

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM160600497602 Page: 1 of 69

FCC REPORT

Application No.:	SZEM1606004976CR
Applicant:	MODERN ELECTRONICS FACTORY LTD
Manufacturer:	MODERN ELECTRONICS FACTORY LTD
Factory:	Keng Fu Jia Electronics (Shenzhen) Co., Ltd.
Product Name:	Bluetooth CD Radio Microsystem
Model No.(EUT):	MET137
Add Model No.:	SRCD1081BT
Trade Mark:	MET, SYLVANIA
FCC ID:	SSMMEF137BT
Standards:	47 CFR Part 15, Subpart C (2015)
Date of Receipt:	2016-06-28
Date of Test:	2016-06-28 to 2016-07-12
Date of Issue:	2016-08-29
Test Result:	PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM160600497602 Page: 2 of 69

2 Version

Revision Record						
Version	Chapter	Date	Modifier	Remark		
00		2016-08-29		Original		

Authorized for issue by:		
Tested By	feter Gene	2016-07-12
	(Peter Geng) /Project Engineer	Date
Checked By	Eric Fu	2016-08-29
	(Eric Fu) /Reviewer	Date

Report No.: SZEM160600497602 Page: 3 of 69

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

Report No.: SZEM160600497602 Page: 4 of 69

4 Contents

1	CC	OVER PAGE	1
2	VE	ERSION	2
3	TE	EST SUMMARY	
4	СС	ONTENTS	4
5	GE	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	Equipment List	9
6	TE	EST RESULTS AND MEASUREMENT DATA	11
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20DB OCCUPY BANDWIDTH	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.9	Spurious RF Conducted Emissions	
	6.10	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
	6.11	RADIATED SPURIOUS EMISSION	
		11.1 Radiated Emission below 1GHz	
		11.2 Transmitter Emission above 1GHz	
	6.12	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PH	HOTOGRAPHS - EUT TEST SETUP	
	7.1	CONDUCTED EMISSION	
	7.2	RADIATED EMISSION	
	7.3	RADIATED SPURIOUS EMISSION	
8	PH	10TOGRAPHS - EUT CONSTRUCTIONAL DETAILS	69

Report No.: SZEM160600497602 Page: 5 of 69

5 General Information

5.1 Client Information

Applicant:	MODERN ELECTRONICS FACTORY LTD
Address of Applicant:	FLAT C, 10/F, PHASE 4, KWUN TONG INDUSTRIAL CENTRE, 472- 478 KWUN TONG ROAD, HONG KONG
Manufacturer:	MODERN ELECTRONICS FACTORY LTD
Address of Manufacturer:	FLAT C, 10/F, PHASE 4, KWUN TONG INDUSTRIAL CENTRE, 472- 478 KWUN TONG ROAD, HONG KONG
Factory:	Keng Fu Jia Electronics (Shenzhen) Co., Ltd.
Address of Factory:	Sui Wai Sun Chuen, Tai Long, Lung Wah, Shenzhen, GDGZ

5.2 General Description of EUT

Product Name:	Bluetooth CD Radio Microsystem
Model No.:	MET137
Trade Mark:	MET
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	2.1+EDR
Modulation Type:	GFSK, π/4DQPSK
Number of Channel:	79
Antenna Type:	Integral
Antenna Gain:	2dBi
Power Supply	MODEL: JDA1500300WUS
	INPUT: AC 100-240V, 50/60Hz
	OUTPUT: DC 15V, 3A
Test Voltage:	AC 120V/60Hz

Remark:

1) Model No.: MET137, SRCD1081BT

Only the model MET137 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models, only different on model No., trade mark, artwork and cosmetic.

2) The device has an accessory remote which is estimated by a verification procedure.

Remote: 3Vdc lithium battery (CR2025)

Report No.: SZEM160600497602 Page: 6 of 69

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM160600497602 Page: 7 of 69

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	50 % RH	
Atmospheric Pressure:	1005 mbar	

5.4 Description of Support Units

The EUT has been tested independent

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

Report No.: SZEM160600497602 Page: 8 of 69

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM160600497602 Page: 9 of 69

5.10 Equipment List

	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13			
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2015-10-09	2016-10-09			
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25			
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2015-08-30	2016-08-30			
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2015-08-30	2016-08-30			
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2015-08-30	2016-08-30			
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25			
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2015-10-09	2016-10-09			

	RF connected test					
Item	Test Equipment	Manufacturer	Model No. Inventory No. Cal. da		Cal. date	Cal.Due date
				, .	(yyyy-mm-dd)	(yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2015-10-09	2016-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2015-10-17	2016-10-17
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2015-10-09	2016-10-09

Report No.: SZEM160600497602 Page: 10 of 69

	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2016-08-01	2017-08-01		
2	EMI Test Receiver (9k-3GHz)	Rohde & Schwarz	ESCI	SEM004-01	2016-04-25	2017-04-25		
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-17	2016-01-26	2017-01-26		
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2016-04-25	2017-04-25		
5	Loop Antenna	ETS-Lindgren	6502	SEM003-08	2016-08-14	2017-08-14		

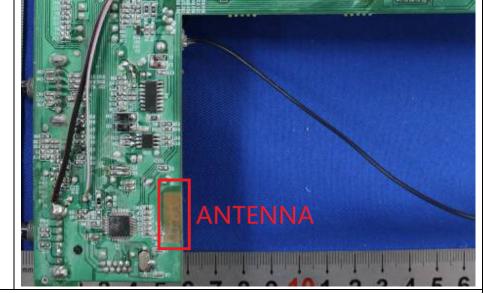
	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2015-10-09	2016-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-11-24	2017-11-24
7	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2015-10-09	2016-10-09
8	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM160600497602 Page: 11 of 69

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

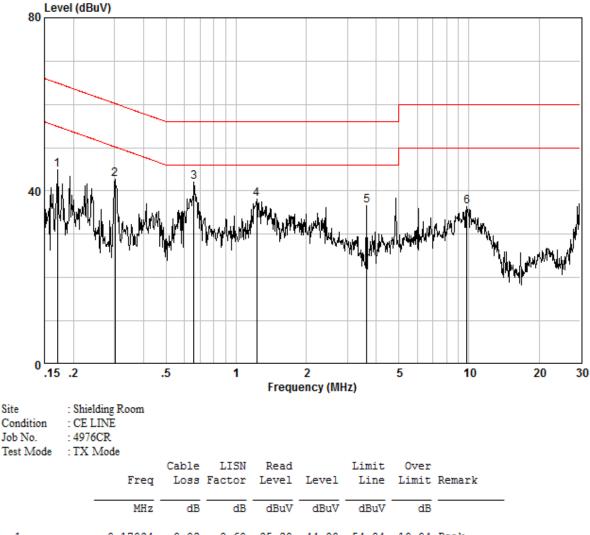
Report No.: SZEM160600497602 Page: 12 of 69

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Limit:		Limit (d	BuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		
Test Procedure:	 The mains terminal disturbution of the EUT was connected to a second LIS reference plane. The power calls connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal grading of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the grout between the closest points the EUT and associated exceeded. In order to find the maximum equipment and all of the im ANSI C63.10: 2013 on context of the formation of the formation. 	AC power source thro etwork) which provides oles of all other units of N 2, which was bonded the way as the LISN 1 for et outlet strip was used SN provided the rating and for floor-standing and ound reference plane, th a vertical ground reference plane was bonded to the 1 was placed 0.8 m fro I to a ground reference and reference plane. The of the LISN 1 and the quipment was at least 0 im emission, the relativi- terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω linear the EUT were d to the ground or the unit being I to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. e positions of	

6.2 Conducted Emissions

Report No.: SZEM160600497602 Page: 13 of 69

Test Setup:	Shielding Room Test Receiver Test Receiver C Mains C
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation at the lowest channel is the worst case. Transmitting mode Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

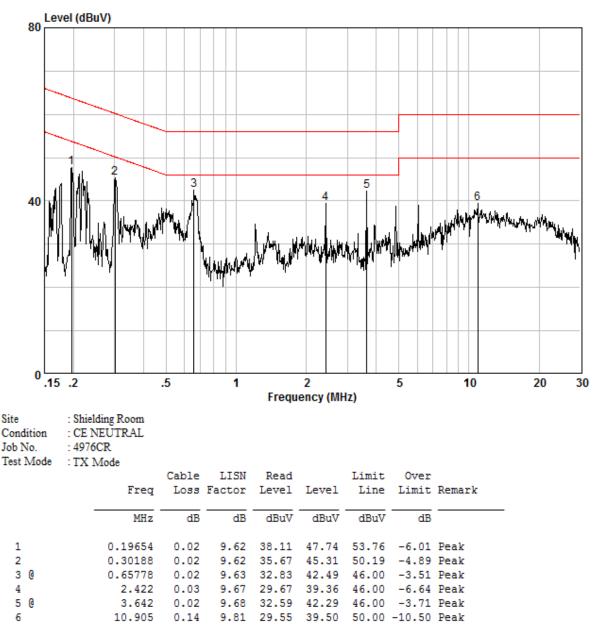

Report No.: SZEM160600497602 Page: 14 of 69

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:



