STRYKER CORPORATION

13.56MHz RFID short range device

Model Name: CrossFlow Model Number :045000000

June 10 2012 Report No.: SL12050701-STR-006 (FCC, IC)

(This report supersedes NONE)

To: 47 CFR §15.225 :2011, RSS-210 Issue 8 : 2010

Report No. SL12050701-STR-006 (FCC, IC) Issue Date June 10th 2012 Page 2 of 34 www.siemic.com

CERTIFICATE OF TEST

Date of Issue	: June 10th 2012
---------------	------------------

- Company Name : Stryker Endoscopy Corporation
- Product Name/Model : CrossFlow Integrated Arthroscopy Pump/0450000000

Stipulated Standard :

(1) 47 CFR §15.225: 2011 (2) RSS-210 Issue 8: 2010

Equipment complied with the specification [X] Equipment did not comply with the specification []

The submission documentation to a National Regulatory Body for type approval purposes shall consist of two parts; Part one : Application Form; Part two: Test Report;

Modifications made to the product : None	
This Test Report is Issued Under the Authority of:	
Jagor	Bri
Jason Zhang Compliance Engineer	Leslie Bai Engineering Reviewer

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

Accessing global markets RF Test Report for RFID short range device CrossFlow 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

Report No. Issue Date Page

SL12050701-STR-006 (FCC, IC) June 10th 2012

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and <u>compliance management</u> through out a project. Our extensive experience with China, Asia Pacific, North America, European, and international compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope	
USA	FCC, A2LA	EMC , RF/Wireless , Telecom , SAR	
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom , SAR	
Taiwan	BSMI, NCC, NIST EMC, RF, Telecom, Safety		
Hong Kong	OFTA, NIST RF/Wireless, Telecom		
Australia	ilia NATA, NIST EMC, RF, Telecom , Safety		
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety, SAR	
Japan	Japan VCCI, JATE, TELEC, RFT EMI, RF/Wireless, Telecom		
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom	
Europe	A2LA, NIST	EMC, RF, Telecom , Safety, SAR	

Accreditations for Product Certifications

Country	Accreditation Body Scope	
USA	FCC TCB, NIST EMC , RF , Telecom	
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC , RF , Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC, (RCB 208)	RF, Telecom
HongKong	OFTA (US002)	RF, Telecom

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 4 of 34

 www.siemic.com

This page has been left blank intentionally.

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 5 of 34

 www.siemic.com

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	7
2	TECHNICAL DETAILS	8
3	MODIFICATION	. 10
4	TEST SUMMARY	.11
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	.12
ANN	EX A. TEST INSTRUMENT & METHOD	.26
ANN	EX B EUT PHOTOGRAPHS	. 29
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	. 30
ANN	EX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM	.34

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 6 of 34

 www.siemic.com

This page has been left blank intentionally.

1

Accessing global markets Title: RF Test Report for RFID short range device Model : CrossFlow To 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

Report No. SL12050701-STR-006 (FCC, IC) Issue Date June 10th 2012 Page 7 of 34

Executive Summary & EUT information

The purpose of this test program was to demonstrate compliance of the Stryker Endoscopy Corporation, RFID short range device operating on 13.56 MHz, model: CrossFlow. The CrossFlow have demonstrated compliance with the 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010.

Applicant & EUT Information

Applicant Information

Applicant / Client	Stryker Endoscopy Corporation 5900 Optical Court, San Jose, CA 95138 USA	
Manufacturer1	Stryker Endoscopy Corporation 5900 Optical Court, San Jose, CA 95138 USA	

EUT Information

EUT Description	:	The Stryker CrossFlow Integrated Arthroscopy Pump is a fluid management system, comprised of a pump console with inflow-only and inflow/outflow modes, disposable cassette tubing, a wired hand control, and a wired footswitch. The system integrates with approved resection consoles. CrossFlow Integrated Arthroscopy Pump - Compatible with the Crossire Console, CrossFlow Footswitch, Autoclavable Hand Control, iSwitch Wireless Universal Foot Control, SDC3 and approved resection consoles
Model Name	:	CrossFlow
Model No	:	045000000
Serial No	:	DVV2CS10
Input Power	:	100~240 VAC , 50/60Hz,10A
Frequency	:	13.56 MHz
Radiated power	:	50uW
Modulation	:	10% ASK
Sub carrier	:	423.75 kHz, Manchester coding
Classification Per Stipulated Test Standard	:	RFID Reader

