TEST REPORT

TDt&C

Dt&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRTFCC2306-0075				
2. Customer				
• Name (FCC) : BLUEBIRD INC.				
Address (FCC) : 3F, 115, Irwon-ro, Gangnam-gu, Seoul South Korea				
3. Use of Report : FCC Original Grant				
 Product Name / Model Name : Enterprise-Value Full Touch Handheld Computer / VF550 FCC ID : SS4VF550K 				
5. FCC Regulation(s): Part 15.247 Test Method used: KDB558074 D01v05r02, ANSI C63.10-2013				
6. Date of Test : 2023.06.16 ~ 2023.06.19				
7. Location of Test : I Permanent Testing Lab I On Site Testing				
8. Testing Environment : See appended test report.				
9. Test Result : Refer to the attached test result.				
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report is not related to KOLAS accreditation.				
Affirmation Tested by Technical Manager				
Name : SeokHo Han (Signature)				
2023.06.26.				
Dt&C Co., Ltd.				

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2306-0075	Jun, 26. 2023	Initial issue	SeokHo Han	JaeJin Lee

Table of Contents

1. General Information	. 4
1.1. Description of EUT	4
1.2. Declaration by the applicant / manufacturer	
1.3. Testing Laboratory	
1.4. Testing Environment	
1.5. Measurement Uncertainty	
1.6. Test Equipment List	
•••	
2. Test Methodology	
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	
2.4. Instrument Calibration	
2.5. Description of Test Modes	
3. Antenna Requirements	
4. Summary of Test Results	. 9
5. Test Result	-
5.1. Maximum Peak Conducted Output Power	
5.1.1. Test Setup	
5.1.2. Test Procedures	
5.1.3. Test Results	
5.2. 6 dB Bandwidth	
5.2.1. Test Setup	
5.2.2. Test Procedures	
5.2.3. Test Results	
5.3. Power Spectral Density	
5.3.1. Test Setup	
5.3.2. Test Procedures	
5.3.3. Test Results	
5.4. Unwanted Emissions (Conducted)	
5.4.1. Test Setup	
5.4.2. Test Procedures	
5.4.3. Test Results	
5.5. Unwanted Emissions (Radiated)	
5.5.1. Test Setup	
5.5.2. Test Procedures	
5.5.3. Test Results	
5.6. AC Power-Line Conducted Emissions	
5.6.1. Test Setup	
5.6.2. Test Procedures	
5.6.3. Test Results	32
APPENDIX I	35
APPENDIX II	36
APPENDIX III	37

1. General Information

1.1. Description of EUT

Equipment Class	Digital Transmission System (DTS)	
Product Name	Enterprise-Value Full Touch Handheld Computer	
Model Name	VF550	
Add Model Name	-	
Firmware Version Identification Number	R1.01	
EUT Serial Number	Conducted: VF550ANLGKBQ020 Radiated: VF550ANLGKBQ507	
Power Supply	DC 3.85 V	
Frequency Range	2 402 MHz ~ 2 480 MHz	
Max. RF Output Power	0.81 dBm (0.001 W)	
Modulation Technique (Data rate)	GFSK (1Mbps)	
Antenna Specification	Antenna Type: PIFA Antenna Gain: 0.68 dBi (PK)	

1.2. Declaration by the applicant / manufacturer

N/A

1.3. Testing Laboratory

Dt&C Co., Lt	d.	
The 3 m test si	te and	conducted measurement facility used to collect the radiated data are located at the
42, Yurim-ro, 1	54beon	-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.
The test site co	mplies	with the requirements of Part 2.948 according to ANSI C63.4-2014.
- FCC & IC	MRA D	esignation No. : KR0034
- ISED#: 57	40A	
www.dtnc.net		
Telephone		+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.4. Testing Environment

Ambient Condition	
Temperature	+21 ℃ ~ +23 ℃
Relative Humidity	+41 % ~ +42 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, $k = 2$)
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz Below)	4.8 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.2 dB (The confidence level is about 95 %, $k = 2$)

