TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRRFCC2008-0083(1)

2. Customer

· Name: BLUEBIRD INC.

· Address: 3F, 115, Irwon-ro, Gangnam-gu, Seoul, South Korea

3. Use of Report: FCC Original Grant

4. Product Name / Model Name: Smart POS Payment Terminal / SP500

FCC ID: SS4SP500

5. Test Method Used :IEEE 1528-2013, FCC SAR KDB Publications (Details in test report)

Test Specification: CFR 47 Part 2 subpart 2.1093

6. Date of Test: 2020.07.13 ~ 2020.07.29

7. Location of Test:
☐ Permanent Testing Lab
☐ On Site Testing

8. Testing Environment: Refer to attached test report

9. Test Result: Refer to attached test report.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Affirmation Tested by
Name : BumJun Park Technical Manager
Name : HakMin Kim

2020.09.03.

DT&C Co., Ltd.

Not abided by KS Q ISO / IEC 17025 and KOLAS accreditation.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Pages: 1/127

Test Report Version

Test Report No.	Date	Description	Tested by	Reviewed by
DRRFCC2008-0083	Aug. 21, 2020	Initial issue	BumJun Park	HakMin Kim
DRRFCC2008-0083(1)	Sep. 3, 2020	Revised of section 10.	BumJun Park	HakMin Kim

Table of Contents

1. DESCRIPTION OF DEVICE	4
1.1 General Information	
1.2 Power Reduction for SAR	
1.3 Nominal and Maximum Output Power Specifications	
1.5 Miscellaneous SAR Test Considerations.	
1.6 Guidance Applied	
1.7 Device Serial Numbers	
3. INTROCUCTION	
4. DOSIMETRIC ASSESSMENT	
4.1 Measurement Procedure	
5.1 Device Holder	
5.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02	
6. RF EXPOSURE LIMITS	12
7. FCC MEASUREMENT PROCEDURES	13
7.1 Measured and Reported SAR	13
7.2 Procedures Used to Establish RF Signal for SAR	
7.3 SAR Measurement Conditions for WCDMA (UMTS)	
7.3.1 Output Power Verification	
7.3.3 Release 5 HSDPA Data Devices	
7.3.4 Release 6 HSUPA Data Devices	
7.4 SAR Measurement Conditions for LTE	
7.4.2 MPR	
7.4.3 A-MPR	
7.4.4 Required RB Size and RB Offsets for SAR Testing	
7.5 SAR Testing with 802.11 Transmitters	
7.5.2 U-NII and U-NII-2A	
7.5.3 U-NII-2C and U-NII-3	
7.5.4 Initial Test Position Procedure	
7.5.5 2.4 GHz SAR Test Requirements	
7.5.6 OFDM Transmission Mode and SAR Test Channel Selection	
7.5.7 Initial Test Configuration Procedure	
7.5.8 Subsequent Test Configuration Procedures	
8. RF CONDUCTED POWERS	18
8.1 WCDMA Nominal and Maximum Output Power Spec and Conducted Powers	
8.2 LTE Nominal and Maximum Output Power Spec and Conducted Powers	
8.4 Bluetooth Conducted Powers	
9. SYSTEM VERIFICATION	
9.1 Tissue Verification	27
9.2 Test System Verification	27
10. SAR TEST RESULTS	
10.1 Standalone Body SAR Results	
11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	
11.1 Introduction	33
11.2 Simultaneous Transmission Procedures	
11.3 Simultaneous Transmission Capabilities	
11.5 Simultaneous Transmission Conclusion	
12. SAR MEASUREMENT VARIABILITY	
12.1 Measurement Variability	
12.2 Measurement Uncertainty	
13. EQUIPMENT LIST	
14. MEASUREMENT UNCERTAINTIES	
15. CONCLUSION	
16. REFERENCES	
APPENDIX A. – Probe Calibration Data	
APPENDIX B. – Dipole Calibration Data	
APPENDIX C. – SAR Tissue Specifications	116
APPENDIX D. – SAR SYSTEM VALIDATION	
APPENDIX E Description of Test Equipment	120

1. DESCRIPTION OF DEVICE

1.1 General Information

EUT type	Smart POS Payment Terminal							
FCC ID	SS4SP500							
Equipment model name	SP500							
Equipment add	N/A							
model name FCC & ISED MRA Designation No.	KR0034							
ISED#	5470A							
Equipment serial no.	Identical prototype							
Mode(s) of Operation	WCDMA 850, WCDMA 1900, LTE	Band 12, 5, 4, 2, 2.4 G W-LAN (802.1	1b/g/n-HT20/n-HT40),					
(-)	5 G W-LAN (802.11a/n-HT20/n-H Band	Mode	Operating Modes	Bandwidth	Frequency			
	WCDMA 850	WCDMA	Voice/Data	Bandwidth	826.4 ~ 846.6 MHz			
	WCDMA 1900	WCDMA	Voice/Data	-	1852.4 ~ 1907.6 MHz			
	LTE Band 12	LTE	Voice/Data	1.4/3/5/10MHz	699.7 ~ 715.3 MHz			
	LTE Band 5	LTE	Voice/Data	1.4/3/5/10MHz	824.7 ~ 848.3 MHz			
	LTE Band 4	LTE	Voice/Data	1.4/3/5/10/15/20MHz	1710.7 ~ 1754.3 MHz			
	LTE Band 2	LTE	Voice/Data	1.4/3/5/10/15/20MHz	1850.7 ~ 1909.3 MHz			
	2.4 GHz W-LAN	802.11b/g/n	Voice/Data	HT20/HT40	2412 ~ 2462 MHz			
TX Frequency Range	5.2 GHz W-LAN	802.11a/n	Voice/Data	HT20 HT40	5180 ~ 5240 MHz			
		802.11n 802.11a/n	Voice/Data Voice/Data	HT20	5190 ~ 5230 MHz 5260 ~ 5320 MHz			
	5.3 GHz W-LAN	802.11a/n	Voice/Data Voice/Data	HT40	5260 ~ 5320 MHz 5270 ~ 5310 MHz			
		802.11a/n	Voice/Data	HT20	5500 ~ 5720 MHz			
	5.6 GHz W-LAN	802.11n	Voice/Data	HT40	5510 ~ 5710 MHz			
	F O CHE WILANI	802.11a/n	Voice/Data	HT20	5745 ~ 5825 MHz			
	5.8 GHz W-LAN	802.11n	Voice/Data	HT40	5755 ~ 5795 MHz			
	Bluetooth	-	Data	-	2402 ~ 2480 MHz			
	WCDMA 850	WCDMA	Voice/Data	-	871.4 ~ 891.6 MHz			
	WCDMA 1900	WCDMA	Voice/Data	-	1932.4 ~ 1987.6 MHz			
	LTE Band 12	LTE	Voice/Data	1.4/3/5/10MHz	729.7 ~ 745.3 MHz			
	LTE Band 5 LTE Band 4	LTE LTE	Voice/Data Voice/Data	1.4/3/5/10MHz 1.4/3/5/10/15/20MHz	869.7 ~ 893.3 MHz 2110.7 ~ 2154.3 MHz			
	LTE Band 2	LTE	Voice/Data	1.4/3/5/10/15/20MHz	1930.7 ~ 1989.3 MHz			
	2.4 GHz W-LAN	802.11b/g/n	Voice/Data	HT20/HT40	2412 ~ 2462 MHz			
57.5		802.11a/n	Voice/Data	HT20	5180 ~ 5240 MHz			
RX Frequency Range	5.2 GHz W-LAN	802.11n	Voice/Data	HT40	5190 ~ 5230 MHz			
	5.3 GHz W-LAN	802.11a/n	Voice/Data	HT20	5260 ~ 5320 MHz			
	5.5 GHZ W-EAR	802.11n	Voice/Data	HT40	5270 ~ 5310 MHz			
	5.6 GHz W-LAN	802.11a/n	Voice/Data	HT20	5500 ~ 5720 MHz			
		802.11n	Voice/Data	HT40	5510 ~ 5710 MHz			
	5.8 GHz W-LAN	802.11a/n 802.11n	Voice/Data Voice/Data	HT20 HT40	5745 ~ 5825 MHz 5755 ~ 5795 MHz			
	Bluetooth	-	Data	-	2402 ~ 2480 MHz			
	Bideloodi		Data		2402 2400 WH IZ			
Equipment				Reported SAR				
Class	Ba	and	1g SAR (W/kg)					
				Body				
PCB	WCDI	MA 850		1.04				
PCB	WCDN	IA 1900		1.19				
PCB	LTE B	and 12		0.34				
PCB		Band 5		0.69				
PCB		Band 4		0.81				
PCB	-							
		Band 2		1.19				
DTS	2.4 GH:	z W-LAN		0.65				
U-NII-1	5.2 GH:	z W-LAN		0.78				
U-NII-3	5.8 GH:	z W-LAN		0.48				
DSS		etooth		0.17				
	Simultaneous SAR per KDB 690783 D01v01r			1.47				
FCC Equipment Class	Licensed Portable Transmitter (Pi Part 15 Spread Spectrum Transm Digital Transmission System(DTS Unlicensed National Information I	uitter(DSS)						
Date(s) of Tests	2020.07.13 ~ 2020.07.29							
Antenna Type	Internal Antenna							
Functions	Simultaneous transmiss	sion between [WCDMA & WLAN], [LTE	& WLAN].					
i unionoriă	 VoIP is supported. 							

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

The Nominal and Maximum Output Power Specifications are in section 8 of this test report.

1.4 Simultaneous Transmission Capabilities

The Simultaneous Transmission Capabilities are in section 11 of this test report.

1.5 Miscellaneous SAR Test Considerations

(A) BT for SAR configuration

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances < 50 mm is defined by the following equation:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · $[\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR

Report No.: DRRFCC2008-0083(1)

Based on the maximum conducted power of **Bluetooth** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth SAR was required**; $[(15/5)^* \sqrt{2.480}] = 4.8 > 3.0$.

Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Tested sides for Body SAR configuration

(1) Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances < 50 mm is defined by the following equation:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f_{\text{(GHz)}}}] \le 3.0 \text{ for } 1\text{-g SAR}$

Table 1.4.1 SAR Test Exclusion for Edges (Antennas < 50 mm)

FREQU	ENCY			Tune up			Separation D	Distance [mn	n]		Calculated Thresh	old Power [mW]	
MHz	Ch	Mode/ Band	Service	Max Power [mW]	# of Time Slots	Тор	Bottom	Right	Left	Тор	Bottom	Right	Left
846.6	4233	WCDMA 850	RMC	251	-	155	0	0	0	> 50mm Note	46.2 (O)	46.2 (O)	46.2 (O)
1907.6	9538	WCDMA 1900	RMC	165	-	155	0	0	0	> 50mm Note	45.8 (O)	45.8 (O)	45.8 (O)
707.5	23095	LTE B12	-	199	-	155	0	0	0	> 50mm Note	33.6 (O)	33.6 (O)	33.6 (O)
836.5	20525	LTE B5	-	208	-	155	0	0	0	> 50mm Note	38.2 (O)	38.2 (O)	38.2 (O)
1732.5	20175	LTE B4	-	186	-	155	0	0	0	> 50mm Note	49.0 (O)	49.0 (O)	49.0 (O)
1900.0	19100	LTE B2	-	186	-	155	0	0	0	> 50mm Note	51.3 (O)	51.3 (O)	51.3 (O)
2462.0	11	2.4 GHz W-LAN	-	39	-	16	136	80	3	3.9 (O)	> 50mm Note	> 50mm Note	12.5 (O)
5825.0	165	5 GHz W-LAN	-	19	-	16	136	80	3	3.0 (O)	> 50mm Note	> 50mm Note	9.6 (O)
2480.0	78	Bluetooth	-	15	-	16	136	80	3	1.5 (X)	> 50mm Note	> 50mm Note	4.8 (O)

Note: Please refer to Table 1.4.2.

- (2) Per FCC KDB 447498 D01v06, the SAR exclusion threshold for distances > 50 mm is defined by the following equation: (the SAR test exclusion threshold is determined according to the following, and as illustrated in KDB 447498 Appendix B.)
 - 1) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance $-50 \text{ mm} \cdot (f_{\text{MHz}}/150)]$ } mW, for 100 MHz to 1500 MHz
 - {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤ 6 GHz

Table 1.4.2 SAR Test Exclusion for Edges (Antennas > 50 mm)

FREQUI	ENCY	Tune up				Separation D	Distance [mn	1]	Calculated Threshold Power [mW]				
MHz	Ch	Mode/ Band	Service	Max Power [mW]	# of Time Slots	Тор	Bottom	Right	Left	Тор	Bottom	Right	Left
846.6	4233	WCDMA 850	RMC	251	-	155	0	0	0	757 (X)	< 50mm Note	< 50mm Note	< 50mm Note
1907.6	9538	WCDMA 1900	RMC	165	-	155	0	0	0	1159 (X)	< 50mm Note	< 50mm Note	< 50mm Note
707.5	23095	LTE B12	-	199	-	155	0	0	0	659 (X)	< 50mm Note	< 50mm Note	< 50mm Note
836.5	20525	LTE B5	-	208	-	155	0	0	0	750 (X)	< 50mm Note	< 50mm Note	< 50mm Note
1732.5	20175	LTE B4	1	186	-	155	0	0	0	1159 (X)	< 50mm Note	< 50mm Note	< 50mm Note
1900.0	19100	LTE B2	-	186	-	155	0	0	0	1159 (X)	< 50mm Note	< 50mm Note	< 50mm Note
2462.0	11	2.4 GHz W-LAN	-	39	-	16	136	80	3	< 50mm Note	956 (X)	396 (X)	< 50mm Note
5825.0	165	5 GHz W-LAN	-	19	-	16	136	80	3	< 50mm Note	922 (X)	362 (X)	< 50mm Note
2480.0	78	Bluetooth	-	15	-	16	136	80	3	< 50mm Note	956 (X)	396 (X)	< 50mm Note

Note: Please refer to Table 1.4.1.

Table 1.4.3 Determined EUT sides for SAR Testing

Table 1:40 Determined LOT Sides for OAK Testing										
Mode	EUT Sides for SAR Testing									
Wode	Тор	Bottom	Front	Rear	Right	Left				
WCDMA 850	X	0	0	0	0	0				
WCDMA 1900	X	0	0	0	0	0				
LTE B12	X	0	0	0	0	0				
LTE B5	X	0	0	0	0	0				
LTE B4	X	0	0	0	0	0				
LTE B2	X	0	0	0	0	0				
2.4 GHz W-LAN	0	X	0	0	X	0				
5 GHz W-LAN	0	X	0	0	X	0				
Bluetooth	Y	Y	0	0	Y	0				

Note: Particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v06.

(C) Licensed Transmitter(s)

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

1.6 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01 (3G SAR Procedures)
- FCC KDB Publication 941225 D05v02r05 (SAR for LTE Devices)
- FCC KDB Publication 941225 D05Av01r02 (LTE Rel.10 KDB Inquiry Sheet)
- FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR)
- FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance)
- FCC KDB Publication 648474 D04v01r03 (Handset SAR)
- FCC KDB Publication 941225 D07 v01r02 (UMPC Mini Tablet)
- FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants)
- FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz)
- FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting)
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)
- October 2016 TCB Workshop Notes (Bluetooth Duty Factor)

1.7 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 10.

2. LTE INFORMATION

LTE Information										
FCC ID			SS4SP500		·					
Form Factor			Smart POS Payment Terminal							
Frequency Range of each LTE transmission Band	LTE Band 4 (AWS) (1710.7 ~ 1754.3	TE Band 12 (699.7 ~ 715.3 MHz) TE Band 5 (Cell) (824.7 ~ 848.3 MHz) TE Band 4 (AWS) (1710.7 ~ 1754.3 MHz) TE Band 2 (PCS) (1850.7 ~ 1909.3 MHz)								
Channel Bandwidths	LTE Band 5 : 1.4 MHz, 3 MHz, 5 MH LTE Band 4 : 1.4 MHz, 3 MHz, 5 MH	TE Band 12 : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz TE Band 5 : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz TE Band 4 : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz TE Band 2 : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz								
Channel Number and Frequencies(MHz)	Low	Low-Mid	Mid	Mid-High	High					
LTE Band 12: 1.4 MHz	699.7 (23017)	N/A	707.5 (23095)	N/A	715.3 (23173)					
LTE Band 12: 3 MHz	700.5 (23025)	N/A	707.5 (23095)	N/A	714.5 (23165)					
LTE Band 12: 5 MHz	701.5 (23035)	N/A	707.5 (23095)	N/A	713.5 (23155)					
LTE Band 12: 10 MHz	704.0 (23060)	N/A	707.5 (23095) ^{Note1}	N/A	711.0 (23130)					
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	N/A	836.5 (20525)	N/A	848.3 (20643)					
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	N/A	836.5 (20525)	N/A	847.5 (20635)					
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	N/A	836.5 (20525)	N/A	846.5 (20625)					
LTE Band 5 (Cell): 10 MHz	829.0 (20450)	N/A	836.5 (20525) ^{Note2}	N/A	844.0 (20600)					
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	N/A	1732.5 (20175)	N/A	1754.3 (20393)					
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	N/A	1732.5 (20175)	N/A	1753.5 (20385)					
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	N/A	1732.5 (20175)	N/A	1752.5 (20375)					
LTE Band 4 (AWS): 10 MHz	1715.0 (20000)	N/A	1732.5 (20175)	N/A	1750.0 (20350)					
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	N/A	1732.5 (20175)	N/A	1747.5 (20325)					
LTE Band 4 (AWS): 20 MHz	1720.0 (20050)	N/A	1732.5 (20175) Note3	N/A	1745.0 (20300)					
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	N/A	1880.0 (18900)	N/A	1909.3 (19193)					
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	N/A	1880.0 (18900)	N/A	1908.5 (19185)					
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	N/A	1880.0 (18900)	N/A	1907.5 (19175)					
LTE Band 2 (PCS): 10 MHz	1855.0 (18650)	N/A	1880.0 (18900)	N/A	1905.0 (19150)					
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	N/A	1880.0 (18900)	N/A	1902.5 (19125)					
LTE Band 2 (PCS): 20 MHz	1860.0 (18700)	N/A	1880.0 (18900)	N/A	1900.0 (19100)					
UE Category			4							
Modulations Supported in UL			QPSK, 16QAM							
LTE MPR Permanently implemented per 3GPP TS 36.101			Yes							
section 6.2.3~6.2.5? (manufacturer attestation to be provided)			Yes							
A-MPR (Additional MPR) disabled for SAR Testing?			Yes							
LTE Carrier Aggregation Possible Combinations	-		TE Carrier Aggregation is not supported.		-					
LTE Additional Information	Relay, F	All uplink comm The follo	does not support CA features on 3GPP R nunications are identical to the Release 8 wing LTE Release 11 Features are not sup WIFI Offloading, MDH, eMBMS, Cross-Ca	Specifications. oported:	DMA.					

Note(s)

1. LTE B12 can not contain three non-overlapping channels of 10 MHz bandwidth.

Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

2. LTE B5(CeII) can not contain three non-overlapping channels of 10 MHz bandwidth.

Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

3. LTE B4 (AWS) can not contain three non-overlapping channels of 20 MHz bandwidth.

Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

3. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 3.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 3.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

4. DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4.1) and IEEE1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

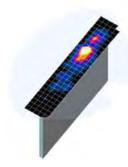


Figure 4.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

			≤3 GHz	>3 GHz		
Maximum distance fro (geometric center of p		measurement point ers) to phantom surface	5 mm ± 1 mm	½·δ·ln(2) mm ± 0.5 mm		
Maximum probe angle surface normal at the			30°±1°	20°±1°		
			≤ 2 GHz: ≤ 15 mm 2 − 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan s	patial reso	lution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orients above, the measurement re corresponding x or y dimensateleast one measurement p	tion, is smaller than the solution must be≤the nsion of the test device with		
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
H.	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoon} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm		
	grid	Δz _{Zoon} (n>1): between subsequent points	≤1.5·Δz _{Zoom} (n-1) mm			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Table 4.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

5. TEST CONFIGURATION POSITIONS FOR HANDSETS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

5.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

6. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6.1.SAR Huma	in Exposure Specified in ANSI/IEEE C95.1-1992

	HUMAN EXPO	SURE LIMITS
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

7. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

7.3 SAR Measurement Conditions for WCDMA (UMTS)

7.3.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general, descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC,(transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

7.3.2 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all"1s".

7.3.3 Release 5 HSDPA Data Devices

The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. SAR is required for devices in body-worn accessory and other body exposure conditions, including handsets and data modems operating in various electronic devices. HSDPA operates in conjunction with WCDMA and requires an active DPCCH. The default test configuration is to measure SAR in WCDMA with HSDPA remain inactive, to establish a radio link between the test device and a communication test set using a 12.2 kbps RMC configured in Test Loop Mode 1. SAR for HSDPA is selectively measured using the highest reported SAR configuration in WCDMA, with an FRC in H-set 1 and a 12.2 kbps RMC. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCHn) according to exposure conditions, device operating capabilities and maximum output power specified for production units, including tune-up tolerance by applying the 3G SAR test reduction procedures. Maximum output power is verified according to the applicable versions of 3GPP TS 34.121. SAR must be measured based on these maximum output conditions and requirements in KDB Publication 447498, with respect to the UE Categories, and explained in the SAR report. When Maximum Power Reduction (MPR) applies, the implementations must be clearly identified in the SAR report to support test results according to Cubic Metric (CM) and, as appropriate, Enhanced MPR (E-MPR) requirements.

Sub-test	β _c	β_c β_d β_d β_c/β_d		$\beta_{hs}^{(I)}$	CM (dB) ⁽²⁾	
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

Figure 7.1 Table 1

7.3.4 Release 6 HSUPA Data Devices

The following procedures are applicable to HSPA (HSUPA/HSDPA) data devices operating under 3GPP Release 6. SAR is required for devices in body-worn accessory and other body exposure conditions, including handsets and data modems operating in various electronic devices. HSUPA operates in conjunction with WCDMA and HSDPA. SAR is initially measured in WCDMA test configurations with HSPA remain inactive. The default test configuration is to establish a radio link between the test device and a communication test set to configure a 12.2 kbps RMC in Test Loop Mode 1. SAR for HSPA is selectively measured with HS-DPCCH, E-DPCCH and E-DPDCH, all enabled, along with a 12.2 kbps RMC using the highest reported SAR configuration in WCDMA with 12.2 kbps RMC only.

An FRC is configured according to HS-DPCCH Sub-test 1 using H-set 1 and QPSK. HSPA is configured according to E-DCH Sub-test 5 requirements. SAR for other HSPA sub-test configurations is confirmed selectively according to exposure conditions, E-DCH UE Category and maximum output power of production units, including tune-up tolerance by applying the 3G SAR test reduction procedure. Maximum output power is verified according to procedures in applicable versions of 3GPP TS 34.121. SAR must be measured based on these maximum output conditions and requirements in KDB Publication 447498, with respect to the UE Categories for HS-DPCCH and HSPA, and explained in the SAR report. When Maximum Power Reduction (MPR) applies, the implementations must be clearly identified in the SAR report to support test results according to Cubic Metric (CM) and, as appropriate, Enhanced MPR (E-MPR) requirements.

Sub- test	βε	β_d	β _d (SF)	β_c/β_d	$\beta_{h\text{\tiny S}}^{~(1)}$	β_{ec}	$\beta_{\rm ed}$	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{edl} : 47/15 β_{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c = 30/15 \Leftrightarrow β_{hs} = 30/15 * β_c

Note 2: CM = 1 for β_c/β_d =12/15, β_{bs}/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{ed} cannot be set directly; it is set by Absolute Grant Value.

Figure 7.2 Table 2

7.4 SAR Measurement Conditions for LTE

LTE modes were tested according to FCC KDB 941225 D05v02r05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR. The call simulator was used for LTE output power measurement and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.4.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

7.4.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.4.3 A-MPR

A-MPR (Addition MPR) has been disable for all SAR tests by setting NS=01 on the base station simulator.

7.4.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r05:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channel is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to 0.5 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg.</p>

7.5 SAR Testing with 802.11 Transmitters

The normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02r02 for more details.

7.5.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.5.2 U-NII and U-NII-2A

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc.

- 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

7.5.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements.

When Terminal Doppler Weather Rader (TDWR) restriction applies, the channels at 5.60 - 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurements and probe calibration frequency points requirements.

7.5.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured.

7.5.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

7.5.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n or 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.5.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required.

Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured.

7.5.8 Subsequent Test Configuration Procedures

For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power is $\leq 1.2 \text{ W/kg}$, no additional SAR testing for the subsequent test configurations is required.

8. RF CONDUCTED POWERS

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06

8.1 WCDMA Nominal and Maximum Output Power Spec and Conducted Powers

3GPP Release Version	Mode Cellular Band (dBm)		Cellular Band (dBm)	PCS Band (dBm)	3GPP MPR (dB)	
99	WCDMA	Voice	Maximum	24.0	22.2	
			Nominal	23.5	21.7	
5		Subtest	Maximum	24.0	22.2	0
3		1	Nominal	23.5	21.7	O
5		Subtest	Maximum	24.0	22.2	0
	HSDPA	2	Nominal	23.5	21.7	0
5	HODEA	Subtest	Maximum	23.5	21.7	0.5
3		3	Nominal	23.0	21.2	0.5
5	5	Subtest	Maximum	23.5	21.7	0.5
3		4	Nominal	23.0	21.2	0.5
6		Subtest	Maximum	24.0	22.2	0
0		1	Nominal	23.5	21.7	U
0		Subtest	Maximum	22.0	20.2	0
6		2	Nominal	21.5	19.7	2
0	LIGUIDA	Subtest	Maximum	23.0	21.2	4
6	HSUPA	3	Nominal	22.5	20.7	1
_		Subtest	Maximum	22.0	20.2	•
6		4	Nominal	21.5	19.7	2
6	Ì	Subtest	Maximum	24.0	22.2	0
0		5	Nominal	23.5	21.7	Ü

Table 8.2.1 WCDMA Nominal and Maximum Output Power Spec

3GPP		3GPP 34.121	Ce	ellular Band (di	Bm)	P	CS Band (dBm)	3GPP MPR
Release Version	IVIOGE	Subtest	4132	4183	4233	9262	9400	9538	(dB)
99	MODMA	12.2 kbps RMC	23.99	23.91	23.92	22.16	22.19	22.03	-
99	WCDMA	12.2 kbps AMR		-	=	-	-	-	-
5		Subtest 1	23.66	23.61	23.62	21.89	21.91	21.63	0
5	HODDA	Subtest 2	23.75	23.66	23.68	21.72	21.87	21.67	0
5	HSDPA	Subtest 3	23.17	23.08	23.14	21.23	21.28	21.08	0.5
5		Subtest 4	23.17	23.07	23.13	21.23	21.27	21.08	0.5
6		Subtest 1	23.39	23.37	23.38	21.52	21.25	21.00	0
6		Subtest 2	21.98	21.64	21.67	20.20	19.75	20.03	2
6	HSUPA	Subtest 3	22.60	22.58	22.59	20.67	20.61	20.52	1
6		Subtest 4	21.98	21.92	21.96	20.15	20.17	20.14	2
6		Subtest 5	23.68	23.64	23.65	21.78	21.94	21.71	0

Table 8.2.2 WCDMA Conducted Power

WCDMA SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

The manufacturer declares that the HSDPA and HSUPA transmitter's power will not exceed the R99 maximum transmit power in devices based on Qualcomm's HSPA chipset solutions.

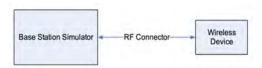


Figure 8.1 Power Measurement Setup

Pages: 19 /127

Report No.: DRRFCC2008-0083(1)

8.2 LTE Nominal and Maximum Output Power Spec and Conducted Powers

В	and & Mode	Modulated Average[dBm]
LTE Band 12	Maximum	23.0
LIE Band 12	Nominal	22.5

Table 8.2.1.1 Nominal and Maximum Output Power Spec

1) LTE Band 12

			LTE Band 12 Conducted Power- 10 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 23095 (707.5 MHz) Conducted Power (dBm)	MPR Allowed Per 3GPP(dB)	MPR (dB)
	1	0	22.88		
	1	25	22.92		0
	1	49	22.77	1	
QPSK	25	0	21.69	≤ 1	
	25	12	21.77		1
	25	25	21.65		
	50	0	21.61		1
	1	0	21.94		
	1	25	21.95	≤ 1	1
	1	49	21.83		
16QAM	25	0	20.86		
	25	12	20.92	≤ 2	2
	25	25	20.83	≤ Z	
	50	0	20.79		2

Table 8.2.1.2 LTE Conducted Power

Note: LTE B12 can not contain three non-overlapping channels of 10 MHz bandwidth.

Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

			LTE Band 12 C	onducted Power- 5 MHz Bandwidth			
		ĺ	Low Channel	Mid Channel	High Channel	MDD Allered	MPR
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed Per 3GPP(dB)	(dB)
				Conducted Power (dBm)		rei 3GFF(GB)	
	1	0	22.75	22.84	22.71		
	1	12	22.83	22.91	22.75	1	0
	1	24	22.73	22.81	22.69	≤1	
QPSK	12	0	21.54	21.52	21.56		
	12	6	21.66	21.54	21.60		1
	12	13	21.53	21.41	21.55		
	25	0	21.65	21.46	21.58		1
	1	0	21.73	21.80	21.71		Î
	1	12	21.85	21.88	21.83	≤ 1	1
	1	24	21.70	21.75	21.68	1	
16QAM	12	0	20.55	20.50	20.48		
	12	6	20.73	20.63	20.60		2
	12	13	20.62	20.50	20.45	≤ 2	1
	25	0	20.47	20.62	20.49		2

Table 8.2.1.3 LTE Conducted Power

			LTE Band 12 C	onducted Power- 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MPR Allowed	MPR (dB)
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	Per 3GPP(dB)	
				Conducted Power (dBm)		rei sorr(ub)	(ub)
	1	0	22.72	22.75	22.71		
	1	7	22.80	22.83	22.78		0
QPSK	1	14	22.70	22.72	22.65	≤1	
	8	0	21.47	21.51	21.50		
	8	4	21.57	21.54	21.55		1
	8	7	21.48	21.52	21.47		
	15	0	21.54	21.47	21.54		1
	1	0	21.82	21.86	21.79		
	1	7	21.92	21.94	21.89	≤1	1
	1	14	21.80	21.85	21.77		
16QAM	8	0	20.64	20.59	20.54		
	8	4	20.75	20.67	20.63	≤ 2	2
	8	7	20.48	20.55	20.58	≥ 2	
	15	0	20.64	20.64	20.61		2

Table 8.2.1.4 LTE Conducted Power

			LTE Band 12 Co	onducted Power- 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MPR Allowed Per 3GPP(dB)	
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)		MPR (dB)
				Conducted Power (dBm)	-	rei serr(db)	(ub)
	1	0	22.73	22.82	22.58		
	1	2	22.84	22.90	22.64		0
	1	5	22.59	22.71	22.54	≤1	<u> </u>
QPSK	3	0	22.65	22.64	22.45		
	3	2	22.71	22.78	22.56		0
	3	3	22.59	22.57	22.45		
	6	0	21.61	21.51	21.40		1
	1	0	21.68	21.73	21.58		
	1	2	21.82	21.93	21.73	≤ 1	1
	1	5	21.58	21.71	21.55		
16QAM	3	0	21.68	21.73	21.64		
	3	2	21.78	21.85	21.69		1
	3	3	21.65	21.70	21.55		1
	6	0	20.61	20.36	20.35	≤ 2	2

Table 8.2.1.5 LTE Conducted Power

Band	Band & Mode		
LTE Band 5	Maximum	23.2	
	Nominal	22.7	

Table 8.2.2.1 Nominal and Maximum Output Power Spec

2) LTE Band 5 (Cell)

			LTE Band 5 (Cell) Conducted Power- 10 MHz Bandwidth		
			Mid Channel	MPR Allowed	MPR
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	Per 3GPP(dB)	(dB)
			Conducted Power (dBm)	r cr cor r (db)	(ub)
	1	0	22.97		
	1	25	22.85		0
	1	49	22.78		
QPSK	25	0	21.66	≤ 1	
	25	12	21.58		1
	25	25	21.55		
	50	0	21.64		1
	1	0	22.11		
	1	25	21.95	≤ 1	1
	1	49	21.91		
16QAM	25	0	20.71		
	25	12	20.70	≤ 2	2
	25	25	20.63	\$ 2	
	50	0	20.68		2

Table 8.2.2.2 LTE Conducted Power

Note: LTE B5(Cell) can not contain three non-overlapping channels of 10 MHz bandwidth.

Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

			LTE Band 5 (Cell)	Conducted Power- 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MDD All	MPR (dB)
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed Per 3GPP(dB)	
				Conducted Power (dBm)		rei sorr(ub)	(ub)
	1	0	22.91	22.90	22.87		
	1	12	22.73	22.71	22.69		0
QPSK	1	24	22.72	22.67	22.60	≤1	<u> </u>
	12	0	21.65	21.63	21.60		
	12	6	21.61	21.60	21.57		1
	12	13	21.58	21.52	21.51		
	25	0	21.64	21.61	21.56		1
	1	0	21.85	21.83	21.79		
	1	12	21.75	21.68	21.65	≤ 1	1
	1	24	21.68	21.65	21.63		
16QAM	12	0	20.70	20.60	20.55		
	12	6	20.56	20.55	20.53	1.0	2
	12	13	20.55	20.53	20.50	≤ 2	
	25	0	20.65	20.56	20.54		2

Table 8.2.2.3 LTE Conducted Power

			LTE Band 5 (Cell)	Conducted Power- 3 MHz Bandwidth	·		
			Low Channel	Mid Channel	High Channel	MDD All	MPR (dB)
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed Per 3GPP(dB)	
				rei sorr(ub)	(ub)		
	1	0	22.98	22.87	22.81		
	1	7	22.81	22.76	22.56		0
	1	14	22.79	22.62	22.51	≤1	
QPSK	8	0	21.64	21.60	21.58		
	8	4	21.59	21.56	21.53		1
	8	7	21.57	21.54	21.51		
	15	0	21.57	21.51	21.50		1
	1	0	22.09	22.06	21.80		
	1	7	21.95	21.71	21.68	≤ 1	1
	1	14	21.90	21.67	21.50		
16QAM	8	0	20.81	20.79	20.73		
	8	4	20.75	20.70	20.58		2
	8	7	20.64	20.59	20.52	≤ 2	
	15	0	20.69	20.66	20.59		2

Table 8.2.2.4 LTE Conducted Power

			LTE Band 5 (Cell) C	Conducted Power- 1.4 MHz Bandwid	th		
			Low Channel	Mid Channel	High Channel	MDD All	MPR
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed Per 3GPP(dB)	
				Conducted Power (dBm)	-	Fel 3GFF(ub)	(dB)
	1	0	22.87	22.79	22.74		
	1	2	22.79	22.77	22.68		0
QPSK	1	5	22.76	22.67	22.57	≤1	
	3	0	22.78	22.71	22.59		
	3	2	22.74	22.63	22.52		0
	3	3	22.70	22.58	22.51		
	6	0	21.57	21.51	21.50		1
	1	0	21.96	21.89	21.67		
	1	2	21.92	21.83	21.61		1
	1	5	21.72	21.66	21.52	≤1	
16QAM	3	0	21.79	21.70	21.66		
	3	2	21.75	21.66	21.62		1
	3	3	21.60	21.55	21.51		
	6	0	20.65	20.58	20.53	< 2	2

Table 8.2.2.5 LTE Conducted Power

Band &	Mode	Modulated Average[dBm]
ITE D	Maximum	22.7
LTE Band 4	Nominal	22.2

Table 8.2.3.1 Nominal and Maximum Output Power Spec

3) LTE Band 4

			LTE Band 4 (AWS) Conducted Power– 20 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 20175 (1732.5 MHz) Conducted Power (dBm)	MPR Allowed Per 3GPP(dB)	MPR (dB)
	1	0	22.53		
	1	50	22.41		0
	1	99	22.33		
QPSK	50	0	21.31	≤ 1	
	50	25	21.21		1
	50	50	21.08		
	100	0	21.28		1
	1	0	21.61		
	1	50	21.58	≤ 1	1
	1	99	21.45		
16QAM	50	0	20.47		
	50	25	20.21	≤ 2	2
	50	50	20.17	= 2	
	100	0	20.19		2

Table 8.2.3.2 LTE Conducted Power

Note: LTE B4 (AWS) can not contain three non-overlapping channels of 20 MHz bandwidth.

Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

			LTE Band 4 (AWS)	Conducted Power- 15 MHz Bandwidt	h		
			Low Channel	Mid Channel	High Channel	MPR Allowed	
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	Per 3GPP(dB)	MPR (dB)
				Conducted Power (dBm)		r er ser r (db)	(ub)
	1	0	22.36	22.42	22.35		
	1	36	22.30 22.32 22.27	22.27		0	
	1	74	22.15	22.18	22.13	≤1	<u> </u>
QPSK	36	0	21.29	21.30	21.18		
	36	18	21.15	21.19	21.11		1
	36	37	21.13	21.15	21.05		
	75	0	21.21	21.23	21.11		1
	1	0	21.50	21.55	21.35		
	1	36	21.30	21.33	21.15	≤ 1	1
	1	74	21.15	21.17	21.13	1	
16QAM	36	0	20.24	20.25	20.16	≤ 2	
	36	18	20.18	20.19	20.15		2
	36	37	20.11	20.17	20.05		
	75	0	20.09	20.16	20.07	1	2

Table 8.2.3.3 LTE Conducted Power

			LTE Band 4 (AWS)	Conducted Power- 10 MHz Bandwidt	th		
			Low Channel	Mid Channel	High Channel	MPR Allowed Per 3GPP(dB)	MPR (dB)
Modulation	RB Size	RB Offset	20000 (1715.0 MHz)	20175 (1732.5 MHz)	20350 (1750.0 MHz)		
				Conducted Power (dBm)		Per 3GFF(ub)	(ub)
	1	0	22.35	22.42	22.33		
	1	25	22.34	22.38	22.21		0
QPSK	1	49	22.27	22.28	22.16	≤1	
	25	0	21.19	21.28	21.15		
	25	12	21.15	21.25	21.10		1
	25	25	21.12	21.16	21.05		
	50	0	21.08	21.11	21.05		1
	1	0	21.53	21.56	21.42		
	1	25	21.41	21.44	21.35	≤ 1	1
	1	49	21.39	21.40	21.30		
16QAM	25	0	20.17	20.23	20.13		
	25	12	20.10	20.11	20.08	1	2
	25	25	20.09	20.10	20.03	≤ 2	
	50	0	20.16	20.17	20.11	1	2

Table 8.2.3.4 LTE Conducted Power

			LTE Band 4 (AWS)	Conducted Power- 5 MHz Bandwidt	th		
			Low Channel	Mid Channel	High Channel	MDD Allered	MDD
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed Per 3GPP(dB)	MPR
				Conducted Power (dBm)		rei 3GFF(ub)	(dB)
	1	0	0 22.40 22.42 22.34	22.34			
	1	12	22.27	22.38	22.19		0
	1	24	22.24	22.35	22.18		
QPSK	12	0	21.15	21.20	21.14	≤ 1	
	12	6	21.14	21.16	21.13		1
	12	13	21.05	21.08	21.03		
	25	0	21.13	21.19	21.11		1
	1	0	21.57	21.60	21.34		
	1	12	21.31	21.32	21.29	≤ 1	1
	1	24	21.27	21.30	21.25		
16QAM	12	0	20.16	20.29	20.12	≤ 2	
	12	6	20.14	20.20	20.09		2
	12	13	20.11	20.13	20.05		
	25	0	20.11	20.17	20.10		2

Table 8.2.3.5 LTE Conducted Power

			LTE Band 4 (AWS)	Conducted Power- 3 MHz Bandwidt	h		
			Low Channel	Mid Channel	High Channel	400 All	nn
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed Per 3GPP(dB)	MPR (dB)
			Conducted Power (dBm)			rei 3GFF(ub)	(ub)
	1	0	22.39	22.43	22.31		
	1	7	22.27	22.30	22.22	≤1	0
	1	14	22.25	22.26	22.18		
QPSK	8	0	21.24	21.28	21.20		
	8	4	21.17	21.27	21.16		1
	8	7	21.15	21.24	21.13		
	15	0	21.18	21.20	21.10		1
	1	0	21.43	21.47	21.40		
	1	7	21.33	21.38	21.32	≤ 1	1
	1	14	21.25	21.28	21.23	1	
16QAM	8	0	20.29	20.39	20.27		
	8	4	20.27	20.35	20.14		2
	8	7	20.25	20.28	20.11	≤ 2	
	15	0	20.27	20.30	20.26	1	2

Table 8.2.3.6 LTE Conducted Power

			TE Band 4 (AWS)	Conducted Power- 1.4 MHz Bandwidth	1		
		Ì	Low Channel	Mid Channel	High Channel	MDD All	MDD
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed Per 3GPP(dB)	MPR (dB)
				Conducted Power (dBm)		Fel 3GFF(ub)	(ub)
	1	0	22.37	22.44	22.32		
	1	2	22.25	22.30	22.20	1	0
	1	5	22.23	22.29	22.18	1	
QPSK	3	0	22.25	22.35	22.21	≤1	
	3	2	22.22	22.28	22.13		0
	3	3	22.20	22.22	22.05		
	6	0	21.21	21.24	21.15		1
	1	0	21.35	21.45	21.30		
	1	2	21.18	21.27	21.16	1	1
	1	5	21.15	21.16	21.11	≤1 -	
16QAM	3	0	21.29	21.30	21.06		
	3	2	21.23	21.25	21.03		1
	3	3	21.15	21.21	21.02		
	6	0	20.06	20.10	20.04	≤ 2	2

Table 8.2.3.7 LTE Conducted Power

	Band & Mode	Modulated Average[dBm]
LTE Band 2(PCS)	Maximum	22.7
	Nominal	22.2

Table 8.2.4.1 Nominal and Maximum Output Power Spec

4) LTE Band 2 (PCS)

			LTE Band 2 (PCS)	Conducted Power- 20 MHz Bandwidt	th		
			Low Channel	Mid Channel	High Channel	MPR Allowed	MPR
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	Per 3GPP(dB)	(dB)
			Conducted Power (dBm)			r er der r (ub)	(ub)
	1	0	22.55	22.57	22.43		
	1	50	22.31	22.33	22.16		0
	1	99	22.33	22.36	22.22	≤1	
QPSK	50	0	21.24	21.26	21.21		
	50	25	21.15	21.17	21.14		1
	50	50	21.23	21.25	21.20		
	100	0	21.21	21.24	21.20		1
	1	0	21.55	21.57	21.50		
	1	50	21.40	21.44	21.35	≤ 1	1
	1	99	21.43	21.45	21.41	≤ 2	
16QAM	50	0	20.31	20.35	20.25		
	50	25	20.20	20.21	20.15		2
	50	50	20.28	20.30	20.19		
	100	0	20.22	20.28	20.16		2

Table 8.2.4.2 LTE Conducted Power

			LTE Band 2 (PCS)	Conducted Power- 15 MHz Bandwidth	h		
			Low Channel	Mid Channel	High Channel	MADD All	MPR
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed Per 3GPP(dB)	(dB)
				Conducted Power (dBm)		Per 3GPP(dB)	(ub)
	1	0	22.33	22.36	22.31		
	1	36	22.18	22.28	22.15		0
	1	74	22.24	22.31	22.22		
QPSK	36	0	21.18	21.20	21.17	≤1	
	36	18	21.08	21.11	21.05		1
	36	37	21.10	21.13	21.07		
	75	0	21.08	21.10	21.05		1
	1	0	21.50	21.55	21.27		
	1	36	21.27	21.35	21.15	≤ 1	1
	1	74	21.32	21.40	21.16	≤ 2	
16QAM	36	0	20.18	20.21	20.08		
	36	18	20.05	20.13	20.03		2
	36	37	20.11	20.20	20.07		
	75	0	20.05	20.17	20.04		2

Table 8.2.4.3 LTE Conducted Power

			LTE Band 2 (PCS)	Conducted Power- 10 MHz Bandwidt	h		
			Low Channel	Mid Channel	High Channel		MPR
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed Per 3GPP(dB)	
				Conducted Power (dBm)		Per 3GFF(ub)	(dB)
	1	0	22.47	22.49	22.33		
	1	25	22.31	22.34	22.20		0
QPSK	1	49	22.35	22.38	22.23		1
	25	0	21.21	21.25	21.18	≤1	
	25	12	21.13	21.15	21.03		1
	25	25	21.18	21.20	21.05		
	50	0	21.04	21.05	21.02		1
	1	0	21.57	21.58	21.49		
	1	25	21.15	21.20	21.13	≤ 1	1
	1	49	21.23	21.28	21.21		
16QAM	25	0	20.31	20.35	20.22	≤ 2	
	25	12	20.23	20.25	20.15		2
	25	25	20.26	20.27	20.17		
	50	0	20.10	20.14	20.05	1	2

Table 8.2.4.4 LTE Conducted Power

			LTE Band 2 (PCS)	Conducted Power- 5 MHz Bandwidtl	1		
			Low Channel	Mid Channel	High Channel	MDD All	MPR (dB)
Modulation	RB Size	RB Offset	ffset 18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed Per 3GPP(dB)	
				Conducted Power (dBm)		rei sorr(ub)	(ub)
	1	0	22.42	22.48	22.39		
	1	12	22.28	22.33	22.25		0
QPSK	1	24	22.33	22.35	22.30		
	12	0	21.21	21.23	21.13	≤1	
	12	6	21.12	21.16	21.08		1
	12	13	21.13	21.21	21.10		
	25	0	21.10	21.16	21.09		1
	1	0	21.61	21.65	21.58		
	1	12	21.38	21.40	21.35	≤ 1	1
	1	24	21.40	21.45	21.39		
16QAM	12	0	20.25	20.29	20.19	1	
	12	6	20.15	20.22	20.13		2
	12	13	20.17	20.25	20.15	≤ 2	
	25	0	20.15	20.21	20.10	1	2

Table 8.2.4.5 LTE Conducted Power

			LTE Band 2 (PCS)	Conducted Power- 3 MHz Bandwidth	1		
			Low Channel	Mid Channel	High Channel	MDD Allered	MPR
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed Per 3GPP(dB)	(dB)
				Conducted Power (dBm)		rei sgrr(ub)	(ub)
	1	0	22.50	22.52	22.49		
	1	7	22.39	22.40	22.13		0
	1	14	22.41	22.43	22.17		
QPSK	8	0	21.16	21.19	21.10	≤ 1	
	8	4	21.07	21.13	21.03		1
	8	7	21.15	21.18	21.09		
	15	0	21.12	21.15	21.07		1
	1	0	21.50	21.57	21.40		
	1	7	21.25	21.28	21.10	≤ 1	1
	1	14	21.40	21.44	21.35		
16QAM	8	0	20.25	20.29	20.20		
	8	4	20.14	20.24	20.11		2
	8	7	20.20	20.27	20.17	≤ 2	
	15	0	20.15	20.20	20.13	1	2

Table 8.2.4.6 LTE Conducted Power

			LTE Band 2 (PCS)	Conducted Power- 1.4 MHz Bandwidt	h		
			Low Channel	Mid Channel	High Channel	MDD All	
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed Per 3GPP(dB)	MPR (dB)
				Conducted Power (dBm)		Per 3GFF(ub)	(ub)
	1	0	22.47	22.48	22.13		
	1	2	22.21	22.25	22.00		0
	1	5	22.25	22.27	22.03		ł
QPSK	3	0	22.18	22.20	22.10	≤1	
	3	2	22.05	22.08	22.00		0
	3	3	22.16	22.18	22.05		
	6	0	21.12	21.15	21.01		1
	1	0	21.33	21.38	21.24		
	1	2	21.11	21.18	21.09		1
16QAM	1	5	21.18	21.25	21.15		
	3	0	21.16	21.20	21.14	≤1	
	3	2	21.02	21.04	21.01	l	1
	3	3	21.11	21.17	21.10		
	6	0	20.05	20.11	20.04	≤ 2	2

Table 8.2.4.7 LTE Conducted Power

8.3 WLAN Nominal and Maximum Output Power Spec and Conducted Powers

Band (GHz)	Mode	Oh.	Modulated A	verage[dBm]
(GHz)	Wode	Ch	Maximum	Nominal
	802.11b	1~11	16.0	15.0
2.4	802.11g	1~11	14.0	13.0
2.4	802.11n HT20	1~11	14.0	13.0
	802.11n HT40	1~11	14.0	13.0

Table 8.3.1 Nominal and Maximum Output Power Spec

Mode	Freq. (MHz)	Channel	IEEE 802.11 (2.4 GHz) Conducted Power[dBm]
	2412	1	15.68
802.11b	2437	6	15.76
	2462	11	15.50
	2412	1	13.30
802.11g	2437	6	13.42
	2462	11	13.22
802.11n	2412	1	13.75
802.11h (HT-20)	2437	6	13.74
(111-20)	2462	11	13.78
802.11n	2422	3	13.84
(HT-40)	2437	6	13.93
(111-40)	2452	9	13.95

Table 8.3.2 IEEE 802.11 Average RF Power

Band	Mada	Ch	Modulated Av	verage[dBm]
(GHz)	Mode	Ch	Maximum	Nominal
	802.11a	36-165	13.0	12.0
5 (UNII)	802.11n (20MHz)	36-165	12.0	11.0
	802.11n (40MHz)	38-159	12.0	11.0

Table 8.3.3 Nominal and Maximum Output Power Spec

Mode	Freq. (MHz)	Channel	IEEE 802.11a (5 GHz) Conducted Power[dBm]
	5180	36	12.71
	5200	40	12.65
	5220	44	12.80
	5240	48	12.77
	5260	52	12.89
	5280	56	12.97
	5300	60	12.81
802.11a	5320	64	12.91
	5500	100	12.66
	5580	116	12.73
	5660	132	12.82
	5720	144	12.65
	5745	149	12.74
	5785	157	12.69
	5825	165	12.79

Table 8.3.4 IEEE 802.11a Average RF Power

Mode	Freq. (MHz)	Channel	IEEE 802.11n HT20 (5 GHz) Conducted Power[dBm]
	5180	36	11.86
	5200	40	11.75
	5220	44	11.79
	5240	48	11.72
	5260	52	11.85
	5280	56	11.89
	5300	60	11.79
802.11n (HT-20)	5320	64	11.81
(H1-20)	5500	100	11.72
	5580	116	11.79
	5660	132	11.82
	5720	144	11.80
	5745	149	11.66
	5785	157	11.71
	5825	165	11.78

Table 8.3.5 IEEE 802.11n HT20 Average RF Power

Mode	Freq. (MHz)	Channel	IEEE 802.11n HT40 (5 GHz) Conducted Power[dBm]
	5190	38	11.82
	5230	46	11.77
	5270	54	11.69
	5310	62	11.75
802.11n	5510	102	11.68
(HT-40)	5550	110	11.81
	5670	134	11.89
	5710	142	11.85
	5755	151	11.76
	5795	159	11.71

Table 8.3.6 IEEE 802.11n HT40 Average RF Power

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r02

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, bot channels were measured.
- Output Power and SAR is not required for 802.11 g/n HT20/ac VHT20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjust SAR is \$ 1.2 W/kg.
- The underlined data rate and channel above were tested for SAR.

The average output powers of this device were tested by below configuration

Figure 8.3 Power Measurement Setup

8.4 Bluetooth Conducted Powers

	Burst Modulated Average[dBm]						
Bluetooth	Maximum	13.0					
1 Mbps	Nominal	12.0					
Bluetooth 2 Mbps	Maximum	11.0					
	Nominal	10.0					
Bluetooth	Maximum	11.0					
3 Mbps	Nominal	10.0					
Bluetooth	Maximum	3.0					
LE	Nominal	2.0					

Table 8.4.1 Nominal and Maximum Output Power Spec (Burst)

	Frame Modulated Average[dBm]					
Bluetooth	Maximum	11.85				
1 Mbps	Nominal	10.85				
Bluetooth	Maximum	9.85				
2 Mbps	Nominal	8.85				
Bluetooth	Maximum	9.85				
3 Mbps	Nominal	8.85				
Bluetooth	Maximum	0.96				
LE	Nominal	-0.04				

Table 8.4.2 Nominal and Maximum Output Power Spec (Frame)

Channel	Frequency	Burst AVG Output Power (1Mbps)	Frame AVG Output Power (1Mbps)	Burst AVG Output Power (2Mbps)	Frame AVG Output Power (2Mbps)	Burst AVG Output Power (3Mbps)	Frame AVG Output Power (3Mbps)
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2402	11.91	10.76	9.97	8.82	9.96	8.81
Mid	2441	12.79	11.64	10.89	9.74	10.88	9.73
High	2480	11.47	10.32	9.49	8.34	9.49	8.34

Table 8.4.3 Bluetooth Burst and Frame Average RF Power

Channel	Frequency	Burst AVG Output Power(LE)	Frame AVG Output Power(LE)
Chamer	(MHz)	(dBm)	(dBm)
Low	2402	2.54	0.50
Mid	2440	2.93	0.89
High	2480	2.53	0.49

Table 8.4.4 Bluetooth LE Burst and Frame Average RF Power

Bluetooth Conducted Powers procedures

- Bluetooth (BDR, EDR)

 1) Enter DUT mode in EUT and operate it.

 When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.

 2) Instruments and EUT were connected like Figure 8.4.1(A).

 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester.

 4) Power levels were measured by a Power Meter.
- 2. Bluetooth (LE)

- Bluetooth (LE)
 I Enter LE mode in EUT and operate it.
 When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
 2) Instruments and EUT were connected like Figure 8.4.1(B).
 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT.
 4) Power levels were measured by a Power Meter.

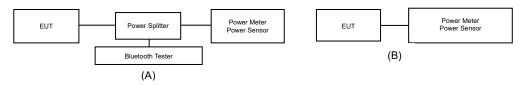


Figure 8.4.1 Average Power Measurement Setup

Bluetooth Transmission Plot

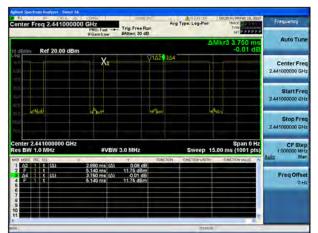


Figure 8.4.2 Bluetooth Transmission Plot

Bluetooth Duty Cycle Calculation

Duty Cycle = Pulse/Period * 100% = (2.880/3.750) * 100 = 76.8%

9. SYSTEM VERIFICATION

9.1 Tissue Verification

					MEASURED TISSUE PA	ARAMETERS				
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]
Jul. 28, 2020	750	22.1	21.9	707.5	42.129	0.887	42.432	0.863	0.72	-2.71
Jul. 20. 2020	Head	22.1	21.9	750.0	41.900	0.890	41.878	0.903	-0.05	1.46
				826.4	41.542	0.899	42.743	0.887	2.89	-1.33
				829.0	41.528	0.899	42.712	0.889	2.85	-1.11
	835			835.0	41.500	0.900	42.628	0.894	2.72	-0.67
Jul. 27. 2020	Head	22.3	22.0	836.5	41.500	0.901	42.607	0.896	2.67	-0.55
	11000			836.6	41.500	0.901	42.605	0.896	2.66	-0.55
				844.0	41.500	0.910	42.510	0.902	2.43	-0.88
				846.6	41.500	0.912	42.478	0.904	2.36	-0.88
				1712.4	40.126	1.350	41.083	1.303	2.38	-3.48
				1720.0	40.114	1.354	41.060	1.311	2.36	-3.18
	1000			1732.4	40.097	1.361	41.023	1.323	2.31	-2.79
Jul. 21. 2020	1800 Head	22.3	22.2	1732.5 1745.0	40.097 40.079	1.361 1.369	41.022 40.969	1.323 1.335	2.31 2.22	-2.79 -2.48
	nead			1752.6	40.079	1.373	40.938	1.343	2.17	-2.46
				1752.6	40.069	1.383	40.958	1.360	2.17	-2.16
				1800.0	40.000	1.400	40.739	1.390	1.85	-0.71
				1850.2	40.000	1.400	41.373	1.389	3.43	-0.79
				1852.4	40.000	1.400	41.367	1.391	3.42	-0.64
II. 20, 2020	1900	22.4	24.0	1860.0	40.000	1.400	41.349	1.398	3.37	-0.14
Jul. 20. 2020	Head	22.1	21.8	1880.0	40.000	1.400	41.283	1.418	3.21	1.29
				1900.0	40.000	1.400	41.211	1.437	3.03	2.64
				1907.6	40.000	1.400	41.183	1.443	2.96	3.07
		ļ		1909.8	40.000	1.400	41.177	1.445	2.94	3.21
				2402.0	39.282	1.757	39.485	1.808	0.52	2.90
				2412.0 2437.0	39.265 39.222	1.766 1.788	39.444 39.365	1.820 1.851	0.46 0.36	3.06 3.52
				2441.0	39.222	1.792	39.352	1.856	0.35	3.57
Jul. 29, 2020	2450	22.4	22.3	2450.0	39.200	1.800	39.323	1.866	0.31	3.67
Jul. 29. 2020	Head	22.4	22.5	2462.0	39.184	1.813	39.290	1.879	0.27	3.64
				2467.0	39.177	1.818	39.273	1.884	0.25	3.63
				2472.0	39.171	1.823	39.251	1.889	0.20	3.62
				2480.0	39.160	1.832	39.217	1.897	0.15	3.55
				5180.0	36.020	4.639	35.312	4.645	-1.97	0.13
				5190.0	36.010	4.650	35.289	4.655	-2.00	0.11
	5000			5200.0	36.000	4.660	35.267	4.668	-2.04	0.17
Jul. 13. 2020	5200 Head	21.3	21.0	5210.0	35.990	4.670	35.253	4.681	-2.05	0.24
	пеац			5220.0	35.980	4.680	35.243	4.691	-2.05	0.24
				5230.0	35.970	4.690	35.230	4.700	-2.06	0.21
				5240.0	35.960	4.700	35.214	4.712	-2.07	0.26
				5745.0	35.355	5.215	34.509	5.365	-2.39	2.88
				5755.0	35.345	5.225	34.497	5.377	-2.40	2.91
	1			5775.0	35.325	5.245	34.463	5.395	-2.44	2.86
Jul. 14. 2020	5800	22.2	21.9	5785.0	35.315	5.255	34.440	5.408	-2.48	2.91
	Head			5795.0	35.305	5.265	34.422	5.422	-2.50	2.98
	1			5800.0	35.300	5.270	34.414	5.428	-2.51	3.00
				5825.0	35.275	5.296	34.389	5.453	-2.51	2.96
	1	ı	1	3023.0	30.210	5.290	34.308	J.4JJ	-Z.J1	2.90

5.296 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 -2.51 2.96 34.389 5.453 5.296 34.389 5.296 34.389 5.296 34.389 5.296 34.389 5.453 5.296 34.389 5.453 5.296 34.389

Measurement Procedure for Tissue verification:

1) The petends analyser and probe system was configured and calibrated.
2) The potential resolution of the probe system was configured and calibrated.
2) The probe was remembered in the samples with was placed an anomalistic confamer.
Transport of the probe system of the probe system consisted confamer.
Transport of the probe system of the probe system was reasonable of the complex relative permittively, for example from the below organious (Probability States).

Manual. $Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{[\ln(b/a)]^2} \int_a^b \int_a^b \int_a^b \cos\phi' \frac{\exp\left[-j\omega r (\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$

9.2 Test System Verification

Prior to assessment, the system is verified to the ± 10 % of the specifications at using the SAR Dipole kit(s). (Graphic Plots Attached)

Table 9.2.1 System Verification Results (1g)

				SYST	EM DIPOLE VERI	FICATION TARGE	& MEASURED	1				
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation [%]
В	750	D750V3,SN:1049	Jul. 28. 2020	Head	22.1	21.9	7368	250	8.47	2.12	8.48	0.12
В	835	D835V2,SN:4d159	Jul. 27. 2020	Head	22.3	22.0	7368	250	9.47	2.41	9.64	1.80
В	1800	D1800V2, SN:2d202	Jul. 21. 2020	Head	22.3	22.2	7368	100	39.6	3.83	38.30	-3.28
В	1900	D1900V2, SN:5d176	Jul. 20. 2020	Head	22.1	21.8	7368	100	39.3	4.01	40.10	2.04
В	2450	D2450V2,SN: 726	Jul. 29. 2020	Head	22.4	22.3	7368	100	51.2	5.24	52.40	2.34
В	5200	D5GHzV2, SN:1212	Jul. 13. 2020	Head	21.3	21.0	7368	100	80.2	7.84	78.40	-2.24
В	5800	D5GHzV2, SN:1212	Jul. 14, 2020	Head	22.2	21.9	7368	100	81.5	8.10	81.00	-0.61

Note1: System Verification was measured with input 250 mW, 100 mW and normalized to 1W. Note2: Full system validation status and results can be found in Appendix D.

Figure 9.1 Dipole Verification Test Setup Diagram & Photo

10. SAR TEST RESULTS

10.1 Standalone Body SAR Results

Table 10.1.1 WCDMA Body SAR

Report No.: DRRFCC2008-0083(1)

						MEASUR	EMENT RESULTS							
FREQU MHz	UENCY Ch	Mode/ Band	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Spacing [Side]	Device Serial Number	# of Time Slots	Duty Cycle	1g SAR (W/kg)	Scaling Factor	1g Scaled SAR (W/kg)	Plots #
836.6	4183	WCDMA 850	RMC	24.00	23.91	-0.030	5 mm [Bottom]	FCC #1	N/A	1:1	0.344	1.021	0.351	
836.6	4183	WCDMA 850	RMC	24.00	23.91	0.040	5 mm [Front]	FCC #1	N/A	1:1	0.279	1.021	0.285	
836.6	4183	WCDMA 850	RMC	24.00	23.91	-0.020	5 mm [Rear #1]	FCC #1	N/A	1:1	0.760	1.021	0.776	
826.4	4132	WCDMA 850	RMC	24.00	23.99	-0.010	5 mm [Rear #2]	FCC #1	N/A	1:1	1.040	1.002	1.042	A1
836.6	4183	WCDMA 850	RMC	24.00	23.91	0.020	5 mm [Rear #2]	FCC #1	N/A	1:1	0.921	1.021	0.940	
846.6	4233	WCDMA 850	RMC	24.00	23.92	0.080	5 mm [Rear #2]	FCC #1	N/A	1:1	0.931	1.019	0.949	
836.6	4183	WCDMA 850	RMC	24.00	23.91	0.010	5 mm [Right]	FCC #1	N/A	1:1	0.208	1.021	0.212	
836.6	4183	WCDMA 850	RMC	24.00	23.91	-0.100	5 mm [Left]	FCC #1	N/A	1:1	0.254	1.021	0.259	
826.4	4132	WCDMA 850	RMC	24.00	23.99	-0.050	5 mm [Rear #2]	FCC #1	N/A	1:1	1.020	1.002	1.022	
826.4	4132	WCDMA 850	RMC	24.00	23.99	0.010	5 mm [Rear #2]	FCC #1	N/A	1:1	1.000	1.002	1.002	
1852.4	9262	WCDMA 1900	RMC	22.20	22.16	0.160	5 mm [Bottom]	FCC #1	N/A	1:1	0.926	1.009	0.934	
1880.0	9400	WCDMA 1900	RMC	22.20	22.19	-0.000	5 mm [Bottom]	FCC #1	N/A	1:1	1.040	1.002	1.042	
1907.6	9538	WCDMA 1900	RMC	22.20	22.03	0.190	5 mm [Bottom]	FCC #1	N/A	1:1	1.130	1.040	1.175	
1880.0	9400	WCDMA 1900	RMC	22.20	22.19	-0.070	5 mm [Front]	FCC #1	N/A	1:1	0.284	1.002	0.285	
1852.4	9262	WCDMA 1900	RMC	22.20	22.16	0.050	5 mm [Rear #1]	FCC #1	N/A	1:1	0.825	1.009	0.832	
1880.0	9400	WCDMA 1900	RMC	22.20	22.19	-0.100	5 mm [Rear #1]	FCC #1	N/A	1:1	1.110	1.002	1.112	
1907.6	9538	WCDMA 1900	RMC	22.20	22.03	0.060	5 mm [Rear #1]	FCC #1	N/A	1:1	1.080	1.040	1.123	
1852.4	9262	WCDMA 1900	RMC	22.20	22.16	-0.190	5 mm [Rear #2]	FCC #1	N/A	1:1	0.982	1.009	0.991	
1880.0	9400	WCDMA 1900	RMC	22.20	22.19	0.180	5 mm [Rear #2]	FCC #1	N/A	1:1	1.140	1.002	1.142	
1907.6	9538	WCDMA 1900	RMC	22.20	22.03	0.110	5 mm [Rear #2]	FCC #1	N/A	1:1	1.140	1.040	1.186	A2
1880.0	9400	WCDMA 1900	RMC	22.20	22.19	0.030	5 mm [Right]	FCC #1	N/A	1:1	0.115	1.002	0.115	
1880.0	9400	WCDMA 1900	RMC	22.20	22.19	-0.020	5 mm [Left]	FCC #1	N/A	1:1	0.465	1.002	0.466	
1907.6	9538	WCDMA 1900	RMC	20.20	20.03	0.110	5 mm [Rear #2]	FCC #1	N/A	1:1	1.070	1.040	1.113	
1907.6	9538	WCDMA 1900	RMC	21.20	20.03	0.110	5 mm [Rear #2]	FCC #1	N/A	1:1	1.100	1.309	1.440	
	•	Uı		-1992– SAFETY LIMIT tial Peak General Population Ex	posure			a	Body 1.6 W/kg (mW/g) veraged over 1 gram	-		-		

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

2. Purple entries represent SIM2 (This device supports Dual SIM and is 1 RF Path.) measurements.

3. Orange entries represent variability measurements.

Table 10.1.2 LTE B12 Body SAR

								MEASUREMENT	RESULTS								
FREQU	JENCY Ch	Mode/ Band	BW [MHz]	Max Allowed Power [dBm]	Cond. PWR [dBm]	Drift Power [dB]	MPR	Position	Device Serial Number	Mod.	RB Size	RB Offs.	Duty Cycle	1g SAR (W/kg)	Scaling Factor	1g Scaled SAR (W/kg)	Plots #
707.5	23095	LTE B12	10	23.00	22.92	0.080	0	5 mm [Bottom]	FCC #1	QPSK	1	25	1:1	0.097	1.019	0.099	
707.5	23095	LTE B12	10	22.00	0.130	1	5 mm [Bottom]	FCC #1	QPSK	25	12	1:1	0.084	1.054	0.089		
707.5	23095	LTE B12	10	23.00	22.92	0.020	0	5 mm [Front]	FCC #1	QPSK	1	25	1:1	0.120	1.019	0.122	
707.5	23095	LTE B12	10	22.00	0.080	1	5 mm [Front]	FCC #1	QPSK	25	12	1:1	0.098	1.054	0.103		
707.5	23095	LTE B12	10	23.00	22.92	0.110	0	5 mm [Rear #1]	FCC #1	QPSK	1	25	1:1	0.262	1.019	0.267	
707.5	23095	LTE B12	10	22.00	21.77	-0.090	1	5 mm [Rear #1]	FCC #1	QPSK	25	12	1:1	0.226	1.054	0.238	
707.5	23095	LTE B12	10	23.00	22.92	0.090	0	5 mm [Rear #2]	FCC #1	QPSK	1	25	1:1	0.334	1.019	0.340	A3
707.5	23095	LTE B12	10	22.00	21.77	0.040	1	5 mm [Rear #2]	FCC #1	QPSK	25	12	1:1	0.277	1.054	0.292	
707.5	23095	LTE B12	10	23.00	22.92	0.090	0	5 mm [Right]	FCC #1	QPSK	1	25	1:1	0.117	1.019	0.119	
707.5	23095	LTE B12	10	22.00	21.77	-0.010	1	5 mm [Right]	FCC #1	QPSK	25	12	1:1	0.098	1.054	0.103	
707.5	23095	LTE B12	10	23.00	22.92	0.100	0	5 mm [Left]	FCC #1	QPSK	1	25	1:1	0.116	1.019	0.118	
707.5	23095	LTE B12	10	22.00	21.77	0.010	1	5 mm [Left]	FCC #1	QPSK	25	12	1:1	0.103	1.054	0.109	
707.5	23095	LTE B12	10	23.00	22.92	0.030	0	5 mm [Rear #2]	FCC #1	QPSK	1	25	1:1	0.317	1.019	0.323	
	-	-		I / IEEE C95.1-199: Spatial P	eak						_		Body 1.6 W/kg (m				

Table 10.1.3 LTE B5 Body SAR

								MEASUREMENT	RESULTS								
FREQU	Ch	Mode/ Band	BW [MHz]	Max Allowed Power [dBm]	Cond. PWR [dBm]	Drift Power [dB]	MPR	Position	Device Serial Number	Mod.	RB Size	RB Offs.	Duty Cycle	1g SAR (W/kg)	Scaling Factor	1g Scaled SAR (W/kg)	Plots #
836.5	20525	LTE B5	10	23.20	22.97	0.050	0	5 mm [Bottom]	FCC #1	QPSK	1	0	1:1	0.239	1.054	0.252	
836.5	20525	LTE B5	10	22.20	21.66	0.080	1	5 mm [Bottom]	FCC #1	QPSK	25	0	1:1	0.178	1.132	0.201	
836.5	20525	LTE B5	10	23.20	22.97	0.180	0	5 mm [Front]	FCC #1	QPSK	1	0	1:1	0.179	1.054	0.189	
836.5	20525	LTE B5	10	22.20	21.66	0.000	1	5 mm [Front]	FCC #1	QPSK	25	0	1:1	0.139	1.132	0.157	
836.5	20525	LTE B5	10	23.20	22.97	0.180	0	5 mm [Rear #1]	FCC #1	QPSK	1	0	1:1	0.469	1.054	0.494	
836.5	20525	LTE B5	10	22.20	21.66	0.030	1	5 mm [Rear #1]	FCC #1	QPSK	25	0	1:1	0.378	1.132	0.428	
836.5	20525	LTE B5	10	23.20	22.97	0.160	0	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	0.654	1.054	0.689	A4
836.5	20525	LTE B5	10	22.20	21.66	-0.070	1	5 mm [Rear #2]	FCC #1	QPSK	25	0	1:1	0.414	1.132	0.469	
836.5	20525	LTE B5	10	23.20	22.97	0.110	0	5 mm [Right]	FCC #1	QPSK	1	0	1:1	0.182	1.054	0.192	
836.5	20525	LTE B5	10	22.20	21.66	-0.080	1	5 mm [Right]	FCC #1	QPSK	25	0	1:1	0.127	1.132	0.144	
836.5	20525	LTE B5	10	23.20	22.97	-0.150	0	5 mm [Left]	FCC #1	QPSK	1	0	1:1	0.136	1.054	0.143	
836.5	20525	LTE B5	10	22.20	21.66	0.020	1	5 mm [Left]	FCC #1	QPSK	25	0	1:1	0.107	1.132	0.121	
836.5	20525	LTE B5	10	23.20	22.97	0.090	0	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	0.514	1.054	0.542	
				i / IEEE C95.1-199: Spatial P ed Exposure/Gene	eak	oosure				_	_		Body 1.6 W/kg (m averaged over		-		_

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

2. Purple entries represent SIM2 (This device supports Dual SIM and is 1 RF Path.) measurements.

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

2. Purple entries represent SIM2 (This device supports Dual SIM and is 1 RF Path.) measurements.

Table 10.1.4 LTE B4 Body SAR

								MEASUREMENT	RESULTS								
FREQU	JENCY	Mode/	BW	Max Allowed	Cond.	Drift Power			Device		RB	RB	Duty	1g	Scaling	1g Scaled	Plots
MHz	Ch	Band	[MHz]	Power [dBm]	PWR [dBm]	[dB]	MPR	Position	Serial Number	Mod.	Size	Offs.	Cycle	SAR (W/kg)	Factor	SAR (W/kg)	#
1732.5	20175	LTE B4	20	22.70	22.53	0.100	0	5 mm [Bottom]	FCC #1	QPSK	1	0	1:1	0.630	1.040	0.655	
1732.5	20175	LTE B4	20	21.70	21.31	0.190	1	5 mm [Bottom]	FCC #1	QPSK	50	0	1:1	0.505	1.094	0.552	
1732.5	20175	LTE B4	20	22.70	22.53	-0.160	0	5 mm [Front]	FCC #1	QPSK	1	0	1:1	0.309	1.040	0.321	
1732.5	20175	LTE B4	20	21.70	21.31	-0.050	1	5 mm [Front]	FCC #1	QPSK	50	0	1:1	0.240	1.094	0.263	
1732.5	20175	LTE B4	20	22.70	22.53	-0.040	0	5 mm [Rear #1]	FCC #1	QPSK	1	0	1:1	0.761	1.040	0.791	
1732.5	20175	LTE B4	20	21.70	21.31	0.090	1	5 mm [Rear #1]	FCC #1	QPSK	50	0	1:1	0.597	1.094	0.653	
1732.5	20175	LTE B4	20	22.70	22.53	-0.030	0	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	0.778	1.040	0.809	A5
1732.5	20175	LTE B4	20	21.70	21.31	-0.040	1	5 mm [Rear #2]	FCC #1	QPSK	50	0	1:1	0.634	1.094	0.694	
1732.5	20175	LTE B4	20	21.70	21.28	-0.040	1	5 mm [Rear #2]	FCC #1	QPSK	100	0	1:1	0.625	1.102	0.689	
1732.5	20175	LTE B4	20	22.70	22.53	0.060	0	5 mm [Right]	FCC #1	QPSK	1	0	1:1	0.159	1.040	0.165	
1732.5	20175	LTE B4	20	21.70	21.31	0.060	1	5 mm [Right]	FCC #1	QPSK	50	0	1:1	0.124	1.094	0.136	
1732.5	20175	LTE B4	20	22.70	22.53	0.130	0	5 mm [Left]	FCC #1	QPSK	1	0	1:1	0.760	1.040	0.790	
1732.5	20175	LTE B4	20	21.70	21.31	0.100	1	5 mm [Left]	FCC #1	QPSK	50	0	1:1	0.590	1.094	0.645	
1732.5	20175	LTE B4	20	22.70	22.53	0.100	0	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	0.751	1.040	0.781	
		-		I / IEEE C95.1-1992 Spatial P d Exposure/Gener	eak	posure	-				-	-	Body 1.6 W/kg (m averaged over	nW/g)	-		

Table 10.1.5 LTE B2 Body SAR

								MEASUREMENT		, 0,							
								MEASUREMENT	RESULTS								_
MHz	Ch	Mode/ Band	BW [MHz]	Max Allowed Power [dBm]	Cond. PWR [dBm]	Drift Power [dB]	MPR	Position	Device Serial Number	Mod.	RB Size	RB Offs.	Duty Cycle	1g SAR (W/kg)	Scaling Factor	1g Scaled SAR (W/kg)	Plots #
1860.0	18700	LTE B2	20	22.70	22.55	-0.140	0	5 mm [Bottom]	FCC #1	QPSK	1	0	1:1	0.848	1.035	0.878	
1880.0	18900	LTE B2	20	22.70	22.57	0.010	0	5 mm [Bottom]	FCC #1	QPSK	1	0	1:1	0.878	1.030	0.904	
1880.0	18900	LTE B2	20	21.70	21.26	-0.190	1	5 mm [Bottom]	FCC #1	QPSK	50	0	1:1	0.733	1.107	0.811	
1880.0	18900	LTE B2	20	21.70	21.24	-0.140	1	5 mm [Bottom]	FCC #1	QPSK	100	0	1:1	0.732	1.112	0.814	
1900.0	19100	LTE B2	20	22.70	22.43	-0.150	0	5 mm [Bottom]	FCC #1	QPSK	1	0	1:1	0.984	1.064	1.047	
1880.0	18900	LTE B2	20	22.70	22.57	-0.010	0	5 mm [Front]	FCC #1	QPSK	1	0	1:1	0.275	1.030	0.283	
1880.0	18900	LTE B2	20	21.70	21.26	-0.020	1	5 mm [Front]	FCC #1	QPSK	50	0	1:1	0.213	1.107	0.236	
1860.0	18700	LTE B2	20	22.70	22.55	0.150	0	5 mm [Rear #1]	FCC #1	QPSK	1	0	1:1	0.920	1.035	0.952	
1860.0	18700	LTE B2	20	21.70	21.24	0.040	1	5 mm [Rear #1]	FCC #1	QPSK	50	0	1:1	0.741	1.112	0.824	
1880.0	18900	LTE B2	20	22.70	22.57	0.040	0	5 mm [Rear #1]	FCC #1	QPSK	1	0	1:1	0.985	1.030	1.015	
1880.0	18900	LTE B2	20	21.70	21.26	0.030	1	5 mm [Rear #1]	FCC #1	QPSK	50	0	1:1	0.829	1.107	0.918	
1880.0	18900	LTE B2	20	21.70	21.24	-0.010	1	5 mm [Rear #1]	FCC #1	QPSK	100	0	1:1	0.829	1.112	0.922	
1900.0	19100	LTE B2	20	22.70	22.43	0.190	0	5 mm [Rear #1]	FCC #1	QPSK	1	0	1:1	1.090	1.064	1.160	
1900.0	19100	LTE B2	20	21.70	21.21	0.040	1	5 mm [Rear #1]	FCC #1	QPSK	50	0	1:1	0.897	1.119	1.004	
1860.0	18700	LTE B2	20	22.70	22.55	-0.060	0	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	1.060	1.035	1.097	
1860.0	18700	LTE B2	20	21.70	21.24	-0.110	1	5 mm [Rear #2]	FCC #1	QPSK	50	0	1:1	0.787	1.112	0.875	
1880.0	18900	LTE B2	20	22.70	22.57	-0.170	0	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	1.120	1.030	1.154	
1880.0	18900	LTE B2	20	21.70	21.26	-0.170	1	5 mm [Rear #2]	FCC #1	QPSK	50	0	1:1	0.846	1.107	0.937	
1880.0	18900	LTE B2	20	21.70	21.24	-0.130	1	5 mm [Rear #2]	FCC #1	QPSK	100	0	1:1	0.847	1.112	0.942	
1900.0	19100	LTE B2	20	22.70	22.43	-0.150	0	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	1.120	1.064	1.192	A6
1900.0	19100	LTE B2	20	21.70	21.21	0.160	1	5 mm [Rear #2]	FCC #1	QPSK	50	0	1:1	0.922	1.119	1.032	
1880.0	18900	LTE B2	20	22.70	22.57	-0.010	0	5 mm [Right]	FCC #1	QPSK	1	0	1:1	0.109	1.030	0.112	
1880.0	18900	LTE B2	20	21.70	21.26	0.040	1	5 mm [Right]	FCC #1	QPSK	50	0	1:1	0.085	1.107	0.094	
1880.0	18900	LTE B2	20	22.70	22.57	-0.130	0	5 mm [Left]	FCC #1	QPSK	1	0	1:1	0.461	1.030	0.475	
1880.0	18900	LTE B2	20	21.70	21.26	0.050	1	5 mm [Left]	FCC #1	QPSK	50	0	1:1	0.359	1.107	0.397	
1860.0	18700	LTE B2	20	22.70	22.43	0.040	1	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	1.110	1.064	1.181	
1860.0	18700	LTE B2	20	22.70	22.43	-0.080	1	5 mm [Rear #2]	FCC #1	QPSK	1	0	1:1	1.110	1.064	1.181	
				/ IEEE C95.1-1992 Spatial Pe									Body 1.6 W/kg (m				

Table 10.1.6 DTS Body SAR

						MEASURE	MENT RESULT	S							
FREQU	ENCY		Maximum	Conducted		- ·	Device		Data		1g		Scaling		
MHz	Ch	Mode	Allowed Power [dBm]	Power [dBm]	Drift Power [dB]	Phantom Position	Serial Number	Peak SAR of Area Scan	Rate [Mbps]	Duty Cycle	SAR (W/kg)	Scaling Factor	Factor (Duty Cycle)	SAR (W/kg)	Plots #
2437.0	6	802.11b	16.00	15.76	-0.140	5 mm [Top]	FCC #2	0.028	1	97.3	0.026	1.057	1.028	0.028	
2437.0	6	802.11b	16.00	15.76	-0.120	5 mm [Front]	FCC #2	0.057	1	97.3	0.056	1.057	1.028	0.061	
2437.0	6	802.11b	16.00	15.76	-0.180	5 mm [Rear #1]	FCC #2	0.057	1	97.3	0.055	1.057	1.028	0.060	
2437.0	6	802.11b	16.00	15.76	-0.010	5 mm [Rear #3]	FCC #2	0.060	1	97.3	0.058	1.057	1.028	0.063	
2437.0	6	802.11b	16.00	15.76	-0.110	5 mm [Left]	FCC #2	0.585	1	97.3	0.602	1.057	1.028	0.654	A7
	-			95.1-1992- SAFETY LI Spatial Peak re/General Population		-	-				Bod 1.6 W/kg (mW/g)	<u>-</u>		_

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

						Adjusted SAR result	ts for OFDM SAR					
FREQUE	NCY			Maximum Allowed	1g Scaled	FREQUENCY			Maximum Allowed	Ratio of OFDM	1g Adjusted	
MHz	Ch	Mode/ Antenna	Service	Power [dBm]	SAR (W/kg)	[MHz]	Mode	Service	Power [dBm	to DSSS	SAR (W/kg)	Determine OFDM SAR
2437.0	6	802.11b	DSSS	16.0	0.654	2437.0	802.11g	OFDM	14.0	0.631	0.413	X
2437.0	6	802.11b	DSSS	16.0	0.654	2437.0	802.11n (HT-20)	OFDM	14.0	0.631	0.413	X
2437.0	6	802.11b	DSSS	16.0	0.654	2437.0	802.11n (HT-40)	OFDM	14.0	0.631	0.413	X
			E C95.1-1992- SAFETY LIMIT Spatial Peak cosure/General Population Ex		<u>-</u>		<u>-</u>	<u>- </u>	Body 1.6 W/kg (mW/g) averaged over 1 gra			

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

2. Purple entries represent SIM2 (This device supports Dual SIM and is 1 RF Path.) measurements.

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

2. Purple entries represent SIM2 (This device supports Dual SIM and is 1 RF Path.) measurements.

3. Orange entries represent variability measurements.

Table 10.1.7 UNII Body SAR

						MEASURE	MENT RESULTS								
FREQUE	NCY		Maximum Allowed	Conducted	Drift Power	Phantom	Device	Peak SAR of	Data	Duty	1g	Scaling	Scaling Factor	1g Scaled	Plots
MHz	Ch	Mode	Power [dBm]	Power [dBm]	[dB]	Position	Serial Number	Area Scan	Rate [Mbps]	Cycle	SAR (W/kg)	Factor	(Duty Cycle)	SAR (W/kg)	#
5220.0 44 802.11a 13.00 12.80 -0.030 5 mm [Top]								0.143	6	87.3	0.142	1.047	1.145	0.170	T I
5220.0	44	802.11a	13.00	12.80	-0.190	5 mm [Front]	FCC #2	0.051	6	87.3	0.043	1.047	1.145	0.052	T I
5220.0	44	802.11a	13.00	12.80	0.010	5 mm [Rear #1]	FCC #2	0.223	6	87.3	0.220	1.047	1.145	0.264	
5220.0	44	802.11a	13.00	12.80	-0.010	5 mm [Rear #3]	FCC #2	0.234	6	87.3	0.234	1.047	1.145	0.281	
5220.0	44	802.11a	13.00	12.80	0.090	5 mm [Left]	FCC #2	0.645	6	87.3	0.652	1.047	1.145	0.782	A8
				C95.1-2005- SAFETY I Spatial Peak							1.6 W/k	ody g (mW/g)			

Table 10.1.8 UNII Body SAR

						MEASURE	MENT RESULTS								
FREQU	JENCY		Maximum Allowed	Conducted	Drift Power	Phantom	Device	Peak SAR of	Data	Duty	1g	Scaling	Scaling Factor	1g Scaled	Plots
MHz	Ch	Mode	Power [dBm]	Power [dBm]	[dB]	Position	Serial Number	Area Scan	Rate [Mbps]	Cycle	SAR (W/kg)	Factor	(Duty Cycle)	SAR (W/kg)	#
5825.0	165	802.11a	13.00	12.79	0.020	5 mm [Top]	FCC #2	0.126	6	87.3	0.122	1.050	1.145	0.147	
5825.0	165	802.11a	13.00	12.79	-0.030	5 mm [Front]	FCC #2	0.034	6	87.3	0.027	1.050	1.145	0.032	
5825.0	165	802.11a	13.00	12.79	-0.030	5 mm [Rear #1]	FCC #2	0.199	6	87.3	0.201	1.050	1.145	0.242	
5825.0	165	802.11a	13.00	12.79	-0.060	5 mm [Rear #3]	FCC #2	0.205	6	87.3	0.211	1.050	1.145	0.254	
5825.0	165	802.11a	13.00	12.79	0.080	5 mm [Left]	FCC #2	0.381	6	87.3	0.401	1.050	1.145	0.482	A9
				C95.1-1992- SAFETY Spatial Peak							1.6 W/k	ody g (mW/g)			

Table 10.1.9 Bluetooth Body SAR

						MEASURE	EMENT RESULT	S						
FREQU	JENCY		Maximum Allowed	Conducted	Drift Power	Phantom	Device	Rate	Duty	1g	Scaling	Scaling Factor	1g Scaled	Plots
MHz	Ch	Mode	Power [dBm]	Power [dBm]	[dB]	Position	Serial Number	[Mbps]	Cycle (%)	SAR (W/kg)	Factor	(Duty Cycle)	Scaled SAR (W/kg)	#
2441.0	39	Bluetooth	11.85	11.64	0.090	5 mm [Top]	FCC #2	1	76.8	0.006	1.050	1.302	0.008	
2441.0	39	Bluetooth	11.85	11.64	-0.060	5 mm [Front]	FCC #2	1	76.8	0.008	1.050	1.302	0.011	
2441.0	39	Bluetooth	11.85	11.64	-0.010	5 mm [Rear #1]	FCC #2	1	76.8	0.016	1.050	1.302	0.022	
2441.0	39	Bluetooth	11.85	11.64	-0.120	5 mm [Rear #3]	FCC #2	1	76.8	0.016	1.050	1.302	0.022	
2441.0	39	Bluetooth	11.85	11.64	0.120	5 mm [Left]	FCC #2	1	76.8	0.122	1.050	1.302	0.167	A10
	_	-		95.1-1992– SAFETY LI Spatial Peak re/General Population		-	-		-	-	Body 1.6 W/kg (mW/g) averaged over 1 gram	=	-	-

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

Note(s):

1. Please refer to the Test photo (SAR) for details on the test position indicated by Blue entries represent.

10.2 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB Publication 648474 D04v01r03, body SAR was evaluated without a headset connected to the device. Since the standalone reported body SAR was not > 1.2 W/kg, no additional body SAR evaluations using a headset cable were performed.

WCDMA (UMTS) Notes:

- WCDMA (UMTS) mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01.
 AMR and HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r05. The general test procedures used for testing can be found in Section 8.4.4.
- 2. According to FCC KDB 941225 D05v02r05, when the reported SAR is ≤ 0.8 W/kg, testing of the 100% RB allocation and required test channels is not required.
 - Otherwise, SAR is required for the remaining required test channels using the 1 RB, 50% RB and 100% RB allocation with highest output power for that channel.
 - Only one channel, and as reported SAR values for 1 RB allocation and 50% RB allocation were less than 1.45 W/kg only the highest power RB offset for each allocation was required.
- 3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 4. A-MPR was disabled for all SAR tests by setting NS=1 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 5. SAR test reduction is applied using the following criteria:
 - Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is > 0.8 W/kg, testing for other channels is performed at the highest output power level for 1 RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg, Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. Testing for 16QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/kg and its output power is not more than 0.5 dB higher than that a QPSK. Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

WLAN Notes:

- The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg.
- 4. When the maximum reported 1g averaged SAR ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance.

Bluetooth Notes:

 Bluetooth SAR was measured with the device connected to a call with hopping disabled with DH5 operation and Tx test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. Refer to section 8.4 for the time-domain plot and calculation for the duty factor of the device.

11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the sum 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The different test positon in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

11.3 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06.

Table 11.3.1 Simultaneous SAR Cases

No.	Capable Transmit Configuration	Body SAR	Note
1	WCDMA + Wi-Fi 2.4 GHz	Yes	
2	WCDMA + Wi-Fi 5 GHz	Yes	
3	WCDMA + Bluetooth 2.4 GHz	Yes	
4	LTE + Wi-Fi 2.4 GHz	Yes	
5	LTE + Wi-Fi 5 GHz	Yes	
6	LTE + Bluetooth 2.4 GHz	Yes	

Notes:

- 1. VoIP is supported in LTE, WCDMA
- WCDMA and LTE can not transmit simultaneously since they share the same chip.
- 3. Bluetooth and WLAN (2.4 GHz, 5 GHz) are not operated at same time

11.4 Body SAR Simultaneous Transmission Analysis

Table 11.4.1 Simultaneous Transmission Scenario : 3G/4G + 2.4 GHz W-LAN (Body at 0 mm)

Exposure	Mode	Configuration	3G/4G SAR (W/kg)	2.4G W-LAN SAR (W/kg)	ΣSAR (W/kg)	
Condition	Wode	Comiguration	1	2	1+2	
		Тор	-	0.028	0.028	
		Bottom	0.351	-	0.351	
	WCDMA 850	Front	0.285	0.061	0.346	
	WCDINIA 650	Rear	1.042	0.063	1.105	
		Right	0.212	=	0.212	
		Left	0.259	0.654	0.913	
		Тор	-	0.028	0.028	
		Bottom	1.175	-	1.175	
	WCDMA 1900	Front	0.285	0.061	0.346	
	WCDMA 1900	Rear	1.186	0.063	1.249	
		Right	0.115	=	0.115	
		Left	0.466	0.654	1.120	
	LTE Band 12	Тор	-	0.028	0.028	
		Bottom	0.099	-	0.099	
		.== =	Front	0.122	0.061	0.183
		Rear	0.340	0.063	0.403	
		Right	0.119	-	0.119	
Body		Left	0.118	0.654	0.772	
SAŔ		Тор	-	0.028	0.028	
		Bottom	0.252	-	0.252	
		Front	0.189	0.061	0.250	
	LTE Band 5	Rear	0.689	0.063	0.752	
		Right	0.192	-	0.192	
TE Pond 5 Front 0.189 0.061	0.654	0.797				
	0.028	0.028				
		Bottom	0.655	-	0.655	
	.== =	Front	0.321	0.061	0.382	
	LTE Band 4	Rear	0.809	0.063	0.872	
		Right	0.165	-	0.165	
		Left	0.790	0.654	1.444	
		Тор	-	0.028	0.028	
		Bottom	1.047	-	1.047	
		Front	0.283	0.061	0.344	
	LTE Band 2	Rear	1.192	0.063	1.255	
		Right	0.112	-	0.112	
		Left	0.475	0.654	1.129	

Table 11.4.2 Simultaneous Transmission Scenario : 3G/4G + 5.2 GHz W-LAN (Body at 0 mm)

Exposure	Mode	Configuration	3G/4G SAR (W/kg)	5.2G W-LAN SAR (W/kg)	ΣSAR (W/kg)	
Condition	Wode	Configuration	1	2	1+2	
		Тор	-	0.170	0.170	
		Bottom	0.351	-	0.351	
	WCDMA 850	Front	0.285	0.052	0.337	
	WCDIMA 650	Rear	1.042	0.281	1.323	
		Right	0.212	=	0.212	
		Left	0.259	0.782	1.041	
		Тор	-	0.170	0.170	
		Bottom	1.175	-	1.175	
	14/00444 4000	Front	0.285	0.052	0.337	
	WCDMA 1900	Rear	1.186	0.281	1.467	
		Right	0.115	=	0.115	
		Left	0.466	0.782	1.248	
Ì	LTE Band 12	Тор	-	0.170	0.170	
		Bottom	0.099	-	0.099	
		Front	0.122	0.052	0.174	
		Rear	0.340	0.281	0.621	
		Right	0.119	=	0.119	
Body SAR		Left	0.118	0.782	0.900	
SAR		Тор	-	0.170	0.170	
	LTE Band 5	LTE Band 5	Bottom	0.252	=	0.252
			Front	0.189	0.052	0.241
			Rear	0.689	0.281	0.970
		Right	0.192	=	0.192	
Right 0.192 - Left 0.143 0.782 Top - 0.170	0.782	0.925				
	0.170	0.170				
		Bottom	0.655	-	0.655	
	LTE Band 4	Front	0.321	0.052	0.373	
	LIE Band 4	Rear	0.809	0.281	1.090	
		Right	0.165	=	0.165	
		Left	0.790	0.782	1.572	
j		Тор	-	0.170	0.170	
		Bottom	1.047	=	1.047	
	LTE Band 2	Front	0.283	0.052	0.335	
	LIE Band 2	Rear	1.192	0.281	1.473	
		Right	0.112	=	0.112	
		Left	0.475	0.782	1.257	

Table 11.4.3 Simultaneous Transmission Scenario : 3G/4G + 5.8 GHz W-LAN (Body at 0 mm)

Exposure	Mode	Canfinunction	3G/4G SAR (W/kg)	5.8G W-LAN SAR (W/kg)	ΣSAR (W/kg)	
Condition	Wode	Configuration	1	2	1+2	
	WCDMA 850	Тор	-	0.147	0.147	
		Bottom	0.351	=	0.351	
		Front	0.285	0.032	0.317	
		Rear	1.042	0.254	1.296	
		Right	0.212	-	0.212	
		Left	0.259	0.482	0.741	
		Тор	-	0.147	0.147	
		Bottom	1.175	-	1.175	
	MCDM4 4000	Front	0.285	0.032	0.317	
WCDMA 1900 Rear	1.186	0.254	1.440			
		Right	0.115	=	0.115	
		Left	0.466	0.482	0.948	
	LTE Band 12	Тор	-	0.147	0.147	
		Bottom	0.099	-	0.099	
		.== =	Front	0.122	0.032	0.154
		Rear	0.340	0.254	0.594	
		Right	0.119	-	0.119	
Body		Left	0.118	0.482	0.600	
SAŘ		Top	-	0.147	0.147	
		Bottom	0.252	-	0.252	
	1TE D 15	Front	0.189	0.032	0.221	
	LTE Band 5	Rear	0.689	0.254	0.943	
		Right	0.192	-	0.192	
Rear 1.186 0.254 Right 0.115	0.625					
	0.147					
	-	0.655				
			0.321	0.032	0.353	
	LIE Band 4				1.063	
		Right	0.165	-	0.165	
				0.482	1.272	
				0.147	0.147	
				-	1.047	
	LTE Band 2			0.032	0.315	
					1.446	
		Right	0.112	-	0.112	
		Left	0.475	0.482	0.957	

Table 11.4.4 Simultaneous Transmission Scenario : 3G/4G + Bluetooth (Body at 0 mm)

Exposure	Mode	Configuration	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	ΣSAR (W/kg)	
Condition	Wode	Comiguration	1	2	1+2	
		Top	-	0.008	0.008	
		Bottom	0.351	=	0.351	
	WCDMA 850	Front	0.285	0.011	0.296	
	WCDIVIA 650	Rear	1.042	0.022	1.064	
		Right	0.212	-	0.212	
		Left	0.259	0.167	0.426	
		Top	-	0.008	0.008	
		Bottom	1.175	-	1.175	
	WCDMA 1900	Front	0.285	0.011	0.296	
	WCDINA 1900	Rear	1.186	0.022	1.208	
		Right	0.115	=	0.115	
		Left	0.466	0.167	0.633	
	LTE Band 12	Top	-	0.008	0.008	
		Bottom	0.099	-	0.099	
		LTE B 140	Front	0.122	0.011	0.133
		Rear	0.340	0.022	0.362	
		Right	0.119	-	0.119	
Body		Left	0.118	0.167	0.285	
SAŘ	LTE Band 5	Тор	-	0.008	0.008	
		Bottom	0.252	-	0.252	
		Front	0.189	0.011	0.200	
		Rear	0.689	0.022	0.711	
		Right	0.192	-	0.192	
Right 0.192 Left 0.143	0.167	0.310				
		Тор	-	0.008	0.008	
		Bottom	0.655	-	0.655	
	LTE Band 4	Front	0.321	0.011	0.332	
	LIE Band 4	Rear	0.809	0.022	0.831	
		Right	0.165	-	0.165	
		Left	0.790	0.167	0.957	
	, and the second	Тор	-	0.008	0.008	
		Bottom	1.047	-	1.047	
	175 D 10	Front	0.283	0.011	0.294	
	LTE Band 2	Rear	1.192	0.022	1.214	
		Right	0.112	-	0.112	
		Left	0.475	0.167	0.642	

11.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

12. SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2. A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5. The same procedures should be adapted for measurements according to extremity exposure limits by applying a factor of 2.5 for extremity exposure to the corresponding SAR thresholds.

Table 12.1 Body SAR Measurement Variability Results

Frequency		Mode S	Service	# of Time Slots	Spacing [Side]	Measured SAR (1g)	1st Repeated SAR(1g)	Ratio	2nd Repeated SAR(1g)	Ratio	3rd Repeated SAR(1g)	Ratio	
MHz	Ch.				Siots		(W/kg)	(W/kg)		(W/kg)		(W/kg)	
826.4	4132	WCDMA 850	RMC	-	5 mm [Rear #2]	1.040	1.000	1.04	-	-	-	_	
1907.6	9538	WCDMA 1900	RMC	-	5 mm [Rear #2]	1.110	1.100	1.01	-	-	-	-	
1880.0	18900	LTE B2	-		5 mm [Bottom]	1.120	1.110	1.01	-	-	-	-	
ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure								Body 1.6 W/kg (m averaged over			-		

12.2 Measurement Uncertainty

The measured SAR was < 1.5 W/kg for 1g and < 3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

13. EQUIPMENT LIST

Table 13.1.1 Test Equipment Calibration

☒ SEMITEC Engineering ☒ Robot ☒ Robot Controller		SEMITEC	N1/A	N1/A		
☑ Robot			N/A	N/A	N/A	Shield Room
		SPEAG	TX60L	N/A	N/A	F14/5VR2A1/A/01
☑ Robot Controller		SPEAG	CS8C	N/A	N/A	F14/5VR2A1/C/01
		SPEAG	N/A	N/A	N/A	D21142605A
☑ Intel Core i7-4770 3.40 G	Hz Windows 7 Professional	N/A	N/A	N/A	N/A	N/A
☑ Probe Alignment Unit LB		N/A	N/A	N/A	N/A	SE UKS 030 AA
☑ Device Holder		SPEAG	SD000H01HA	N/A	N/A	N/A
		SPEAG	QD000P40CD	N/A	N/A	1220
Data Acquisition Electroni	cs	SPEAG	DAE4V1	2020-04-22	2021-04-22	1391
☑ Dosimetric E-Field Probe		SPEAG	EX3DV4	2020-01-30	2021-01-30	7368
☑ 750MHz SAR Dipole		SPEAG	D750V3	2020-01-22	2022-01-22	1049
■ 835MHz SAR Dipole		SPEAG	D835V2	2020-05-19	2022-05-19	4d159
☑ 1800MHz SAR Dipole		SPEAG	D1800V2	2020-03-20	2022-03-20	2d202
☑ 1900MHz SAR Dipole		SPEAG	D1900V2	2020-05-19	2022-05-19	5d176
☑ 2450MHz SAR Dipole		SPEAG	D2450V2	2019-09-19	2021-09-19	726
		SPEAG	D5GHzV2	2020-02-27	2022-02-27	1212
		Agilent	E5071C	2020-06-24	2021-06-24	MY46106970
		Agilent	E4438C	2020-06-24	2021-06-24	US41461520
		RFBAY.Inc	MPA-40-40	2019-12-16	2020-12-16	21151801
		EMPOWER	BBS3Q7ELU	2020-06-24	2021-06-24	1020
		EMPOWER	BBS3Q8CCJ	2020-06-24	2021-06-24	1005
		HP	EPM-442A	2019-12-16	2020-12-16	GB37170267
		HP	EPM-442A	2019-12-16	2020-12-16	GB37170413
		HP	8481A	2019-12-16	2020-12-16	US37294267
☑ Power Sensor		HP	8481A	2019-12-16	2020-12-16	3318A96566
☑ Power Sensor		HP	8481A	2019-12-16	2020-12-16	2702A65976
☑ Dual Directional Coupler		Agilent	778D-012	2019-12-16	2020-12-16	50228
		HP	772D	2020-06-24	2021-06-24	2889A01064
	· ·	Wainwright Instruments	WLK6-1000-1400-9000-60SS	2020-06-24	2021-06-24	165
		Micro LAB	LA-15N	2020-06-24	2021-06-24	2
		Micro LAB	LA-30N	2020-06-24	2021-06-24	2
		Micro LAB	LA-60N	2019-12-16	2020-12-16	03942
		WEINSCHEL	23-10-34	2019-12-16	2020-12-16	BP4387
		Cernexwave	CFADC2603U5	2020-06-24	2021-06-24	C11711
☑ Dielectric Probe kit		SPEAG	DAK-3.5	2019-11-19	2020-11-19	1092
8960 Series 10 Wireless 0 8960 Series 10 Wirele		Agilent	E5515C	2020-06-24	2021-06-24	GB41321164
		Rohde Schwarz	CMW500	2019-12-16	2020-12-16	101414
Radio Communication An	alyzer	Agilent	E5515E	2020-06-24	2021-06-24	MY52113012
☑ Power Splitter		Anritsu	K241B	2019-12-16	2020-12-16	1301183
Bluetooth Tester		TESCOM	TC-3000C	2020-06-24	2021-06-24	3000C000563

Bluetooth lester IESCOM IC-3000C 2020-06-24 2021-06-24 3000C000563

NOTE(S):

1. The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain and muscle-equivalent material. Each equipment item was used solely within its respective calibration period.

2. CBT(Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

14. MEASUREMENT UNCERTAINTIES

750 MHz Head (SN: 7368)

	Uncertainty	Probability		(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System					_		•	
Probe calibration	6.0	Normal	1	1	1	6.0	6.0	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	∞
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	∞
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	~
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Test Sample Related								
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Physical Parameters								
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	∞
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	8
Liquid conductivity (Meas.)	4.0	Normal	1	0.78	0.71	3.1	2.8	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	8
Liquid permittivity (Meas.)	4.0	Normal	1	0.23	0.26	0.9	1.0	10
Temp. unc Conductivity	2.0	Rectangular	√3	0.78	0.71	0.9	0.8	8
Temp. unc Permittivity	1.9	Rectangular	√3	0.23	0.26	0.3	0.3	∞
Combined Standard Uncertainty						12	11	330
Expanded Uncertainty (k=2)						24	22	

 $U(1 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % k= 2)

 $U(10 g) = k \cdot u_c$ = 2 · 11 %

^{= 22 % (}The confidence level is about 95 % k = 2)

835 MHz Head (SN: 7368)

	Uncertainty	Probability		(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System			•		•		•	
Probe calibration	6.0	Normal	1	1	1	6.0	6.0	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	∞
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	∞
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	∞
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Test Sample Related								
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Physical Parameters								
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	∞
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (Meas.)	3.9	Normal	1	0.78	0.71	3.0	2.8	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	∞
Liquid permittivity (Meas.)	3.8	Normal	1	0.23	0.26	0.9	1.0	10
Temp. unc Conductivity	1.8	Rectangular	√3	0.78	0.71	0.8	0.7	∞
Temp. unc Permittivity	1.7	Rectangular	√3	0.23	0.26	0.2	0.3	∞
Combined Standard Uncertainty						12	11	330
Expanded Uncertainty (k=2)	***************************************					24	22	

 $U(1 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 11 %}

^{= 22 % (}The confidence level is about 95 % k = 2)

1 800 MHz Head (SN: 7368)

Form Description	Uncertainty	Probability	District	(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System						•		
Probe calibration	6.0	Normal	1	1	1	6.0	6.0	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	8
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	∞
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	8
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	8
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	∞
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Test Sample Related								
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8
Physical Parameters								
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	8
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	8
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (Meas.)	4.0	Normal	1	0.78	0.71	3.1	2.8	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	8
Liquid permittivity (Meas.)	4.2	Normal	1	0.23	0.26	1.0	1.1	10
Temp. unc Conductivity	2.1	Rectangular	√3	0.78	0.71	0.9	0.9	∞
Temp. unc Permittivity	2.1	Rectangular	√3	0.23	0.26	0.3	0.3	∞
Combined Standard Uncertainty		Ì		Ì		12	11	330
Expanded Uncertainty (k=2)						24	22	

 $U(1 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 11 %}

^{= 22 % (}The confidence level is about 95 % k = 2)

1 900 MHz Head (SN: 7368)

Eman December to a	Uncertainty	Probability	District	(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System					•			
Probe calibration	6.0	Normal	1	1	1	6.0	6.0	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	8
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	∞
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	8
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	∞
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Test Sample Related								.,
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Physical Parameters								
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	∞
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	8
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (Meas.)	3.8	Normal	1	0.78	0.71	3.0	2.7	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	∞
Liquid permittivity (Meas.)	4.0	Normal	1	0.23	0.26	0.9	1.0	10
Temp. unc Conductivity	1.8	Rectangular	√3	0.78	0.71	0.8	0.7	∞
Temp. unc Permittivity	1.9	Rectangular	√3	0.23	0.26	0.3	0.3	8
Combined Standard Uncertainty			Ì			12	11	330
Expanded Uncertainty (k=2)						24	22	

 $U(1 g) = k \cdot u_c$ = 2 · 12 %

^{= 24 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 11 %}

^{= 22 % (}The confidence level is about 95 % k= 2)

2 450 MHz Head

Form Description	Uncertainty	Probability	Distant	(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System					•			
Probe calibration	6.0	Normal	1	1	1	6.0	6.0	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	8
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	∞
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	∞
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Test Sample Related								
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Physical Parameters								
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	∞
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (Meas.)	4.2	Normal	1	0.78	0.71	3.3	3.0	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	∞
Liquid permittivity (Meas.)	4.0	Normal	1	0.23	0.26	0.9	1.0	10
Temp. unc Conductivity	2.0	Rectangular	√3	0.78	0.71	0.9	0.8	∞
Temp. unc Permittivity	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	∞
Combined Standard Uncertainty						12.	12	330
Expanded Uncertainty (k=2)						24	24	
$U(1 q) = k \cdot u_0$	•	•	•	•	•	•	•	•

 $U(1 g) = k \cdot u_c$ = 2 · 12 %

^{= 24 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % k = 2)

5300 MHz Head (SN: 7368)

Eman Decembring	Uncertainty	Probability	Distant	(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System			•			•	•	•
Probe calibration	6.55	Normal	1	1	1	6.6	6.6	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	∞
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	∞
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	∞
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Test Sample Related								
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Physical Parameters								-
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	8
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (Meas.)	3.8	Normal	1	0.78	0.71	3.0	2.7	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	∞
Liquid permittivity (Meas.)	4.2	Normal	1	0.23	0.26	1.0	1.1	10
Temp. unc Conductivity	1.8	Rectangular	√3	0.78	0.71	0.8	0.7	∞
Temp. unc Permittivity	.2.0	Rectangular	√3	0.23	0.26	0.3	0.3	∞
Combined Standard Uncertainty						12	12	330
Expanded Uncertainty (k=2)			1			24	24	
$U(1 \ a) = k \cdot u_c$	•		•	•	•	•		

 $U(1 g) = k \cdot u_c$ = 2 · 12 %

^{= 24 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % k= 2)

5500 MHz Head (SN: 7368)

Fanon Donomintion	Uncertainty	Probability	Divisor	(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System								
Probe calibration	6.55	Normal	1	1	1	6.6	6.6	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	∞
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	8
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	8
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	∞
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	8
Test Sample Related								•
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	8
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Physical Parameters								
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	∞
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (Meas.)	3.7	Normal	1	0.78	0.71	2.9	2.6	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	∞
Liquid permittivity (Meas.)	3.9	Normal	1	0.23	0.26	0.9	1.0	10
Temp. unc Conductivity	1.8	Rectangular	√3	0.78	0.71	0.8	0.7	∞
Temp. unc Permittivity	1.9	Rectangular	√3	0.23	0.26	0.3	0.3	∞
Combined Standard Uncertainty						12	12	330
Expanded Uncertainty (k=2)						24	24	

 $U(1 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % k = 2)

5800 MHz Head (SN: 7368)

E December them	Uncertainty	Probability	Distant	(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1 g	10 g	1 g (± %)	10 g (± %)	Veff
Measurement System								
Probe calibration	6.55	Normal	1	1	1	6.6	6.6	∞
Isotropy	1.3	Normal	1	1	1	1.3	1.3	∞
Boundary Effects	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Probe Linearity	0.3	Normal	1	1	1	0.3	0.3	∞
Probe modulation response	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	Rectangular	√3	1	1	0.46	0.46	∞
Probe Positioning	6.7	Rectangular	√3	1	1	3.9	3.9	∞
Algorithms for Max. SAR Eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Test Sample Related								••
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Physical Parameters								
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	∞
SAR correction	0.0	Normal	1	1	0.84	0.0	0.0	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	∞
Liquid conductivity (Meas.)	3.8	Normal	1	0.78	0.71	3.0	2.7	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	∞
Liquid permittivity (Meas.)	4.0	Normal	1	0.23	0.26	0.9	1.0	10
Temp. unc Conductivity	1.8	Rectangular	√3	0.78	0.71	0.8	0.7	∞
Temp. unc Permittivity	1.9	Rectangular	√3	0.23	0.26	0.3	0.3	∞
Combined Standard Uncertainty			İ			12	12	330
Expanded Uncertainty (k=2)						24	24	

 $U(1 g) = k \cdot u_c$ = 2 · 12 %

^{= 24 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 12 %}

^{= 24 % (}The confidence level is about 95 % κ = 2)

15. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Report No.: DRRFCC2008-0083(1)

Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

16. REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2003,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225,D01-D07
- [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009
- [30] Anexo à Resolução No. 533, de 10 de September de 2009.
- [31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010.

APPENDIX A. - Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: EX3-7368_Jan20

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7368

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date: January 30, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

Calibrated by:

Name

Function

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 30, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7368_Jan20

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7368_Jan20

EX3DV4 - SN:7368 January 30, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7368

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.48	0.56	0.41	± 10.1 %
DCP (mV) ^g	103.2	100.2	100.3	-

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	185.3	± 3.5 %	± 4.7 %
		Y	0.0	0.0	1.0		173.0		
		Z	0.0	0.0	1.0		174.3	11 - 21	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:7368 January 30, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7368

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-23.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7368_Jan20

EX3DV4-SN:7368 January 30, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7368

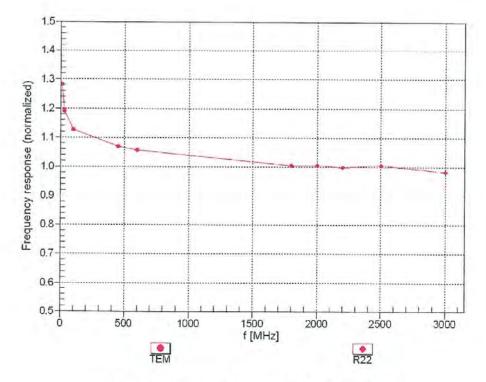
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.89	9.89	9.89	0.64	0.82	± 12.0 %
835	41.5	0.90	9.67	9.67	9.67	0.56	0.84	± 12.0 %
900	41.5	0.97	9.46	9.46	9.46	0.38	1.05	± 12.0 %
1750	40.1	1.37	8.78	8.78	8.78	0.38	0.85	± 12.0 %
1900	40.0	1.40	8.43	8.43	8.43	0.29	0.85	± 12.0 %
2450	39.2	1.80	7.81	7.81	7.81	0.33	0.90	± 12.0 %
2600	39.0	1.96	7.44	7.44	7.44	0.35	0.90	± 12.0 %
3500	37.9	2.91	7.05	7.05	7.05	0.35	1.30	± 13.1 %
3700	37.7	3.12	6.98	6.98	6.98	0.35	1.30	± 13.1 %
5200	36.0	4.66	5.66	5.66	5.66	0.40	1.80	± 13.1 %
5300	35.9	4.76	5.45	5.45	5.45	0.40	1.80	± 13.1 %
5500	35.6	4.96	5.04	5.04	5.04	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.85	4.85	4.85	0.40	1.80	± 13.1 %
5800	35.3	5.27	5.02	5.02	5.02	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: EX3-7368_Jan20

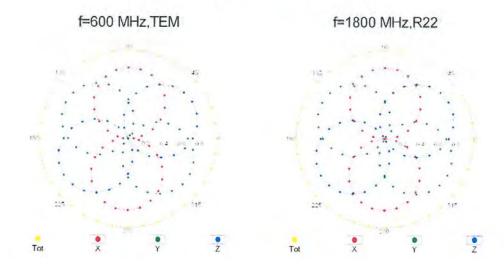

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

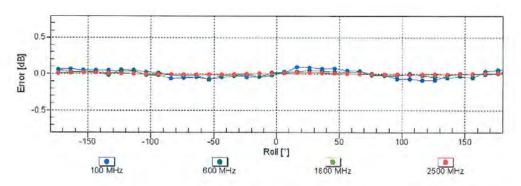
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4-SN:7368 January 30, 2020

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

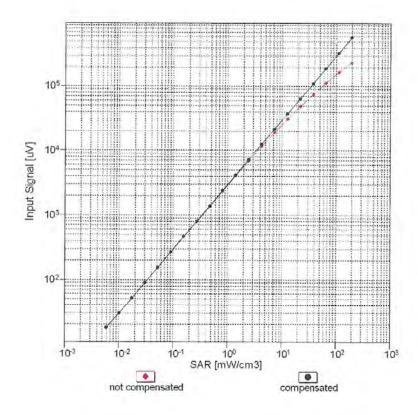
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

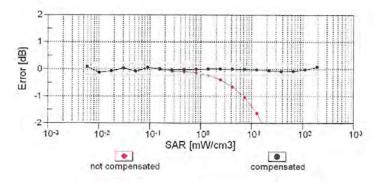

Certificate No: EX3-7368_Jan20


Page 6 of 9

EX3DV4- SN:7368 January 30, 2020

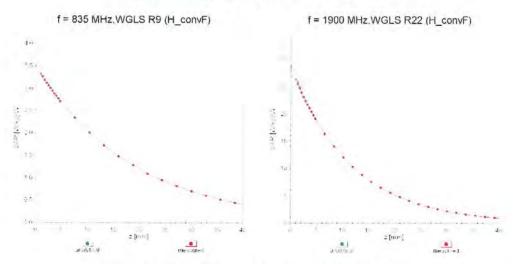
Receiving Pattern (φ), θ = 0°



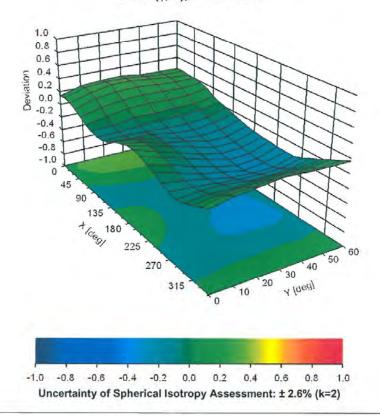

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

EX3DV4- SN:7368 January 30, 2020

Dynamic Range f(SAR_{head}) (TEM cell, f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7368_Jan20



EX3DV4- SN:7368 January 30, 2020

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Certificate No: EX3-7368_Jan20

Page 9 of 9

APPENDIX B. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cortificate No: D750V3-1049 Jan20

	ERTIFICATE		
Dbject	D750V3 - SN:104	49	
Calibration procedure(s)	QA CAL-05,v11	dure for SAR Validation Sources	between 0.7-3 GHz
	Calibration	date for or the validation oddisse	
Calibration date:	January 22, 2020)	
This salibantian entificate documents	to the transphility to pati	onal standards, which realize the physical uni	its of measurements (SI).
This calibration certificate document The measurements and the uncertainty	ainties with confidence p	robability are given on the following pages and	d are part of the certificate.
All calibrations have been conducted	ed in the closed laborato	ry facility: environment temperature (22 ± 3)°C	c and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
	C11 400045	03-Apr-19 (No. 217-02893)	Apr-20
	SN: 103245	44.14.14	
Power sensor NRP-Z91	SN: 103245 SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Power sensor NRP-Z91 Reference 20 dB Attenuator		04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 5058 (20k)	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19)	Apr-20 Dec-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19)	Apr-20 Dec-20 Dec-20 Scheduled Check
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41092317	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20

Certificate No: D750V3-1049_Jan20

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- iEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1049_Jan20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.8 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	,
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.58 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.60 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1049_Jan20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω - 2.2 jΩ
Return Loss	- 27.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω - 4.1 jΩ
Return Loss	- 27.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.035 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D750V3-1049_Jan20

DASY5 Validation Report for Head TSL

Date: 22.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1049

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\varepsilon_r = 42.8$; $\rho = 1000$ kg/m³

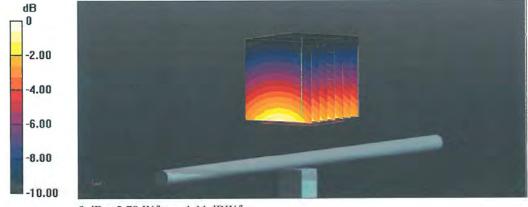
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019

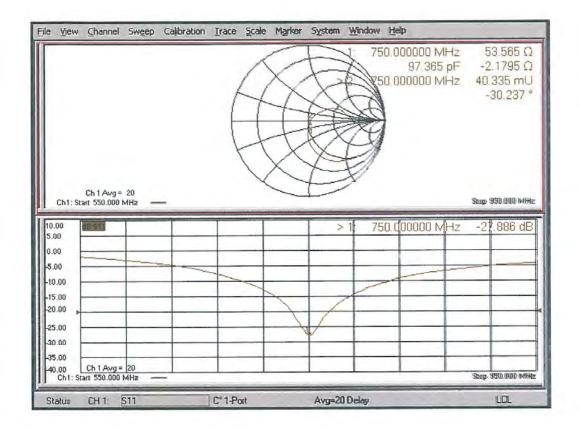
Sensor-Surface: 1.4mm (Mechanical Surface Detection)


Electronics: DAE4 Sn601; Calibrated: 27.12.2019

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.52 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.11 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.38 W/kg Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 2.78 W/kg

0 dB = 2.78 W/kg = 4.44 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1049

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 55.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

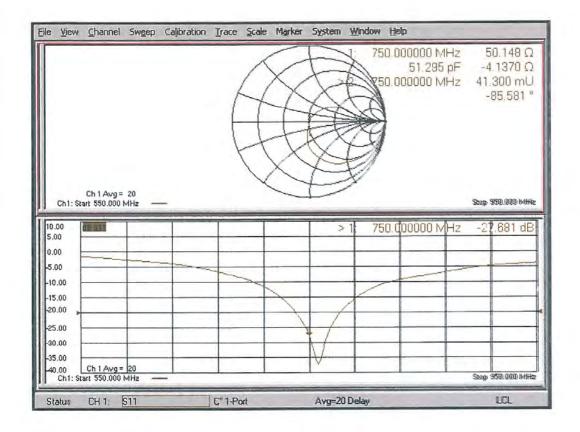
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.29 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.16 W/kg

SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.4 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm


Ratio of SAR at M2 to SAR at M1 = 66.9%

Maximum value of SAR (measured) = 2.80 W/kg

Impedance Measurement Plot for Body TSL

Certificate No: D750V3-1049_Jan20

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D835V2-4d159 May20

	ERTIFICATE		
Object	D835V2 - SN:4d1	159	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	May 19, 2020		
	A STATE OF THE PARTY OF THE PAR	onal standards, which realize the physical un	And the second s
		y facility: environment temperature $(22 \pm 3)^{\circ}$	
Calibration Equipment used (M&TI		, , , , , , , , , , , , , , , , , , , ,	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
milary Standards		Car Date (Certificate No.)	Scrieduled Calibration
	SN: 104778		
ower meter NRP		01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	Apr-21
Power meter NRP Power sensor NRP-Z91	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	Apr-21 Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Apr-21 Apr-21 Apr-21
Power meter NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Rype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Apr-21 Apr-21 Apr-21 Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 Signature
Power meter NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 Signature
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-20

Certificate No: D835V2-4d159_May20

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d159_May20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.17 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.5 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.50 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.29 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d159_May20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5 Ω - 4.3 jΩ
Return Loss	- 27.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω - 7.0 jΩ
Return Loss	- 22.3 dB

General Antenna Parameters and Design

Floring ID 100 (construction)	1,100
Electrical Delay (one direction)	1.439 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D835V2-4d159_May20

DASY5 Validation Report for Head TSL

Date: 19.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT; Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d159

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 42.0$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

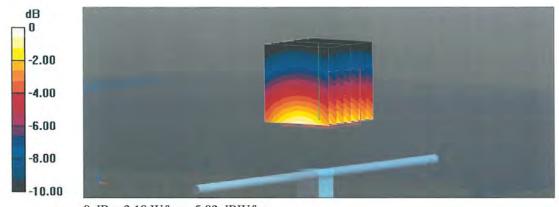
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

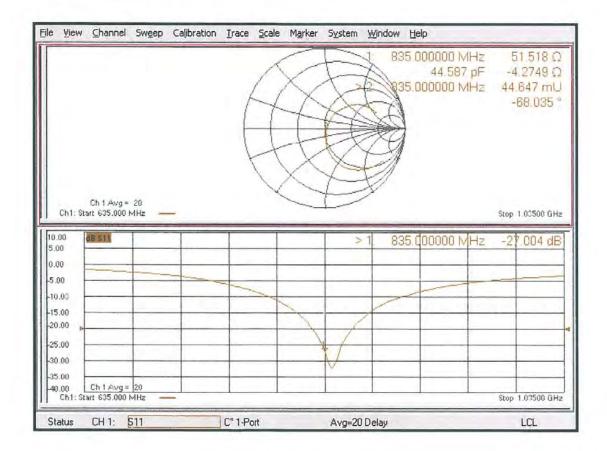
Reference Value = 62.34 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg

Smallest distance from peaks to all points 3 dB below = 17 mm

Ratio of SAR at M2 to SAR at M1 = 67.5%


Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d159

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

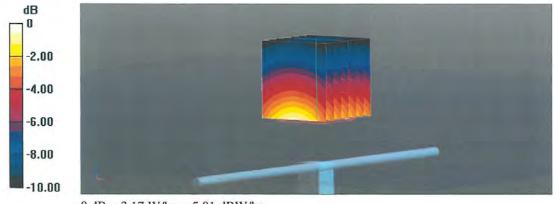
Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

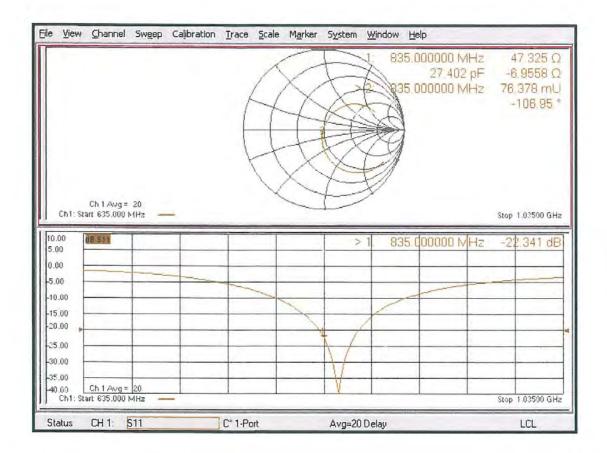
Reference Value = 57.84 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.59 W/kg

Smallest distance from peaks to all points 3 dB below = 15.3 mm

Ratio of SAR at M2 to SAR at M1 = 68.5%


Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D1800V2-2d202 Mar20

Dbject	D1800V2 - SN:20	1202	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	March 20, 2020		
		onal standards, which realize the physical uni	
he measurements and the uncertain	ainties with confidence p	robability are given on the following pages and	d are part of the certificate.
Il calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 ± 3)°C	and humidity < 70%.
			And the second second
Calibration Equipment used (M&TE	critical for calibration)		
	Lin#	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	ID#	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893)	Scheduled Calibration
rimary Standards ower meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
rimary Standards ower meter NRP ower sensor NRP-Z91	1000		
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892)	Apr-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893)	Apr-20 Apr-20 Apr-20
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 teference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	Apr-20 Apr-20 Apr-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41092317	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-7349_Dec19) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Dec-20 Scheduled Check In house check: Oct-20

Certificate No: D1800V2-2d202_Mar20

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d202 Mar20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	V32.10,4
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	With Opacer
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.75 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 16.5 % (k=2)

Certificate No: D1800V2-2d202_Mar20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6 Ω - 2.0 jΩ
Return Loss	- 32.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 3.5 jΩ
Return Loss	- 23.8 dB

General Antenna Parameters and Design

Floatrical Dalay (one direction)	1 212 no
Electrical Delay (one direction)	1.212115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D1800V2-2d202_Mar20

DASY5 Validation Report for Head TSL

Date: 20.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d202

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f=1800 MHz; $\sigma=1.37$ S/m; $\epsilon_r=40.5$; $\rho=1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.64, 8.64, 8.64) @ 1800 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

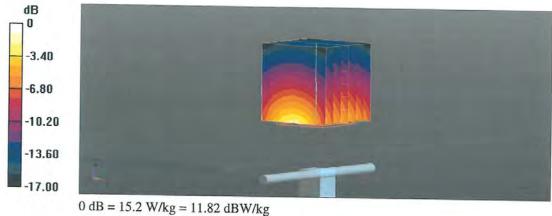
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

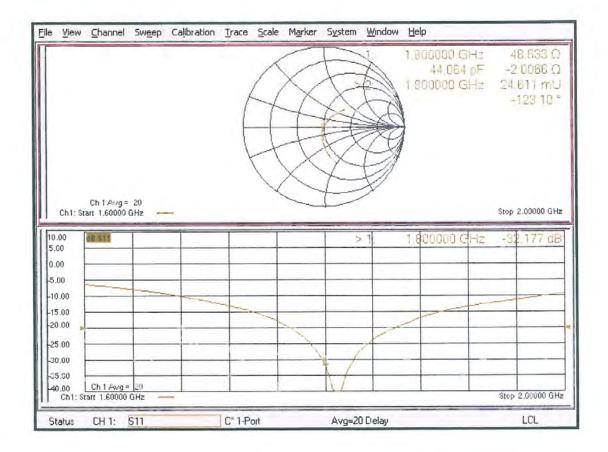
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.3 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.13 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 15.2 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d202

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.48 \text{ S/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.44, 8.44, 8.44) @ 1800 MHz; Calibrated: 31.12.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

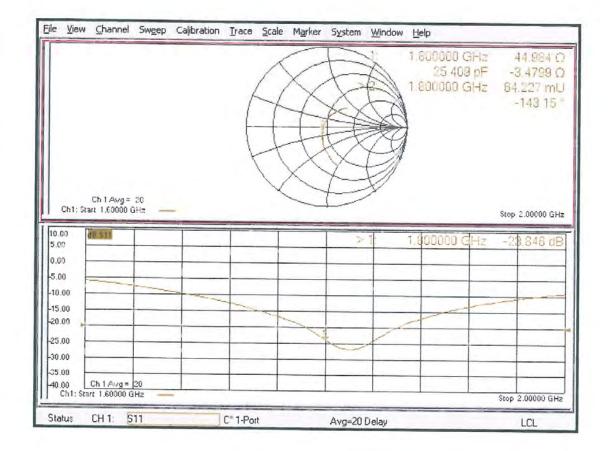
Reference Value = 104.2 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.59 W/kg; SAR(10 g) = 5.04 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 57.2%


Maximum value of SAR (measured) = 14.5 W/kg

0 dB = 14.5 W/kg = 11.61 dBW/kg

Impedance Measurement Plot for Body TSL

