TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRTFCC2008-0250

2. Customer

· Name: BLUEBIRD INC.

· Address: 3F, 115, Irwon-ro, Gangnam-gu, Seoul, South Korea

3. Use of Report: FCC Original Grant

4. Product Name / Model Name: Enterprise-Value Full Touch Handheld Computer / VF550

FCC ID: SS4VF550

5. Test Method Used: KDB558074 D01v05r02, ANSI C63.10-2013

Test Specification: FCC Part 15.247

6. Date of Test: 2020.06.25 ~ 2020.07.15, 2020.08.06 ~ 2020.08.10

SAM SAME

8. Testing Environment : See appended test report.9. Test Result : Refer to the attached test result.

7. Location of Test:
Permanent Testing Lab

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Affirmation

Tested by

Name: InHee Bae

Reviewed by

Name: JaeJin Lee

On Site Testing

>

2020.08.21.

DT&C Co., Ltd.

Not abided by KS Q ISO / IEC 17025 and KOLAS accreditation.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2008-0250	Aug. 21, 2020	Initial issue	InHee Bae	JaeJin Lee

Table of Contents

Report No.: DRTFCC2008-0250

1. EUT DESCRIPTION	4
2. INFORMATION ABOUT TESTING	5
2.1 Explanations for Reference Test Data	5
2.1.1 Introduction	5
2.1.2 Explain the Differences	5
2.1.3 Spot Check Verification Data	5
2.1.4 Refer Section	5
2.2 Test mode	6
2.3 Auxiliary equipment	6
2.4 Tested environment	6
2.5 EMI suppression Device(s) / Modifications	6
2.6 Measurement Uncertainty	7
3. SUMMARY OF TESTS	8
4. TEST METHODOLOGY	9
4.1 EUT configuration	9
4.2 EUT exercise	9
4.3 General test procedures	9
4.4 Description of test modes	10
5. INSTRUMENT CALIBRATION	11
6. FACILITIES AND ACCREDITATIONS	11
6.1 Facilities	11
6.2 Equipment	11
7. ANTENNA REQUIREMENTS	11
8. TEST RESULT	12
8.1 6dB bandwidth	12
8.2 Maximum peak conducted output power	19
8.3 Maximum power spectral density	21
8.4 Out of band emissions at the band edge / conducted spurious emissions	28
8.5 Radiated spurious emissions	53
8.6 Power-line conducted emissions	58
9. LIST OF TEST EQUIPMENT	61
APPENDIX I	63
APPENDIX II	
APPENDIX III	

1. EUT DESCRIPTION

FCC Equipment Class	Digital Transmission System(DTS)
Product	Enterprise-Value Full Touch Handheld Computer
Model Name	VF550
Add Model Name	NA
Power Supply	DC 3.85 V
Frequency Range	■ 802.11b/g/n/ac(20 MHz) : 2 412 MHz ~ 2 472 MHz
Max. RF Output Power	2.4GHz Band • 802.11b : 19.15 dBm • 802.11g : 21.66 dBm • 802.11n (HT20) : 20.13 dBm
Modulation Type	■ 802.11b: CCK, DSSS ■ 802.11g/n: OFDM
Antenna Specification	Antenna type: PIFA Antenna Antenna gain: 0.68 dBi

Report No.: DRTFCC2008-0250

Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

2. INFORMATION ABOUT TESTING

2.1 Explanations for Reference Test Data

2.1.1 Introduction

This report includes the 2.4G WLAN test data of FCC ID: SS4VF550X with reference to KDB 484596 D01v01. The applicant takes full responsibility that the test data as reference section below represents compliance for FCC ID: SS4VF550

Reference FCC ID	Exhibit type	Separated FCC ID
SS4VF550X	Original Grant	SS4VF550

2.1.2 Explain the Differences

FCC ID: SS4VF550 is same the internal printed circuit board with FCC ID: SS4VF550X. Both products have only changed WWAN modules, and other SW/HW are the same component of 2.4G WLAN.

Change Bands(Frequency) Information

FCC ID	SS4VF550X	SS4VF550
LTE	LTE B2,5,12,13,66(4),71 B2,4,7	
WCDMA	B2,4,5	B2,5
GSM	GSM - GSM850, 1 900	

Component changes information

`	Somponent dianges information						
	FCC ID SS4VF550X		SS4VF550				
	WWAN Module	Module: EC25-AF	Module: EC25-AU				
		(FCC ID: XMR201808EC25AF)	(FCC ID: XMR201805EC25AU)				

2.1.3 Spot Check Verification Data

Equipment Class	FCC Part	Mode	TX Freq.	Test item	T Detecto		Reference FCC ID: SS		Separ FCC ID: S		Limit	Deviation
(capability)	rcc Part	Wode	(MHz)	rest item	Test note Mod	Mode	Frequency (MHz)	Result (dBuV/m)	Frequency (MHz)	Result (dBuV/m)	(dBuV/m)	(dB)
DTS		802.11g	2 412	Radiated Band edge	-	Average	2 389.85	50.76	2 389.67	50.26	54.00	-0.50
(2.4G WLAN)	15.247	802.11b	2 412	Radiated Spurious emission	-	Average	4 824.08	45.36	4 824.16	44.19	54.00	-1.17

Note1: The spot check was performed based on worst-case results reported in the original FCC report.

The spot check test results are within 3dB and two products show a good correlation. It also complies with the FCC/IC limit.

2.1.4 Refer Section

Reference FCC ID: SS4VF550X

Equipment Class	FCC Part	Capability	Band(MHz)	Exhibit type	Report title	Reference Sections
DTS	Part 15.247	WLAN	2 412 ~ 2 462	Original Grant	DTS_WLAN	All

2.2 Test mode

Test mode	Worst case data rate		Tested Frequency (MH	lz)
TM 1	802.11b 11 Mbps	2 412	2 437	2 462
TM 2	802.11g 54 Mbps	2 412	2 437	2 462
TM 3	802.11n(HT20) MCS 7	2 412	2 437	2 462

Report No.: DRTFCC2008-0250

Note1: The worst case data rate was determined according to the power measurements.

Note2: The power measurement results for all modes and data rate were reported.

