accordance with the measurement procedures as indicated in this report ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab., assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co. Ltd.

Head Office: Rm. 1015, World Venture Center II, 426-5, Gansan-dong, Geumcheon-gu, Seoul, 153-803, Korea (Safety & SAR & Telecom. Test Lab)

EMC Test Lab.: 58-1, Osan-Ri, GaNam-Myon, YeoJoo-Gun, KyungKi-Do, Korea 97-1, Hoiuk-Ri Majang-Myon, Icheon-city, KyungKi-Do, Korea

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 3 of 33

2. Description of EUT

2.1 Summary of Equipment Under Test

♦ FCC ID: STENRPCS20A

♦ Model No.: RTNR 1900CA-20S

♦ Freq. Range:

Downlink: 1930 ~ 1945MHzUplink: 1850 ~ 1865MHz

♦ Power Rating: AC110V, 50/60Hz

◆ EUT Type: RF Repeater(CDMA), 1900MHz PCS Block A

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 4 of 33

3. DESCRIPTION OF TEST

3.1 RF Power Output

- The EUT is a bi-directional amplifier repeater on A-band frequency for broadband PCS. Downlink input (from Base

station direction) is connected to a signal generator. Downlink output is connected spectrum analyzer through proper

attenuator. The input to the amplifier is set such that the maximum power output is achieved at customer supplied

antenna connector. The power measurement method of Uplink is also same way.

3.5 Occupied Bandwidth

The signal (Down/Up) input is connected to the signal generator. The input to the amplifier is set such that the

maximum power output is achieved at the customer supplied antenna connector (at the antenna connector of base

station). Maximum Allowable Downlink Power Output is 40dBm and Maximum Allowable Uplink Power Output is

25dBm. The signal output is connected to the spectrum analyzer. The VBW is set to 3 times the RBW. The sweep

time is coupled.

3.6 Spurious and Harmonic Emission at Antenna Terminal

The various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The

spectrum is scanned from the lowest frequency generated in the equipment up to 20GHz.

Set the RES BW to 1% of the emission bandwidth to show compliance with the -13dBm, limit, in the 1MHz bands

immediately outside and adjacent to the top and bottom edges of the frequency block.

For the Out-of-Band measurements a 1MHz RBW was used to scan from 30MHz to 10xfo of the fundamental carrier for

all frequency block. A display line was placed at -13dBm to show compliance for spurious, and harmonics.

Inter-modulation Attenuation Test (2 Signal Method) Blocks Tested: A-B Downlink/Uplink Modulation Tested: Three

input signals are chosen such that in the 15MHz channel blocks the lowest and second lowest channels are selected, and

highest and second highest channels.

3.7 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emission are measured outdoors at our 3 meters test range. The equipment under test is placed

on a wooden turntable 3 meters from the receive antenna. The receive antenna height and turntable rotations were

adjusted for the highest reading on the receive spectrum analyzer. A half wave dipole was substituted in place of the

EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain

the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is

repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are

taken into consideration.

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 5 of 33

3. DESCRIPTION OF TEST(CONTINUE)

3.8 Frequency stability (Temperature Variation)

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -30 °C to +50 °C using an environmental chamber.
- **b) Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.
- ** The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Time Period and Procedure

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (22°C to 25°C to provide a reference.)
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C (usually 14 16hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements are made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency measurements are at 10 intervals starting -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after re-applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 6 of 33

4. TEST DATA

4.1 RF Power Output

MEASUREMENT INSTRUMENTS

EQUIPMENT	MANUFACTURE	MODEL NO.	
Spectrum Analyzer	Agilent	E4407B	
Signal Generator	HP	E4432B	
Attenuator	Weinschel Corp.	58-40-34	

*TEST RESULT

Downlink

	Ch. No.	Freq. (MHz)	Power Output (dBm)
Low Ch.	25	1931.25	42.46
Mid Ch.	150	1937.50	43.01
High Ch.	275	1943.75	42.54

Uplink

	Ch. No.	Freq. (MHz)	Power Output (dBm)
Low Ch.	25	1851.25	27.81
Mid Ch.	150	1857.50	27.95
High Ch.	275	1863.75	27.70

Dates: March 31, 2005 Report Number: ESTR0503-009 Page 7 of 33

4. TEST DATA(CONTINUED)

4.2 OCCUPIED BANDWIDTH

* MEASUREMENT INSTRUMENTS

EQUIPMENT	MANUFACTURE	MODEL NO.
Spectrum Analyzer	Agilent	E4407B
Signal Generator	HP	E4432B
Attenuator	Weinschel Corp.	58-40-34

Test Result:

Downlink

Channel	Frequency(MHz)	26dB BW(MHz)	
25	1931.25	1.405	
150	1937.50	1.400	
275	1943.75	1.387	

Uplink

Channel	Frequency(MHz)	26dB BW(MHz)	
25	1851.25	1.384	
150	1857.50	1.395	
275	1863.75	1.389	

Report Number: ESTR0503-009 **Dates: March 31, 2005** Page 8 of 33

4. TEST DATA (CONTINUE)

4.3 FIELD STRENGTH OF SPURIOUS RADIATION

MEASUREMENT INSTRUMENTS

EQUIPMENT	MANUFACTURE	MODEL NO.
Spectrum Analyzer	HP	8563E
Signal Generator	HP	83731B
Signal Generator	HP	E4432B
Power Meter	HP	EPM-442A
Attenuator	Weinschel Corp.	58-40-34
Attenuator	Bird Electronic Corp.	100-SA-MFN-30
Horn Antenna	SCHWARZBECK	BBHA 9120 D
Horn Antenna	SCHWARZBECK	BBHA 9120 D

Test Result:

- Downlink

DOWNIINK							
	SA	Correction Factor (dB)		Peak Value			
FREQ. (MHz)	Reading			(dBm)		Limit	POL
1162 (. (11112)	(dBuV/m)	Antenna	CL	SG Reading	E.I.R.P.	(dBm)	(H/V)
	(uDu v/iii)	gain(dBi)	(dB)	SO Reading	E.I.K.F.		
3862.5 (ch.25)	26.50	12.60	8.33	-55.88	-51.61	-13.0	Н
5793.75	26.00	13.00	9.64	-51.95	-48.59	-13.0	Н
3875.0 (ch.150)	26.50	12.60	8.33	-56.55	-52.28	-13.0	Н
5812.5	26.00	13.00	9.64	-54.64	-51.28	-13.0	Н
3887.5 (ch.275)	26.00	12.60	8.33	-57.11	-52.84	-13.0	Н
5831.25	26.00	13.00	9.64	-53.64	-50.28	-13.0	Н

Report Number: ESTR0503-009 **Dates: March 31, 2005** Page 9 of 33

4. TEST DATA (CONTINUE)

- Uplink

- Сринк		Correction	on Factor	Peak V	Value		
FREQ. (MHz)	SA Reading (dBuV/m)	(dB)		(dBm)		Limit	POL
		Antenna gain(dBi)	CL (dB)	SG Reading	E.I.R.P.	(dBm)	(H/V)
3702.5 (ch.25)	25.82	12.60	8.33	-57.65	-53.38	-13.0	Н
5553.75	25.62	13.10	9.64	-51.60	-48.14	-13.0	Н
3715.0 (ch.150)	26.48	12.60	8.33	-61.12	-56.85	-13.0	V
5572.5	26.48	13.10	9.64	-54.61	-51.15	-13.0	V
3727.5(ch.275)	26.50	12.60	8.33	-56.65	-52.38	-13.0	Н
5591.25	26.10	13.10	9.64	-52.81	-49.35	-13.0	Н

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 10 of 33

4. TEST DATA(CONTINUED)

4.4 SPURIOUS EMISSION AT ANTENNA TERMINAL

MEASUREMENT INSTRUMENTS

EQUIPMENT	MANUFACTURE	MODEL NO.
Spectrum Analyzer	Agilent	E4407B
Signal Generator	HP	E4432B
Attenuator	Bird Electronic Corp.	100-SA-MFN-30

*TEST RESULT

Downlink (Spurious Emission: Block Edge)

Freq. (MHz)	(z) Channel Measurement Value(dBm)		Limit(dBm)	Margin(dB)
1930.00	25	-35.17	-13	-22.17
1945.00	275	-30.42	-13	-17.42

Uplink (Spurious Emission: Block Edge)

Freq. (MHz)	1Hz) Channel Measurement Value(dBm)		Limit(dBm)	Margin(dB)
1850.00	25	-34.99	-13	-21.99
1865.00	275	-41.26	-13	-28.26

Report Number: ESTR0503-009 **Dates: March 31, 2005** Page 11 of 33

4. TEST DATA(CONTINUED)

Downlink (Spurious Emission: Out of Band)

Freq. (MHz) Channel		Measurement Value(dBm)	Limit(dBm)	Margin(dB)
1931.25	25	-22.90	-13	-9.9
1937.50	150	-23.06	-13	-10.06
1943.75	275	-22.85	-13	-9.85

Uplink (Spurious Emission: Out of Band)