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 8 of 34

2	TECHNICAL DETAILS
Laboratory performing the tests	SIEMIC Laboratories
	2206 Ringwood Ave, San Jose, CA 95131
Date of EUT received	May 26th, 2012
Dates of test (from - to)	May 28th – Jun 7th, 2012
Equipment Category	RFID product
Standard applied	See page 2
FCC ID:	SSH-XFLOW
IC ID:	4919C-XFLOW

EUT Test Mode Evaluation

EUT Major Function List

Functions	Description
Fn#1	N/A

EUT Test Mode List

RF Test Modes	Description	Test Configuration	
RF_Test Mode	EUT continuous transmit itself when power on	Continuous TX	

Report No. SL12050701-STR-006 (FCC, IC) Issue Date June 10th 2012 Page 9 of 34

Supporting Equipment & Cabling

Supporting equipment used with the EUT

Equipment Description	Model	Serial No.	Manufacturer
N/A	N/A	N/A	N/A

Details of cables between EUT and Supporting Equipment

Connection Start		Connection Stop		Length / shielding Info		
From	I/O Port	То	I/O Port	Length(m)	Shielding	
N/A	N/A	N/A	N/A	N/A	N/A	

Test Software Information

Test Item	Software	Description
Radiated & conducted Testing	N/A	EUT continuous transmit itself when power on

 Title:
 RF Test Report for RFID short range device

 Model :
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 10 of 34

 www.siemic.com

3 **MODIFICATION**

Report No.	Report Version	Description	Issue Date

Title: RF Test Report for RFID short range device Model : CrossFlow To 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL 12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 11 of 34

TEST SUMMARY 4

The product was tested in accordance with the following specifications.

All Testing has been performed according to below product classification:

RFID short range device

Test Results Summary

Test S	tandard	Description	
47 CFR Part 15.225: 2011	RSS 210 Issue 8: 2010	Description	Pass / Fall
15.203		Antenna Requirement	Pass
15.207(a)	RSS Gen(7.2.2)	Conducted Emissions Voltage	Pass
15.225(a)	RSS210(A2.6)	Limit in the band of 13.553 – 13.567 MHz	Pass
15.225(b)	RSS210(A2.6)	Limit in the band of 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	Pass
15.225(c)	RSS210(A2.6)	Limit in the band of 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	Pass
15.225(d), 15.209	RSS210(A2.6)	Limit outside the band of 13.110 – 14.010 MHz	Pass
15.225(e)	RSS210(A2.6)	Frequency Stability	Pass
	RSS-210(5.9.1)	Occupied Bandwidth	Pass
ANSI C42 4: 2000/ DSS Con I	ccup 2, 2010		

ANSI C63.4: 2009/ RSS-Gen Issue 3: 2010

PS: All measurement uncertainties are not taken into consideration for all presented test result.

Accessing global markets RF Test Report for RFID short range device CrossFlow Model 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010 Report No. SL1205070105 Issue Date June 10th 2012 Page 12 of 34 Scientic.con SL12050701-STR-006 (FCC, IC)

MEASUREMENTS, EXAMINATION AND DERIVED RESULTS 5

5.1 Antenna Requirement

Title:

То

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The RFID antenna is integral to the main board permanently to the device which meets the requirement (See Internal Photographs submitted as another Exhibit).