2.3 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2.4 Tested environment

Temperature	:	20 °C ~ 25 °C
Relative humidity content	:	35 % ~ 45 %
Details of power supply	:	DC 3.85 V

2.5 EMI suppression Device(s) / Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.6 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Report No.: DRTFCC2008-0250

Test items	Measurement uncertainty
Transmitter Output Power	0.9 dB (The confidence level is about 95 %, k = 2)
Conducted spurious emission	0.9 dB (The confidence level is about 95 %, k = 2)
AC conducted emission	3.6 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)

3. SUMMARY OF TESTS

FCC Part	Parameter	Limit	Test Condition	Status Note 1
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Output Power	< 1 Watt		С
15.247(d)	Out of Band Emissions / Band Edge	20 dBc in any 100 kHz BW	Conducted	С
15.247(e)	Transmitter Power Spectral Density	< 8 dBm/3 kHz		С
-	Occupied Bandwidth (99 %)	NA		NA
15.247(d) 15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	FCC 15.209 limits	Radiated	C Note3
15.207	AC Line Conducted Emissions	FCC 15.207 limits	AC Line Conducted	С
15.203	Antenna Requirements	FCC 15.203	-	С

Report No.: DRTFCC2008-0250

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in each axis and the worst case data was reported.

Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

4. TEST METHODOLOGY

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode.

Operation test setup for EUT

- Test Software Version: QRCT / 3.0.277.0

- Power setting:

Mode	Frequency [MHz]	Power Setting
	2 412	9
802.11b	2 437	9
	2 462	9
	2 412	8
802.11g	2 437	8
	2 462	8
000 445	2 412	5
802.11n (HT20)	2 437	5
(11120)	2 462	5

FCC ID: SS4VF550

Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC & ISED MRA Designation No.: KR0034

www.dtnc.net	_	
Telephone	:	+ 82-31-321-2664
FAX		+ 82-31-321-1664

6.2 Equipment

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, loop, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

7.1 According to FCC 47 CFR §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna is attached on the device by means of unique coupling method (Spring Tension). Therefore this EUT complies with the requirement of §15.203

Report No.: DRTFCC2008-0250

8. TEST RESULT

8.1 6dB bandwidth

■ Test Requirements and limit, §15.247(a)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

■ Test Configuration:

Refer to the APPENDIX I.

■ Test Procedure:

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2

Option 2

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Sweep = Auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level in the fundamental emission.

■ Test Results: Comply

Test Mode	Frequency	Test Results[MHz]
	Lowest	8.88
TM 1	Middle	8.90
	Highest	8.45
	Lowest	16.50
TM 2	Middle	16.50
	Highest	16.49
	Lowest	17.67
TM 3	Middle	17.70
	Highest	17.58

Report No.: DRTFCC2008-0250

RESULT PLOTS

Center 2.412 GHz #Res BW 100 kHz

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

13.373 MHz

69.778 kHz

8.879 MHz

Span 40 MHz Sweep 3.867 ms

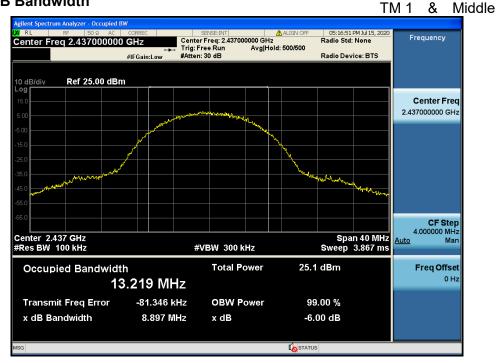
24.3 dBm

99.00 %

-6.00 dB

<u>Auto</u>

Man


Freq Offset

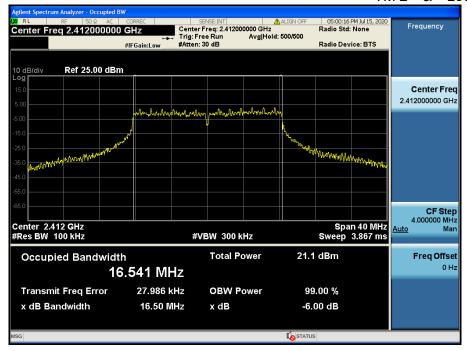
6 dB Bandwidth

OBW Power

#VBW 300 kHz Total Power

x dB

FCC ID: SS4VF550 Report No.: DRTFCC2008-0250

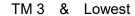

6 dB Bandwidth

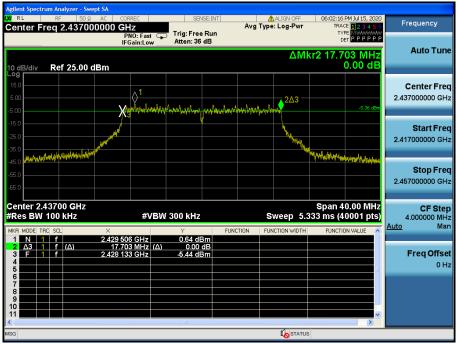
Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

6 dB Bandwidth

6 dB Bandwidth

TM 2 & Middle


6 dB Bandwidth


6 dB Bandwidth

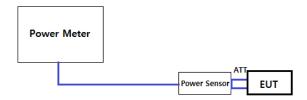
6 dB Bandwidth

TM 3 & Middle

Report No.: DRTFCC2008-0250

6 dB Bandwidth

TM 3 & Highest



8.2 Maximum peak conducted output power

■ Test Requirements and limit, §15.247(b)

The maximum permissible conducted output power is 1 Watt.

■ Test Configuration

■ Test Procedure

1. PKPM1 Peak power meter method of KDB558074 D01v05r02

The maximum conducted output powers were measured using a broadband peak RF power meter which has greater video bandwidth than DUT's DTS bandwidth and utilize a fast-responding diode detector.

2. Method AVGPM-G (Measurement using a gated RF average power meter) of KDB558074 D01v05r02

The average conducted output powers were measured using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

FCC ID: SS4VF550

■ Test Results: Comply

F		Maximum Peak Conducted Output Power (dBm) for 802.11b									
Freq. (MHz)	Det.	Data Rate [Mbps]									
		1	2	5.5	11	-	-	-	-		
2 412	PK	17.87	17.91	18.02	18.11	ı	ı	-	-		
2412	AV	15.60	15.63	15.67	15.71	1	1	-	-		
2 437	PK	19.00	19.06	19.13	19.15	ı	ı	-	-		
2 437	AV	16.59	16.65	16.78	16.80	-	-	-	-		
2.462	PK	18.22	18.29	18.33	18.37	-	-	-	-		
2 462	AV	15.64	15.66	15.69	15.73	-	-	-	-		

Report No.: DRTFCC2008-0250

F===		Maximum Peak Conducted Output Power (dBm) for 802.11g								
Freq. (MHz)	Det.				Data Rat	e [Mbps]				
		6	9	12	18	24	36	48	54	
2 412	PK	20.70	20.75	20.81	20.66	20.69	20.77	20.79	20.84	
2412	AV	13.47	13.42	13.44	13.51	13.52	13.55	13.55	13.59	
2 437	PK	21.47	21.51	21.58	21.42	21.64	21.52	21.55	21.66	
2 431	AV	14.25	14.23	14.23	14.32	14.30	14.37	14.33	14.38	
2.462	PK	21.24	21.29	21.22	21.35	21.36	21.44	21.35	21.49	
2 462	AV	13.33	13.35	13.29	13.39	13.38	13.32	13.40	13.42	

F		Maximum Peak Conducted Output Power (dBm) for 802.11n(HT20)								
Freq. (MHz)	Det.				Data Ra	te [MCS]				
		0	1	2	3	4	5	6	7	
2.412	PK	19.05	19.11	19.27	19.22	19.42	19.49	19.59	19.75	
2 412	AV	10.86	10.89	10.91	10.81	10.85	10.92	11.02	11.12	
2 427	PK	19.77	19.49	19.56	19.63	19.56	19.58	19.63	20.13	
2 437	AV	11.32	11.36	11.39	11.41	11.50	11.54	11.57	11.62	
2 462	PK	18.95	18.99	19.24	19.11	19.38	19.51	19.55	19.68	
2 402	AV	10.26	10.33	10.41	10.35	10.52	10.58	10.55	10.62	

Report No.: DRTFCC2008-0250

8.3 Maximum power spectral density

■ Test requirements and limit, §15.247(e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

■ Test Configuration:

Refer to the APPENDIX I.

■ Test Procedure

- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

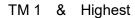
Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to : $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$
- 4. Set the VBW ≥ 3 x RBW
- 5. Detector = Peak
- 6. Sweep time = Auto couple
- 7. Trace mode = Max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

■ Test Results: Comply

Test Mode	Frequency	RBW	PKPSD [dBm]
	Lowest	3 kHz	-6.49
TM 1	Middle	3 kHz	-5.99
	Highest	3 kHz	-6.53
	Lowest	3 kHz	-12.27
TM 2	Middle	3 kHz	-11.44
	Highest	3 kHz	-11.31
	Lowest	3 kHz	-14.33
TM 3	Middle	3 kHz	-13.90
	Highest	3 kHz	-14.36

RESULT PLOTS



Maximum PPSD TM 1 & Middle

Report No.: **DRTFCC2008-0250** FCC ID: **SS4VF550**



Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

Maximum PPSD

Report No.: DRTFCC2008-0250

Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

Maximum PPSD

Maximum PPSD

TM 3 & Middle

8.4 Out of band emissions at the band edge / conducted spurious emissions

■ Test requirements and limit, §15.247(d)

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Report No.: DRTFCC2008-0250

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in band average PSD level. In either case, attenuation to levels below the general emission limits specified in **§15.209(a)** is not required.

■ Test Configuration:

Refer to the APPENDIX I.

■ Test Procedure

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

- Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to ≥ 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW ≥ 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = **Auto couple.**
- 7. Trace mode = Max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level.

- Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz. (Actual 1 MHz, See below note)
- 3. Set the VBW ≥ 3 x RBW. (Actual 3 MHz, See below note)
- 4. Detector = **Peak**.
- 5. Ensure that the number of measurement points ≥ Span / RBW.
- 6. Sweep time = Auto couple.
- 7. Trace mode = Max hold.
- 8. Allow the trace to stabilize. (this may take some time, depending on the extent of the span)
- 9. Use the peak marker function to determine the maximum amplitude level.

Note: The conducted spurious emission was tested with below settings.

Frequency range: 9 kHz ~ 30 MHz

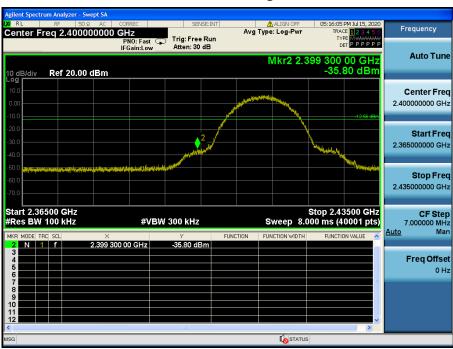
RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

Frequency range: 30 MHz ~ 10 GHz, 10 GHz ~25 GHz

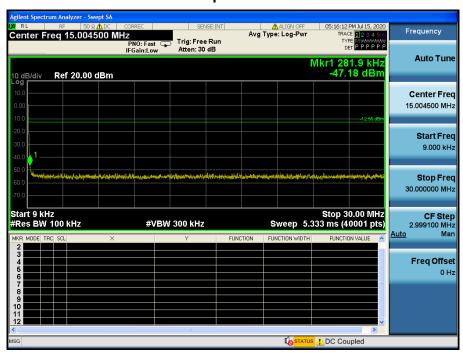
RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

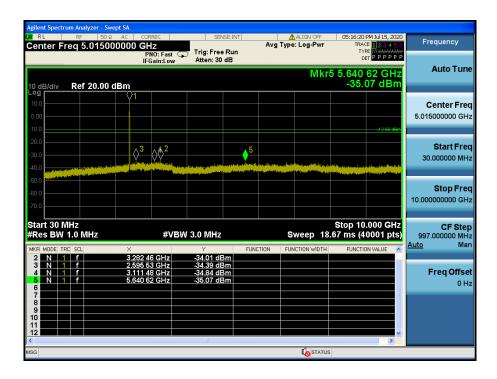
LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

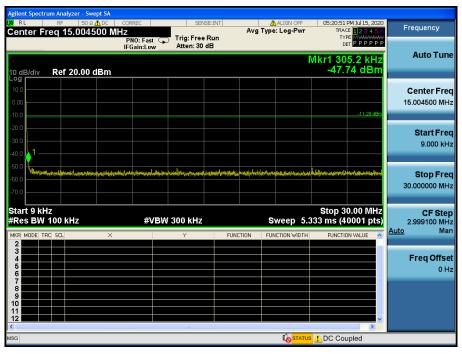

RESULT PLOTS

TM 1 & Lowest

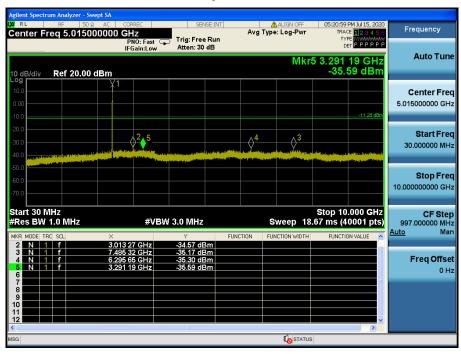

Reference



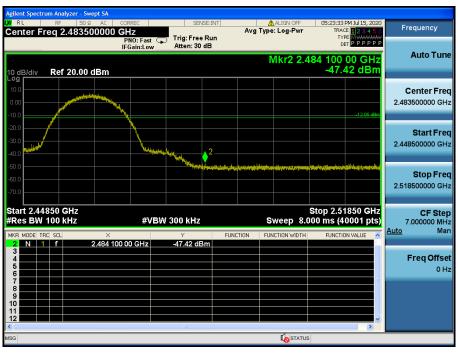
Low Band-edge



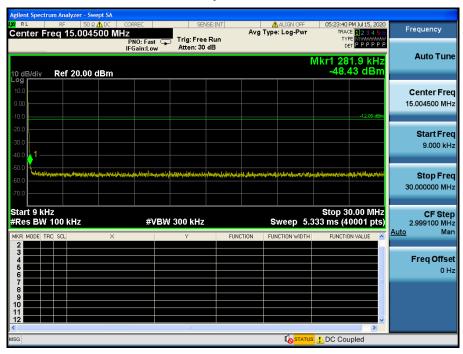
TM 1 & Middle

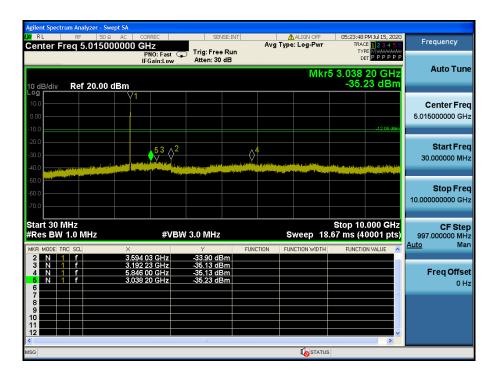

Reference

Report No.: DRTFCC2008-0250



TM 1 & Highest

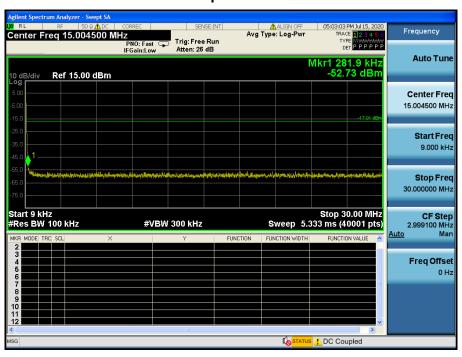

Reference

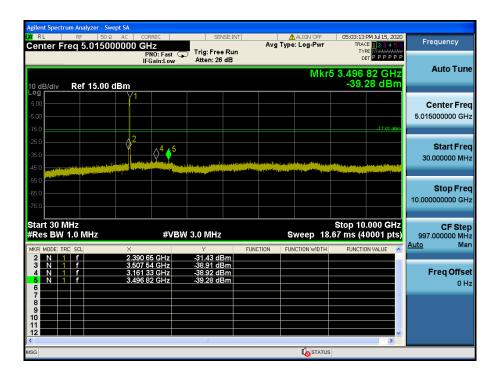


High Band-edge

Report No.: DRTFCC2008-0250

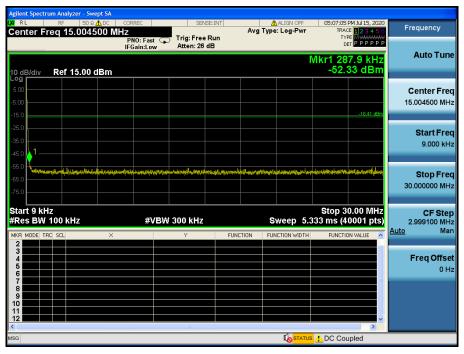
TM 2 & Lowest

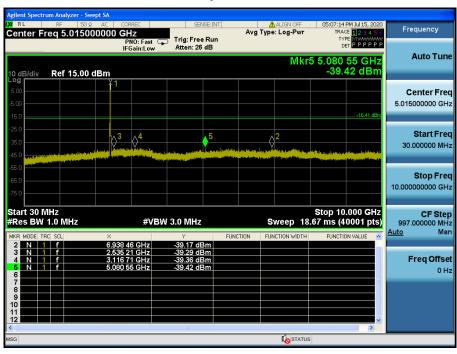

Reference



Low Band-edge

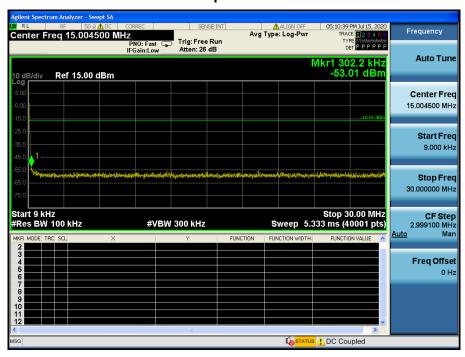
Report No.: DRTFCC2008-0250




TM 2 & Middle

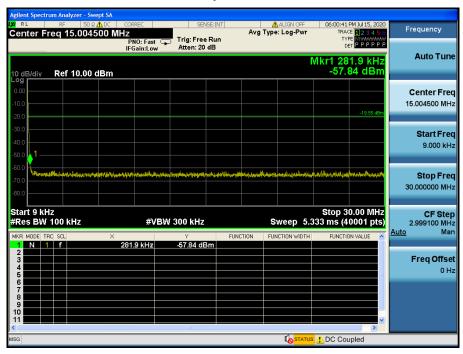
Reference

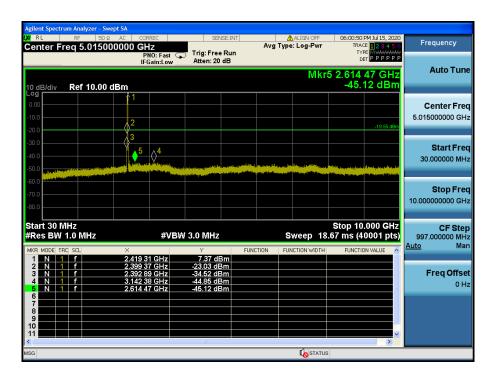
TM 2 & Highest


Reference

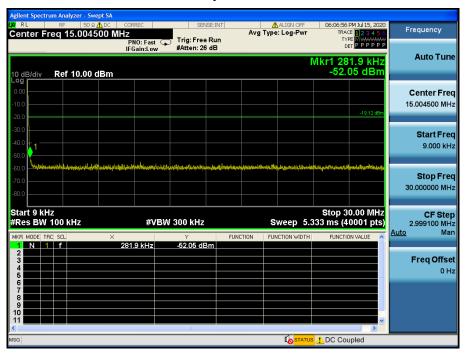
High Band-edge

TM 3 & Lowest

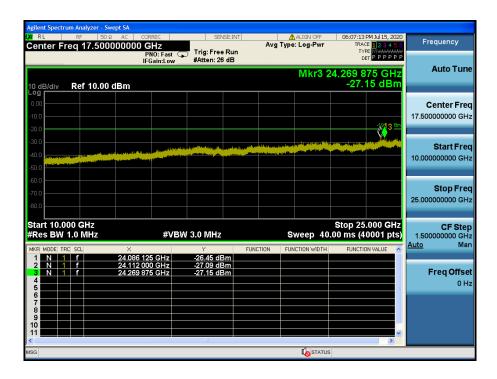

Reference



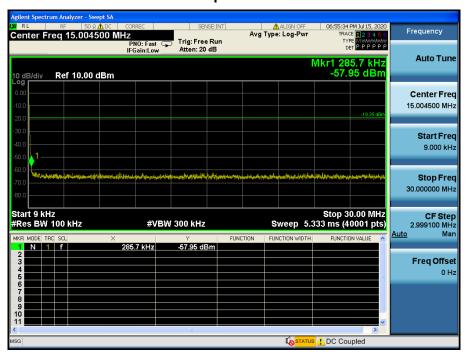
Low Band-edge

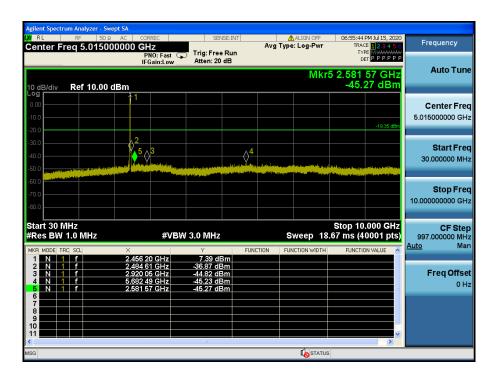


TM 3 & Middle

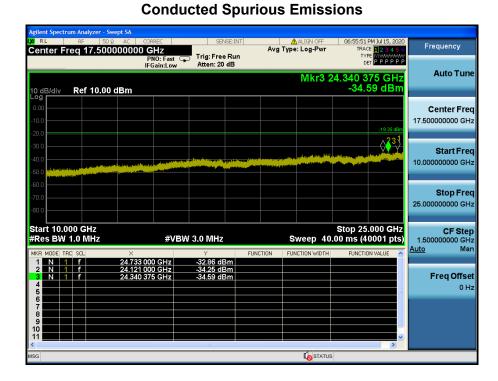

Reference

TM 3 & Highest


Reference



High Band-edge



Report No.: DRTFCC2008-0250

8.5 Radiated spurious emissions

■ Test Requirements and limit, §15.247(d), §15.205, §15.209

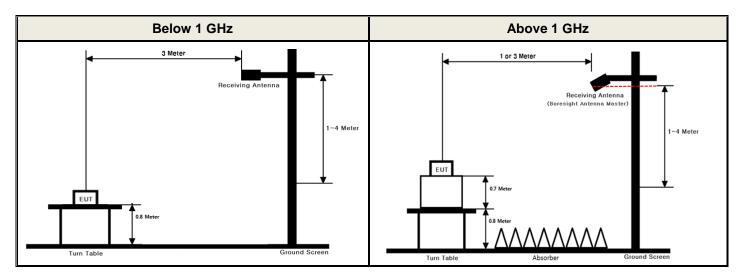
In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

Report No.: DRTFCC2008-0250

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.


• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Report No.: DRTFCC2008-0250

■ Test Configuration

■ Test Procedure

- 1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

■ Measurement Instrument Setting for Radiated Emission Measurements.

The radiated emission was tested according to the section 6.3, 6.4, 6.5 and 6.6 of the ANSI C63.10-2013 with following settings.

Peak Measurement

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Average Measurement:

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW ≥ 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power. (i.e., RMS)
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1 / D), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Duty Cycle Correction factor

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	D = T _{on} / (T _{on+off})	DCCF = 10 log(1 / D) (dB)
TM 1	11 Mbps	0.923	1.120	0.823 7	0.84
TM 2	54 Mbps	0.172	0.370	0.465 8	3.32
TM 3	MCS 7	0.160	0.358	0.447 5	3.49

Note1: Where, T= Transmission duration / D= Duty cycle

Note2: Please refer to the appendix I for duty cycle plots.

■ Test Results: Comply

Please refer to next page for data table and the appendix II for worst data plots.

Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

Test Notes.

- 1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor(-9.54 dB) is applied to the result.

Calculation of distance factor = $20 \log(\text{ applied distance / required distance}) = <math>20 \log(1 \text{ m / 3 m}) = -9.54 \text{ dB}$ When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

Radiated Spurious Emissions data(1 GHz ~ 25 GHz) : TM 1

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 387.82	V	Z	PK	52.00	4.79	N/A	N/A	56.79	74.00	17.21
Lowest	2 388.05	V	Z	AV	40.90	4.79	0.84	N/A	46.53	54.00	7.47
Lowest	4 824.23	Н	Х	PK	53.36	0.93	N/A	N/A	54.29	74.00	19.71
	4 824.08	Н	Х	AV	43.59	0.93	0.84	N/A	45.36	54.00	8.64
Middle	4 873.89	Н	Х	PK	51.97	1.17	N/A	N/A	53.14	74.00	20.86
ivildale	4 873.98	Н	Х	AV	42.34	1.17	0.84	N/A	44.35	54.00	9.65
	2 484.37	V	Z	PK	51.47	5.26	N/A	N/A	56.73	74.00	17.27
Highest	2 484.30	V	Z	AV	41.22	5.26	0.84	N/A	47.32	54.00	6.68
riignest	4 924.00	Н	Х	PK	51.33	1.45	N/A	N/A	52.78	74.00	21.22
	4 923.97	Н	Х	AV	41.89	1.45	0.84	N/A	44.18	54.00	9.82

Report No.: DRTFCC2008-0250

Radiated Spurious Emissions data(1 GHz \sim 25 GHz) : $\overline{\textit{TM 2}}$

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 389.77	V	Z	PK	55.14	4.80	N/A	N/A	59.94	74.00	14.06
Lowest	2 389.85	V	Z	AV	42.64	4.80	3.32	N/A	50.76	54.00	3.24
Lowest	4 824.17	Н	Х	PK	48.85	0.93	N/A	N/A	49.78	74.00	24.22
	4 824.20	Н	Х	AV	38.65	0.93	3.32	N/A	42.90	54.00	11.10
Middle	4 873.88	Н	Х	PK	49.72	1.17	N/A	N/A	50.89	74.00	23.11
ivildale	4 873.57	Н	Х	AV	38.88	1.17	3.32	N/A	43.37	54.00	10.63
	2 483.83	V	Z	PK	55.63	5.26	N/A	N/A	60.89	74.00	13.11
Llighoot	2 483.78	V	Z	AV	41.97	5.26	3.32	N/A	50.55	54.00	3.45
Highest	4 924.10	Н	Х	PK	50.25	1.45	N/A	N/A	51.70	74.00	22.30
	4 924.00	Н	Х	AV	39.15	1.45	3.32	N/A	43.92	54.00	10.08

Radiated Spurious Emissions data(1 GHz ~ 25 GHz) : TM 3

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 389.83	V	Z	PK	53.25	4.80	N/A	N/A	58.05	74.00	15.95
Lowest	2 389.80	V	Z	AV	41.10	4.80	3.49	N/A	49.39	54.00	4.61
Lowest	4 823.67	Н	Х	PK	49.87	0.93	N/A	N/A	50.80	74.00	23.20
	4 823.85	Н	Х	AV	38.62	0.93	3.49	N/A	43.04	54.00	10.96
Middle	4 874.00	Н	Х	PK	49.45	1.17	N/A	N/A	50.62	74.00	23.38
ivildale	4 874.07	Н	Х	AV	39.03	1.18	3.49	N/A	43.70	54.00	10.30
	2 483.98	V	Z	PK	53.63	5.26	N/A	N/A	58.89	74.00	15.11
Highest	2 483.85	V	Z	AV	41.26	5.26	3.49	N/A	50.01	54.00	3.99
riignest	4 924.11	Н	Х	PK	49.75	1.45	N/A	N/A	51.20	74.00	22.80
	4 924.18	Н	Χ	AV	38.94	1.45	3.49	N/A	43.88	54.00	10.12

Report No.: DRTFCC2008-0250 FCC ID: SS4VF550

8.6 Power-line conducted emissions

■ Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

■ Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

■ Test Results: Comply(Refer to next page.)

The worst data was reported

Report No.: DRTFCC2008-0250

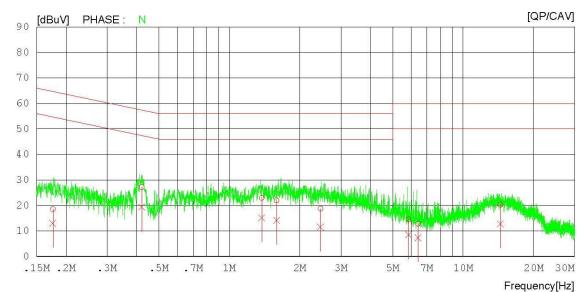
■ RESULT PLOTS

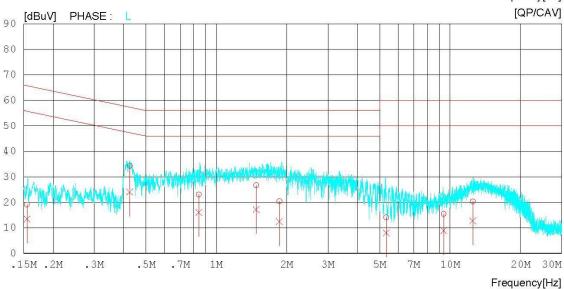
AC Line Conducted Emissions (Graph)

Test Mode: TM 2 & 2437 MHz

Results of Conducted Emission

DTNC Date 2020-07-10


Order No. Model No. Serial No. Test Condition


VF550 2.4G WLAN Referrence No. Power Supply Temp/Humi. Operator

120 V, 60 Hz 23 'C / 35 % J.H.Bang

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

AC Line Conducted Emissions (List)

Test Mode: TM 2 & 2437 MHz

Results of Conducted Emission

Referrence No.

Date 2020-07-10 DTNC

Order No. Model No. Serial No. **Test Condition**

VF550

Power Supply Temp/Humi. 2.4G WLAN Operator

120 V, 60 Hz 23 'C / 35 % J.H.Bang

FCC ID: SS4VF550

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READI QP [dBuV] [CAV	C.FACTOR	RESULT QP CAV [dBuV][dBuV	QP	[MIT CAV /][dBuV]	MARGIN QP CAV [dBuV][dBu\	PHASE 7]
	0.17596	8.60 3	3.07	9.96	18.5613.03	64.67	54.67	46.1141.64	N
2	0.17390	1-1-1-1-11-11	9.39	9.97	27.14 19.36	57.41	47.41	30.27 28.05	N
3	1.37615		5.11	9.99	23.00 15.10	56.00	46.00	33.0030.90	N
4	1.59237		1.15	10.01	21.88 14.16	56.00	46.00	34.12.31.84	N
5	2.45430	8.70 1	.48	10.06	18.7611.54	56.00	46.00	37.24 34.46	N
6	5.84291	4.39 -1		10.18	14.57 8.47	60.00	50.00	45.43 41.53	N
7	6.41739	2.68 -2		10.20	12.88 7.29	60.00	50.00	47.12.42.71	N
8	14.44218		2.31	10.44	20.4012.75	60.00	50.00	39.60 37.25	N
9	0.15502		3.44	9.96	19.0813.40	65.73	55.73	46.65 42.34	T
10		24.28 14		9.95	34.23 24.10	57.33	47.33	23.10 23.23	Ĺ
11	0.84306	- TO 1011 - TO 107 100 TO 100	5.07	9.98	22.98 16.05	56.00	46.00	33.02.29.95	T.
12	1.48076	CENTER LEVILED NO	7 - 1 4	10.00	26.63 17.14	56.00	46.00	29.37 28.86	L
13	1.86124			10.04	20.36 12.50	56.00	46.00	35.64 33.50	L
14	5.33662	3.92 -2		10.17	14.09 7.95	60.00	50.00	45.91 42.05	Ī
15	9.38151	5.15 -1		10.30	15.45 8.84	60.00	50.00	44.55 41.16	I.
16	12.51032		2.36	10.39	20.25 12.75	60.00	50.00	39.75 37.25	L
107-010-01			35 (C)46((6 1)	ROSS IN MOSE	OFFICE PROPERTY STATES OF STATE	SECTION IN PROCESS	STATE OF STA	MODERN DE ARREST HERBER DE TERRES	08/8/02

9. LIST OF TEST EQUIPMENT

Date of Test(original test): 2020-06-25 ~ 2020-07-15

Type	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY50410357
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48010133
DC Power Supply	Agilent Technologies	66332A	19/06/25 20/06/24	20/06/25 21/06/24	MY43000211
Multimeter	FLUKE	17B	19/12/16	20/12/16	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-1
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-2
Thermohygrometer	BODYCOM	BJ5478	19/07/03 20/07/01	20/07/03 21/07/01	N/A
HYGROMETER	TESTO	608-H1	20/01/21	21/01/21	34862883
Loop Antenna	ETS-Lindgren	6502	19/09/18	21/09/18	00226186
BILOG ANTENNA	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
Horn Antenna	ETS-Lindgren	3115	20/01/30	22/01/30	6419
Horn Antenna	Schwarzbeck	BBHA 9120C	19/12/04	21/12/04	9120C-561
PreAmplifier	tsj	MLA-0118-B01-40	19/12/16	20/12/16	1852267
·	-		19/06/27	20/06/27	
PreAmplifier	tsj	MLA-1840-J02-45	20/06/24	21/06/24	16966-10728
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935-1000-	19/06/26	20/06/26	8
	g	15000-40SS	20/06/24	21/06/24	
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300-	19/06/26	20/06/26	1
3	3	18000-60SS	20/06/24	21/06/24	
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	19/06/27	20/06/27	3
J	3		20/06/24	21/06/24	
Attenuator	Hefei Shunze	SS5T2.92-10-40	19/06/27	20/06/27	16012202
			20/06/24 19/06/27	21/06/24 20/06/27	
Attenuator	SRTechnology	F01-B0606-01	20/06/24	21/06/24	13092403
Attenuator	Aeroflex/Weinschel	56-3	19/06/27	20/06/27	Y2370
Allenuator	Aeronexyvenischer	50-5	20/06/24	21/06/24	12370
Attenuator	SMAJK	SMAJK-2-3	19/06/27	20/06/27	2
			20/06/24 19/06/25	21/06/24 20/06/25	
Attenuator	SMAJK	SMAJK-50-10	20/06/24	21/06/24	15081901
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2488B MA2491A	20/01/02	21/01/02	0910025 0845333
EMI Test Receiver	ROHDE&SCHWARZ	ESR	19/12/17	20/12/17	101767
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	19/09/17	20/09/17	101333
LISN	SCHWARZBECK	NSLK 8128 RC	19/11/04	20/11/04	8128 RC-387
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-04
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-07
Cable	DT&C	Cable	20/01/13	21/01/13	G-13
Cable	DT&C	Cable	20/01/13	21/01/13	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	20/01/13	21/01/13	G-15
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	M-01
Cable	Junkosha	MWX315	20/01/16	21/01/16	M-05
Cable	Junkosha	MWX221	20/01/16	21/01/16	M-06
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	RF-82
Test Software	tsj	Raidated Emission Measurement	NA	NA	Version 2.00.0177
Test Software	tsj	Noise Terminal	NA	NA	Version
	t antennas were calibrated	Measurement			2.00.0170

Report No.: DRTFCC2008-0250

Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017

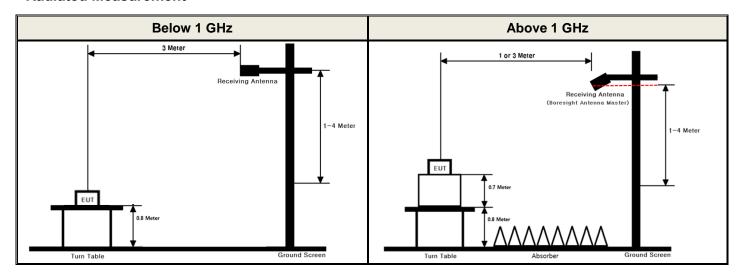
Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

Date of Test(original test): 2020-08-06 ~ 2020-08-10

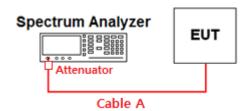
Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48011700
DC Power Supply	Agilent Technologies	66332A	20/06/24	21/06/24	MY43000211
Multimeter	FLUKE	17B	19/12/16	20/12/16	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	20/07/01	21/07/01	N/A
Horn Antenna	ETS-Lindgren	3115	20/01/30	22/01/30	6419
PreAmplifier	tsj	MLA-0118-B01-40	19/12/16	20/12/16	1852267
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	20/06/24	21/06/24	8
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	20/06/24	21/06/24	1
Attenuator	Hefei Shunze	SS5T2.92-10-40	20/06/24	21/06/24	16012202
Attenuator	SRTechnology	F01-B0606-01	20/06/24	21/06/24	13092403
Attenuator	Aeroflex/Weinschel	56-3	20/06/24	21/06/24	Y2370
Attenuator	SMAJK	SMAJK-2-3	20/06/24	21/06/24	2
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2488B MA2491A	20/01/02	21/01/02	0910025 0845333
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-04
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-07
Cable	DT&C	Cable	20/01/13	21/01/13	G-13
Cable	DT&C	Cable	20/01/13	21/01/13	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	20/01/13	21/01/13	G-15

Report No.: DRTFCC2008-0250

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.


Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

Report No.: DRTFCC2008-0250


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

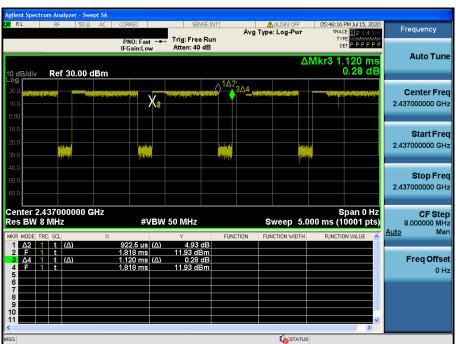
Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	9.45	15	11.11
1	9.75	20	11.45
2.412 & 2.437 & 2.462	10.27	25	11.56
5	10.37	-	-
10	10.49	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A + Attenuator

APPENDIX II

Duty cycle plots

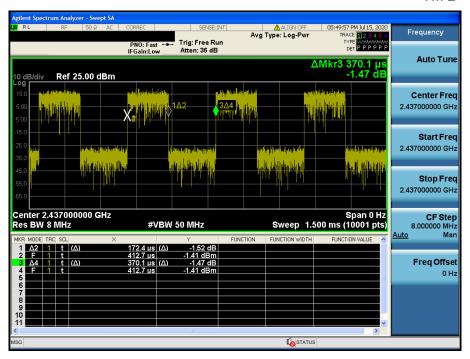
Test Procedure

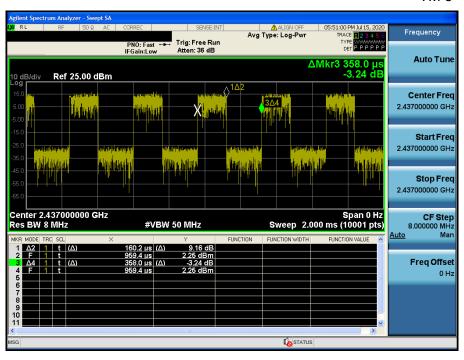

Duty Cycle was measured using section 6.0 b) of KDB558074 D01V05R02:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average.

Report No.: DRTFCC2008-0250

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

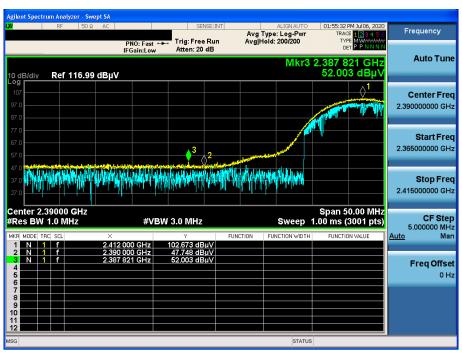




TM 2 & Lowest

Duty Cycle

TM 3 & Lowest

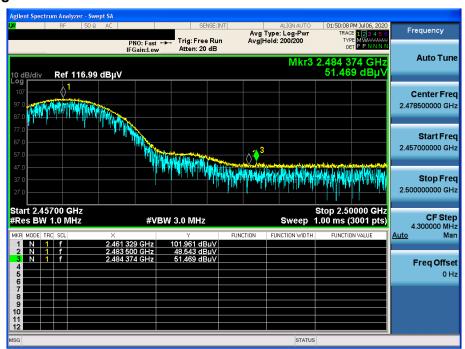

Detector Mode: PK

APPENDIX III

Unwanted Emissions (Radiated) Test Plot

TM 1 & Lowest & Zaxis & Ver

TM 1 & Lowest & Zaxis & Ver

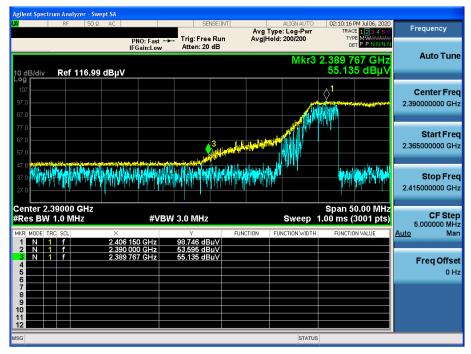


Detector Mode: PK

Detector Mode: AV

TM 1 & Highest & Zaxis & Ver

TM 1 & Highest & Zaxis & Ver

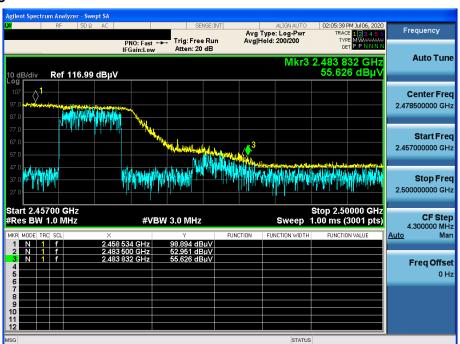


TM 2 & Lowest & Zaxis & Ver

Detector Mode: PK

Detector Mode: AV

TM 2 & Lowest & Zaxis & Ver

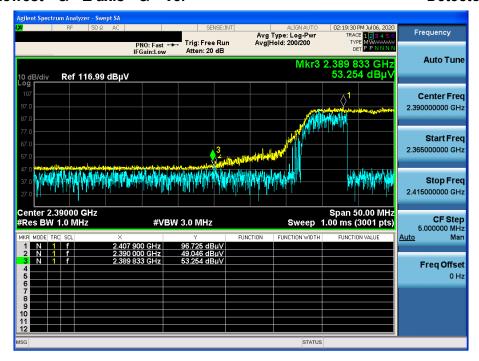


Detector Mode: PK

Detector Mode: AV

TM 2 & Highest & Zaxis & Ver

TM 2 & Highest & Zaxis & Ver



TM 3 & Lowest & Zaxis & Ver

Detector Mode: PK

Detector Mode: AV

TM 3 & Lowest & Zaxis & Ver

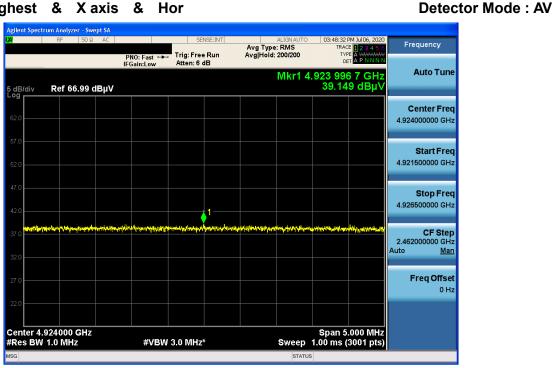


Detector Mode: PK

Detector Mode: AV

TM 3 & Highest & Zaxis & Ver


TM 3 & Highest & Zaxis & Ver



TM 1 & Lowest & X axis & Hor

TM 2 & Highest & X axis & Hor

Detector Mode: AV

TM 3 & Highest & X axis & Hor

Center 4.924000 GHz #Res BW 1.0 MHz

#VBW 3.0 MHz*

Span 5.000 MHz Sweep 1.00 ms (3001 pts)