1.6. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	22/12/16	23/12/16	MY50410163
Spectrum Analyzer	Agilent Technologies	N9020A	22/12/16	23/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	22/06/24	23/06/24	US47360812
DC Power Supply	Agilent Technologies	66332A	22/06/24	23/06/24	US37473627
Multimeter	FLUKE	17B+	22/12/16	23/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	22/12/16	23/12/16	255571
Signal Generator	ANRITSU	MG3695C	22/12/16	23/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-1
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	22/06/24	23/06/24	N/A
Loop Antenna	ETS-Lindgren	6502	22/04/22	24/04/22	00203480
Hybrid Antenna	Schwarzbeck	VULB 9160	22/12/16	23/12/16	3362
Horn Antenna	ETS-Lindgren	3117	22/06/24	23/06/24	00143278
Horn Antenna	A.H.Systems Inc.	SAS-574	22/06/24	23/06/24	155
PreAmplifier	tsj	MLA-0118-B01-40	22/12/16	23/12/16	1852267
PreAmplifier	tsj	MLA-1840-J02-45	22/06/24	23/06/24	16966-10728
PreAmplifier	H.P	8447D	22/12/16	23/12/16	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	22/06/24	23/06/24	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	22/06/24	23/06/24	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	22/06/24	23/06/24	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	22/06/24	23/06/24	16012202
Attenuator	Aeroflex/Weinschel	56-3	22/06/24	23/06/24	Y2370
Attenuator	SMAJK	SMAJK-2-3	22/06/24	23/06/24	3
Attenuator	SMAJK	SMAJK-2-3	22/06/24	23/06/24	2
Attenuator	Aeroflex/Weinschel	86-10-11	22/06/24	23/06/24	408
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	22/12/16	23/12/16	1338004 1911481
EMI Test Receiver	ROHDE&SCHWARZ	ESCI7	23/01/31	24/01/31	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	22/08/22	23/08/22	101333
LISN	SCHWARZBECK	NSLK 8128 RC	22/10/26	23/10/26	8128 RC-387
Thermo Hygro Meter	TESTO	608-H1	23/01/13	24/01/13	45084791
Cable	Dt&C	Cable	23/01/04	24/01/04	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	23/01/04	24/01/04	G-3
Cable	Dt&C	Cable	23/01/04	24/01/04	G-4
Cable	OMT	YSS21S	23/01/04	24/01/04	G-5
Cable	Junkosha	MWX241	23/01/03	24/01/03	mmW-1
Cable	Junkosha	MWX241	23/01/03	24/01/03	mmW-4
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-02
Cable	JUNKOSHA	MWX241/B	23/01/04	24/01/04	M-03
Cable	JUNKOSHA	J12J101757-00	23/01/04	24/01/04	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	23/01/04	24/01/04	M-09
Cable	RADIALL	TESTPRO 3	23/01/04	24/01/04	RFC-44
Cable	Dt&C	Cable	23/01/04	24/01/04	RFC-69
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0147
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0185

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The Bluetooth low energy mode with below low, middle and high channels were tested and reported.

			т	ested Frequency (MH	z)	
1	Fest Mode	Description	Lowest Frequency Middle Frequency Highest Freque			
	TM 1	BT LE(1 Mbps)	2 402	2 440	2 480	

EUT Operation test setup

- Test Software: QRCT3

- Power setting: default value

3. Antenna Requirements

According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is attached on the device by means of unique coupling method. (Spring Tension). Therefore this E.U.T complies with the requirement of Part 15.203

4. Summary of Test Results

FCC part section(s)	Test Description	Limit	Test Condition	Status Note 1
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Maximum Peak Output Power	< 1 Watt (conducted)		С
15.247(d)	Unwanted Emissions(Conducted) 20 dBc in any 100 kHz BW		Conducted	с
15.247(e)	Power Spectral Density	< 8 dBm / 3 kHz		с
15.247(d) 15.205 15.209	Unwanted Emissions(Radiated)	Part 15.209 limits (Refer to section 5.5)	Radiated	C Note 3
15.207	AC Power-Line Conducted Emissions	Part 15.207 limits (Refer to section 5.6)	AC Line Conducted	С
15.203	Antenna Requirements	Part 15.203 (Refer to section 3)	-	С

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

5. Test Result

5.1. Maximum Peak Conducted Output Power

Test Requirements and limit, Part 15.247(b)

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

5.1.1. Test Setup

Refer to the APPENDIX I.

5.1.2. Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.1
- ANSI C63.10-2013 Section 11.9.1.1

RBW ≥ DTS bandwidth

- 1. Set the RBW \geq DTS bandwidth. Actual RBW = 2 MHz or 2.4 MHz
- 2. Set VBW \ge 3 x RBW. Actual VBW = 6 MHz or 8 MHz
- 3. Set span ≥ 3 x RBW.
- 4. Sweep time = **auto couple**
- 5. Detector = **peak**
- 6. Trace mode = **max hold**
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

5.1.3. Test Results

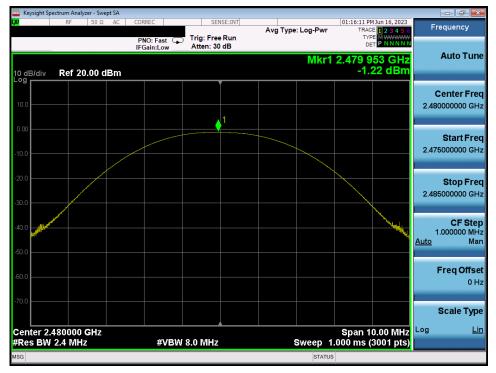
Test Mode	Tested Channel	Burst Average Output Power	Peak Output Power
	resteu Chaimer	dBm	dBm
	Lowest	-0.46	0.17
TM 1	Middle	0.49	0.81
	Highest	-1.84	-1.22

Note 1: The average output power was tested using an average power meter for reference only. Note 2: See next pages for actual measured spectrum plots.


Peak Output Power

TM 1 Test Channel : Lowest

Peak Output Power


TM 1 Test Channel : Middle

Peak Output Power

TM 1 Test Channel : Highest

5.2. 6 dB Bandwidth

Test Requirements and limit, Part 15.247(a)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

5.2.1. Test Setup

Refer to the APPENDIX I.

5.2.2. Test Procedures

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

5.2.3. Test Results

Test Mode	Tested Channel	Test Results (MHz)
	Lowest	0.680
TM 1	Middle	0.679
	Highest	0.682

6 dB Bandwidth

6 dB Bandwidth

TM 1 Test Channel : Middle

6 dB Bandwidth

TM 1 Test Channel : Highest

5.3. Power Spectral Density

I Test requirements and limit, Part 15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.1. Test Setup

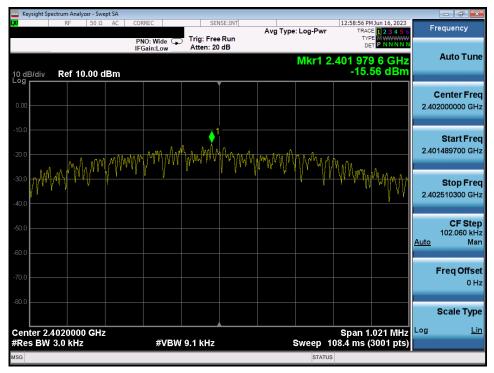
Refer to the APPENDIX I.

5.3.2. Test Procedures

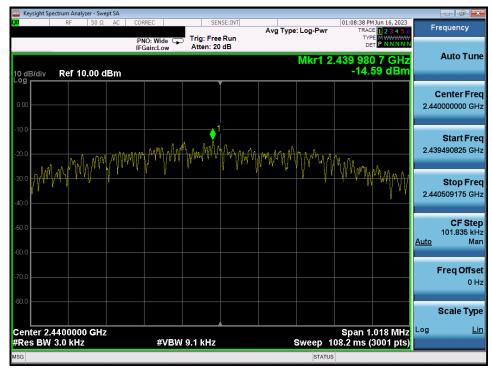
- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = **peak.**
- 6. Sweep time = **auto couple.**
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

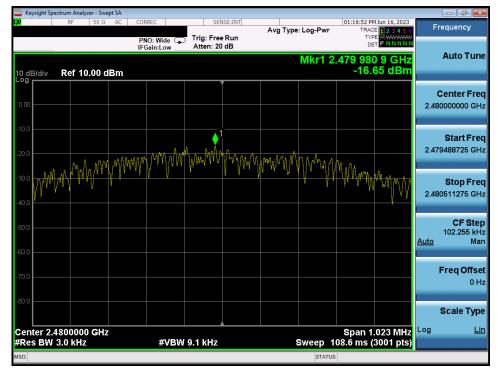

5.3.3. Test Results

Test Mode	Tested Channel	RBW	PKPSD (dBm)	Limit (dBm / 3 kHz)
	Lowest	3 kHz	-15.56	8.00
TM 1	Middle	3 kHz	-14.59	8.00
	Highest	3 kHz	-16.65	8.00


Maximum PKPSD

TM 1 Test Channel : Lowest

Maximum PKPSD


TM 1 Test Channel : Middle

Maximum PKPSD

TM 1 Test Channel : Highest

5.4. Unwanted Emissions (Conducted)

Test requirements and limit, Part 15.247(d)

In any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level. If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level. In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

5.4.1. Test Setup

Refer to the APPENDIX I including path loss

5.4.2. Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level

LIMIT LINE = 20 dB below of the reference level.

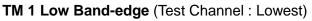
Emission level measurement

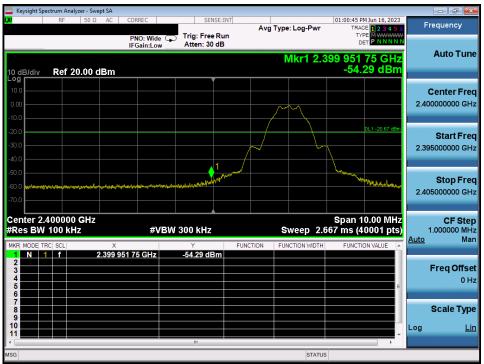
- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)

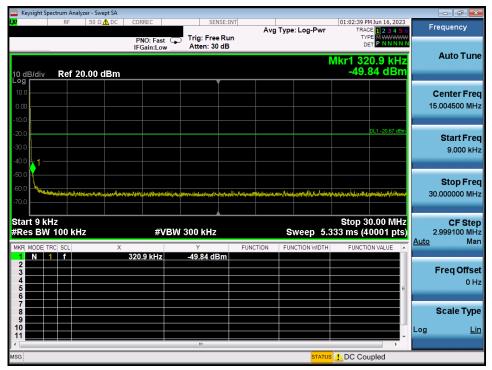
3. Set the VBW \geq 3 x RBW.(Actual 3 MHz, See below note)

- 4. Detector = **peak**.
- 5. Ensure that the number of measurement points ≥ span / RBW
- 6. Sweep time = **auto couple.**
- 7. Trace mode = **max hold.**
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

Note: The unwanted(conducted) emission was tested with below settings.

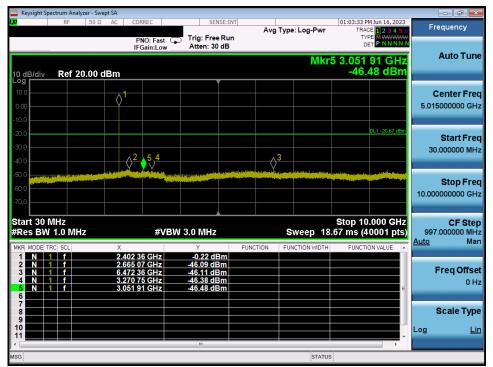

Frequency range	RBW	VBW	Detector	Trace	Sweep Point
9 kHz ~ 30 MHz	100 kHz	300 kHz			
30 MHz ~ 10 GHz	1 MHz	3 MHz	Peak	Max Hold	40 001
10 GHz ~ 25 GHz	1 MHz	3 MHz			


If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.


5.4.3. Test Results

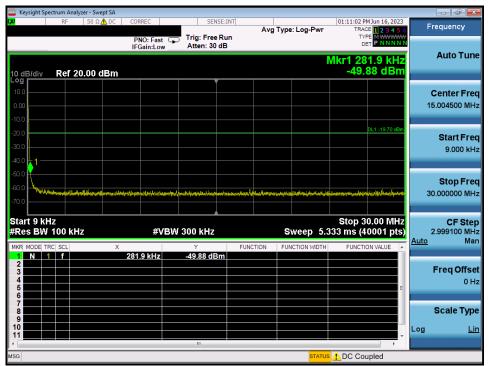
Keysight Spectrum Analyzer - Swept SA 12:59:30 PM Jun 16, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P NNNN Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB PNO: Wide 😱 IFGain:Low Auto Tune Mkr1 2.402 008 8 GHz -0.67 dBm Ref 20.00 dBm 10 dB/div **Center Freg** 2.402000000 GHz 1 Start Freq 2.401489700 GHz Stop Freq 2.402510300 GHz CF Step 102.060 kHz <u>Auto</u> Man Freq Offset 0 Hz Scale Type Center 2.4020000 GHz #Res BW 100 kHz Span 1.021 MHz Sweep 1.000 ms (3001 pts) Log <u>Lin</u> #VBW 300 kHz STATUS

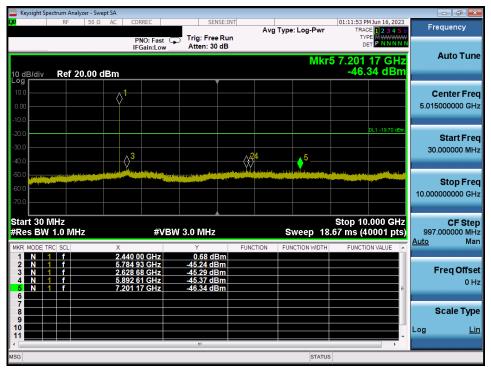
TM 1 Reference (Test Channel : Lowest)



TM 1 Conducted Spurious Emissions 1 (Test Channel : Lowest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Lowest)

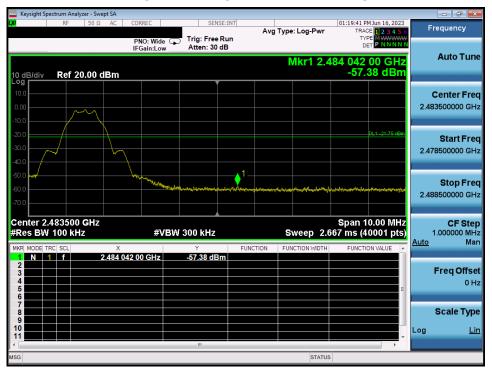


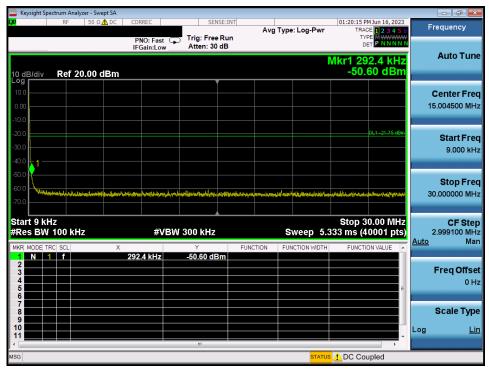

TM 1 Conducted Spurious Emissions 3 (Test Channel : Lowest)

TM 1 Reference (Test Channel : Middle)

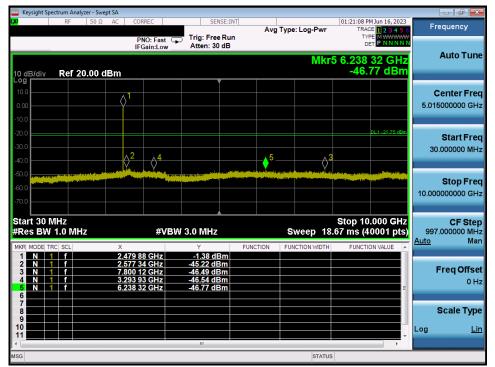
TM 1 Conducted Spurious Emissions 1 (Test Channel : Middle)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Middle)


TM 1 Conducted Spurious Emissions 3 (Test Channel : Middle)



TM 1 Reference (Test Channel : Highest)


TM 1 High Band-edge (Test Channel : Highest)

TM 1 Conducted Spurious Emissions 1 (Test Channel : Highest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Highest)

Keysight Spec													
	RF	50 Ω	AC	CORREC			ENSE:INT	Avg Typ	e: Log-Pwr	TF	L PM Jun 16, 2023 RACE 1 2 3 4 5 (TYPE M WWWWW		equency
) dB/div	Ref 20	.00 d	Bm	PNO: F IFGain:	ast 🖵 Low	Atten: 3			Mkr4	22.406	125 GHz .28 dBm		Auto Tun
o. 0 1.00 0.0													enter Fre
0.0					an he an aiking b				3 ∂ ²	4	DL1-21.75 dBm 1	10.000	Start Fre
D.0 44.014 D.0												25.00	Stop Fre
tart 10.00 Res BW	1.0 MHz	2			#VBW	3.0 MH				0.00 ms	25.000 GHz (40001 pts)		CF Ste 0000000 GI Ma
N 1 1 N 1 2 N 1 3 N 1 4 N 1 5 6 6	f f f f		21.06 20.08	2 625 GH 2 125 GH 3 375 GH 6 125 GH	iz iz	-36.51 c -38.54 c -40.14 c -40.28 c	IBm IBm IBm	NCTION FU	NCTION WIDTH	FUNC			Freq Offs 0 F
7													Scale Typ
0												Log	L
G			_		_				STATL	-		_	

TM 1 Conducted Spurious Emissions 3 (Test Channel : Highest)

5.5. Unwanted Emissions (Radiated)

Test Requirements and limit,

Part 15.247(d), Part 15.205, Part 15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Part 15.209: General requirements

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	300
0.490 - 1.705	24 000 / F (kHz)	30
1.705 – 30.0	30	30

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

5.5.1. Test Setup

Refer to the APPENDIX I.

5.5.2. Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12
- 1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range > 1 GHz

Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement > 1 GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1 / D), where D is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where D is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	T _{on} (ms)	T _{on} + T _{off} (ms)	$D = T_{on} / (T_{on+off})$	DCCF = 10 log(1 / D) (dB)
TM 1	0.390	0.624	0.625 0	2.04

Note1: Where, T= Transmission duration / D= Duty cycle Note2: Please refer to the appendix II for duty cycle plots.

5.5.3. Test Results

- Test Notes

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies. 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

. Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Frequency Range : 9 kHz ~ 25 GHz_TM 1

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 385.23	V	Z	PK	49.89	4.61	N/A	N/A	54.50	74.00	19.50
2 385.94	V	Z	AV	40.09	4.61	2.04	N/A	46.74	54.00	7.26
4 811.33	Н	Z	PK	49.26	2.40	N/A	N/A	51.66	74.00	22.34
4 812.59	Н	Z	AV	39.35	2.39	2.04	N/A	43.78	54.00	10.22

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 877.64	Н	Z	PK	50.37	2.28	N/A	N/A	52.65	74.00	21.35
4 878.04	Н	Z	AV	39.40	2.29	2.04	N/A	43.73	54.00	10.27

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 487.38	V	Z	PK	52.31	5.67	N/A	N/A	57.98	74.00	16.02
2 487.89	V	Z	AV	41.57	5.68	2.04	N/A	49.29	54.00	4.71
4 958.76	Н	Z	PK	49.78	2.69	N/A	N/A	52.47	74.00	21.53
4 958.96	Н	Z	AV	38.64	2.69	2.04	N/A	43.37	54.00	10.63

5.6. AC Power-Line Conducted Emissions

Test Requirements and limit, Part 15.207

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

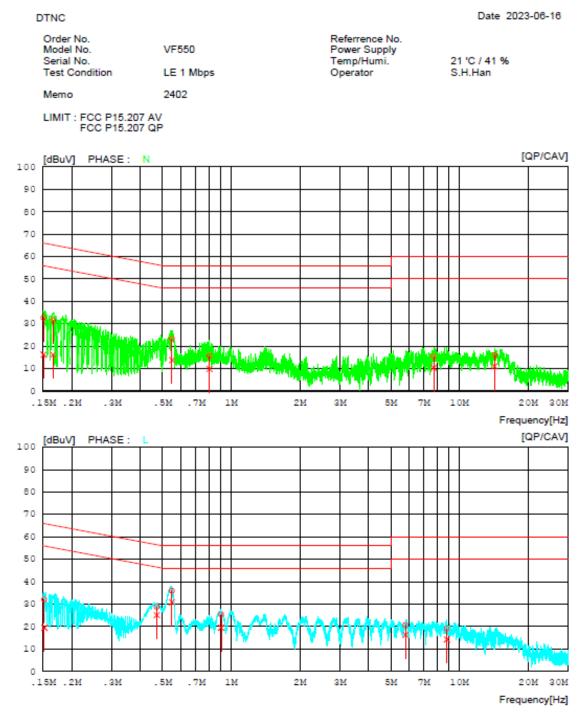
	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5.0	56	46				
5 ~ 30	60	50				

* Decreases with the logarithm of the frequency

5.6.1. Test Setup

See test photographs for the actual connections between EUT and support equipment.

5.6.2. Test Procedures


Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

5.6.3. Test Results

Refer to the next page. (The worst case data was reported. The worst data is TM 1 & Lowest)

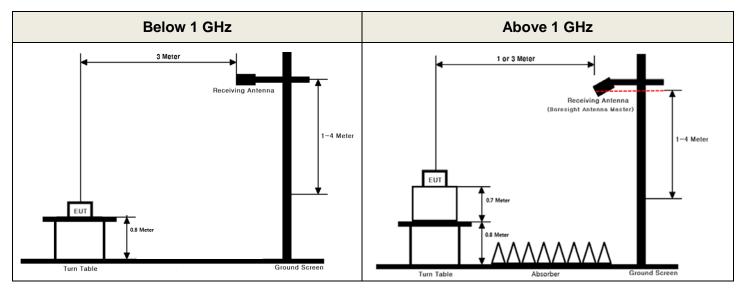
AC Power-Line Conducted Emissions (Graph)

Results of Conducted Emission

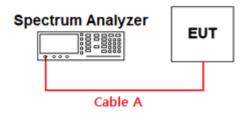
DTNC

AC Power-Line Conducted Emissions (List)

Results of Conducted Emission


Date 2023-06-16

Order No. Model No. Serial No. Test Condition	VF550 LE 1 Mbps	Referrence No. Power Supply Temp/Humi. Operator	21 'C / 41 % S.H.Han
Memo	2402		
LIMIT : FCC P15.207 A FCC P15.207 G			
QP	CAV QP	RESULT LIMIT P CAV QP CAV V][dBuV][dBuV][dBuV]	MARGIN PHASE QP CAV [dBuV][dBuV]
1 0.15062 22.7 2 0.16572 21.5 3 0.55093 13.3 4 0.80315 5.7 5 7.71820 5.1 6 14.26500 5.4 7 0.15179 22.1 8 0.47216 18.8 9 0.55004 26.0 10 0.90328 15.3 11 5.80920 10.4 12 8.82280 8.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 16.18 65.17 55.17 3 4 13.88 56.00 46.00 3 1 9.90 56.00 46.00 4 5 10.42 60.00 50.00 4 1 1.01 60.00 50.00 4 2 19.48 65.90 55.90 3 1 2.5.08 56.48 46.48 2 7 30.85 56.00 46.00 3 8 19.42 56.00 46.00 3 0 16.33 60.00 50.00 3	33.25 39.74 N 33.60 38.99 N 32.66 32.12 N 40.29 36.10 N 44.65 39.58 N 43.99 38.99 N 33.88 36.42 L 27.77 21.40 L 20.03 15.15 L 39.40 33.67 L 40.97 35.80 L


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

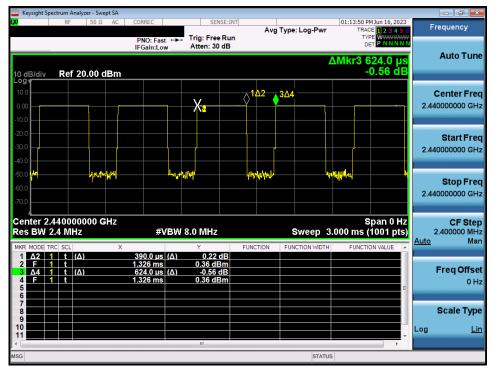
Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.58	15	1.29
1	0.85	20	1.59
2.402 & 2.440 & 2.480	0.96	25	1.82
5	1.20	-	-
10	1.26	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A

APPENDIX II

Duty cycle plots

Test Procedures

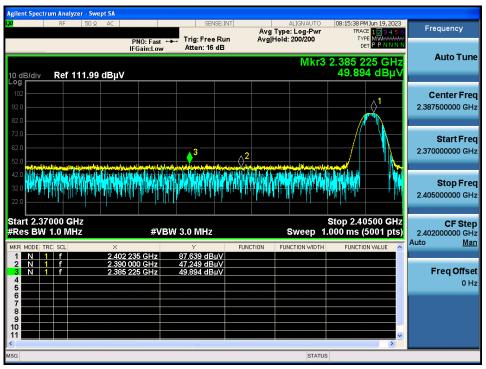

- KDB558074 D01v05r02 - Section 6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

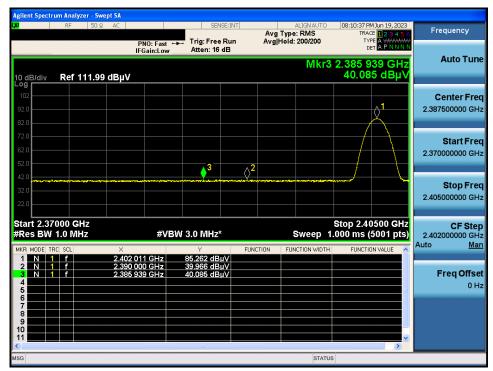
The zero-span measurement method shall not be used unless both RBW and VBW are > 50 /T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle

TM 1 Test Channel : Middle



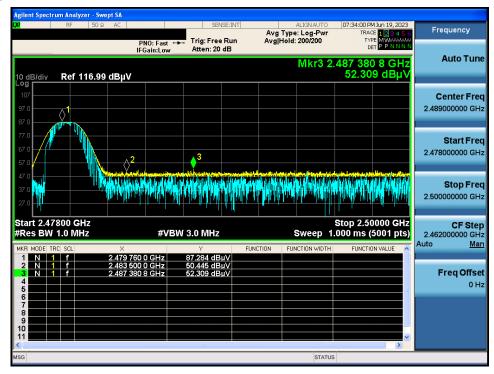
Detector Mode : PK


APPENDIX III

Unwanted Emissions (Radiated) Test Plot

TM 1 & Lowest & Z & Ver

TM 1 & Lowest & Z & Ver



Detector Mode : AV

Dt&C

TM 1 & Highest & Z & Ver

TM 1 & Highest & Z & Ver

Detector Mode : AV

TM 1 & Lowest & Z & Hor

Detector Mode : AV

RF 50 Ω	AC AC		SEA	ISE:INT					Frequency
							TYP	E A WARANA	Auto Tur
Ref 71.99	dBµV					Mkr1 4.812 592 GHz 39.348 dBµV			
									Center Fr 4.804000000 G
									Start Fr 4.794000000 G
									Stop Fr 4.814000000 G
alanda ana ana ana ana ana ana ana ana ana		ter while rained fight pi	ting dit satisfies	an a	vertige dy the participation	ncuid (peldingitu	an an phata an	1 terebyteringe	CF St 2.402000000 G Auto <u>M</u>
									Freq Offs 0
0400 GHz .0 MHz		#VBW	/ 3.0 MHz	*		Sweep 1	Span 2 .000 ms (0.00 MHz 5001 pts)	
	Ref 71.99	Ref 71.99 dBµV	PN0: Fast ↔ IFGain:Low Ref 71.99 dBµV	PN0: Fast +++ Trig: Free Ref 71.99 dBµV Image: state	PNO: Fast IFGain:Low Ref 71.99 dBµV	PNO: Fast Trig: Free Run Avg Type Ref 71.99 dBµV Image: State of the state o	PN0: Fast Trig: Free Run Atten: 6 dB Avg Type: RMS Avg Hold: 200/200 Mkr1 Ref 71.99 dBμV	PN0: Fast Trig: Free Run Avg Type: RMS Transmitter Mkr1 4.812 5 Mkr1 4.812 5 Mkr1 4.812 5 Ref 71.99 dBμV 39.34 39.34	PN0: Fast Trig: Free Run Avg Type: RMS Trig: B2 4 4 5 G Ref 71.99 dBµV Mkr1 4.812 592 GHz 39.348 dBµV