Results: Pass

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 13 of 34

 www siemic com

5.2 AC Line Conducted Emission Test Result

Note:

- 1 All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2 A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. <u>Conducted Emissions Measurement Uncertainty</u>
- 3 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz 30MHz (Average & Quasi-peak) is ±3.86dB.
- 4 Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure 25°C 50% 1019mbar

Test Date : May 28th – Jun 7th, 2012 Tested By : Jason Zhang

Results: PASS

SIEMIC, INC. Accessing global markets
 Title:
 RF Test Report for RFID short range device

 Model :
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

Report No. Issue Date Page SL12050701-STR-006 (FCC, IC) June 10th 2012 14 of 34

Test Result

Quasi-Peak Limit

Average Limit

120V, 60Hz, Neutral Line

Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Avg Value (dBµV)	Class B Limit (dBuV)	Pass / Fail	Margin (dB)	Line
0.30	51.55	60.38	Pass	-8.82	28.56	50.38	Pass	-21.82	Neutral
0.43	39.04	57.19	Pass	-18.15	31.52	47.19	Pass	-15.67	Neutral
0.51	34.07	56.00	Pass	-21.93	27.93	46.00	Pass	-18.07	Neutral
0.63	41.43	56.00	Pass	-14.57	25.93	46.00	Pass	-20.07	Neutral
0.69	51.74	56.00	Pass	-4.26	36.69	46.00	Pass	-9.31	Neutral
0.82	33.33	56.00	Pass	-22.67	28.30	46.00	Pass	-17.70	Neutral

SIEMIC, INC. Accessing global markets
 Title:
 RF Test Report for RFID short range device

 Model :
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

Report No. Issue Date Page

SL12050701-STR-006 (FCC, IC) June 10th 2012 15 of 34

120V, 60Hz, Phase Line

Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Avg Value (dBµV)	Class B Limit (dBuV)	Pass / Fail	Margin (dB)	Line
0.23	48.29	62.42	Pass	-14.14	28.59	52.42	Pass	-23.83	Phase
0.30	45.36	60.38	Pass	-15.02	27.06	50.38	Pass	-23.32	Phase
0.42	48.03	57.43	Pass	-9.41	29.45	47.43	Pass	-17.98	Phase
0.46	49.74	56.74	Pass	-7.00	34.56	46.74	Pass	-12.18	Phase
0.55	44.18	56.00	Pass	-11.82	27.98	46.00	Pass	-18.02	Phase
0.67	44.38	56.00	Pass	-11.62	27.67	46.00	Pass	-18.33	Phase

Title:

То

Model :

Accessing global markets RF Test Report for RFID short range device CrossFlow 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

Report No. SL12050701-ST Issue Date June 10th 2012 SL12050701-STR-006 (FCC, IC) Page

5.3 Radiated Spurious Emission > 30 MHz (30MHz – 1 GHz, E-Field)

Note:

All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR 1. detectors, are reported. All other emissions were relatively insignificant. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. 2. Radiated Emissions Measurement Uncertainty 3.

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m). Temperature

Environmental Conditions 4.

Relative Humidity Atmospheric Pressure

21.8°C 50% 1019mbar

Test Date : May 28th - Jun 7th, 2012 Tested By : Jason Zhang

Results: PASS

SIEMIC, INC.
 Title:
 RF Test Report for RFID short range device

 Model:
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL 12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 17 of 34

Test Result

30MHz ~1000MHz

Frequency	Corrected Amplitude	Turntable position	Polarity	Antenna height	Class B Limit	Margin	Measure Detector
(MHz)	dBuV/m	(deg)		(cm)	(dBµV/m)	(dB)	
71.23	33.40	344.00	V	182.00	40.00	-6.60	QP
367.09	39.52	332.00	Н	211.00	43.50	-6.48	QP
665.01	38.45	357.00	Н	107.00	43.50	-7.55	QP
670.33	39.64	359.00	Н	113.00	43.50	-6.36	QP
798.02	38.04	342.00	V	111.00	43.50	-7.96	QP
819.26	43.00	23.00	V	111.00	46.00	-3.00	QP

Report No. SL12050701-STR-006 (FCC, IC) Issue Date June 10th 2012 Page 18 of 34 www.siemic.com

5.4 Radiated Emission < 30MHz (9kHz - 30MHz, H-Field)

Requirement(s): 47 CFR §15.225

Procedures: For < 30MHz, Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set 10 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the centre of the loop. The measuring bandwidth was set to 10 kHz. (Note: During testing the receive antenna was rotated about its axis to maximize the emission from the EUT.)