Freq. (MHz) Channel		Measurement Value(dBm)	Limit(dBm)	Margin(dB)
1851.25	25	-28.13	-13	-15.13
1857.50	150	-27.89	-13	-14.89
1863.75	275	-27.52	-13	-14.52

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 12 of 33

4. TEST DATA(CONTINUED)

4.5 FREQUENCY STABILITY

OPERATING FREQUENCY: 1,937,500,000 Hz

CHANNEL: ______150

REFERENCE VOLTAGE: _____ 110 ____ VAC

DEVIATION LIMIT: ± 0.0001 % or 1ppm

Downlink Middle Channel

VOLTAGE (%)	POWER (VAC)	TEMP. (°C)	FREQ. (Hz)	Deviation (%)
(70)	(VAC)	(0)	(IIZ)	(70)
100 %		+20°C (Ref)	1,937,500,008	0.000000
100 %		-30	1,937,500,035	0.000001
100 %		-20	1,937,500,028	0.000001
100 %		-10	1,937,500,020	0.000001
100 %		0	1,937,500,018	0.000001
100 %	110	+10	1,937,500,020	0.000001
100 %		+20	1,937,500,008	0.000000
100 %		+25	1,937,499,993	0.000001
100 %		+30	1,937,499,995	0.000001
100 %		+40	1,937,499,988	0.000001
100 %		+50	1,937,499,988	0.000001
85 %	93.5	+20	1,937,500,012	0.0000002
115 %	126.5	+20	1,937,500,012	0.0000002
ENDPOINT	70	+20	1,937,500,015	0.0000004

Report Number: ESTR0503-009 **Dates: March 31, 2005** Page 13 of 33

4. TEST DATA(CONTINUED)

OPERATING FREQUENCY: 1,857,500,000 Hz

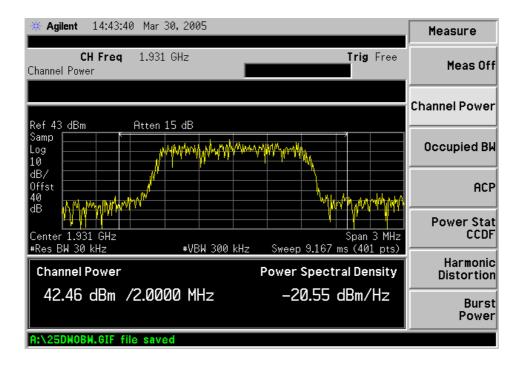
CHANNEL: ______150

REFERENCE VOLTAGE: _____ 110 VAC

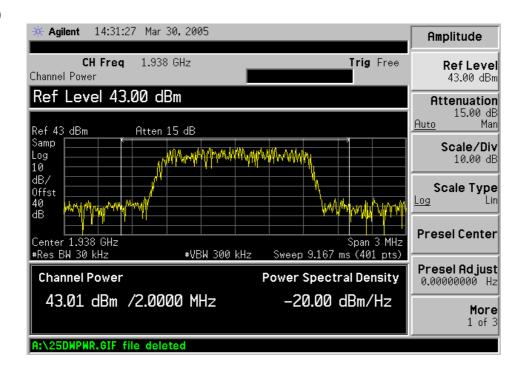
DEVIATION LIMIT: ± 0.0001 % or 1ppm

Uplink Middle Channel

VOLTAGE (%)	POWER (VAC)	TEMP.	FREQ. (Hz)	Deviation (%)
100 %		+20°C (Ref)	1,857,500,005	0.000000
100 %		-30	1,857,500,043	0.000002
100 %		-20	1,857,500,040	0.000002
100 %		-10	1,857,500,038	0.000002
100 %		0	1,857,500,038	0.000002
100 %	110	+10	1,857,500,036	0.000002
100 %		+20	1,857,500,005	0.000000
100 %		+25	1,857,499,990	0.000001
100 %		+30	1,857,499,985	0.000001
100 %		+40	1,857,499,972	0.000002
100 %		+50	1,857,499,972	0.000002
85 %	93.5	+20	1,857,499,995	0.000001
115 %	126.5	+20	1,857,499,993	0.000001
ENDPOINT	70	+20	1,857,499,990	0.000001

