20.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.24 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR for nominal Body TSL parameters

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	

normalized to 1W

Certificate No: D5GHzV2-1103_Jan23

Page 8 of 16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.2 Ω - 6.4 jΩ
Return Loss	- 23.9 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.4 Ω - 0.2 jΩ
Return Loss	- 36.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.7 Ω - 2.0 jΩ
Return Loss	- 34.0 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.5 Ω + 0.8 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.9 Ω + 1.5 jΩ
Return Loss	- 32.4 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.4 Ω - 4.5 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.5 Ω + 2.1 jΩ
Return Loss	- 31.6 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.4 Ω + 0.1 jΩ
Return Loss	- 46.6 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.4 Ω + 4.2 jΩ
Return Loss	- 22.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.8 Ω + 2.5 jΩ
Return Loss	- 27.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.207 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	SFEAG

Page 10 of 16

DASY5 Validation Report for Head TSL

Date: 25.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.58$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 4.72$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 4.95$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.03$ S/m; $\varepsilon_r = 35.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.18$ S/m; $\varepsilon_r = 35.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.18$ S/m; $\varepsilon_r = 35.1$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

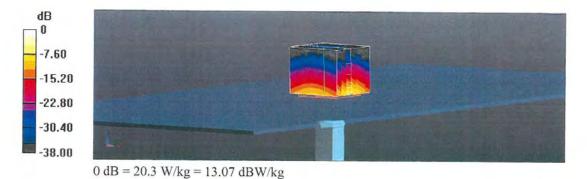
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.46 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 69.2% Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.84 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.4% Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: D5GHzV2-1103_Jan23

Page 11 of 16

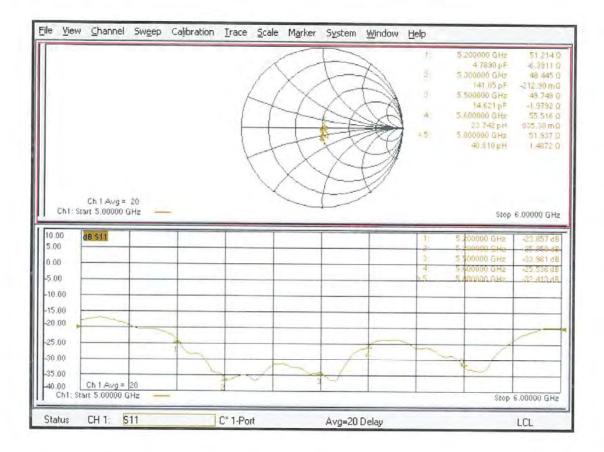

Dt&C

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.72 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.68 W/kg; SAR(10 g) = 2.45 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 20.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.00 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.48 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.7% Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.84 V/m; Power Driff = -0.02 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.6% Maximum value of SAR (measured) = 19.3 W/kg



Certificate No: D5GHzV2-1103 Jan23

Page 12 of 16

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1103_Jan23

Page 13 of 16

DASY5 Validation Report for Body TSL

Date: 18.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\epsilon_r = 49$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 5.59$ S/m; $\epsilon_r = 48.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 5.88$ S/m; $\epsilon_r = 48.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 6$ S/m; $\epsilon_r = 48.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³

DASY52 Configuration:

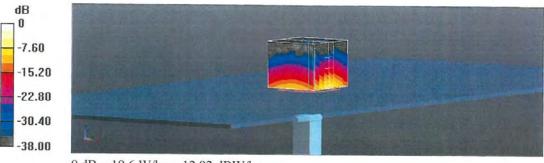
- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.29 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.06 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 68.1% Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.11 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 28.8 W/kgSAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.12 W/kgSmallest distance from peaks to all points 3 dB below = 7.2 mmRatio of SAR at M2 to SAR at M1 = 66.9%Maximum value of SAR (measured) = 17.9 W/kg