	MHZ	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.17034	0.02	9.60	35.28	44.90	54.94	-10.04	Peak
2	0.30188	0.02	9.59	33.07	42.68	50.19	-7.51	Peak
30	0.65778	0.02	9.61	32.35	41.99	46.00	-4.01	Peak
4	1.223	0.03	9.61	28.41	38.04	46.00	-7.96	Peak
5	3.642	0.02	9.63	26.96	36.61	46.00	-9.39	Peak
6	9.809	0.14	9.71	26.58	36.42	50.00	-13.58	Peak

Report No.: SZEM160600497602 Page: 15 of 69

Neutral line:

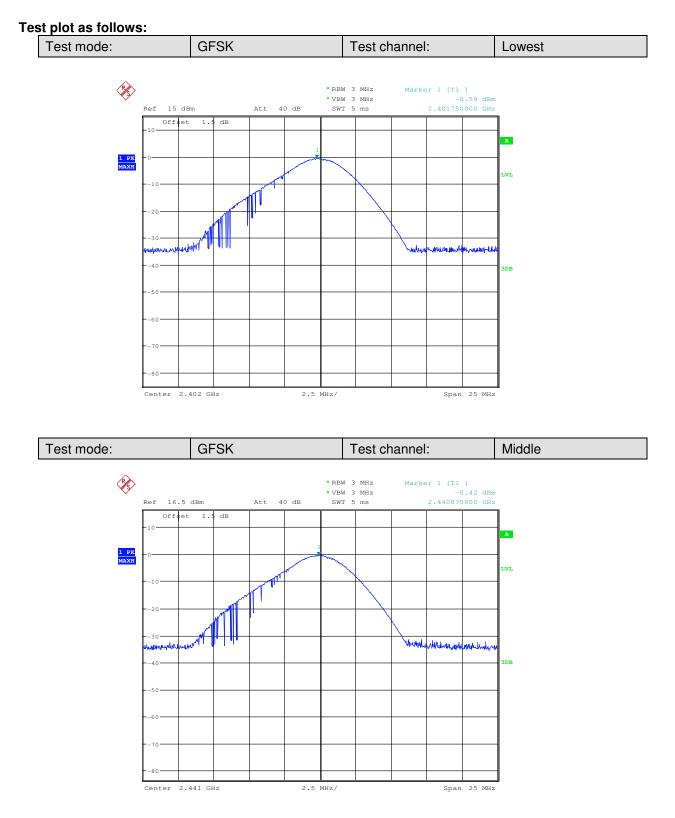
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM160600497602 Page: 16 of 69

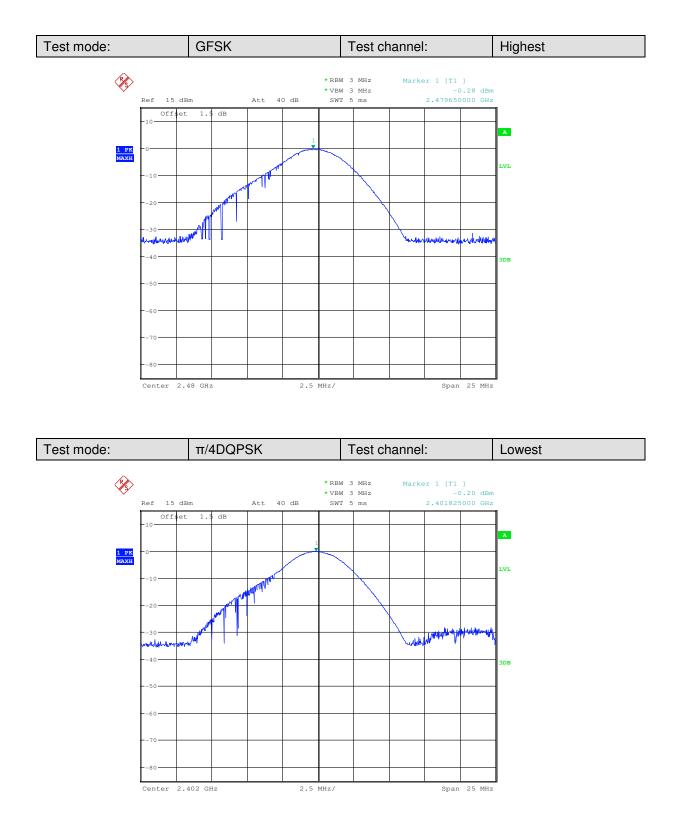
6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.5		
Test Setup:	Spectrum Analyzer Image: E.U.T Non-Conducted Table Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	20.97dBm (125mW)		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

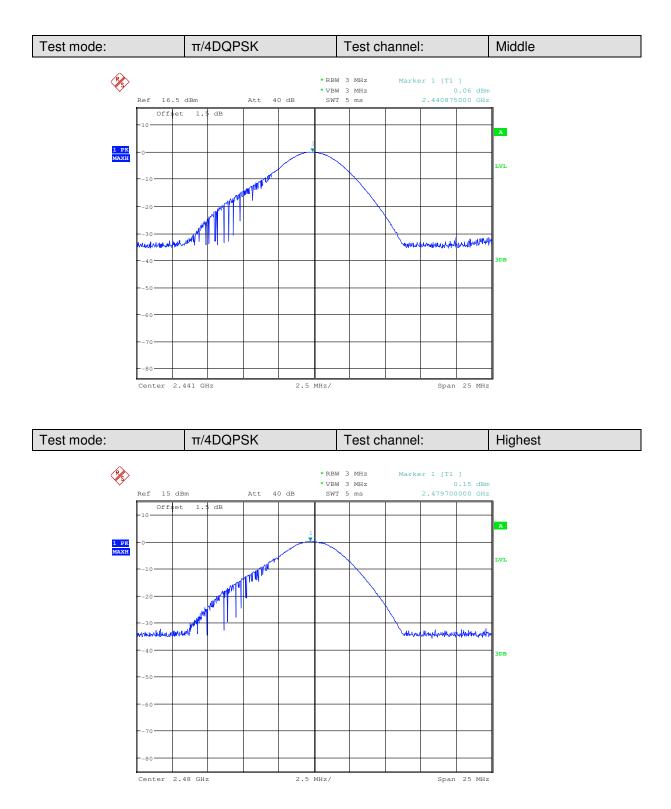

Report No.: SZEM160600497602 Page: 17 of 69

Measurement Data

	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-0.59	20.97	Pass		
Middle	-0.42	20.97	Pass		
Highest	-0.28	20.97	Pass		
	π/4DQPSK m	node			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-0.20	20.97	Pass		
Middle	0.06	20.97	Pass		
Highest	0.15	20.97	Pass		



Report No.: SZEM160600497602 Page: 18 of 69



Report No.: SZEM160600497602 Page: 19 of 69

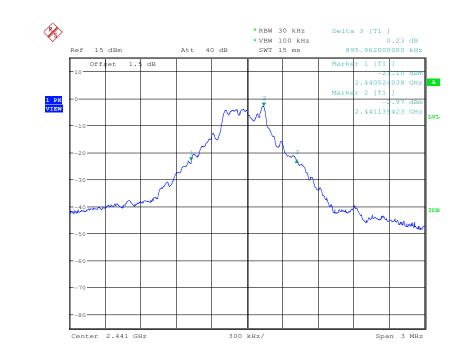
Report No.: SZEM160600497602 Page: 20 of 69

Report No.: SZEM160600497602 Page: 21 of 69

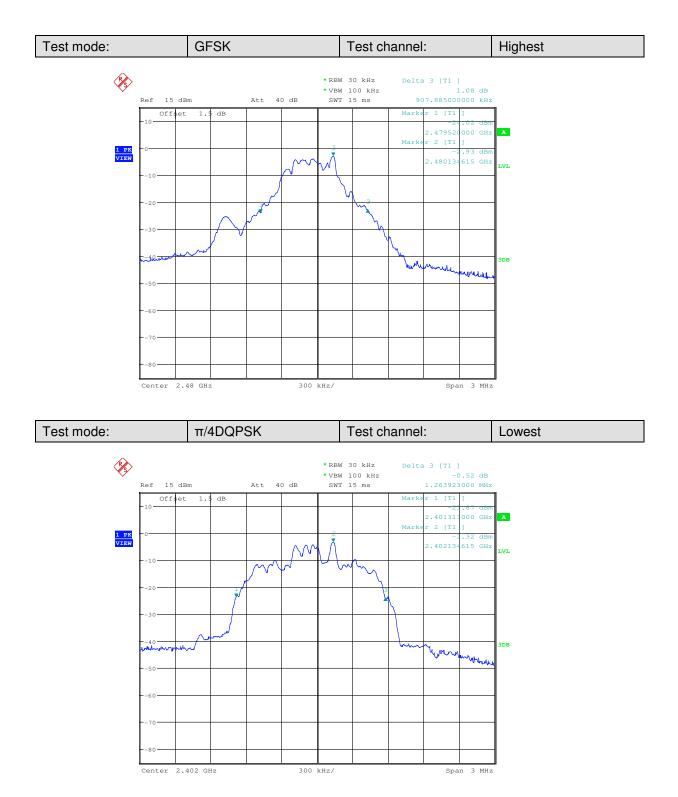
6.4 20dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.7		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

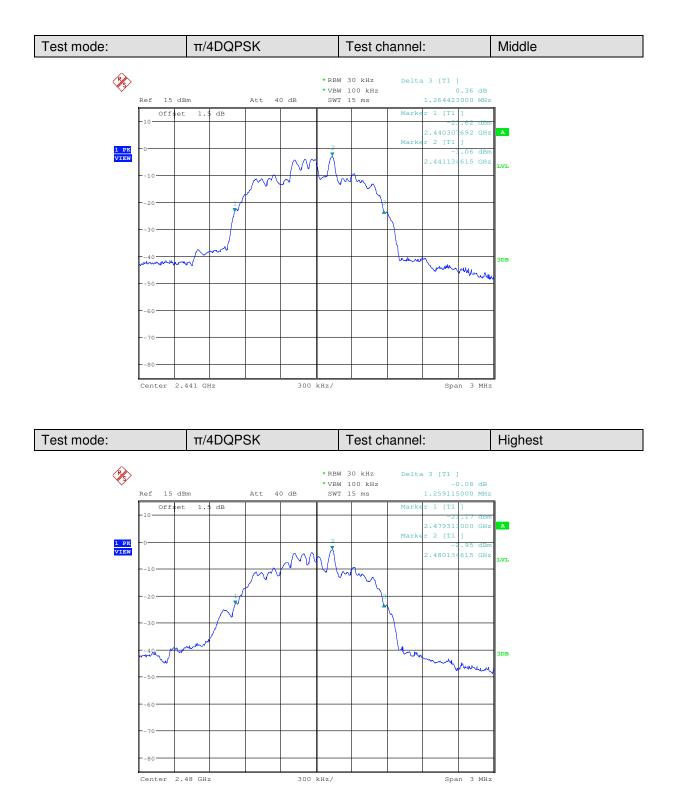
Measurement Data


Testsheets	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4DQPSK		
Lowest	903.847	1263.923		
Middle	895.962	1264.423		
Highest	907.885	1259.115		

Report No.: SZEM160600497602 Page: 22 of 69



Test mode:	GFSK	Test channel:	Middle



Report No.: SZEM160600497602 Page: 23 of 69

Report No.: SZEM160600497602 Page: 24 of 69

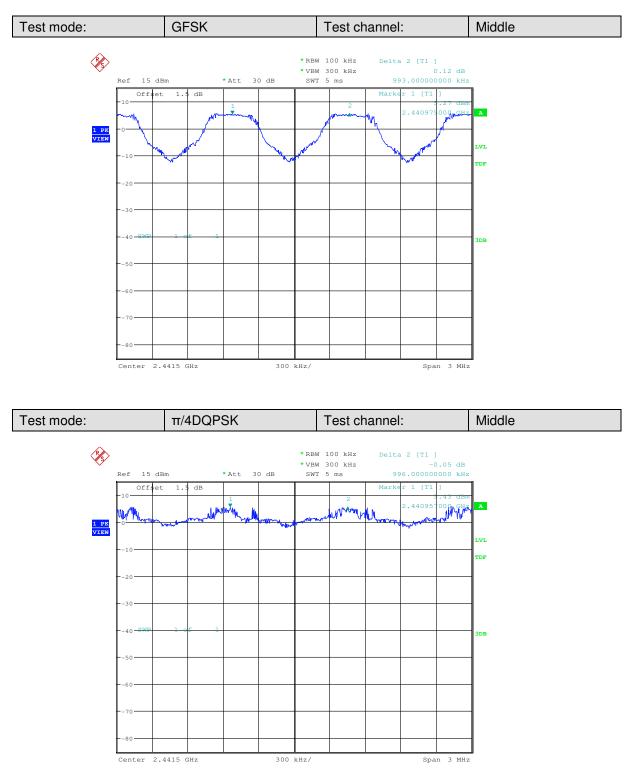
Report No.: SZEM160600497602 Page: 25 of 69

6.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.2		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	2/3 of the 20dB bandwidth		
	Remark: the transmission power is less than 0.125W.		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Report No.: SZEM160600497602 Page: 26 of 69

GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Middle	993	605.257	Pass	
π/4DQPSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Middle	996	842.949	Pass	


Note: According to section 6.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)	
	(worse case)	(Carrier Frequencies Separation)	
GFSK	907.885	605.257	
π/4DQPSK	1264.423	842.949	

Report No.: SZEM160600497602 Page: 27 of 69

Test plot as follows:

Report No.: SZEM160600497602 Page: 28 of 69

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) **Test Method:** ANSI C63.10:2013 Section 7.8.3 Test Setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane** Limit: At least 15 channels Hopping transmitting with all kind of modulation Test Mode: Instruments Used: Refer to section 5.10 for details Test Results: Pass

6.6 Hopping Channel Number

Measurement Data

Mode	Hopping channel numbers	Limit	
GFSK	79	≥15	
π/4DQPSK	79	≥15	

Report No.: SZEM160600497602 Page: 29 of 69

Report No.: SZEM160600497602 Page: 30 of 69

6.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.4		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Instruments Used:	Refer to section 5.10 for details		
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Limit:	0.4 Second		
Test Results:	Pass		

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.11	≤0.4
	DH3	0.28	≤0.4
	DH5	0.20	≤0.4
π/4DQPSK	2-DH1	0.12	≤0.4
	2-DH3	0.33	≤0.4
	2-DH5	0.26	≤0.4

Report No.: SZEM160600497602 Page: 31 of 69

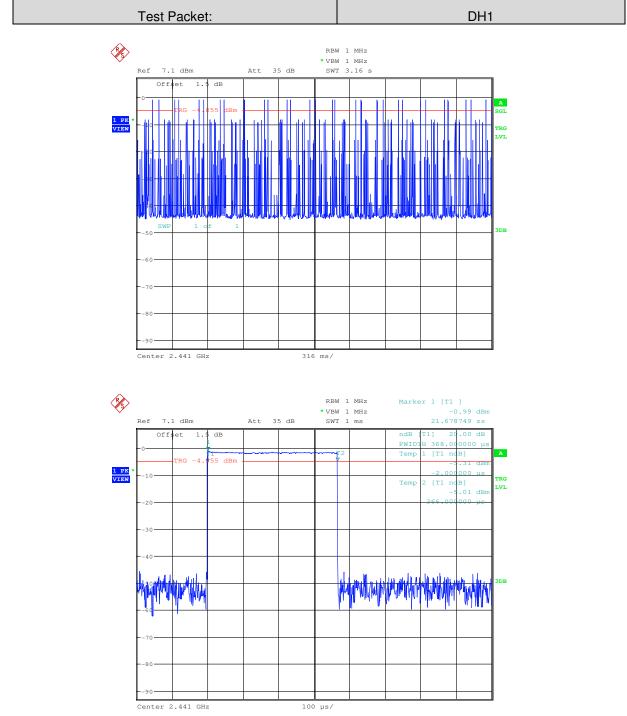
Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s On (ms)*total number=dwell time (ms) The lowest channel (2441MHz), as below: DH1 time slot=0.368 (ms)*total number=110.40 (ms)

DH3 time slot=1.626 (ms)* total number = 276.42 (ms)

DH5 time slot= 2.876 (ms)^{*} total number = 201.32 (ms)

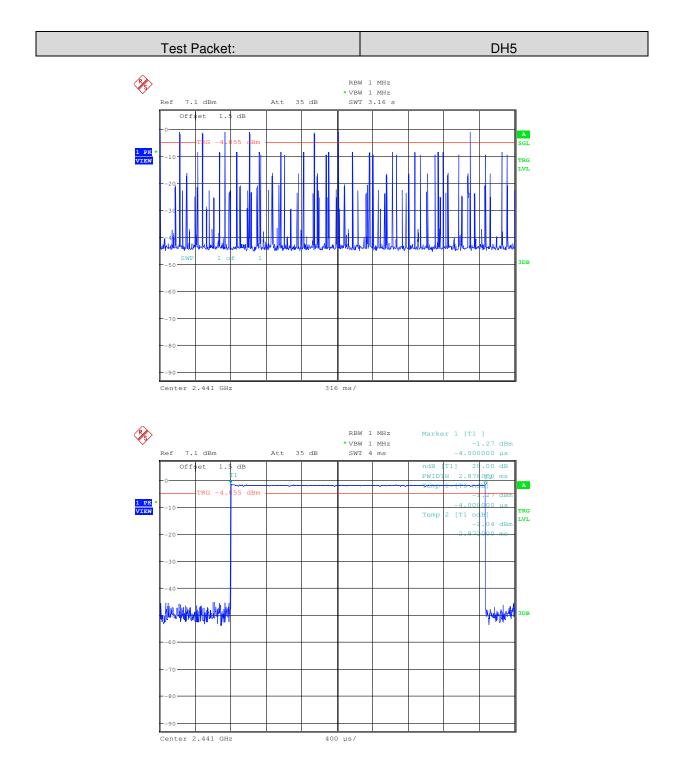
2-DH1 time slot=0.379 (ms)*total number=121.28 (ms)


2-DH3 time slot=1.632 (ms)* total number = 326.40 (ms)

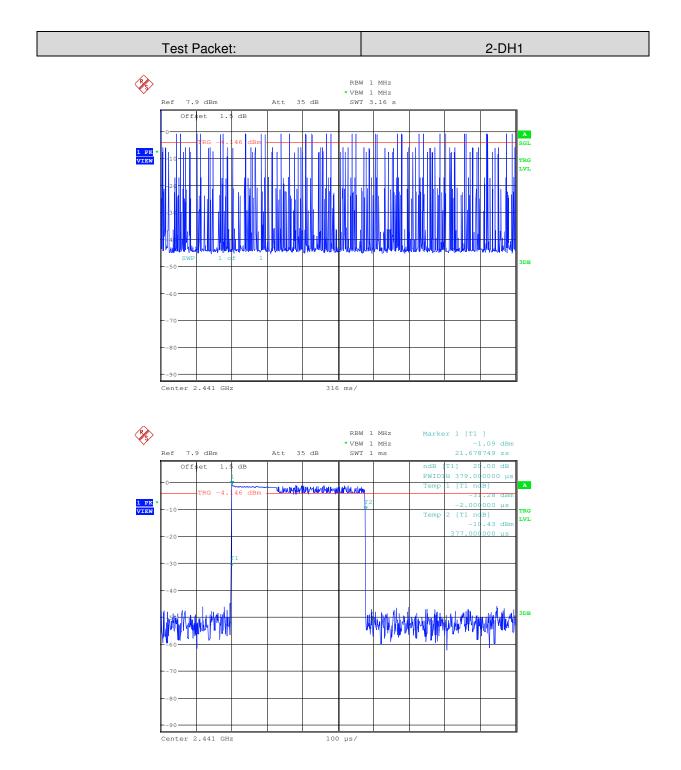
2-DH5 time slot=2.884 (ms)* total number = 259.56 (ms)


Report No.: SZEM160600497602 Page: 32 of 69

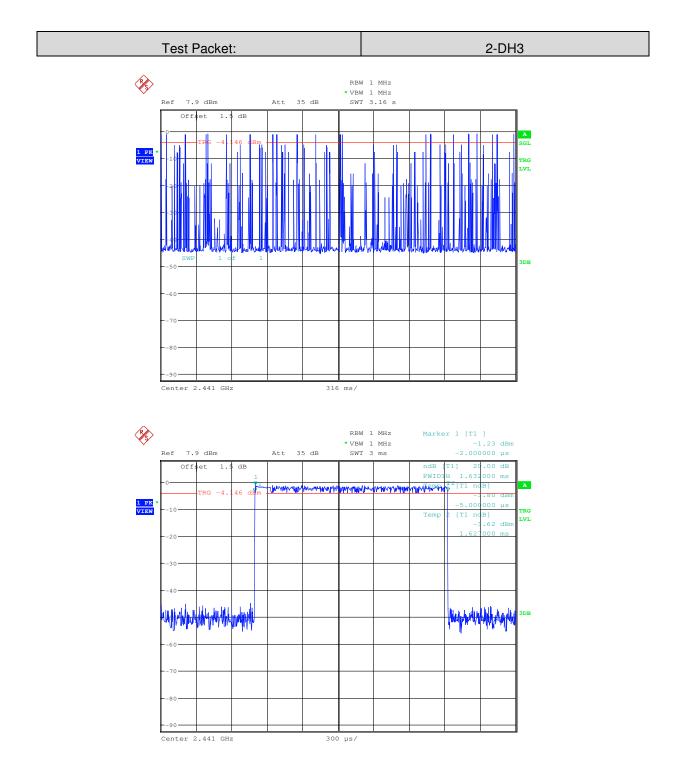
Test plot as follows:



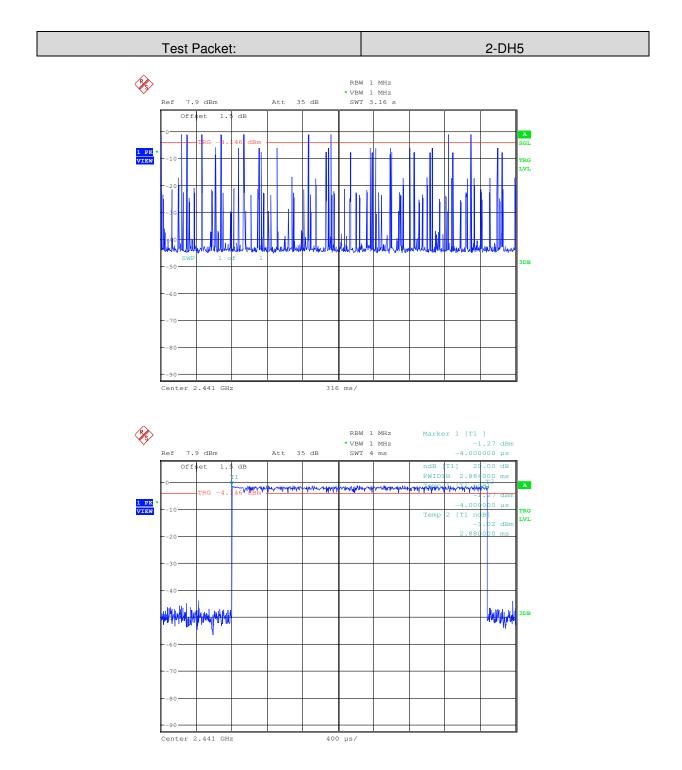
Report No.: SZEM160600497602 Page: 33 of 69



Report No.: SZEM160600497602 Page: 34 of 69



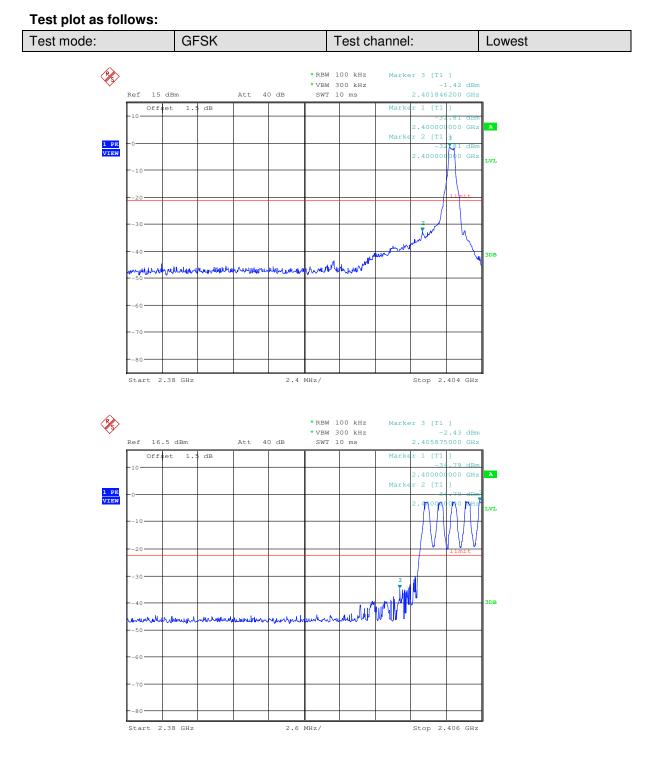
Report No.: SZEM160600497602 Page: 35 of 69