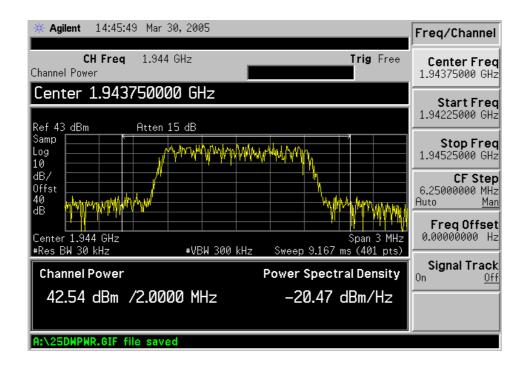

Report Number: ESTR0503-009 **Dates: March 31, 2005** Page 14 of 33

5. TEST PLOTS


5.1 RF Power Output

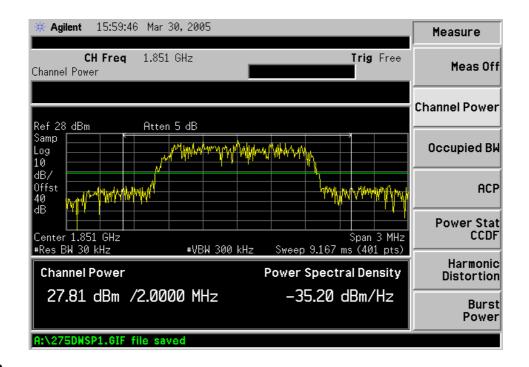
Downlink

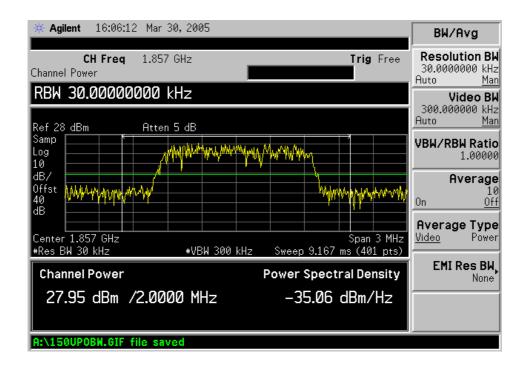
CH 25


CH 150

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 15 of 33

5. TEST PLOTS (CONTINUED)

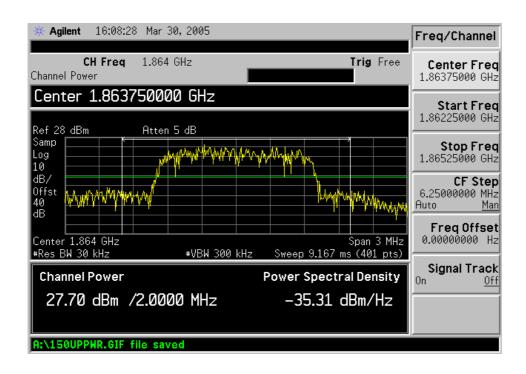

CH 275


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 16 of 33

5. TEST PLOTS (CONTINUED)

Uplink CH 25

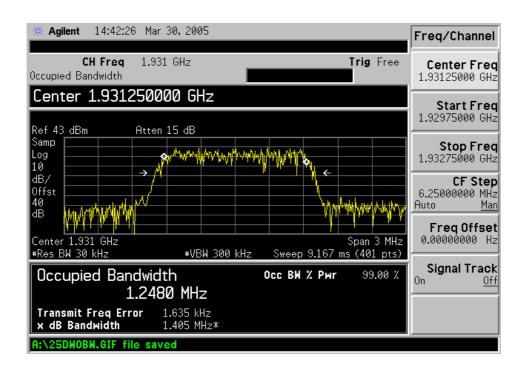
CH 150



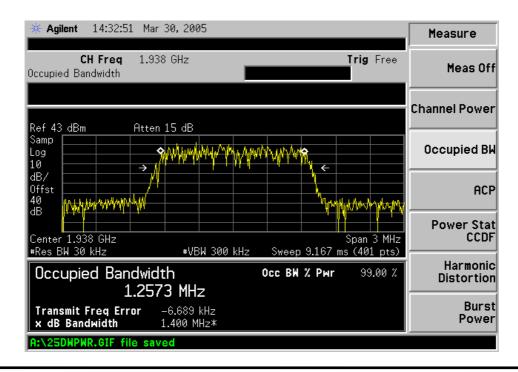
Report Number: ESTR0503-009 Dates: March 31, 2005 Page 17 of 33