Certificate No: D5GHzV2-1103 Jan23

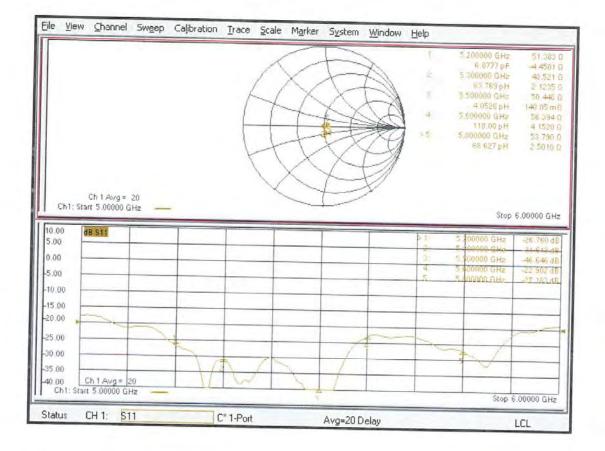

Page 14 of 16

Dt&C

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.78 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.97 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64% Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.41 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.4 W/kg



0 dB = 19.6 W/kg = 12.92 dBW/kg

Page 15 of 16

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1103_Jan23

Page 16 of 16

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

DT&C (Dymstec)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: CLA13-1030_Nov22

s

С

S

Object	CLA13 - SN: 1030					
Calibration procedure(s)	QA CAL-15.v9 Calibration Proc	edure for SAR Validation Source	s below 700 MHz			
Calibration date:	November 07, 2					
The measurements and the uncer	tainties with confidence p ted in the closed laborato	ional standards, which realize the physical ur probability are given on the following pages are given for the following pages are facility; environment temperature $(22\pm3)^{\circ}$	nd are part of the certificate.			
Primary Standards	ID #	Cal Dale (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23			
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23			
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23			
			ripi 20			
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23			
	SN: CC2552 (20x) SN: 310982 / 06327	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	Apr-23 Apr-23			
Type-N mismatch combination		04-Apr-22 (No. 217-03528)	Apr-23			
Type-N mismatch combination Reference Probe EX3DV4	SN: 310982 / 06327					
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 310982 / 06327 SN: 3877	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22)	Apr-23 Dec-22 Jan-23			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 310982 / 06327 SN: 3877 SN: 654	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house)	Apr-23 Dec-22 Jan-23 Scheduled Check			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22)	Apr-23 Dec-22 Jan-23 Scheduled Check In house check; Jun-24			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-24 In house check: Jun-24			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) D6-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	Apr-23 Dec-22 Jan-23 Scheduled Check In house check; Jun-24 In house check; Jun-24 In house check; Jun-24			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-24 In house check; Jun-24			
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilient E8358A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function	Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Aidonia Georgiadou	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function Laboratory Technician	Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24			
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by:	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function	Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24			

Certificate No: CLA13-1030_Nov22

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA13-1030_Nov22

Page 2 of 6

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4		
Extrapolation	Advanced Extrapolation			
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm		
EUT Positioning	Touch Position			
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)		
Frequency	13 MHz ± 1 MHz			

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.0	0.75 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	0.74 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	0.534 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.536 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	0.335 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.337 W/kg ± 18.0 % (k=2)

Certificate No: CLA13-1030_Nov22

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.1 Ω + 1.5 ϳΩ
Return Loss	- 29.3 dB
	- 29.5 UD

Additional EUT Data

Manufacture	
Manufactured by	
	SPEAG
	OT EAG

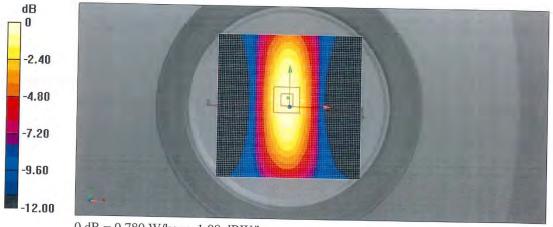
Certificate No: CLA13-1030_Nov22

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 07.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1030

Communication System: UID 0 - CW; Frequency: 13 MHz Medium parameters used: f = 13 MHz; $\sigma = 0.74$ S/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 26.01.2022
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 29.81 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.534 W/kg; SAR(10 g) = 0.335 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 14 mm) Ratio of SAR at M2 to SAR at M1 = 79% Maximum value of SAR (measured) = 0.780 W/kg