Report No.: SZEM160600497602 Page: 36 of 69

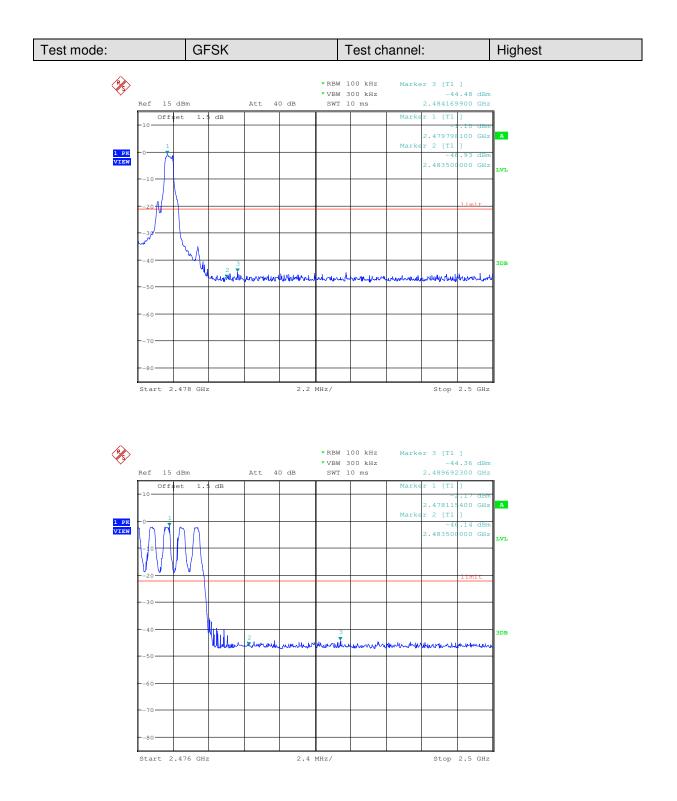
Report No.: SZEM160600497602 Page: 37 of 69

Report No.: SZEM160600497602 Page: 38 of 69

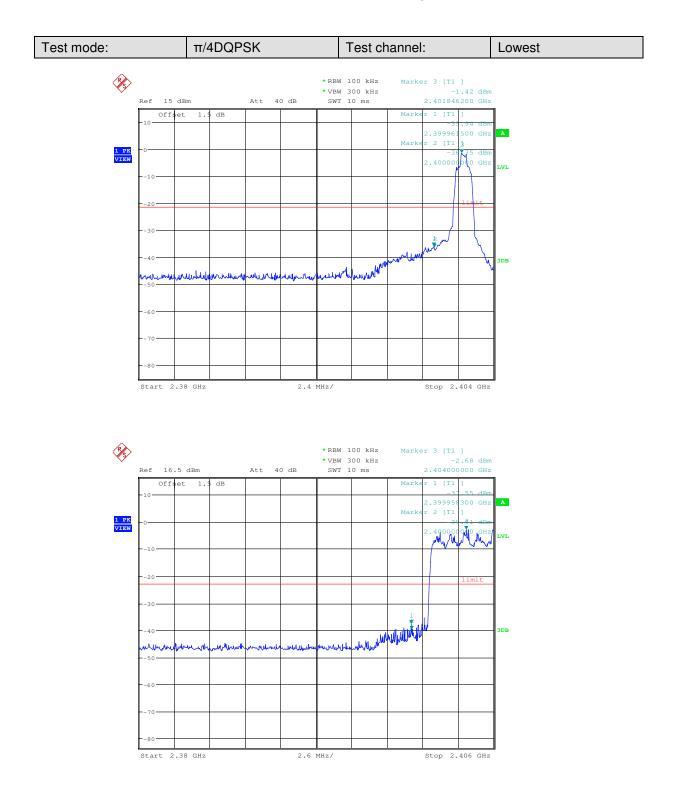

Test Requirement: 47 CFR Part 15C Section 15.247 (d) Test Method: ANSI C63.10:2013 Section 7.8.6 Test Setup: Spectrum Analyzer E.U.T 6 Non-Conducted Table **Ground Reference Plane** Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Hopping and Non-hopping transmitting with all kind of modulation and all kind Exploratory Test Mode: of data type Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type. Instruments Used: Refer to section 5.10 for details Pass **Test Results:**

6.8 Band-edge for RF Conducted Emissions

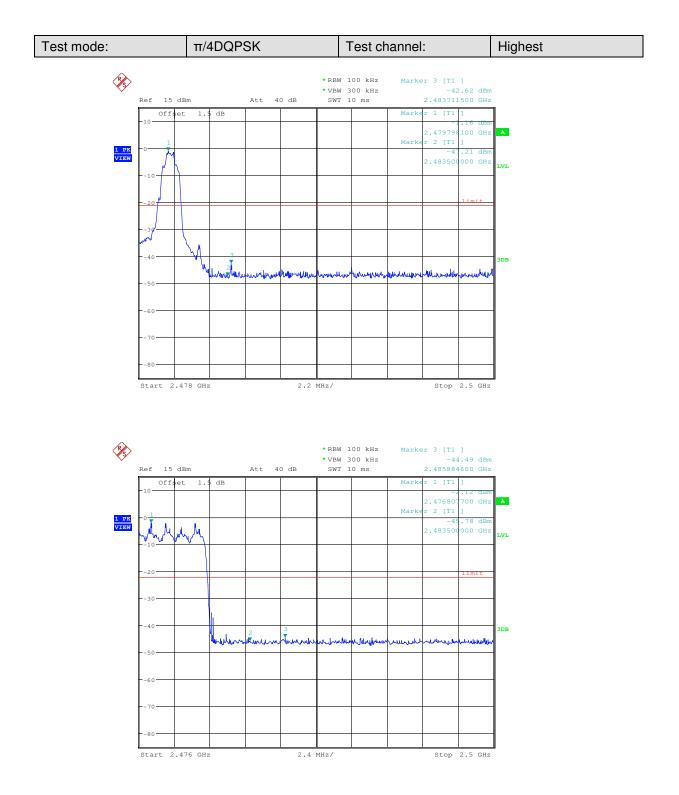
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-



Report No.: SZEM160600497602 Page: 39 of 69



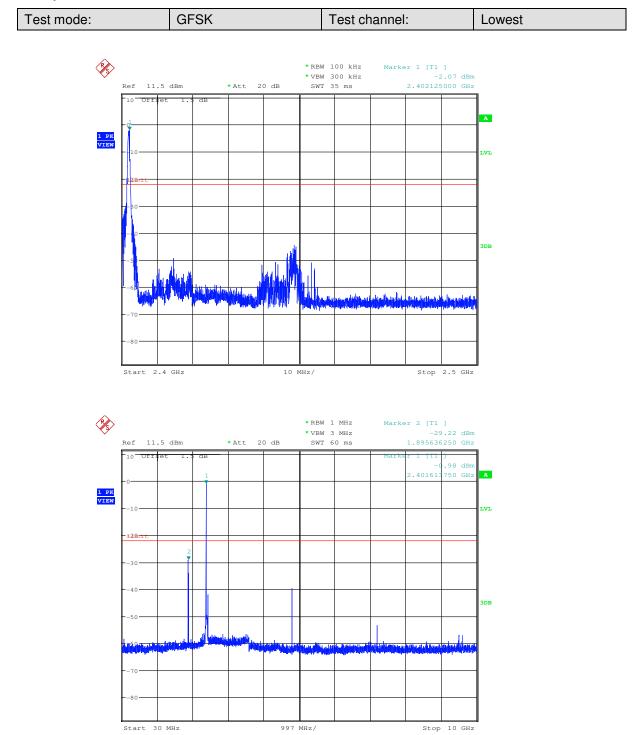
Report No.: SZEM160600497602 Page: 40 of 69



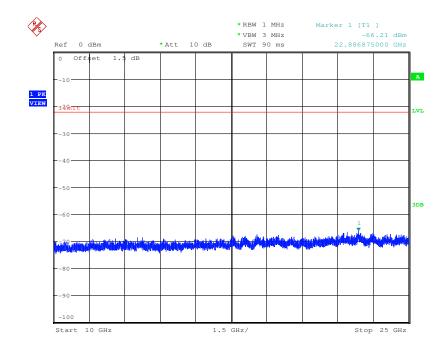
Report No.: SZEM160600497602 Page: 41 of 69

Report No.: SZEM160600497602 Page: 42 of 69

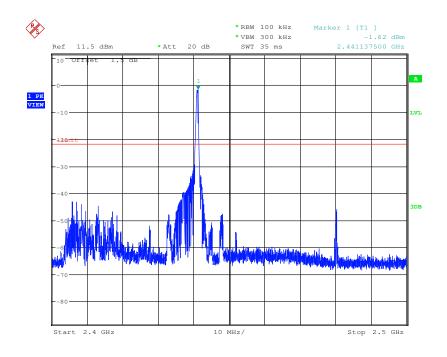
Report No.: SZEM160600497602 Page: 43 of 69


6.9 Spurious RF Conducted Emissions

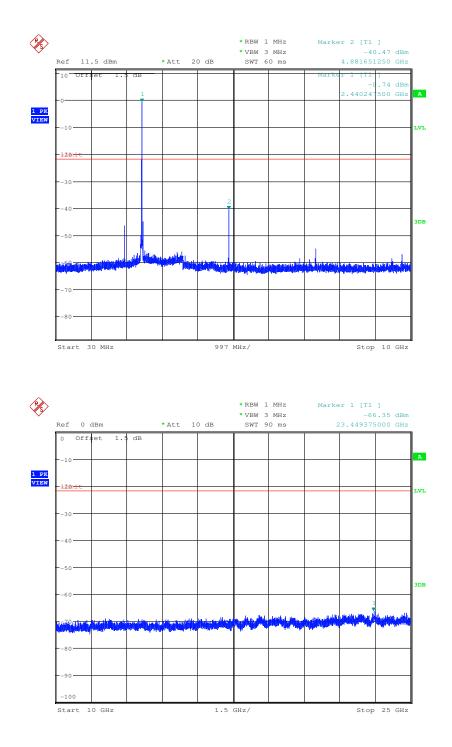
Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 Section 7.8.8						
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type.						
Instruments Used:	Refer to section 5.10 for details						
Test Results:	Pass						

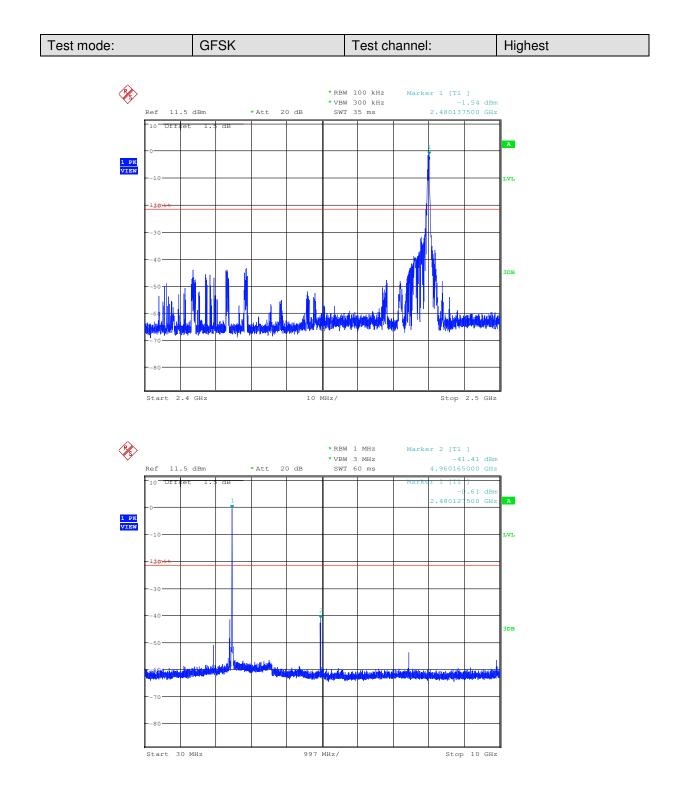

Report No.: SZEM160600497602 Page: 44 of 69

Test plot as follows:

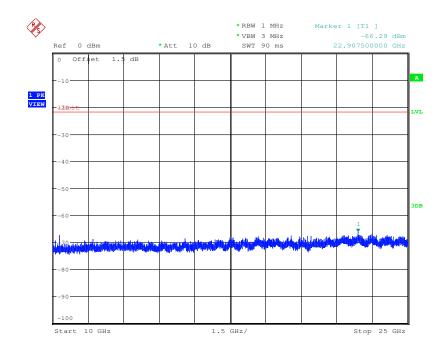


Report No.: SZEM160600497602 Page: 45 of 69

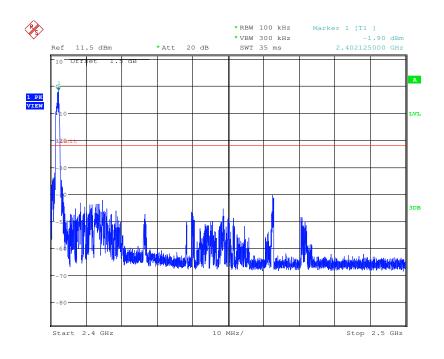




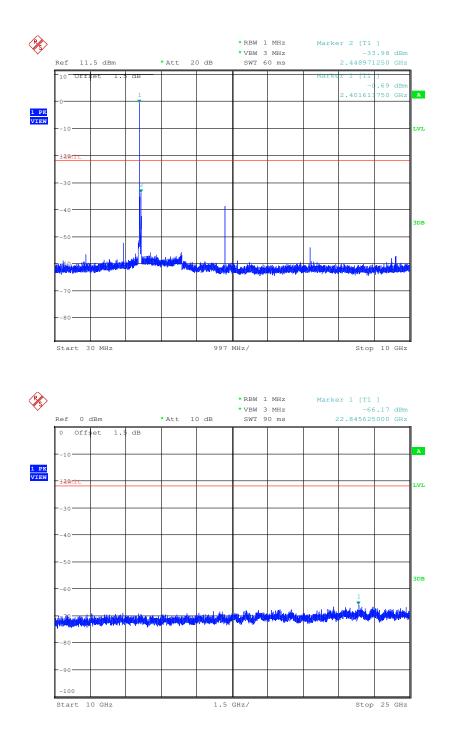
Report No.: SZEM160600497602 Page: 46 of 69

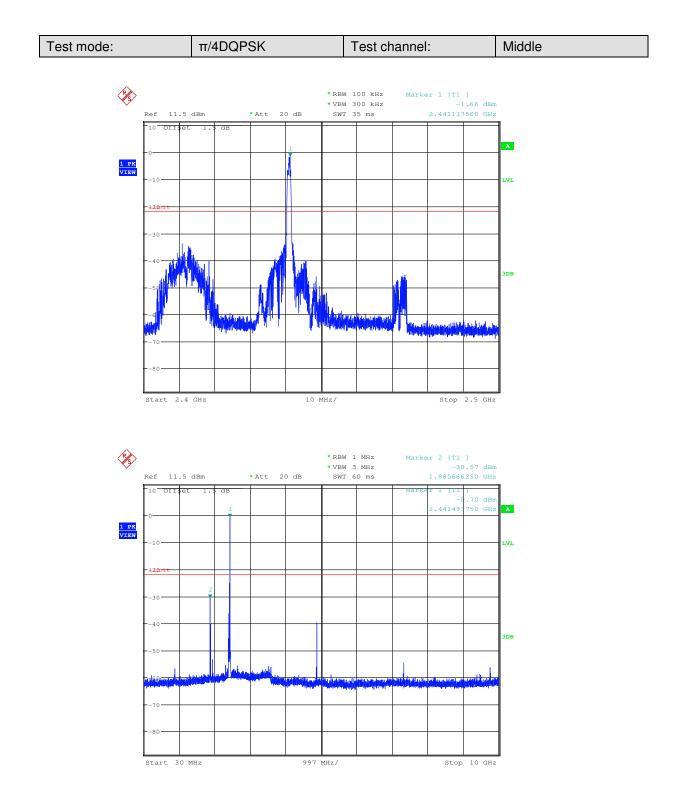


Report No.: SZEM160600497602 Page: 47 of 69

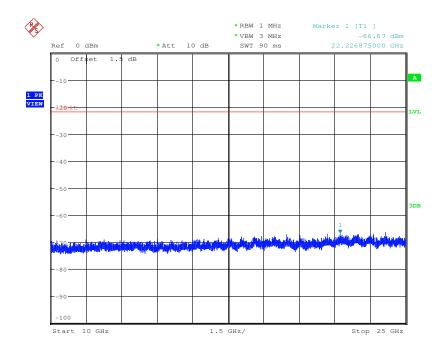


Report No.: SZEM160600497602 Page: 48 of 69

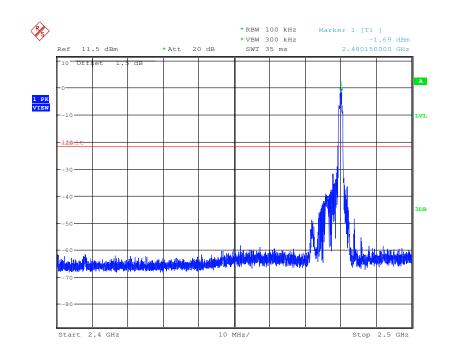




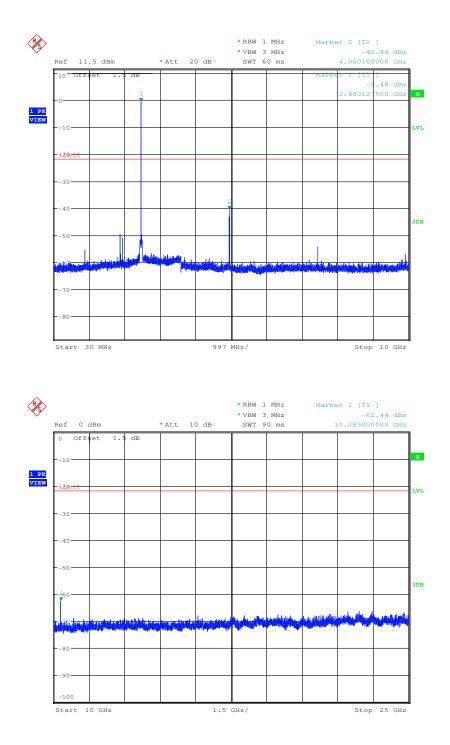
Report No.: SZEM160600497602 Page: 49 of 69



Report No.: SZEM160600497602 Page: 50 of 69



Report No.: SZEM160600497602 Page: 51 of 69



Test mode: π/4DQPSK Test channel: Highest

Report No.: SZEM160600497602 Page: 52 of 69

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

Report No.: SZEM160600497602 Page: 53 of 69

6.10 Other requirements Frequency Hopping Spread Spectrum System

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equ on the average by each transmitter. The system receivers shall have input bandwidths that match hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.	-
	the
Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and t receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping syste and must distribute its transmissions over the minimum number of hopping channels specified in this section.	
The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitte The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.	ed.
Compliance for section 15.247(a)(1)	
 stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is init with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ -1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) 	
Linear Feedback Shift Register for Generation of the PRBS sequence	
An example of Pseudorandom Frequency Hopping Sequence as follow:	
20 62 46 77 7 64 8 73 16 75 1	
Each frequency used equally on the average by each transmitter.	
According to Bluetooth Core Specification, Bluetooth receivers are designed to have input an bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and frequencies in synchronization with the transmitted signals.	
Compliance for section 15.247(g)	
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with	the

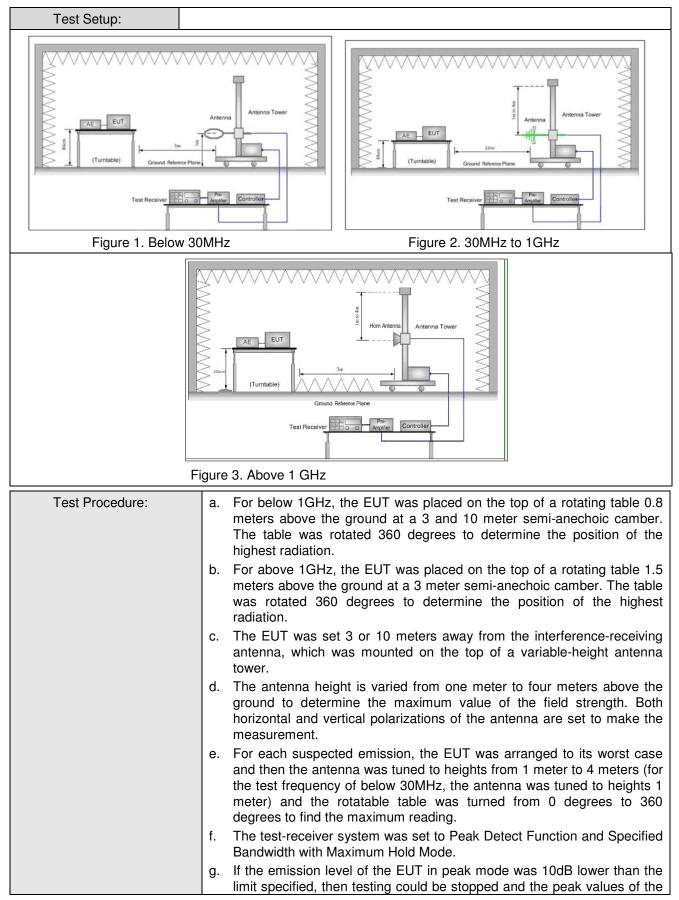
Report No.: SZEM160600497602 Page: 54 of 69

pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

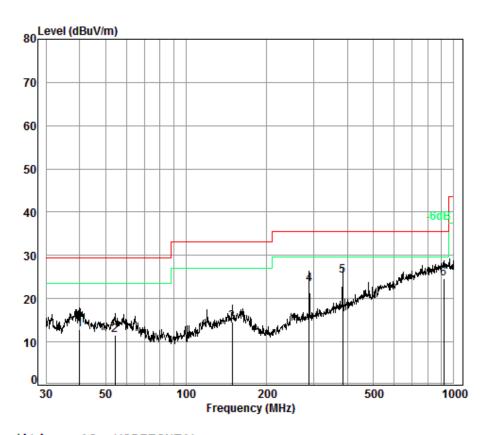

Report No.: SZEM160600497602 Page: 55 of 69

6.11 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15.2	205					
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance	: 10	m (Semi-Anec	hoic Cham	ber)				
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	30kHz	Quasi-peak						
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ		Peak	1MHz	10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-					
	30MHz-88MHz		29.9	29.5	Quasi-peak	x 10			
	88MHz-216MHz		44.7	33	Quasi-peal	x 10			
	216MHz-960MHz		60.3	35.5	Quasi-peal	x 10			
	960MHz-1GHz		100	43.5	Quasi-peal	x 10			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

Report No.: SZEM160600497602 Page: 56 of 69

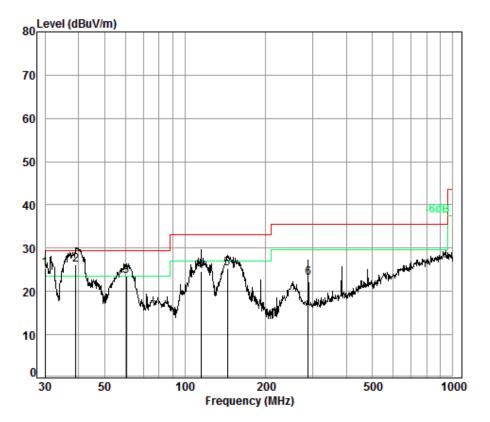
Report No.: SZEM160600497602 Page: 57 of 69


	 EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case.Pretest the EUT at Transmitting mode.For below 1GHz part, through pre-scan, the worst case is the lowest channel.Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM160600497602 Page: 58 of 69

6.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)						
Test mode:	Transmitting	Vertical				


Condition:	10m HORIZONTAL
Job No. :	4976CR
Test Mode:	TX mode

	Enor			Preamp Factor				
	Freq	LUSS	Factor	Factor	Level	Level	Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	39,99	6.80	13.32	32.99	25.70	12.83	29.50	-16.67
2	54.26			32.98				
3	148.44	7.44	13.31	32.74	26.52	14.53	33.10	-18.57
4	287.99	8.02	12.36	32.61	35.57	23.34	35.60	-12.26
5 p	p 383.93	8.30	14.56	32.60	34.98	25.24	35.60	-10.36
6	916.07	9.50	22.44	32.50	25.23	24.67	35.60	-10.93

Report No.: SZEM160600497602 Page: 59 of 69

Test mode:	Transmitting	Horizontal
------------	--------------	------------

Condition: 10m VERTICAL Job No. : 4976CR

Test Mode: TX mode

	Freq			Preamp Factor				Over Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp	30.00 39.16			32.97 32.98				
3 4	60.28 114.92			32.95 32.78				
5 6	143.83 287.99			32.75 32.61				

Report No.: SZEM160600497602 Page: 60 of 69

Test mode:		GFSK(DH1)	Test	channel:	Lowest	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Loss	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3870.060	32.97	7.77	38.51	45.62	47.85	74.00	-26.15	Vertical
4804.000	34.10	8.87	38.75	46.83	51.05	74.00	-22.95	Vertical
6069.413	34.74	10.47	38.87	46.23	52.57	74.00	-21.43	Vertical
7206.000	35.60	10.68	37.64	42.30	50.94	74.00	-23.06	Vertical
9608.000	37.10	12.50	36.35	36.91	50.16	74.00	-23.84	Vertical
12639.790	37.92	14.55	37.79	37.36	52.04	74.00	-21.96	Vertical
3737.975	32.66	7.72	38.46	45.52	47.44	74.00	-26.56	Horizontal
4804.000	34.10	8.87	38.75	47.59	51.81	74.00	-22.19	Horizontal
6087.002	34.74	10.45	38.85	46.82	53.16	74.00	-20.84	Horizontal
7206.000	35.60	10.68	37.64	42.04	50.68	74.00	-23.32	Horizontal
9608.000	37.10	12.50	36.35	36.92	50.17	74.00	-23.83	Horizontal
12603.270	37.90	14.44	37.75	38.94	53.53	74.00	-20.47	Horizontal

6.11.2 Transmitter Emission above 1GHz

Test mode:	G	FSK(DH1)	Tes	t channel:	Middle	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Cable Loss (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3814.467	32.91	7.75	38.49	45.54	47.71	74.00	-26.29	Vertical
4882.000	34.18	8.98	38.77	46.88	51.27	74.00	-22.73	Vertical
6175.716	34.79	10.33	38.73	46.54	52.93	74.00	-21.07	Vertical
7323.000	35.54	10.72	37.59	42.70	51.37	74.00	-22.63	Vertical
9764.000	37.10	12.58	36.14	39.25	52.79	74.00	-21.21	Vertical
12639.790	37.92	14.55	37.79	38.90	53.58	74.00	-20.42	Vertical
3881.276	32.98	7.77	38.52	46.12	48.35	74.00	-25.65	Horizontal
4882.000	34.18	8.98	38.77	46.02	50.41	74.00	-23.59	Horizontal
6069.413	34.74	10.47	38.87	46.59	52.93	74.00	-21.07	Horizontal
7323.000	35.54	10.72	37.59	42.01	50.68	74.00	-23.32	Horizontal
9764.000	37.10	12.58	36.14	39.65	53.19	74.00	-20.81	Horizontal
12603.270	37.90	14.44	37.75	38.46	53.05	74.00	-20.95	Horizontal

Report No.: SZEM160600497602 Page: 61 of 69

Test mode:	Test mode: GFSK(DH1) Test channel:		Highest	Rema	ark:	Peak		
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3836.607	32.94	7.75	38.50	45.80	47.99	74.00	-26.01	Vertical
4960.000	34.26	9.09	38.78	46.21	50.78	74.00	-23.22	Vertical
5982.226	34.66	10.51	38.96	46.14	52.35	74.00	-21.65	Vertical
7440.000	35.60	10.77	37.54	40.17	49.00	74.00	-25.00	Vertical
9920.000	37.22	12.67	35.93	39.91	53.87	74.00	-20.13	Vertical
12676.420	37.94	14.65	37.82	37.54	52.31	74.00	-21.69	Vertical
3589.562	32.08	7.66	38.40	46.49	47.83	74.00	-26.17	Horizontal
4960.000	34.26	9.09	38.78	46.29	50.86	74.00	-23.14	Horizontal
6104.642	34.75	10.42	38.82	46.05	52.40	74.00	-21.60	Horizontal
7440.000	35.60	10.77	37.54	39.81	48.64	74.00	-25.36	Horizontal
9920.000	37.22	12.67	35.93	39.12	53.08	74.00	-20.92	Horizontal
12603.270	37.90	14.44	37.75	37.14	51.73	74.00	-22.27	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

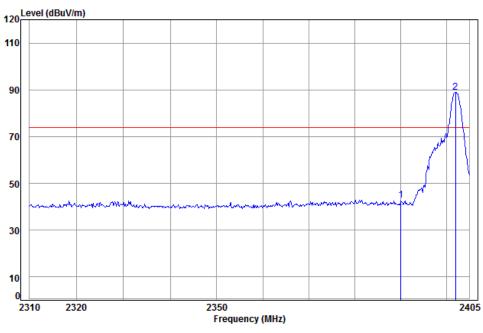
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM160600497602 Page: 62 of 69

6.12 Restricted bands around fundamental frequency

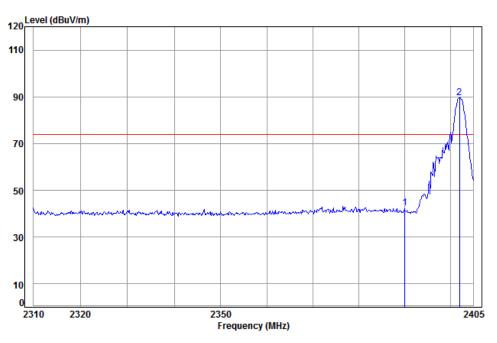
Test Requirement:47 CFR Part 15C Section 15.209 and 15.205Test Method:ANSI C63.10: 2013Test Site:Measurement Distance: 3m (Semi-Anechoic Chamber)Limit:FrequencyLimit (dBuV/m @3m)Remark30MHz-88MHz40.0Quasi-peak Value88MHz-216MHz43.5Quasi-peak Value216MHz-960MHz46.0Quasi-peak Value960MHz-1GHz54.0Quasi-peak ValueAbove 1GHz54.0Average ValueTest Setup:Figure 1. 30MHz to 1GHz									
Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber) Limit: Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 74.0 Peak Value Test Setup:	Test Requirement:	47 CFR Part 15C Section 1	ion 15.209 and 15.205						
Limit: Frequency 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Average Value Above 1GHz 74.0 Peak Value Test Setup: Test Setup: Test Recovery Test Rec	Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013						
Interquency Limit (dbdv/m @sin/) Themark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value Test Setup: Test Setup: Image: Constraint of the setup of the set	Test Site:	Measurement Distance: 3m	n (Semi-Anechoic Chambe	r)					
88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value 74.0 Peak Value	Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value 74.0 Peak Value		30MHz-88MHz	40.0	Quasi-peak Value					
960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value 74.0 Peak Value		88MHz-216MHz	43.5	Quasi-peak Value					
Above 1GHz 54.0 Average Value 74.0 Peak Value		216MHz-960MHz	46.0	Quasi-peak Value					
Above IGHz 74.0 Peak Value Test Setup:		960MHz-1GHz	54.0	Quasi-peak Value					
Test Setup: Image: Test Setup:		Abovo 1CHz	54.0	Average Value					
ALE EUT Test Receiver Test Receiver Test Receiver Test Receiver Test Receiver Test Receiver			74.0	Peak Value					
Figure 1. 30MHz to 1GHz Figure 2. Above 1 GHz	AE EUT (Turntable) Ground Reference	e Plane	AE EUT						
	Figure 1. 30MH	Iz to 1GHz	Figure 2. Above 1 GHz						


Report No.: SZEM160600497602 Page: 63 of 69

Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna
	 tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	 e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and
	 Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	 h. Test the EUT in the lowest channel , the Highest channel i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM160600497602 Page: 64 of 69

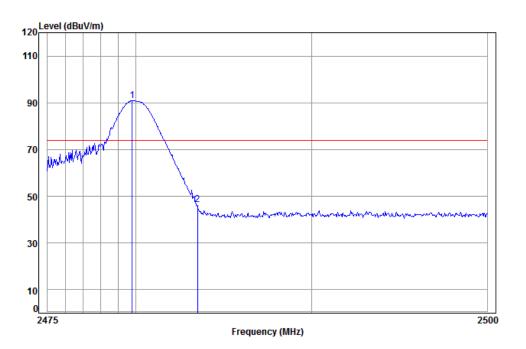
Test plot as follows:									
Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Vertical			



Condition: 3m Vertical Job No: : 4976CR Mode: : 2402 Band edge										
	Cable	Ant	Preamp	Read		Limit	0ver			
Freq	Loss	Factor	Factor	Level	Level	Line	Limit			
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1 2390.000	5.34	28.57	38.11	47.02	42.82	74.00	-31.18			
2 pp 2401.997	5.35	28.61	38.11	93.18	89.03	74.00	15.03			

Report No.: SZEM160600497602 65 of 69 Page:

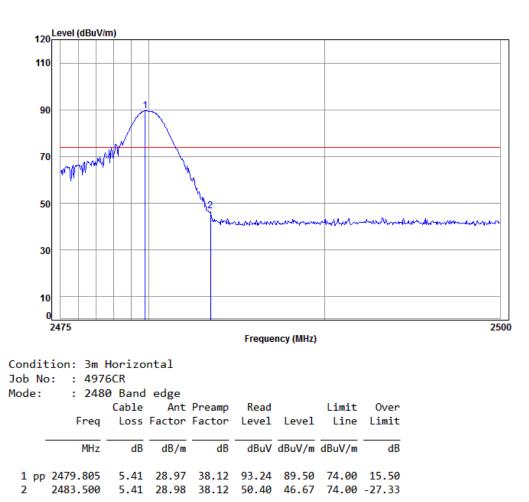
Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	------------	---------------	--------	---------	------	------------



Condition: 3 Job No: : 4 Mode: : 2	976CR						
		Ant	Preamp Factor				Over Limit
Mł	lz dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2390.00 2 pp 2401.99			38.11 38.11				

Report No.: SZEM160600497602 Page: 66 of 69

Worse case mode:	GFSK (DH5)	Test channel:	Highest	Remark:	Peak	Vertical	
------------------	------------	---------------	---------	---------	------	----------	--



Job No	ion: 3m 5: : 497 : 248	5CR						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp 2	2479.805 2483.500							

Report No.: SZEM160600497602 Page: 67 of 69

Worse case mode:	GFSK(DH5)	Test channel:	Highest	Remark:	Peak	Horizontal	
------------------	-----------	---------------	---------	---------	------	------------	--

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

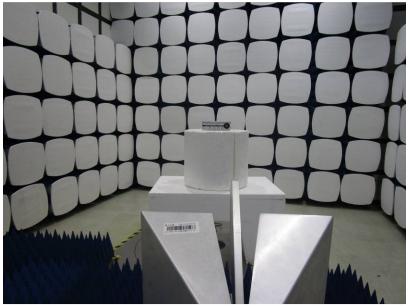
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

Report No.: SZEM160600497602 Page: 68 of 69

7 Photographs - EUT Test Setup

Test Model No.: MET137

7.1 Conducted Emission


7.2 Radiated Emission

Report No.: SZEM160600497602 Page: 69 of 69

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1606004976CR.