5. TEST PLOTS (CONTINUED)

CH 275

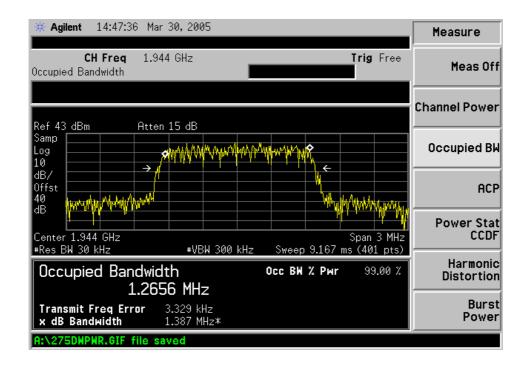

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 18 of 33

5. TEST PLOTS (CONTINUED)


5.2 Occupied Bandwidth

Downlink

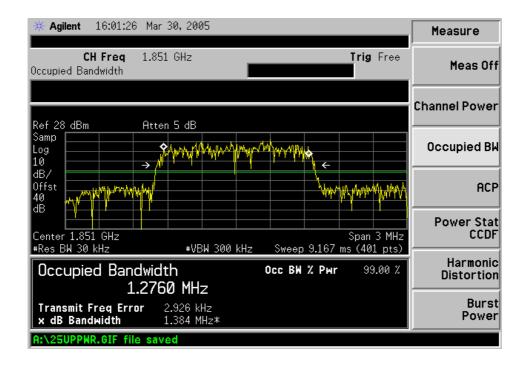
CH 25


CH 150

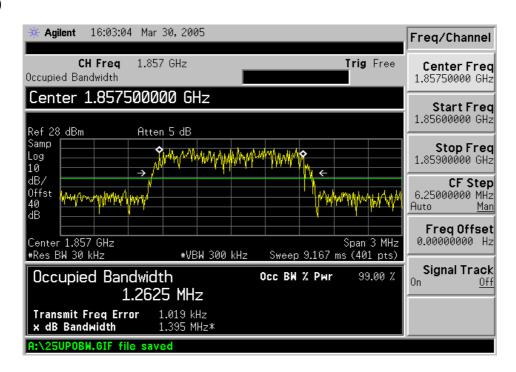
Report Number: ESTR0503-009 Dates: March 31, 2005 Page 19 of 33

5. TEST PLOTS (CONTINUED)

CH 275

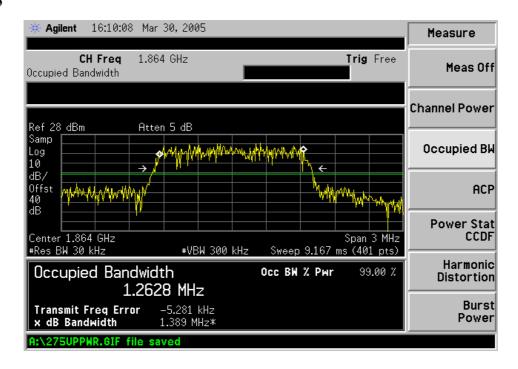


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 20 of 33


5. TEST PLOTS (CONTINUED)

Uplink

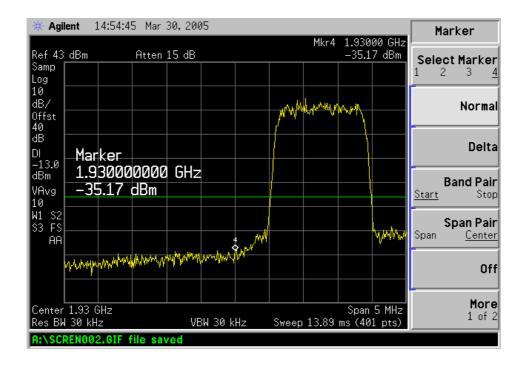
CH 25

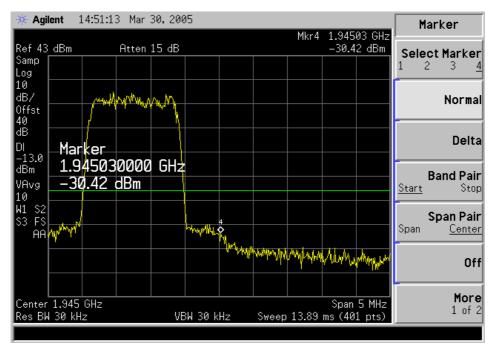

CH 150

Report Number: ESTR0503-009 **Dates: March 31, 2005** Page 21 of 33

5. TEST PLOTS (CONTINUED)

CH 275

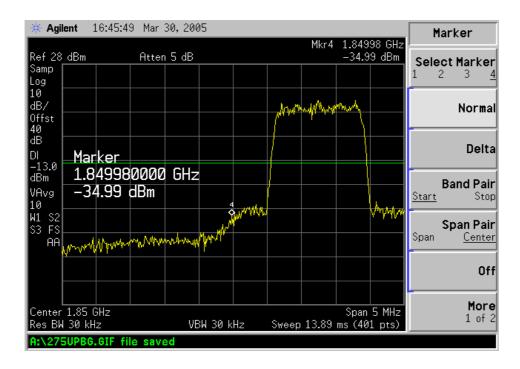


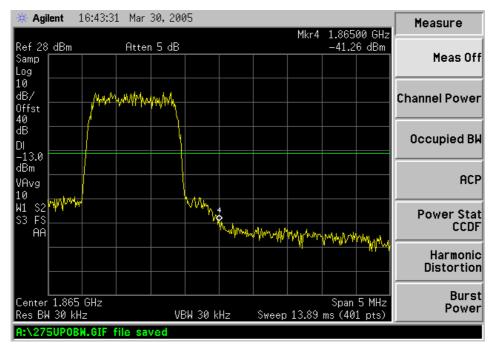

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 22 of 33

5. TEST PLOTS (CONTINUED)

5.3 Spurious Emission At Antenna Terminal

Band Edge (Downlink)

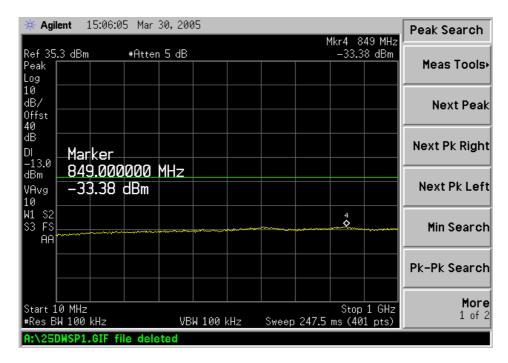


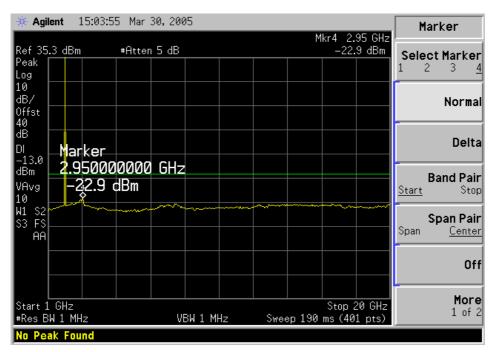


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 23 of 33

5. TEST PLOTS (CONTINUED)

Band Edge (Uplink)

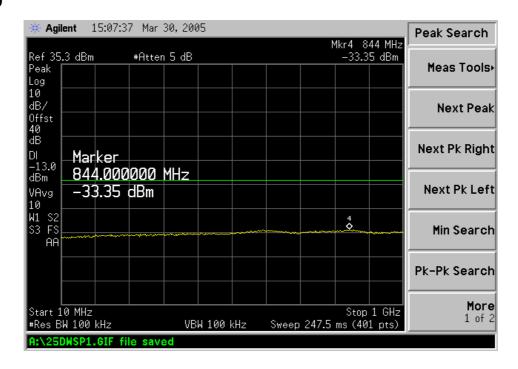


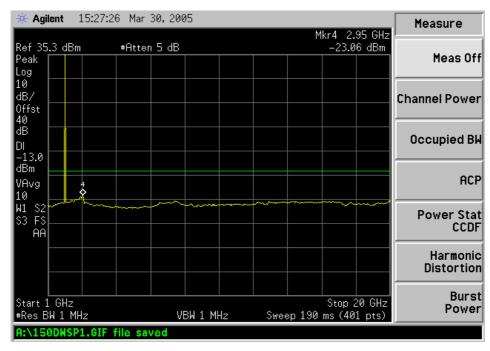


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 24 of 33

5. TEST PLOTS (CONTINUED)

Out of Band Emission (Downlink) CH 25

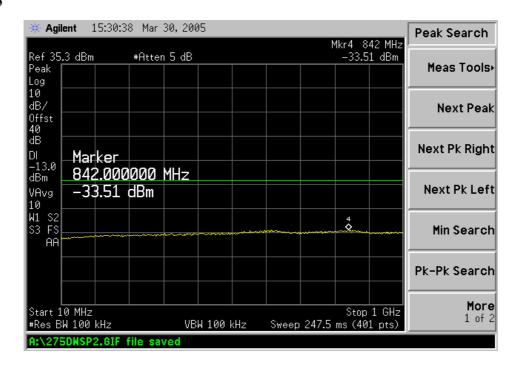


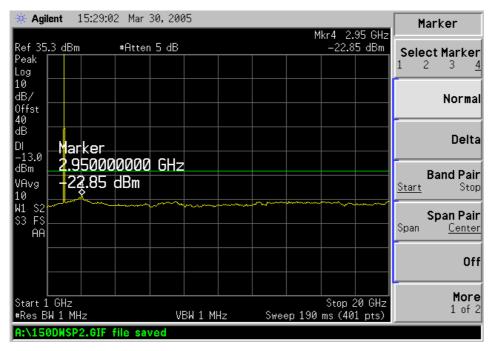


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 25 of 33

5. TEST PLOTS (CONTINUED)

CH 150

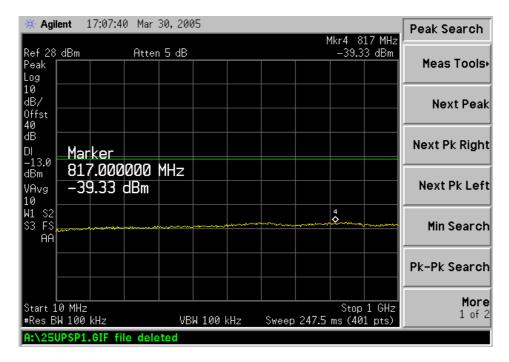


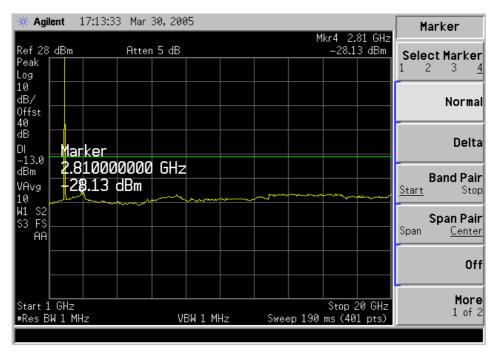


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 26 of 33

5. TEST PLOTS (CONTINUED)

CH 275

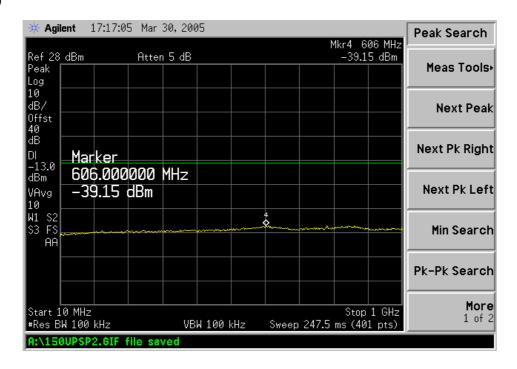


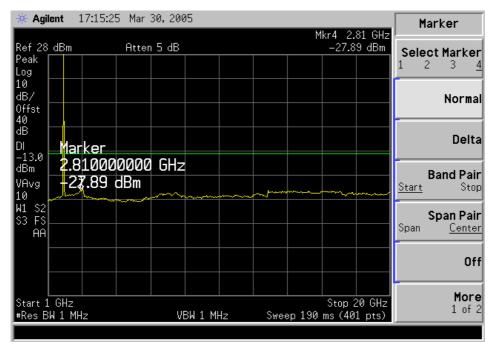


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 27 of 33

5. TEST PLOTS (CONTINUED)

Out of Band Emission (Uplink) CH 25

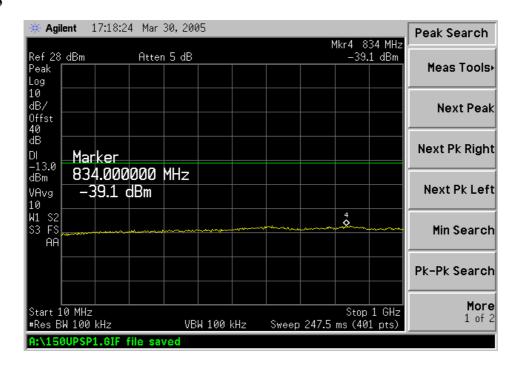


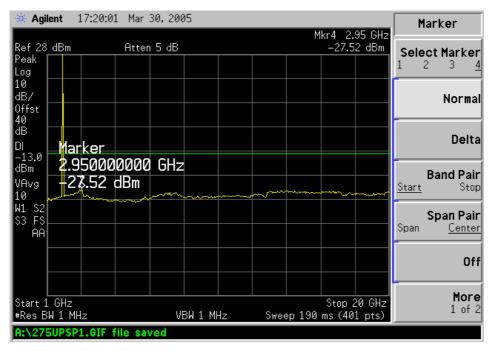


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 28 of 33

5. TEST PLOTS (CONTINUED)

CH 150

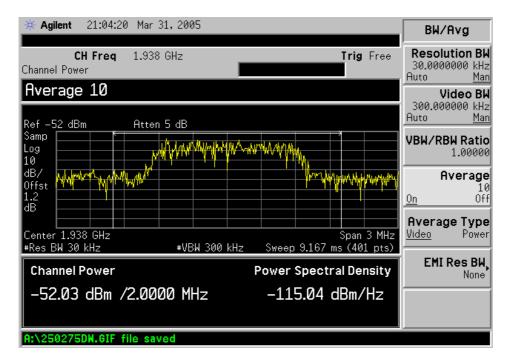




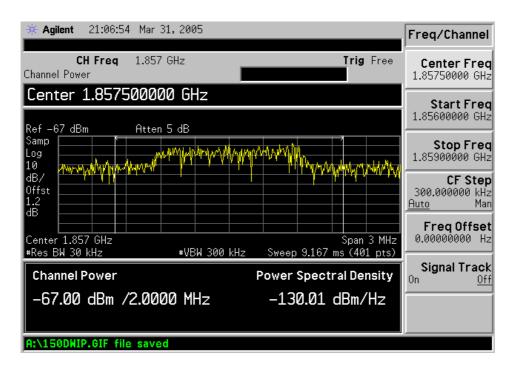
Report Number: ESTR0503-009 Dates: March 31, 2005 Page 29 of 33

5. TEST PLOTS (CONTINUED)

CH 275



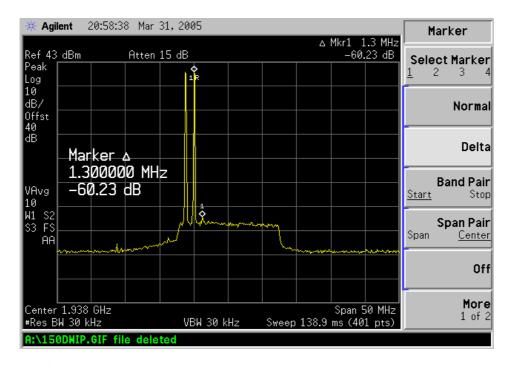
Report Number: ESTR0503-009 Dates: March 31, 2005 Page 30 of 33


5. TEST PLOTS (CONTINUED)

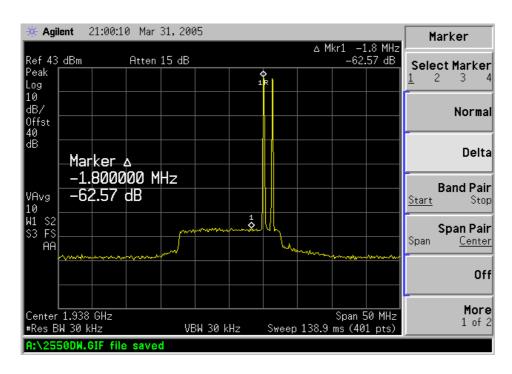
5.4 Input Signal Output Power

Downlink(CH 150)

<u>Uplink(CH 150)</u>

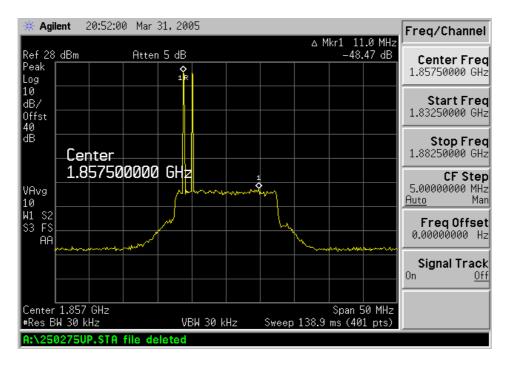


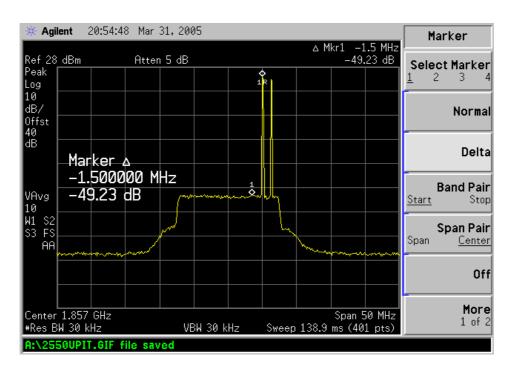
Report Number: ESTR0503-009 Dates: March 31, 2005 Page 31 of 33


5. TEST PLOTS (CONTINUED)

5.5 Inter-modulation Signal

Downlink(CH 25&50)


Downlink(CH 250&275)


Report Number: ESTR0503-009 Dates: March 31, 2005 Page 32 of 33

5. TEST PLOTS (CONTINUED)

Uplink(CH 25&50)

<u>Uplink(CH 250&275)</u>

Report Number: ESTR0503-009 Dates: March 31, 2005 Page 33 of 33