0 dB = 0.780 W/kg = -1.08 dBW/kg

Certificate No: CLA13-1030_Nov22

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: CLA13-1030_Nov22

Page 6 of 6

APPENDIX C. – SAR Tissue Specifications

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.9 Simulated Tissue

Ingredients	Frequency (MHz)							
(% by weight)	835		1 900		2 450		5 200 ~ 5 800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00
Salt (NaCl)	1.480	0.940	0.310	0.290	0.160	0.060	-	-
Sugar	57.90	48.21	-	-	-	-	-	-
HEC	0.250	-	-	-	-	-	-	-
Bactericide	0.180	0.100	-	-	-	-	-	-
Triton X-100	-	-	-	-	19.97	-	17.24	-
DGBE	-	-	44.45	29.48	7.990	26.54	-	-
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	-
Polysorbate (Tween) 80	-	-	-	-	-	-		20.00
Target for Dielectric Constant	41.5	55.2	40.0	53.3	39.2	52.7	-	-
Target for Conductivity (S/m)	0.90	0.97	1.40	1.52	1.80	1.95	-	-

Table C.1 Composition of the Tissue Equivalent Matter

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose			
Water:	De-ionized, 16M resistivity HEC:		Hydroxyethyl Cellulose			
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]					
Triton X-100(ultra pure):	100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether					

Head Tissue 4 MHz ~ 250 MHz Simulating Liquids

Schm	d & P	artnor E	ngina	ering	AG			_	_		S		0	e	а	g
Phone	+41 44	159 43, 9 245 970 swiss, ini	0, Fax	+41 44	245 9											
Meas	uren	nent Co	ertific	ate /	Mate	erial Tes	at									
Item N						nulating			250V3	3)				-		-
Produ Manuf			SPE		IS AU	(Batch: 2	21018-2	,						_		
		nt Metho														
TSL d	electri	c param	eters r	neasu	red us	ing calibr	ated DAP	C probe.	_			_	_	_		
Setup Valida			e with	n = 2.	5% 10	wards the	target v	alues of	Matte	anol		_	-			_
		meters									-					
			defin	ed in t	he IEE	E 1528 a	ind IEC 6	2209 cc	mplia	nce s	tandards	ş.	_		_	
Test C		ion	-					_		2						
Ambie TSL T	mpen	ature	22°C		nt tem	peratur (2	(2 ± 3)°C	and hu	midity	< 709	6.					
Test D Operat			20-0	ct-22												
Additi	onalle	nformati								-		-				
TSL D	ensity		1.043	2 g/cm 1 KJ/(k				-	-			-		-		
OL P			w.dri	_		-	_	-	_			-		_		
f (MHz)	Measu	red e ^{rr}	sigma	Targe		Diff.to Ta	rget [%] A-sigma		10.0		-	1	-	1.1		
5 10	53,6 53.9	2011.49	0.73	55.5	0.75	-3.3 -2.6	-2.7	1	7.5							
15	53.8	871.51	0,73	55.3	0,75	-28	-2.7	Perintikaty	25							/
20 25	53.7 53.8	654.22 523.88	0,73 0.73	55.1 55.0	0.75	26	-2.7	Det Pa	-2.5	-	-	-	-		-	
30 35	53.5 53.4	437.01	0.73	55,0 34,9	0.75	-27	2.7		-5,0							
40	\$3,2	328,52	0.79	54.8	0.75	2.9	21		-10.0	5 25	45 6	5 85	105 1;	15 145 16	5 185 205	225 245
45	53.1 53.0	292.40 263.53	0.73	54.7 54.6	0.75	-2.9	-27	1						ngy MHz		
35 60	52.B 52.7	229.94	0.73	54.4 54.3	0.75	-3.0	2.8	-		_						
65	52.5	203.73	0.74	54.2	0.75	-3.2	1.6		10.0	IT		-		TT		
70 75	52.4 52.3	189.53 177.24	0.74	54.1 54.0	0.75	-3.1 -3.1	-1.6	S Kan	5.0		-	-				
80 85	52.2 52.1	166.49	0,74	53.9 53.8	0.75	-3.1	-1.7	Conductively	2.6					-		
90	52.0	148,61	0,74	53.7	0.75	-3.1	-1.9	Dev	2.5	-	-	T				
95 100	51.9 51.8	141.10 134.35	0.75	53.5 53.4	0.75	-3.1 -3,1	-0.6		-7.5							
105 110	51.7 51.6	128.25	0.75	53.3 53.2	0.76	-3.0	-0.7		-10.0	5 25	45 6	5 85			5 185 205	225 245
115	51.5	117.65	0.75	53.1	0.76	-3.0	-0.8			_	_	_	riequer	cy MHz	_	_
120 125	51,4 51,2	113.03	0.75 0,76	53.0 52.9	0.76 0.76	-3.0 -3.1	-0.9 0.4									
130 135	51.1 51.0	104.85	0.76	52.8 52.6	0.76	-31	0.4									
140 145	50.9 50.8	97.86 94.73	0.78	52.5 52.4	0.76	-3.1	0.2									
150	50,8	91.82	0.77	\$2.3	0.76	2.0	1.5									
155 160	50.7 50.6	89.09 86.54	0.77	52.1 51.8	0.76	-2.6	1.0 0.5									
165 170	50.5 50.4	84.15 81.90	0.77	51.6 51.4	0.77	-2.1	0.0									
175	50.3	79.78	0.78	61.1	0.78	-1.6	0.4									
180 185	50.2 50.1	77.78 75.89	0.78	50.9 50.7	0.78 0.78	×1.4 -1.1	-0.1									
190 195	50.0 40.9	74.10	0.7a	50.4 50.2	0.79 0.79	9.0- 3.0-	-10									
200	49.6	70.80	0.79	50:0	0.80	0.3	-0.7									
205 210	49.8	69.27 67.82	0.79	49.7 49.5	08.0 09.0	0.1	-1.2									
215	49.6	66.43 65.11	0.79	49.3	0.81	0.7	-2.1									
225	49.4	63.85	0.80	48.8	0.81	1.2	47									
230 235	49.4 49.3	62.64 51.49	0.60	48.5 48.3	9.62 9.62	2,0	2.1									
240 245	49.2	60.38 59.32	0,81 0,81	48,1	0.82	2.3	-1.8									
		44.996	1.14.10	-97 M	0.83	2.6	2.6									

TSI, Delectric Parameters-

Page 1 of 1

APPENDIX D. – SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013.Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR	Freq. [MHz]	Date	Probe SN	Probe Type	Brobo C	PERM.		COND.		CW Validation			MOD. Validation		
System					TODE CAL. FOR		(ɛr)	(σ)	Sensi- tivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR	
В	2 450	2023.05.12	7337	EX3DV4	2 450	Head	38.588	1.821	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
В	5 300	2023.05.15	7337	EX3DV4	5 300	Head	36.092	4.880	PASS	PASS	PASS	OFDM	N/A	PASS	
F	5 500	2023.05.25	3866	EX3DV4	5 500	Head	35.354	4.888	PASS	PASS	PASS	OFDM	N/A	PASS	
F	5 600	2023.05.25	3866	EX3DV4	5 600	Head	34.916	5.083	PASS	PASS	PASS	OFDM	N/A	PASS	
F	5 800	2023.05.25	3866	EX3DV4	5 800	Head	34.722	5.277	PASS	PASS	PASS	OFDM	N/A	PASS	
F	13	2023.04.24	3916	EX3DV4	13	Head	54.938	0.770	PASS	PASS	PASS	ASK	N/A	PASS	

Table D.1 SAR System Validation Summary

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

APPENDIX E. – Description of Test Equipment

Dt&C

E.1 SAR Measurement Setup

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. E.1.1).

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-4 770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

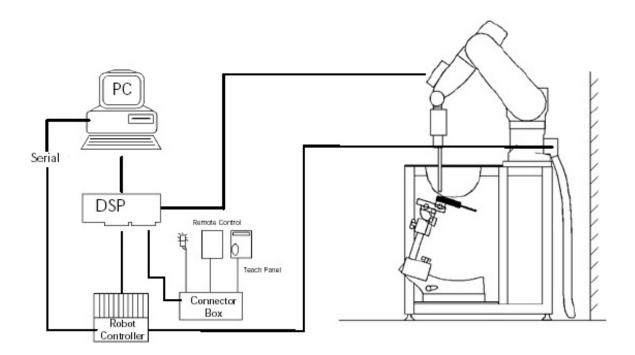


Figure E.1.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

Dt&C

E.2 Probe Specification

Frequency	4 MHz to 10 GHz						
Linearity	±0.2 dB(30 MHz to 10 GHz)						
Dynamic	10 µW/g to > 100 mW/g						
Range	Linearity :	±0.2 dB					
Dimensions	Overall length :	337 mm					
Tip length	20 mm						
Body diameter	12 mm						
Tip diameter	2.5 mm						
Distance from pr	obe tip to sensor	center 1.0 mm					
Application	SAR Dosimetry Testing Compliance tests of mobile phones						

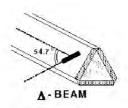


Figure E.2.1 Triangular Probe Configurations

Figure E.2.2 Probe Thick-Film Technique

The SAR measurements were conducted with the dosimetric probe EX3DV4 designed in the classical triangular configuration(see E.2.1) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE System

E.3 E-Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

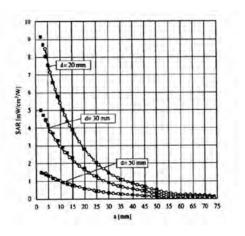
The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

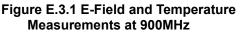
Temperature Assessment *

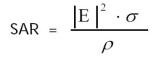
E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

$$\mathsf{SAR} = C \frac{\Delta \mathsf{T}}{\Delta t}$$

where:


where:


 Δt = exposure time (30 seconds),


C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

σ = simulated tissue conductivity,

 ρ = **Tissue** density (1.25 g/cm³ for brain tissue)

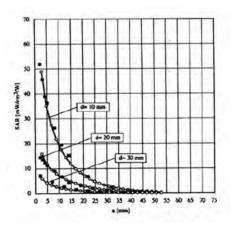


Figure E.3.2 E-Field and Temperature Measurements at 1 800MHz

E.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

5 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1	with	V_i = compensated signal of channel i	
$V_i = U_i + U_i^2 \cdot \frac{\mathcal{G}}{dcp_i}$		U _i = input signal of channel i cf = crest factor of exciting field dcp _i = diode compression point	(i=x,y,z) (DASY parameter) (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$ with V_{i} = compensated signal of channel i (i = x,y,z) Norm_{i} = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^{2}$ for E-field probes ConvF = sensitivity of enhancement in solution E_{i} = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$SAR = E_{int}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$	with	SAR E _{tor} o	 = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³
		P	- equivalent deside density in Benn

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pur} = \frac{E_{tot}^2}{3770}$$
 with
$$P_{pwe} = equivalent power density of a plane wave in W/cm2 = total electric field strength in V/m$$

E.5 SAM Twin Phantom

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. E.5.1)

Figure E.5.1 SAM Twin Phantom

SAM Twin Phantom Specification:

Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.
Shell Thickness Filling Volume	(2 ± 0.2) mm Approx. 25 liters
Dimensions	Length: 1000 mm Width: 500 mm

Height: adjustable feet

Specific Anthropomorphic Mannequin (SAM) Specifications:

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. E.5.2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure E.5.2 Sam Twin Phantom shell

E.6 ELI PHANTOM

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid.

Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. (see Fig. F.5.1)

Figure E.6.1 ELI Phantom

ELI Phantom Specification

Shell Thickness	(2.0 ± 0.2) mm (bottom plate)					
Dimensions	Major axis: 600 mm, Minor: 400 mm					
Filling Volume	Approx. 30 liters					

E.7 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure E.7.1 Mounting Device

E.8 Automated Test System Specifications

Positioner

Robot Repeatability No. of axis	Stäubli Unimation Corp. Robot Model: TX60L 0.02 mm 6					
Data Acquisition Electronic (DAE) System Cell Controller						
Processor Clock Speed	Intel Core i7-4 770 3.40 GHz					
Operating System	Windows 7 Professional					
Data Card	DASY5 PC-Board					
Data Converter						
Features Software	Signal, multiplexer, A/D converter. & control logic DASY5					
Connecting Lines	Optical downlink for data and status info					
	Optical uplink for commands and clock					
PC Interface Card Function	24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot					
E-Field Probes						
Model Construction	EX3DV4 S/N: 7337, 3866, 3916 Triangular core fiber optic detection system					
Frequency	4 MHz to 10 GHz					
Linearity	±0.2 dB (30 MHz to 10 GHz)					
Phantom						
Phantom Shell Material	SAM Twin Phantom (V5.0) / ELI Phantom (V6.0) Composite					
Thickness	(2.0 ± 0.2) mm					

Figure E.8.1 DASY5 Test System