The limit is converted from microvolt/meter to decibel microvolt/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF (dB) + Cable Loss (dB) – Distance Correction Factor

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Radiated Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/-6dB.

4. Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure 23°C 48% 1019mbar

Test Date : May 28th – Jun 7th, 2012 Tested By : Jason Zhang

Results: Pass

t No. SL12050701-STR-006 (FCC, IC) Date June 10th 2012 19 of 34 www.siemic.com

100 kHz ~ 1 MHz

General Emission Limit @ 3 Meter

Loop Antenna at 0 degree

Loop Antenna at 90 degree

Report No. Issue Date Page

SL12050701-STR-006 (FCC, IC) June 10th 2012 20 of 34

1MHz ~ 30MHz

Loop Antenna at 0 degree

General Emission Limit @ 3 meter

Loop Antenna at 90 degree

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 21 of 34

 www siemic com

5.5 Fundamental Field Strength Test Result

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/-6dB.
- 4. Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure 23°C 50% 1019mbar

Test Date : May 28th – Jun 7th, 2012 Tested By : Jason Zhang

Test Requirement:

13.56 MHz --- The field strength of any emissions within allowed operating band shall not exceed 10mV/m at 30 meters.

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 23 of 34

 www siemic com

5.6 Frequency Stability

Requirement(s): 47 CFR §15.225(e)

Procedures: Frequency Stability was measured according to 47 CFR §2.1055. Measurement was taken with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in hertz. A voltmeter was used to monitor when varying the voltage.

Limit: ±0.01% of 13.56 MHz = 1356 Hz

Environmental Conditions	Temperature	23°C
	Relative Humidity	48%
	Atmospheric Pressure	1019mba
Test Date : May 28th – Jun 7th, 2012	·	
Tested By : Jason Zhang		

Results: Pass

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 24 of 34

 www siemic com

Test Result

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within \pm 0.01% of the operating frequency over a temperature variation of -20°C to +50°C at normal supply voltage.

Reference Trequency. 13.300371 Minz at -20 C and +30 C							
Temperature	Measured Freq.	Freq. Drift	Freq. Deviation	Pass/Fail			
(°C)	(MHz)	(Hz)	(Limit: 0.01%)	1 a33/1 all			
50	13.560573	2	<0.01	Pass			
40	13.560577	6	<0.01	Pass			
30	13.560582	11	<0.01	Pass			
20		Reference (13.560571 MHz)					
10	13.560572	1	<0.01	Pass			
0	13.560569	2	<0.01	Pass			
-10	13.560565	6	<0.01	Pass			
-20	13.560566	5	<0.01	Pass			

Reference Frequency: 13.560571 MHz at -20°C and +50°C

Frequency Stability versus Input Voltage: The Frequency tolerance of the carrier signal shall be maintained within ± 0.01%, the frequency of the transmitter was measured at 85% and at 115% of the rated power supply voltage at 20°C environmental temperature.

Carrier Frequency: 13.560571 MHz at 20°C at 120VAC

Measured Voltage ±15% of nominal (AC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Deviation (Limit: 0.01%)	Pass/Fail
102	13.560580	9	<0.01	Pass
138	13.560586	15	<0.01	Pass

Title:

Model

То

Accessing global markets RF Test Report for RFID short range device : CrossFlow 47 CFR \$15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 25 of 34

 www siemic com

5.7 Occupied Bandwidth

Requirement(s): RSS-210 (5.9.1)

Procedures: Occupied Bandwidth was measured according to RSS-210 (5.9.1). Measurement was taken with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in hertz.

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

3. <u>Radiated Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/-6dB.

4. Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure 23°C 50% 1019mbar

Test Date : May 28th – Jun 7th, 2012 Tested By : Jason Zhang

Results: Pass

Test Result

 Title:
 RF Test Report for RFID short range device

 Model :
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 26 of 34

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Date	Calibration Due	Calibrate Cycle		
CONDUCTED EMISSIONS							
R & S Receiver	ESIB 40	100179	04/20/2012	04/20/2013	1year		
R&S LISN	ESH2-Z5	861741/013	05/18/2012	05/18/2013	1year		
CHASE LISN	MN2050B	1018	05/18/2012	05/18/2013	1year		
Sekonic Hygro Hermograph	ST-50	HE01- 000092	05/25/2012	05/25/2013	1year		
Radiated Emissions							
R & S Receiver	ESIB 40	100179	04/20/2012	04/20/2013	1year		
Sunol Sciences, Inc. antenna (30MHz~2GHz)	JB1	A030702	02/09/2012	02/09/2013	1year		
3 Meters SAC	3M	N/A	10/13/2011	10/13/2012	1year		
10 Meters OATS	10M	N/A	06/17/2011	06/17/2012	1year		
Sekonic Hygro Hermograph	ST-50	HE01- 000092	05/25/2012	05/25/2013	1year		
Test Equity Environment Chamber	1007H	61201	06/01/2012	06/01/2013	1year		
Passive Loop Antenna (10kHz-30MHz)	6512	49120	05/22/2012	05/22/2013	1year		

Title:

То

Accessing global markets RF Test Report for RFID short range device CrossFlow Model : 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

SL12050701-STR-006 (FCC, IC) Issue Date June 10th 2012 Page

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.

The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.

The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.

All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an 2. EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasipeak and Average measurements were made.
- Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power). 5.

Sample Calculation Example

At 20 MHz	limit = 250 μ V = 47.96 dB μ V				
Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB					
Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$ (Calibrated for system losses)					
Therefore, Q-P margin = 47.96 – 40.00 = 7.96	i.e. 7.96 dB below limit				

Report No. SL12050701-STR-006 (FCC, IC) Issue Date June 10th 2012 Page 28 of 34 www.siemic.com

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 1GHz (for FCC tests, until the 5th harmonic for operating frequencies \geq 108MHz), was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred; clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table as shown in <u>Annex B</u>.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 3. A Quasi-peak measurement was then made for that frequency point.
- 4. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.
- 5. The frequency range covered was from 30MHz to 1GHz (for FCC tests, until the 5th harmonic for operating frequencies ≥ 108MHz), using the Biconical antenna for frequencies from 30MHz to 230MHz, Log-periodical antenna for frequencies from 230MHz to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

limit = 200 μ V/m = 46.00 dB μ V/m

Log-periodic antenna factor & cable loss at 300 MHz = 18.50 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V/m}$ (Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 46.00 - 40.00 = 6.00

i.e. 6 dB below limit

SIEMIC, INC. Accessing global markets
 Title:
 RF Test Report for RFID short range device

 Model :
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 29 of 34

 www.siemic.com

Annex B EUT PHOTOGRAPHS

Annex B.i. Photograph 1: EUT External Photo

Please see attachment

Accessing global markets
 Title:
 RF Test Report for RFID short range device

 Model:
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 30 of 34

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT TEST SETUP

Please see attachment

TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description	Model & Serial	Cable Description
(Including Brand Name)	Number	(List Length, Type & Purpose)

SIEMIC, INC. Accessing global markets
 Title:
 RF Test Report for RFID short range device

 Model:
 CrossFlow

 To
 47 CFR §15.225: 2011; RSS-210 Issue 8: 2010

 Report No.
 SL 12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 31 of 34

Block Configuration Diagram for Radiated Emission

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 32 of 34

Block Configuration Diagram for Conducted Emission

Report No. SL12050701-STR-006 (FCC, IC) Issue Date June 10th 2012 Page 33 of 34 www.siemic.com

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was continuously transmitting itself when power on.
Others Testing	The EUT was continuously transmitting itself when power on.

 Report No.
 SL12050701-STR-006 (FCC, IC)

 Issue Date
 June 10th 2012

 Page
 34 of 34

 www.siemic.com

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment