# **TEST REPORT**

| Dt&C Co., Ltd.                                                                                         |                                                                                                                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>Dt&amp;C</b>                                                                                        | 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042<br>Tel : 031-321-2664, Fax : 031-321-1664 |  |  |  |  |  |
|                                                                                                        |                                                                                                                      |  |  |  |  |  |
| 1. Report No : DRTFCC2407-0074                                                                         | 4                                                                                                                    |  |  |  |  |  |
| 2. Customer                                                                                            |                                                                                                                      |  |  |  |  |  |
| • Name (FCC) : BLUEBIRD INC. / Nar                                                                     | ne (IC) : BLUEBIRD INC.                                                                                              |  |  |  |  |  |
| • Address (FCC) : 3F, 115, Irwon-ro, G<br>Address (IC) : 3F, 115, Irwon-ro, Gan                        | angnam-gu, Seoul, 06355, Korea<br>gnam-gu Seoul 06355 Korea (Republic Of)                                            |  |  |  |  |  |
| 3. Use of Report : FCC & ISED Cert                                                                     | ification                                                                                                            |  |  |  |  |  |
| 4. Product Name / Model Name : Er<br>FCC ID : SS4S50F1<br>IC : 22515-S50F1                             | nterprise Full Touch Handheld Computer / S50                                                                         |  |  |  |  |  |
| 5. FCC Regulation(s): Part 15.247<br>IC Standard(s): RSS-247 Issue 3,<br>Test Method used: KDB558074 D |                                                                                                                      |  |  |  |  |  |
| 6. Date of Test : 2024.04.25 ~ 2024                                                                    | .05.22                                                                                                               |  |  |  |  |  |
| 7. Location of Test : 🛛 Permanent                                                                      | Testing Lab 🔲 On Site Testing                                                                                        |  |  |  |  |  |
| 8. Testing Environment : See apper                                                                     | ided test report.                                                                                                    |  |  |  |  |  |
| 9. Test Result : Refer to the attache                                                                  | d test result.                                                                                                       |  |  |  |  |  |
| The results shown in this test report ref<br>This test report is not related to KOLAS                  | er only to the sample(s) tested unless otherwise stated.<br>accreditation.                                           |  |  |  |  |  |
| Tested by<br>Affirmation                                                                               | Technical Manager                                                                                                    |  |  |  |  |  |
| Name : SeungMin Gil                                                                                    | Seur Name : Jae Jin Lee                                                                                              |  |  |  |  |  |
|                                                                                                        | 14                                                                                                                   |  |  |  |  |  |
|                                                                                                        |                                                                                                                      |  |  |  |  |  |
|                                                                                                        | 2024.07.19.                                                                                                          |  |  |  |  |  |
|                                                                                                        | Dt&C Co., Ltd.                                                                                                       |  |  |  |  |  |
| If this report is required to c                                                                        | onfirmation of authenticity, please contact to report@dtnc.net                                                       |  |  |  |  |  |



## **Test Report Version**

| Test Report No. | Date          | Description   | Revised by   | Reviewed by |  |  |
|-----------------|---------------|---------------|--------------|-------------|--|--|
| DRTFCC2407-0074 | Jul. 19, 2024 | Initial issue | SeungMin Gil | JaeJin Lee  |  |  |
|                 |               |               |              |             |  |  |
|                 |               |               |              |             |  |  |
|                 |               |               |              |             |  |  |
|                 |               |               |              |             |  |  |
|                 |               |               |              |             |  |  |
|                 |               |               |              |             |  |  |
|                 |               |               |              |             |  |  |
|                 |               |               |              |             |  |  |



### **Table of Contents**

| 1. General Information                                   |    |
|----------------------------------------------------------|----|
| 1.1. Description of EUT                                  |    |
| 1.2. Declaration by the applicant / manufacturer         | 4  |
| 1.3. Testing Laboratory                                  |    |
| 1.4. Testing Environment                                 | 5  |
| 1.5. Measurement Uncertainty                             |    |
| 1.6. Information about the FHSS characteristics          |    |
| 1.7. Conclusion of worst-case and operation mode         |    |
| 1.8. Test Equipment List                                 |    |
| 2. Antenna Requirement                                   |    |
| 3. Summary of Test Results                               |    |
| 4. Maximum Peak Conducted Output Power                   |    |
| 4. Maximum Feak Conducted Output Fower                   |    |
| 4.1. Test Setup                                          |    |
| 4.2. Limit                                               |    |
|                                                          |    |
| 4.4. Test Results                                        |    |
| 5. 20 dB BW & Occupied BW                                |    |
| 5.1. Test Setup                                          |    |
| 5.2. Limit                                               |    |
| 5.3. Test Procedure                                      |    |
| 5.4. Test Results                                        |    |
| 6. Carrier Frequency Separation                          | 24 |
| 6.1. Test Setup                                          | 24 |
| 6.2. Limit                                               | 24 |
| 6.3. Test Procedure                                      | 24 |
| 6.4. Test Results                                        | 24 |
| 7. Number of Hopping Channels                            | 29 |
| 7.1. Test Setup                                          |    |
| 7.2. Limit                                               |    |
| 7.3. Test Procedure                                      |    |
| 7.4. Test Results                                        |    |
| 8. Time of Occupancy                                     |    |
| 8.1. Test Setup                                          |    |
| 8.2. Limit                                               |    |
| 8.3. Test Procedure                                      |    |
| 8.4. Test Results                                        |    |
| 9. Unwanted Emissions                                    |    |
| 9. 1. Test Setup                                         |    |
| 9.1. Test Setup                                          |    |
|                                                          |    |
| 9.3. Test Procedures                                     |    |
| 9.3.1. Test Procedures for Unwanted Emissions(Radiated)  |    |
| 9.3.2. Test Procedures for Unwanted Emissions(Conducted) |    |
| 9.4. Test Results                                        |    |
| 9.4.1. Unwanted Emissions(Radiated)                      |    |
| 9.4.2. Unwanted Emissions(Conducted)                     | 47 |
| 10. AC Power-Line Conducted Emissions                    |    |
| 10.1. Test Setup                                         |    |
| 10.2. Limit                                              |    |
| 10.3. Test Procedure                                     |    |
| 10.4. Test Results                                       |    |
|                                                          |    |
|                                                          | 75 |
|                                                          |    |

### **1. General Information**

#### 1.1. Description of EUT

| Equipment Class                                 | Spread Spectrum Transmitter(DSS)                    |
|-------------------------------------------------|-----------------------------------------------------|
| Product Name                                    | Enterprise Full Touch Handheld Computer             |
| Model Name(s)                                   | S50, S70                                            |
| HVIN(Hardware Version<br>Identification Number) | S5S7F1                                              |
| FVIN(Firmware Version<br>Identification Number) | R1.00                                               |
| EUT Serial Number                               | Conducted: S50A5LAWBA326<br>Radiated: S50A5LAWBA325 |
| Power Supply                                    | DC : 3.85 V                                         |
| Frequency Range                                 | 2 402 MHz ~ 2 480 MHz                               |
| Max. RF Output Power                            | 9.44 dBm (0.009 W)                                  |
| Modulation Technique<br>(Data rate)             | GFSK(1 Mbps), π/4DQPSK(2 Mbps), 8DPSK(3 Mbps)       |
| Number of Channels                              | 79                                                  |
| Antenna Specification                           | Antenna Type: LDS Antenna<br>Gain : -1.41 dBi (PK)  |

#### **1.2. Declaration by the applicant / manufacturer**

- NA

#### 1.3. Testing Laboratory

#### Dt&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

#### - FCC & IC MRA Designation No. : KR0034

#### - ISED#: 5740A

| www.dtnc.net |   |                  |  |
|--------------|---|------------------|--|
| Telephone    | : | + 82-31-321-2664 |  |
| FAX          | : | + 82-31-321-1664 |  |

#### **1.4. Testing Environment**

| Ambient Condition                     |                 |  |  |
|---------------------------------------|-----------------|--|--|
| Temperature                           | +21 °C ~ +23 °C |  |  |
| <ul> <li>Relative Humidity</li> </ul> | 40 % ~ 43 %     |  |  |

#### **1.5. Measurement Uncertainty**

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

| Parameter                          | Measurement uncertainty                               |
|------------------------------------|-------------------------------------------------------|
| Antenna-port conducted emission    | 0.9 dB (The confidence level is about 95 %, $k = 2$ ) |
| AC power-line conducted emission   | 3.4 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated emission (1 GHz Below)    | 5.0 dB (The confidence level is about 95 %, k = 2)    |
| Radiated emission (1 GHz ~ 18 GHz) | 4.8 dB (The confidence level is about 95 %, k = 2)    |
| Radiated emission (18 GHz Above)   | 5.7 dB (The confidence level is about 95 %, k = 2)    |

#### 1.6. Information about the FHSS characteristics

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
  - A) The hopping sequence is pseudorandom
    - Note 1 : Pseudorandom Frequency Hopping Sequence Table as below:
      - Channel: 08, 24, 40, 56, 42, 54, 72, 09, 01, 11, 33, 41, 34, 42, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 41, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 52, 71, 08, 24, 06, 24, 48, 56, 45, 46, 70, 01, 72, 06, 25, 33, 12, 28, 49, 60, 45, 58, 74, 13, 05, 18, 37, 49 etc

The System receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchroniztation with the transmit ted signals.

- B) All channels are used equally on average
- C) The receiver input bandwidth equals the transmit bandwidth
- D) The receiver hops in sequenc e with the transmit signal
- 15.247(g) : In accordance with the Bluetooth Industry Standard, the system is designed to comply with all
  of the regulations in Section 15.247 when the transmitter is presented with a continuous data
  (or information) system.
- 15.247(h) : In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

#### 1.7. Conclusion of worst-case and operation mode

The EUT has three types of modulation (GFSK,  $\pi$ /4DQPSK and 8DPSK). Therefore all applicable requirements were tested with all the modulations. And packet type was tested at the worst case(DH5).

#### **EUT Operation test setup**

Bluetooth tester was used to control the transmit parameters during test.

#### **Tested frequency information**

- Hopping Function : Enable

|              | Tested Frequency (MHz) |  |  |  |
|--------------|------------------------|--|--|--|
| Hopping Band | 2 402 ~ 2 480          |  |  |  |

- Hopping Function : Disable

|                 | Tested Frequency (MHz) |  |  |  |
|-----------------|------------------------|--|--|--|
| Lowest Channel  | 2 402                  |  |  |  |
| Middle Channel  | 2 441                  |  |  |  |
| Highest Channel | 2 480                  |  |  |  |

### 1.8. Test Equipment List

| Туре                                   | Manufacturer           | Model                            | Cal.Date<br>(yy/mm/dd) | Next.Cal.Date<br>(yy/mm/dd) | S/N                  |  |
|----------------------------------------|------------------------|----------------------------------|------------------------|-----------------------------|----------------------|--|
| Spectrum Analyzer                      | KEYSIGHT               | N9020A                           | 23/12/15               | 24/12/15                    | MY48011146           |  |
| Spectrum Analyzer                      | Agilent Technologies   | N9020A                           | 23/06/23               | 24/06/23                    | US47360812           |  |
| Spectrum Analyzer                      | Agilent Technologies   | N9020A                           | 23/12/15               | 24/12/15                    | MY50110097           |  |
| DC Power Supply                        | Agilent Technologies   | 66332A                           | 23/12/15               | 24/12/15                    | 66332A<br>_220926-1  |  |
| BlueTooth Tester                       | TESCOM                 | TC-3000C                         | 23/12/15               | 24/12/15                    | 3000C000396          |  |
| Power Splitter                         | Anritsu                | K241B                            | 23/12/15               | 24/12/15                    | 1301183              |  |
| Multimeter                             | FLUKE                  | 17B+                             | 23/12/15               | 24/12/15                    | 36390701WS           |  |
| Signal Generator                       | Rohde Schwarz          | SMBV100A                         | 23/12/15               | 24/12/15                    | 255571               |  |
| Signal Generator                       | ANRITSU                | MG3695C                          | 23/12/15               | 24/12/15                    | 173501               |  |
| Thermohygrometer                       | BODYCOM                | BJ5478                           | 23/12/15               | 24/12/15                    | 120612-1             |  |
| Thermohygrometer                       | BODYCOM                | BJ5478                           | 23/12/15               | 24/12/15                    | 090205-4             |  |
| Thermohygrometer                       | BODYCOM                | BJ5478                           | 23/06/23               | 24/06/23                    | N/A                  |  |
| Loop Antenna                           | ETS-Lindgren           | 6502                             | 23/11/09               | 24/11/09                    | 00060496             |  |
| Hybrid Antenna                         | Schwarzbeck            | VULB 9160                        | 23/12/15               | 24/12/15                    | 3362                 |  |
| Horn Antenna                           | ETS-Lindgren           | 3117                             | 23/06/23               | 24/06/23                    | 00143278             |  |
| Horn Antenna                           | A.H.Systems Inc.       | SAS-574                          | 23/06/23               | 24/06/23                    | 155                  |  |
| PreAmplifier                           | tsj                    | MLA-0118-B01-40                  | 23/12/15               | 24/12/15                    | 1852267              |  |
| PreAmplifier                           | tsj                    | MLA-1840-J02-45                  | 23/06/23               | 24/06/23                    | 16966-10728          |  |
| PreAmplifier                           | H.P                    | 8447D                            | 23/12/15               | 24/12/15                    | 2944A07774           |  |
| High Pass Filter                       | Wainwright Instruments | WHKX12-935-1000-<br>15000-40SS   | 23/06/23               | 24/06/23                    | 8                    |  |
| High Pass Filter                       | Wainwright Instruments | WHKX10-2838-3300-<br>18000-60SS  | 23/06/23               | 24/06/23                    | 1                    |  |
| High Pass Filter                       | Wainwright Instruments | WHNX8.0/26.5-6SS                 | 23/06/23               | 24/06/23                    | 3                    |  |
| Attenuator                             | Hefei Shunze           | SS5T2.92-10-40                   | 23/06/23               | 24/06/23                    | 16012202             |  |
| Attenuator                             | Aeroflex/Weinschel     | 56-3                             | 23/06/23               | 24/06/23                    | Y2370                |  |
| Attenuator                             | SMAJK                  | SMAJK-2-3                        | 23/06/23               | 24/06/23                    | 3                    |  |
| Attenuator                             | SMAJK                  | SMAJK-2-3                        | 23/06/23               | 24/06/23                    | 2                    |  |
| Power Meter & Wide<br>Bandwidth Sensor | Anritsu                | ML2496A<br>MA2411B               | 23/12/15               | 24/12/15                    | 1338004<br>1911481   |  |
| EMI Test Receiver                      | ROHDE&SCHWARZ          | ESCI7                            |                        |                             | 100910               |  |
| PULSE LIMITER                          | ROHDE&SCHWARZ          | ESH3-Z2                          | 23/08/21               | 24/08/21                    | 101333               |  |
| LISN                                   | SCHWARZBECK            | NSLK 8128 RC                     | 23/10/26               | 24/10/26                    | 8128 RC-387          |  |
| Digital Thermo<br>Hygrometer           | CAS                    | TE-303N                          | 24/02/07               | 25/02/07                    | 220502531            |  |
| Cable                                  | DT&C                   | Cable                            | 24/01/03               | 25/01/03                    | G-2                  |  |
| Cable                                  | HUBER+SUHNER           | SUCOFLEX 100                     | 24/01/03               | 25/01/03                    | G-3                  |  |
| Cable                                  | DT&C                   | Cable                            | 24/01/03               | 25/01/03                    | G-4                  |  |
| Cable                                  | OMT                    | YSS21S                           | 24/01/03               | 25/01/03                    | G-5                  |  |
| Cable                                  | Junkosha               | MWX241                           | 24/01/03               | 25/01/03                    | mmW-1                |  |
| Cable                                  | Junkosha               | MWX241                           | 24/01/03               | 25/01/03                    | mmW-4                |  |
| Cable                                  | HUBER+SUHNER           | SUCOFLEX100                      | 24/01/03               | 25/01/03                    | M-1                  |  |
| Cable                                  | HUBER+SUHNER           | SUCOFLEX100                      | 24/01/03               | 25/01/03                    | M-2                  |  |
| Cable                                  | JUNKOSHA               | MWX241/B                         | 24/01/03               | 25/01/03                    | M-3                  |  |
| Cable                                  | JUNKOSHA               | J12J101757-00                    | 24/01/03               | 25/01/03                    | M-7                  |  |
| Cable                                  | HUBER+SUHNER           | SUCOFLEX106                      | 24/01/03               | 25/01/03                    | M-9                  |  |
| Cable                                  | Dt&C                   | Cable                            | 24/01/03               | 25/01/03                    | RFC-69               |  |
| Test Software                          | tsj                    | Radiated Emission<br>Measurement | NA                     | NA                          | Version<br>2.00.0185 |  |
| Test Software                          | tsj                    | Noise Terminal<br>Measurement    | NA                     | NA                          | Version<br>2.00.0190 |  |

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.



