

Königswinkel 10 32825 Blomberg Germany Phone: +49 (0) 52 35 95 00-0 Fax: +49 (0) 52 35 95 00-10

# **Test Report**

Report Number: F136015E4, 3rd version

Applicant:

### Miele & Cie. KG Werk Oelde

Manufacturer:

Miele & Cie. KG Werk Oelde

Equipment under Test (EUT):

HR1954 with Microwave oven inside



Laboratory (CAB) accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under the Reg. No. D-PL-17186-01-02, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1



#### REFERENCES

- [1] ANSI C63.4-2009 American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC CFR 47 Part 18 (August 2013) Radio Frequency Devices
- [3] FCC/OST MP-5 (1986) FCC methods of measurement of radio noise emissions from industrial, scientific and medical equipment.

#### TEST RESULT

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

| Test<br>engineer:    | Thomas KÜHN   | 5 Julio Signature | 30 October 2014 |
|----------------------|---------------|-------------------|-----------------|
| Authorized reviewer: | Bernd STEINER | B.Sh              | 30 October 2014 |
|                      | Name          | Signature         | Date            |

#### RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalizations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.



## **Contents:**

# Page

| 1 | Identifica | ition                                                     | 4  |
|---|------------|-----------------------------------------------------------|----|
|   | 1.1 Applie | cant                                                      | 4  |
|   | 1.2 Manu   | facturer                                                  | 4  |
|   | 1.3 Test l | aboratory                                                 | 4  |
|   | 1.4 EUT    | (Equipment Under Test)                                    | 5  |
|   | 1.5 Techi  | nical data of equipment                                   | 5  |
|   | 1.6 Dates  | 5                                                         | 6  |
| 2 | Operatio   | nal states                                                | 6  |
| 3 | Additiona  | al information                                            | 7  |
| 4 | Overviev   | ۷                                                         | 7  |
| 5 | Test rest  | ults                                                      | 8  |
|   | 5.1 Radia  | ition hazard                                              | 8  |
|   | 5.1.1      | Method of measurement (radiation hazard)                  | 8  |
|   | 5.1.2      | Test results (radiation hazard))                          | 8  |
|   | 5.2 Outpu  | ut / input power                                          | 9  |
|   | 5.2.1      | Method of measurement (output / input power)              | 9  |
|   | 5.2.2      | Test results (output power)                               | 10 |
|   | 5.3 Opera  | ating frequencies                                         |    |
|   | 5.3.1      | Method of measurement (operating frequencies)             |    |
|   | 5.3.2      | Test results (operation frequency)                        |    |
|   |            | ited emissions                                            |    |
|   | 5.4.1      | Method of measurement (Radiated emissions)                |    |
|   | 5.4.2      | Test results (radiated emissions)                         |    |
|   |            | ucted emissions on power supply lines (150 kHz to 30 MHz) |    |
|   | 5.5.1      | Method of measurement                                     |    |
|   | 5.5.2      | Test results (conducted emissions on power supply lines)  |    |
| 6 | •          | ipment and ancillaries used for tests                     |    |
| 7 | Report h   | istory                                                    | 30 |
| 8 | List of ar | inexes                                                    | 30 |



## 1 Identification

## 1.1 Applicant

| Name:                                                          | Miele & Cie. KG<br>Werk Oelde       |
|----------------------------------------------------------------|-------------------------------------|
| Address:                                                       | Carl- Miele -Platz 1<br>59302 Oelde |
| Country:                                                       | Germany                             |
| Name for contact purposes:                                     | Mr. Andreas FABRIZIUS               |
| Phone:                                                         | +49 52 45 91 – 74 615               |
| Fax:                                                           | +49 52 45 91 – 78 46 15             |
| eMail Address:                                                 | andreas.fabrizius@miele.de          |
| Applicant represented during the test by the following person: | Mr. Andreas FABRIZIUS               |

## 1.2 Manufacturer

| Name:                                                             | Miele & Cie. KG<br>Werk Oelde     |
|-------------------------------------------------------------------|-----------------------------------|
| Address:                                                          | Carl-Miele-Platz 1<br>59302 Oelde |
| Country:                                                          | Germany                           |
| Name for contact purposes:                                        | Mr. Andreas FABRIZIUS             |
| Phone:                                                            | +49 52 45 91 – 74 615             |
| Fax:                                                              | +49 52 45 91 – 78 46 15           |
| eMail Address:                                                    | andreas.fabrizius@miele.de        |
| Manufacturer represented during the test by the following person: | Mr. Andreas FABRIZIUS             |

## 1.3 Test laboratory

| 32825 Blomberg<br>Germany | The tests were carried out at: |  |
|---------------------------|--------------------------------|--|
|---------------------------|--------------------------------|--|

accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under Reg. No. D-PL-17186-01-02, FCC Test site registration number.



## 1.4 EUT (Equipment Under Test)

| Test object: *                            | Kitchen oven with Microwave oven inside |
|-------------------------------------------|-----------------------------------------|
| Туре: *                                   | HR1954                                  |
| FCC ID: *                                 | SSVSKM4801                              |
| Serial number of kitchen oven: *          | 00/098939962                            |
| Highest / lowest internal<br>frequency: * | 2445 MHz / 32.768 kHz                   |

## 1.5 Technical data of equipment

| Operating frequency: *           | 2445 MH            | Z                              |                    |                       |                    |                       |
|----------------------------------|--------------------|--------------------------------|--------------------|-----------------------|--------------------|-----------------------|
| Magnetron type: *                | 2M248H(            | ML)                            |                    |                       |                    |                       |
| Rated power input: *             | 1600 W             |                                |                    |                       |                    |                       |
| Rated microwave power: *         | 1000 W             |                                |                    |                       |                    |                       |
| Power Supply:                    |                    | s (120 V AC / o<br>bhase angle | 60 Hz) (Hl         | R1954), two pł        | nases eith         | er with 120 °         |
| Supply Voltage: *                | U <sub>Nom</sub> = | 120 VAC                        | U <sub>Min</sub> = | U <sub>Nom</sub> -15% | U <sub>Max</sub> = | U <sub>Nom</sub> +15% |
| Temperature range: *             | 0 °C to 8          | 5 °C                           |                    |                       |                    |                       |
| Ancillaries to be tested with: * | None               |                                |                    |                       |                    |                       |

\* declared by the applicant.

#### The following external I/O cables were used:

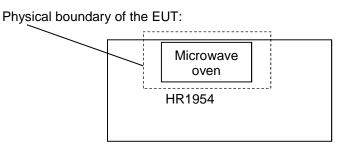
| Identification | Conne                                  | ctor      | Length |
|----------------|----------------------------------------|-----------|--------|
|                | EUT                                    | Ancillary |        |
| Power supply   | 5 pole CEE 16<br>(mounted for testing) | -         | 1.5 m  |
| -              | -                                      | -         | -      |

\*: Length during the test if no other specified.



## 1.6 Dates

| Date of receipt of test sample: | 07 January 2014 |
|---------------------------------|-----------------|
| Start of test:                  | 13 January 2014 |
| End of test:                    | 24 January 2014 |


## 2 Operational states

The EUT is a floor standing kitchen oven with a separate microwave oven inside. The oven was supplied by an AC-mains network with 120 VAC / 60 Hz during all tests. Object of this test report is the CFR 47 Part 18 transmitter (the microwave oven).

For detail information of the functionality of the EUT please refer the functional description of the applicant.

The following operation modes were used during the tests:

| Operation<br>mode | Description of the operation mode                                                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                 | Microwave operation with a two phases AC-Mains network with 120 ° phase angle $(U_{mains} = \sqrt{3} \times U_{nom} = \sqrt{3} \times 120 \text{ VAC} = 208 \text{ VAC})$ |
| 4                 | Microwave operation with a two phases AC-Mains network with 180 ° phase angle $(U_{mains} = 2 \times U_{nom} = 2 \times 120 \text{ VAC} = 240 \text{ VAC})$               |





## **3** Additional information

During the tests the EUT was not labelled as required by FCC / IC.

The H1954 contains also a kitchen oven with a temperature sensor, which is tested in accordance to FCC 47 CFR Part 15. The results of these measurements are presented in a separate test report with the PHOENIX TEST GmbH test report reference F136015E3.

#### 4 Overview

| Application                                             | CFR section                   | Status | Refer page |
|---------------------------------------------------------|-------------------------------|--------|------------|
| Radiation Hazard                                        | FCC/OST MP-5, OET Bulletin 56 | Passed | 8          |
| Power Output                                            | FCC/OST MP-5                  | Passed | 9          |
| Operating frequencies                                   | 18.301, 18.303                | Passed | 11 et seq. |
| Field strength limits (Spurious and harmonic emissions) | 18.305                        | Passed | 22 et seq. |
| AC line conducted emissions                             | 18.307                        | Passed | 26 et seq. |



### 5 Test results

#### 5.1 Radiation hazard

#### 5.1.1 Method of measurement (radiation hazard)

The EUT was supplied with a two phase AC mains network with 120 VAC / 60 Hz / 120  $^{\circ}$ . It was set into operation with its maximum power and a load of 1000 ml of water was located in the center of the oven. The leakage radiation was measured on all sides of the EUT using the field probe.

Test set-up:



#### 5.1.2 Test results (radiation hazard))

| Ambient temperature20 °CRelative humidity52 |
|---------------------------------------------|
|---------------------------------------------|

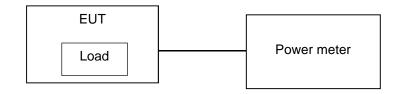
| Maximum power density   | Limit                   | Result |
|-------------------------|-------------------------|--------|
| 0.24 mW/cm <sup>2</sup> | 1.0 mW/cm <sup>2</sup>  | Passed |
| Measurement uncertainty | Measurement uncertainty |        |

| TEST EQUIPMENT USED FOR THE TEST: |
|-----------------------------------|
| 170, 186, 187, 189, 190           |



## 5.2 Output / input power

#### 5.2.1 Method of measurement (output / input power)


The power consumption of the EUT was measured with power analyser and compared with the manufacturers declared nominal power. The power output was measured by the calorimetric method, using a load of 1000 ml of water with the beaker located in the center of the oven. The output power was calculated from the measured temperature rise of the load over a period of time using the following formula:

$$P = (4.187 \times m_W \times (T_2 - T_1) + 0.55 \times m_C \times (T_2 - T_0)) \div t$$

Where

 $\begin{array}{l} \mathsf{P} = \mathsf{Output} \ \mathsf{power} \ \mathsf{in} \ \mathsf{W}, \\ \mathsf{m}_\mathsf{W} = \mathsf{Mass} \ \mathsf{of} \ \mathsf{water} \ \mathsf{in} \ \mathsf{g}, \\ \mathsf{m}_\mathsf{C} = \mathsf{Mass} \ \mathsf{of} \ \mathsf{beaker} \ \mathsf{in} \ \mathsf{g}, \\ \mathsf{T}_0 = \mathsf{Ambient} \ \mathsf{temperature} \ \mathsf{in} \ ^\circ \mathsf{C}, \\ \mathsf{T}_1 = \mathsf{Starting} \ \mathsf{temperature} \ \mathsf{in} \ ^\circ \mathsf{C}, \\ \mathsf{T}_2 = \mathsf{Final} \ \mathsf{temperature} \ \mathsf{in} \ ^\circ \mathsf{C}, \\ \mathsf{t} = \mathsf{Time} \ \mathsf{in} \ \mathsf{sec.} \end{array}$ 

Test set-up:





#### 5.2.2 Test results (output power)

| Ambient temperature | 20 °C | Relative humidity | 52 % |
|---------------------|-------|-------------------|------|
|                     |       |                   |      |

| RF output po  | RF output power measurement |                        |                         |                      |      |                        |
|---------------|-----------------------------|------------------------|-------------------------|----------------------|------|------------------------|
| Mass of water | Mass of<br>beaker           | Ambient<br>temperature | Starting<br>temperature | Final<br>temperature | Time | Calculated<br>RF power |
| 1010 g        | 150 g                       | 20.0 °C                | 15.9 °C                 | 28.3 °C              | 60 s | 888.4 W                |

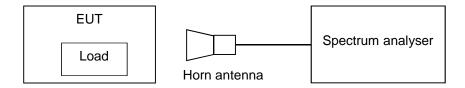
| Input pow | Input power measurement                                |                  |                                          |                                                  |  |  |
|-----------|--------------------------------------------------------|------------------|------------------------------------------|--------------------------------------------------|--|--|
| Load      | Input Voltage                                          | Input<br>current | Power consumption                        | Rated power input<br>(manufacturers declaration) |  |  |
| 1000 ml   | L1 – N: 120 VAC<br>L2 – N: 120 VAC<br>L1 – L2: 240 VAC |                  | L1:825 W<br>L2: 857 W<br>L1 + L2: 1682 W | 1600 W                                           |  |  |

#### TEST EQUIPMENT USED FOR THE TEST:

186, 187, 189, 190, 200



#### **Operating frequencies** 5.3


#### 5.3.1 Method of measurement (operating frequencies)

The measurement was carried out in accordance to the FCC/OST MP 5 [3]. The frequency was measured with the help of a spectrum analyser and a horn antenna, positioned in a 1 m distance to the EUTs front.

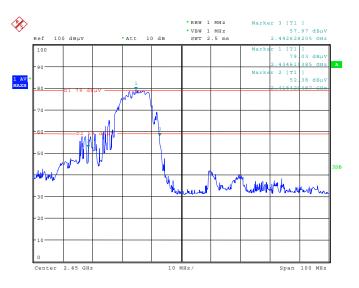
The frequency measurements were carried out as function of the supply voltage / phase angle and load with the following variations:

- Supply voltage range: 80 % to 125 % of the nominal supply voltage, -
- Phase angle 120 ° and 180 °, Load from 1000 ml to 200 ml. -
- -

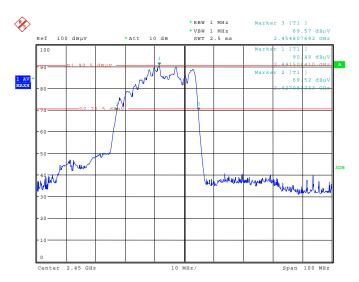
#### Test set-up:



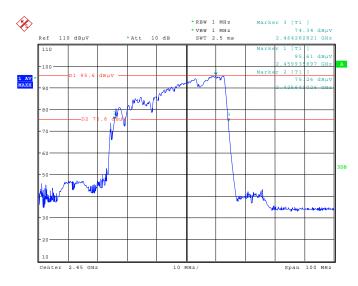
#### Limits:


| ISM frequency | Tolerance  |
|---------------|------------|
| 2450 MHz      | ± 50.0 MHz |



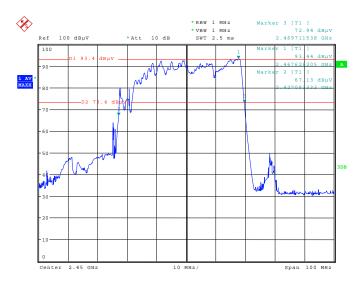

#### 5.3.2 Test results (operation frequency)

| Ambient temperature | 20 °C | Relative humidity | 52 % |
|---------------------|-------|-------------------|------|
|                     |       |                   |      |


136015\_90.wmf: Operation frequency with 96 VAC, 120 ° and 1000 ml load:



## 136015\_91.wmf: Operation frequency with 108 VAC, 120 ° and 1000 ml load:







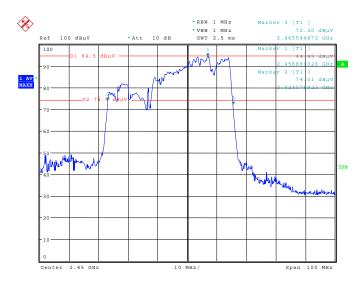


#### 136015\_85.wmf: Operation frequency with 120 VAC, 120 ° and 1000 ml load:

#### 136015 92.wmf: Operation frequency with 135 VAC, 120 ° and 1000 ml load:

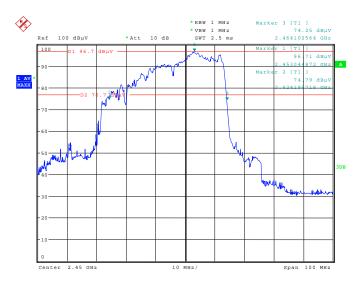




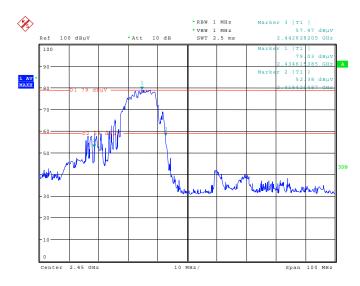




#### 136015\_93.wmf: Operation frequency with 150 VAC, 120 ° and 1000 ml load:

#### 136015 97.wmf: Operation frequency with 96 VAC, 180 ° and 1000 ml load:

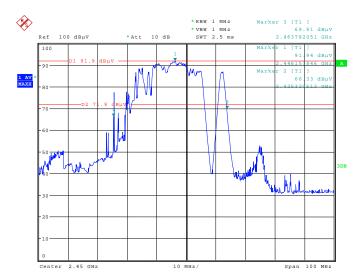




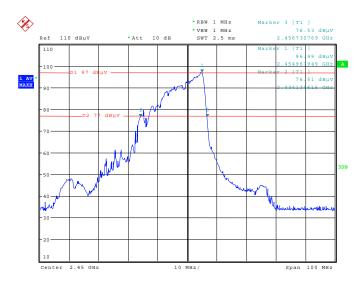




#### 136015\_96.wmf: Operation frequency with 108 VAC, 180 ° and 1000 ml load:

#### 136015 80.wmf: Operation frequency with 120 VAC, 180 ° and 1000 ml load:

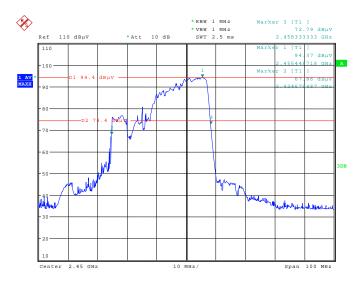




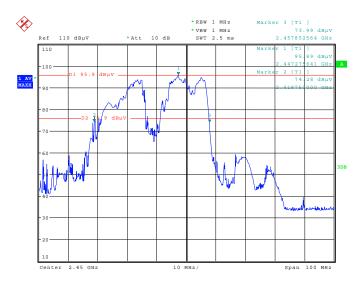




#### 136015\_95.wmf: Operation frequency with 135 VAC, 180 ° and 1000 ml load:

#### 136015 94.wmf: Operation frequency with 150 VAC, 180 ° and 1000 ml load:

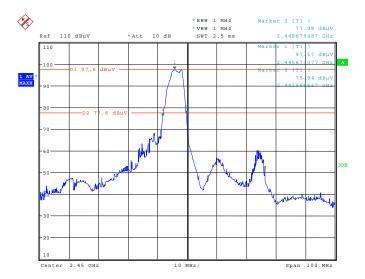




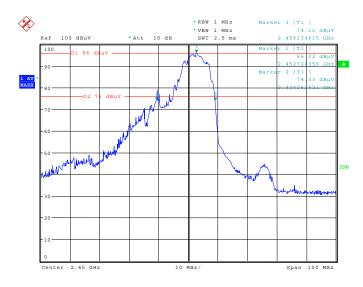




#### 136015\_86.wmf: Operation frequency with 120 VAC, 120 ° and 800 ml load:

#### 136015 87.wmf: Operation frequency with 120 VAC, 120 ° and 600 ml load:





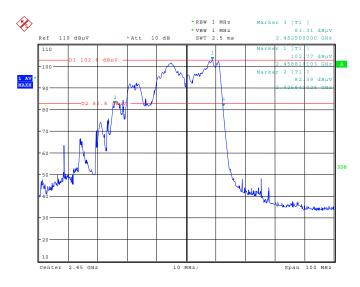




#### 136015\_88.wmf: Operation frequency with 120 VAC, 120 ° and 400 ml load:

#### 136015 89.wmf: Operation frequency with 120 VAC, 120 ° and 200 ml load:

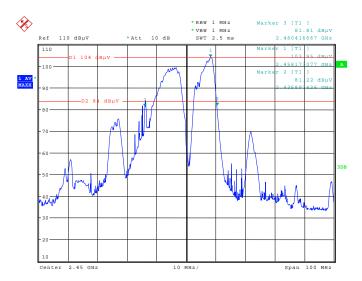







#### 136015\_81.wmf: Operation frequency with 120 VAC, 180 ° and 800 ml load:

#### 136015 82.wmf: Operation frequency with 120 VAC, 180 ° and 600 ml load:








#### 136015\_83.wmf: Operation frequency with 120 VAC, 180 ° and 400 ml load:

#### 136015 84.wmf: Operation frequency with 120 VAC, 180 ° and 200 ml load:





| Operation frequenci | Operation frequencies with 1000 ml load, phase angle 120 ° |                 |                 |                 |  |
|---------------------|------------------------------------------------------------|-----------------|-----------------|-----------------|--|
| Supply voltage      | Peak frequency                                             | Lower frequency | Upper frequency | 20 dB bandwidth |  |
| 96 VAC              | 2434.615 MHz                                               | 2418.430 MHz    | 2442.628 MHz    | 24.198 MHz      |  |
| 108 VAC             | 2441.506 MHz                                               | 2427.083 MHz    | 2454.808 MHz    | 27.725 MHz      |  |
| 120 VAC             | 2459.936 MHz                                               | 2425.641 MHz    | 2464.263 MHz    | 38.622 MHz      |  |
| 135 VAC             | 2467.628 MHz                                               | 2427.083 MHz    | 2469.712 MHz    | 42.629 MHz      |  |
| 150 VAC             | 2469.711 MHz                                               | 2427.083 MHz    | 2471.314 MHz    | 44.231 MHz      |  |

| Operation frequenci | Operation frequencies with 1000 ml load, phase angle 180 ° |                 |                 |                 |  |  |
|---------------------|------------------------------------------------------------|-----------------|-----------------|-----------------|--|--|
| Supply voltage      | Peak frequency                                             | Lower frequency | Upper frequency | 20 dB bandwidth |  |  |
| 96 VAC              | 2454.808 MHz                                               | 2424.038 MHz    | 2465.865 MHz    | 41.827 MHz      |  |  |
| 108 VAC             | 2456.891 MHz                                               | 2423.076 MHz    | 2465.545 MHz    | 42.469 MHz      |  |  |
| 120 VAC             | 2453.045 MHz                                               | 2424.199 MHz    | 2464.103 MHz    | 39.904 MHz      |  |  |
| 135 VAC             | 2454.167 MHz                                               | 2426.442 MHz    | 2466.506 MHz    | 40.064 MHz      |  |  |
| 150 VAC             | 2446.154 MHz                                               | 2425.321 MHz    | 2463.782 MHz    | 38.461 MHz      |  |  |

| Operation frequence | Operation frequencies with 120 VAC, phase angle 120 ° |                 |                 |                 |  |  |
|---------------------|-------------------------------------------------------|-----------------|-----------------|-----------------|--|--|
| Load                | Peak frequency                                        | Lower frequency | Upper frequency | 20 dB bandwidth |  |  |
| 1000 ml             | 2459.936 MHz                                          | 2425.641 MHz    | 2464.263 MHz    | 38.622 MHz      |  |  |
| 800 ml              | 2454.968 MHz                                          | 2434.135 MHz    | 2456.731 MHz    | 22.596 MHz      |  |  |
| 600 ml              | 2455.449 MHz                                          | 2424.680 MHz    | 2458.333 MHz    | 33.653 MHz      |  |  |
| 400 ml              | 2447.276 MHz                                          | 2418.750 MHz    | 2457.853 MHz    | 39.103 MHz      |  |  |
| 200 ml              | 2449.679 MHz                                          | 2441.667 MHz    | 2449.679 MHz    | 8.012 MHz       |  |  |

| Operation frequenc | Operation frequencies with 120 VAC, phase angle 180 ° |                 |                 |                 |  |  |
|--------------------|-------------------------------------------------------|-----------------|-----------------|-----------------|--|--|
| Load               | Peak frequency                                        | Lower frequency | Upper frequency | 20 dB bandwidth |  |  |
| 1000 ml            | 2453.045 MHz                                          | 2424.109 MHz    | 2464.103 MHz    | 39.994 MHz      |  |  |
| 800 ml             | 2452.724 MHz                                          | 2430.263 MHz    | 2459.135 MHz    | 28.872 MHz      |  |  |
| 600 ml             | 2455.769 MHz                                          | 2425.321 MHz    | 2457.853 MHz    | 32.532 MHz      |  |  |
| 400 ml             | 2458.814 MHz                                          | 2425.641 MHz    | 2462.500 MHz    | 36.859 MHz      |  |  |
| 200 ml             | 2458.173 MHz                                          | 2435.807 MHz    | 2460.417 MHz    | 24.610 MHz      |  |  |

## TEST EQUIPMENT USED FOR THE TEST:

6, 36, 45, 186, 187, 189, 190



### 5.4 Radiated emissions

#### 5.4.1 Method of measurement (Radiated emissions)

The measurement techniques which will be used by the FCC to determine compliance with the technical requirements of this part are set out in FCC Measurement Procedure MP–5, "Methods of Measurements of Radio Noise Emissions from ISM equipment". Although the procedures in MP–5 are not mandated, manufacturers are encouraged to follow the same techniques which will be used by the FCC.

Section 18.309 Frequency range of measurements:

| Frequency band in which device operates (MHz) | Range of frequency measurements                                                |                                                   |  |
|-----------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|--|
|                                               | Lowest frequency                                                               | Highest frequency                                 |  |
| Below 1.705                                   | Lowest frequency generated in<br>the device, but not lower than 9<br>kHz.      | 30 MHz.                                           |  |
| 1.705 to 30                                   | Lowest frequency generated in<br>the device, but not lower than 9<br>kHz.      | 400 MHz.                                          |  |
| 30 to 500                                     | Lowest frequency generated in<br>the device or 25 MHz, whichever<br>is lower.  | Tenth harmonic or 1,000 MHz, whichever is higher. |  |
| 500 to 1000                                   | Lowest frequency generated in<br>the device or 100 MHz,<br>whichever is lower. | Tenth harmonic.                                   |  |
| Above 1000                                    | do                                                                             | Tenth harmonic or highest detectable emission.    |  |

For field strength measurements:

#### OET MP-5

Section 2.2.2

For radio noise meters or spectrum analysers which include weighting circuits, the detector function shall be linear. The detector function selector shall be set to average, unless otherwise specified for a given device. For RF lighting devices, the measuring instrument shall have the detector function set to the CISPR guasi-peak function. The 6 dB bandwidth of the measuring instrument shall not be less than:

- 200 Hz for measurements below 150 kHz
- 9 kHz for measurements from 150 kHz to 30 MHz
- 100 kHz for measurements from 30 MHz to 1000 MHz
- 1 MHz for measurements above 1000 MHz

Post detector video filters, if used, shall be wide enough not to affect the peak detector reading. Alternatively, field strength meters and spectrum analysers without weighting circuits may be employed, provided measurements are made on the peak basis and recorded as observed.

#### OET MP-5

Section 2.2.6 Antenna-to-test unit distance

Measurements shall be made at the distance at which the limits are specified, to extent possible. [...] The Commission as an alternative shall accept measurements at a closer fixed distance, provided I/d is used as an attenuation law factor (where d is the distance measured in appropriate units). [...] When measurements were carried out at other distances, an extrapolation factor of 20 dB/decade was used.



OET MP-5 Section 4.1 Load for microwave ovens

- Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other with 300 ml, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.
- Load for all other measurements: 700 milliliters of water, with the beaker located in the center of the oven.

#### **Test charateristics**

| Frequency range  | Receiver<br>bandwidth | Test distance | Test site              | Antenna<br>height |
|------------------|-----------------------|---------------|------------------------|-------------------|
| 30 MHz to 1 GHz  | 120 kHz               | 3 m           | Open area test site    | 1 m to 4 m        |
| 1 GHz to 12 GHz  | 1 MHz                 | 3 m           | Fully anechoic chamber | 1.5 m             |
| 12 GHz to 25 GHz | 1 MHz                 | 3 m           | Fully anechoic chamber | 1.0 m             |



#### 5.4.2 Test results (radiated emissions)

| Ambient temperature |                                                                                                                                                          | 20 °C                                     | Relative humidity                                                     | 52 %           |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|----------------|--|--|--|
| Position of EUT:    |                                                                                                                                                          | EUT was set-up on a<br>nce between EUT ar | non-conducting support of a height non-conducting support of a height | of 0.1 m. The  |  |  |  |
| Cable guide:        | The cable of the EUT runs vertically to the false floor. For further information of the EUT set-up refer to the pictures in annex A of this test report. |                                           |                                                                       |                |  |  |  |
| Test record:        | Durir<br>follov                                                                                                                                          | •                                         | ransmits continuously. All results are                                | e shown in the |  |  |  |

Calculation of the filed strength limit:

According to CFR47 §18.305 the field strength has to be calculated with the following formula: 25×SQRT(power/500).

With a measured power of 888.4 W the limit is calculated as follows:

 $25 \times \text{SQRT}(888.4/500) = 33.3 \,\mu\text{V/m} \text{ or } 30.5 \,\text{dB}\mu\text{V/m} \text{ at } 300 \text{ m} \text{ distance}$ 

#### Field strength calculation:

All measurements were made with 3 m measurement distance. Therefore the measured field strength was corrected by a distance correction factor was follows:

 $F_{SL} = F_{ST} + DC$ 

Where

 $F_{SL}$  = Field strength in dBµV/m;

 $F_{ST}$  = Field strength at measurement distance in dBµV/m

DC = Distance correction factor in dB, which is calculated with

 $DC = 20 \log (\text{test distance in } m / \text{specified distance in } m) = -40 \text{ dB}$ 

So the result was calculated as following:

Result  $[dB\mu V/m]$  = reading  $[dB\mu V]$  + cable loss [dB] + antenna factor [dB/m] – Preamp [dB] + DC [dB]

During the measurement the EUT was supplied by AC mains with 120 VAC / 60 Hz (120 ° phase angle), because there was no measurable difference to the supply with 120 VAC / 60 Hz (180 ° phase angle).

| Spurious emissions below 1 GHz |                         |                    |          |                   |               |       |               |        |        |       |
|--------------------------------|-------------------------|--------------------|----------|-------------------|---------------|-------|---------------|--------|--------|-------|
| Frequency                      | Receiver<br>bandwidth / | Load /<br>location | Readings | Antenna<br>factor | Cable<br>loss | DC    | Result        | Limit  | Margin | Pol.  |
| MHz                            | Dectector               | ml                 | dBµV     | dB/m              | dB            | dB    | dBµV/m        | dBµV/m | dB     |       |
| 96.290                         | 120 kHz /AV             | 700 / c            | 9.8      | 10.6              | 1.1           | -40.0 | -18.5         | 30.5   | 49.0   | Vert. |
| 126.254                        | 120 kHz /AV             | 700 / c            | 4.6      | 12.3              | 1.2           | -40.0 | -21.9         | 30.5   | 51.7   | Vert. |
| 288.000                        | 120 kHz /AV             | 700 / c            | 14.8     | 12.9              | 1.9           | -40.0 | -10.4         | 30.5   | 40.9   | Vert. |
| 384.000                        | 120 kHz /AV             | 700 / c            | 13.2     | 15.2              | 2.2           | -40.0 | -9.4          | 30.5   | 39.9   | Vert. |
| 528.000                        | 120 kHz /AV             | 700 / c            | 16.3     | 17.9              | 2.6           | -40.0 | -3.2          | 30.5   | 33.7   | Vert. |
| 891.795                        | 120 kHz /AV             | 700 / c            | -7.3     | 22.2              | 3.5           | -40.0 | -21.6         | 30.5   | 52.0   | Vert. |
| Measurement uncertainty        |                         |                    |          |                   |               | +2.1  | 2 dB / -3.6 d | В      |        |       |



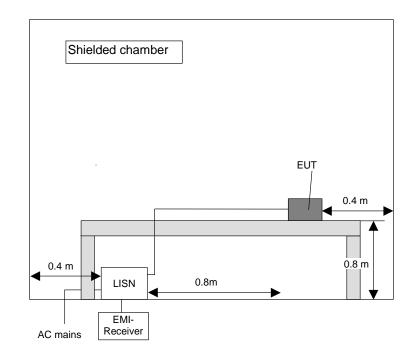
| Spurious emissions above 1 GHz |                |           |          |         |      |       |         |             |        |        |       |
|--------------------------------|----------------|-----------|----------|---------|------|-------|---------|-------------|--------|--------|-------|
| Frequency                      | Receiver       | Load /    | Readings | Antenna |      | Cable | DC      | Result      | Limit  | Margin | Pol.  |
|                                | bandwidth /    | location  |          | factor  | [dB] | loss  |         |             |        |        |       |
| MHz                            | Dectector      | ml        | dBµV     | dB/m    |      | dB    | dB      | dBµV/m      | dBµV/m | dB     |       |
| 1555.1                         | 1 MHz /AV      | 700 / c   | 5.0      | 25.3    | 0.0  | 3.0   | -40.0   | -6.7        | 30.5   | 37.2   | Vert. |
| 2262.7                         | 1 MHz /AV      | 700 / c   | 4.8      | 27.7    | 0.0  | 3.5   | -40.0   | -4.0        | 30.5   | 34.5   | Hor.  |
| 2346.8                         | 1 MHz /AV      | 700 / c   | 11.1     | 28.1    | 0.0  | 3.6   | -40.0   | 2.8         | 30.5   | 27.7   | Vert. |
| 2900.9                         | 1 MHz /AV      | 700 / c   | 6.8      | 29.4    | 0.0  | 4.1   | -40.0   | 0.3         | 30.5   | 30.2   | Hor.  |
| 3457.3                         | 1 MHz /AV      | 700 / c   | 2.7      | 31.1    | 0.0  | 4.4   | -40.0   | -1.8        | 30.5   | 32.3   | Vert. |
| 4448.8                         | 1 MHz /AV      | 700 / c   | 26.5     | 32.2    | 25.9 | 5.1   | -40.0   | -2.1        | 30.5   | 32.6   | Hor.  |
| 4904.2                         | 1 MHz /AV      | 300 / rfc | 57.0     | 32.8    | 25.6 | 5.3   | -40.0   | 29.5        | 30.5   | 1.0    | Vert. |
| 6899.8                         | 1 MHz /AV      | 700 / c   | 29.9     | 35.1    | 24.8 | 6.4   | -40.0   | 6.6         | 30.5   | 23.9   | Vert. |
| 7392.2                         | 1 MHz /AV      | 300 / rfc | 39.6     | 36.3    | 24.5 | 6.8   | -40.0   | 18.2        | 30.5   | 12.3   | Vert. |
| 8255.8                         | 1 MHz /AV      | 700 / c   | 3.3      | 36.8    | 24.2 | 7.3   | -40.0   | -16.7       | 30.5   | 47.2   | Vert. |
| 3996.6                         | 1 MHz /AV      | 700 / c   | 21.2     | 32.5    | 26.1 | 4.8   | -40.0   | -7.6        | 30.5   | 38.1   | Vert. |
| 14692.0                        | 1 MHz /AV      | 700 / c   | 25.3     | 33.7    | 26.6 | 2.5   | -40.0   | -14.7       | 30.5   | 45.2   | Hor.  |
| 12261.0                        | 1 MHz /AV      | 700 / c   | 27.9     | 33.7    | 25.9 | 2.5   | -40.0   | -1.8        | 30.5   | 32.3   | Vert. |
| 17154.0                        | 1 MHz /AV      | 700 / c   | 39.7     | 33.8    | 27.4 | 2.5   | -40.0   | 8.6         | 30.5   | 21.9   | Hor.  |
| 18158.0                        | 1 MHz /AV      | 700 / c   | 32.0     | 37.0    | 37.7 | 2.5   | -40.0   | -6.2        | 30.5   | 36.7   | Vert. |
| 19582.0                        | 1 MHz /AV      | 700 / c   | 33.6     | 37.1    | 38.2 | 2.5   | -40.0   | -5.0        | 30.5   | 35.5   | Vert. |
| 20624.0                        | 1 MHz /AV      | 700 / c   | 39.1     | 37.1    | 38.3 | 2.5   | -40.0   | 0.4         | 30.5   | 30.1   | Vert. |
| 22074.0                        | 1 MHz /AV      | 700 / c   | 32.4     | 37.2    | 38.3 | 2.5   | -40.0   | -6.2        | 30.5   | 36.7   | Vert. |
|                                | Measurement un | certainty |          |         | ,    |       | +2.2 dl | B / -3.6 dB |        |        |       |

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

 $16-20,\,29,\,31-37,\,39,\,44-46,\,50,\,51,\,142,\,156,\,170,\,186,\,187,\,189,\,190,\,200$ 



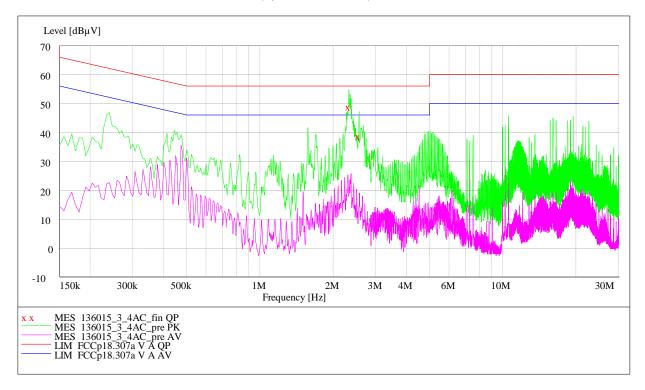

## 5.5 Conducted emissions on power supply lines (150 kHz to 30 MHz)

#### 5.5.1 Method of measurement

This test will be carried out in a shielded chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices will be placed directly on the ground plane. The set-up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 150 kHz to 30 MHz will be measured with an EMI Receiver set to MAX Hold mode with peak and average detector and a resolution bandwidth of 9 kHz. A scan will be carried out on the phase (or plus pole in case of DC powered devices) of the AC mains network. If levels detected 10 dB below the appropriable limit, this emission will be measured with the average and quasi-peak detector on all lines.

| Frequency range   | Resolution bandwidth |
|-------------------|----------------------|
| 150 kHz to 30 MHz | 9 kHz                |






#### 5.5.2 Test results (conducted emissions on power supply lines)

| Ambient temperature |                 | 21 °C                                                                                                                                                        | Relative humidity               | 28 %                 |  |  |  |  |
|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--|--|--|--|
| Position of EUT:    | The E           | UT was set-up on a ne                                                                                                                                        | on-conducting table of a height | of 0.1 m.            |  |  |  |  |
| Cable guide:        |                 | The cable of the EUT was fixed on the non-conducting table. For further information of the cable guide refer to the pictures in annex A of this test report. |                                 |                      |  |  |  |  |
| Test record:        |                 | All results are shown in the following. This test was carried out in normal hopping mode of the EUT.                                                         |                                 |                      |  |  |  |  |
| Supply voltage:     | The E           | UT was supplied by A                                                                                                                                         | C mains with 120 VAC / 60 Hz    | (180 ° phase angle). |  |  |  |  |
| Load:               | A load<br>oven. | l of 700 ml of water wa                                                                                                                                      | as use, the beaker was located  | in the center of the |  |  |  |  |

The curves in the diagram only represent for each frequency point the maximum measured value of all preliminary measurements, which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasipeak measured points are marked by an "x" and the average measured points by a "+".



#### 136015\_3\_4AC: EUT without transmitter (operation mode 4):



| ſ | Frequency<br>MHz | Level<br>dBµV | Transducer<br>dB | Limit<br>dBµV | Margin<br>dB | Line | PE  |
|---|------------------|---------------|------------------|---------------|--------------|------|-----|
|   | 2.328901         | 49.3          | 0.7              | 56.0          | 6.7          | L1   | FLO |
|   | 2.561101         | 39.0          | 0.7              | 56.0          | 17.0         | L1   | GND |

## Result measured with the quasi-peak detector (marked by an x):

Test: Passed

#### TEST EQUIPMENT USED FOR THE TEST:

1 - 4, 20, 186, 187, 189, 190



|             | r                                         | r                          | r                        |                       |                   |                                         |          |
|-------------|-------------------------------------------|----------------------------|--------------------------|-----------------------|-------------------|-----------------------------------------|----------|
| No.         | Test equipment                            | Туре                       | Manufacturer             | Serial No.            | PM. No.           | Cal. Date                               | Cal. due |
| 1           | Shielded chamber M4                       | -                          | Siemens AG               | B83117-S1-X158        | 480088            | Weekly ve<br>(systen                    |          |
| 2           | EMI Receiver                              | ESIB 26                    | Rohde & Schwarz          | 1088.7490             | 481182            | 03/09/2012                              | 03/2014  |
| 3           | LISN                                      | NSLK8128                   | Schwarzbeck              | 8128161               | 480138            | 05/04/2012                              | 04/2014  |
| 4           | High pass filter                          | HR 0.13-<br>5ENN           | FSY Microwave<br>Inc.    | DC 0109 SN 002        | 480340            | Weekly ve<br>(systen                    |          |
| 6           | Spectrum analyser                         | FSU                        | Rohde & Schwarz          | 200125                | 480956            | 02/15/2012                              | 02/2014  |
| 14          | Open area test site                       | -                          | Phoenix Test-Lab         | -                     | 480085            | Weekly ve<br>(systen                    |          |
| 15          | EMI Receiver                              | ESIB 26                    | Rohde & Schwarz          | 1088.7490             | 481182            | 03/09/2012                              | 03/2014  |
| 16          | Controller                                | HD100                      | Deisel                   | 100/670               | 480139            | -                                       | -        |
| 17          | Turntable                                 | DS420HE                    | Deisel                   | 420/620/80            | 480087            | -                                       | -        |
| 18          | Antenna support                           | AS615P                     | Deisel                   | 615/310               | 480086            | -                                       | -        |
| 19          | Antenna                                   | CBL6111 D                  | Chase                    | 22921                 | 480674            | 08/27/2011                              | 08/2014  |
| 20          | EMI Software                              | ES-K1                      | Rohde & Schwarz          | -                     | 480111            | -                                       | -        |
| 29          | Fully anechoic chamber M20                | -                          | Albatross Projects       | B83107-E2439-<br>T232 | 480303            | Weekly ve<br>(systen                    |          |
| 31          | Measuring receiver                        | ESI 40                     | Rohde & Schwarz          | 100064                | 480355            | 02/13/2013                              | 02/2014  |
| 32          | Controller                                | MCU                        | Maturo                   | MCU/043/971107        | 480832            | -                                       | -        |
| 33          | Turntable                                 | DS420HE                    | Deisel                   | 420/620/80            | 480315            | -                                       | -        |
| 34          | Antenna support                           | AS615P                     | Deisel                   | 615/310               | 480187            | -                                       | -        |
| 35          | Antenna                                   | CBL6112 B                  | Chase                    | 2688                  | 480328            | 04/21/2010                              | 04/2014  |
| 36          | Horn Antenna                              | 3115 A                     | EMCO                     | 9609-4918             | 480183            | 11/09/2011                              | 11/2014  |
| 37          | Standard Gain Horn<br>11.9 GHz – 18 GHz   | 18240-20                   | Flann Microwave          | 483                   | 480294            | Six month v<br>(systen                  |          |
| 39          | Standard Gain Horn<br>17.9 GHz – 26.7 GHz | 20240-20                   | Flann Microwave          | 411                   | 480297            | Six month v<br>(systen                  |          |
| 45          | RF-cable No. 40                           | Sucoflex<br>106B           | Suhner                   | 0708/6B               | 481330            | Weekly ve<br>(systen                    |          |
| 46          | RF-cable 1 m                              | KPS-1533-<br>400-KPS       | Insulated Wire           | -                     | 480301            | Six month v<br>(systen                  |          |
| 50          | Preamplifier                              | JS3-<br>12001800-<br>16-5A | Miteq                    | 571667                | 480343            | Six month v<br>(systen                  |          |
| 51          | Preamplifier                              | JS3-<br>18002600-<br>20-5A | Miteq                    | 658697                | 480342            | Six month verification<br>(system cal.) |          |
| 142         | RF-cable No. 36                           | Sucoflex<br>106B           | Huber + Suhner           | -                     | 480865            | Weekly ve<br>(systen                    |          |
| 156         | Preamplifier                              | JS3-<br>00101200-<br>23-5A | Miteq                    | 681851                | 480337            | Weekly ve<br>(systen                    |          |
| 170         | EM Radiation Meter                        | EMR-300                    | Wandel &<br>Goltermann   | R-0033                | 480272            | 02/14/2012                              | 02/2014  |
| 186,<br>187 | Power amplifier                           | EP4500/B                   | Spitzenberger &<br>Spies | B5960,<br>B5963       | 480036,<br>480039 | Six-month v<br>(systen                  |          |

## 6 Test equipment and ancillaries used for tests



| No.         | Test equipment      | Туре      | Manufacturer             | Serial No.      | PM. No.           | Cal. Date                            | Cal. due |
|-------------|---------------------|-----------|--------------------------|-----------------|-------------------|--------------------------------------|----------|
| 189,<br>190 | DC source           | NT-EP4500 | Spitzenberger &<br>Spies | B5961,<br>B5964 | 480037,<br>480040 | Six-month verification (system cal.) |          |
| 200         | Digital thermometer | 54-II     | Fluke                    | 91010014        | 480779            | 03/24/2013                           | 03/2014  |

## 7 Report history

| Report Number                      | Date            | Comment              |
|------------------------------------|-----------------|----------------------|
| F136015E4                          | 20 January 2014 | Document created     |
| F132604E4, 2nd version             | 23 May 2014     | Change of the FCC ID |
| F132604E4, 3 <sup>rd</sup> version | 30 October 2014 | Change of the FCC ID |

## 8 List of annexes

| ANNEX A | TEST SETUP PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                                                       | 6 pages |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|         | 136015_3_2.JPG: HR1954, test set-up fully anechoic chamber<br>136015_3_10.JPG: HR1954, test set-up fully anechoic chamber<br>136015_3_11.JPG: HR1954, test set-up fully anechoic chamber<br>136015_3_12.JPG: HR1954, test set-up fully anechoic chamber<br>136015_3_16.JPG: HR1954, test set-up open area test site<br>136015_3_13.JPG: HR1954, test set-up shielded chamber |         |
| ANNEX B | EXTERNAL PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                                                         | 3 pages |
|         | 136015_3_k.JPG: HR1954, 3-D-view 1<br>136015_3_I.JPG: HR1954, 3-D.view 2<br>136015_3_n.JPG: HR1954, cooking chamber (door opened)                                                                                                                                                                                                                                            |         |
| ANNEX C | INTERNAL PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                                                         | 3 pages |
|         | 136015_3_g.JPG: HR1954, internal view 1 (cover removed)<br>136015_3_d.JPG: HR1954, internal view 2 (rear cover removed)<br>136015_3_j.JPG: HR1954, type plate                                                                                                                                                                                                                |         |