### 2. Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

#### **Conclusion: Comply**

The antenna is attached on the device by means of unique coupling method. Therefore this E.U.T complies with the requirement of Part 15.203

### 3. Summary of Test Results

| FCC part section(s)           | RSS<br>section(s)                             | Test Description                                                              |                                                                                                                               | Iest Description(Using in 2 400~ 2 483.5 MHz)Condition |         |  | Status<br>Note 1 |
|-------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|--|------------------|
| 15.247(a)<br>15.247(b)        | RSS-247[5.1]<br>RSS-247[5.4]                  | Maximum Peak<br>Conducted Output<br>Power                                     | For FCC<br>=< 0.125 W(conducted)<br>For IC<br>=< 0.125 W(conducted)<br>=< 4 Watt(e.i.r.p)                                     |                                                        | с       |  |                  |
|                               |                                               | 20 dB Bandwidth                                                               | NA                                                                                                                            |                                                        | С       |  |                  |
| 15 247(2)                     | DSS 24715 11                                  | Carrier Frequency<br>Separation                                               | >= 25 kHz or<br>>= Two thirds of the 20 dB BW,<br>whichever is greater.                                                       |                                                        | с       |  |                  |
| 15.247(a) RSS-247[5.1]        | Number of Hopping<br>Channels >= 15 hops      |                                                                               | Conducted                                                                                                                     | с                                                      |         |  |                  |
|                               |                                               | Time of Occupancy                                                             | =< 0.4 seconds                                                                                                                |                                                        | С       |  |                  |
| -                             | RSS-Gen[6.7]                                  | Occupied Bandwidth<br>(99 %)                                                  | NA                                                                                                                            |                                                        | с       |  |                  |
| 15.247(d)                     | RSS-247[5.5]                                  | Unwanted Emissions<br>(Conducted)                                             | The radiated emission to any 100<br>kHz of out-band shall be at least 20<br>dB below the highest in-band<br>spectral density. |                                                        | С       |  |                  |
| 15.247(d)<br>15.205<br>15.209 | RSS-247[5.5]<br>RSS-Gen[8.9]<br>RSS-Gen[8.10] | Unwanted Emissions<br>(Radiated)                                              | Part 15.209 Limits<br>(Refer to section 9)                                                                                    | Radiated                                               | C Note3 |  |                  |
| 15.207                        | RSS-Gen[8.8]                                  | AC Power-Line Part 15.207 Limits<br>Conducted Emissions (Refer to section 10) |                                                                                                                               | AC Line<br>Conducted                                   | С       |  |                  |
| 15.203                        | -                                             | Antenna Requirement                                                           | Part 15.203<br>(Refer to section 2)                                                                                           | -                                                      | С       |  |                  |

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.



### 4. Maximum Peak Conducted Output Power

### 4.1. Test Setup

Refer to the APPENDIX I.

### 4.2. Limit

#### FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

- §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400 MHz - 2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 2 483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 MHz 5 805 MHz band : 1 Watt. For all other frequency hopping systems in the 2 400 MHz 2 483.5 MHz band: 0.125 watts.

### IC Requirements

- RSS-247[5.1] (b), For FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2 400-2 483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.
- 2. RSS-247[5.4] (b), For FHSS operating in the band 2 400 MHz 2 483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels, the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p shall not exceed 4 W, except as provided in section 5.4(e)

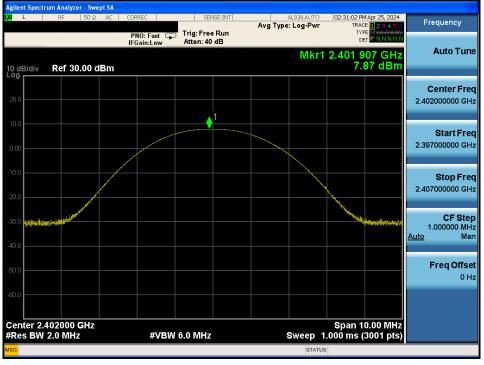
### 4.3. Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using ;
  Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel
  RBW ≥ 20 dB BW
  VBW ≥ RBW
  Sweep = auto
  Detector function = peak
  Trace = max hold

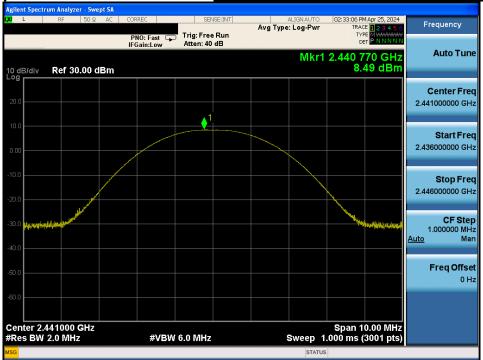
#### 4.4. Test Results

| Modulation      | Tested Channel | Burst Average<br>Output Power |      | Peak Output<br>Power |      | Antenna<br>Gain | e.i.r.p <sup>Note3</sup> |
|-----------------|----------------|-------------------------------|------|----------------------|------|-----------------|--------------------------|
|                 | Testeu Channel | dBm                           | mW   | dBm                  | mW   | (dBi)           | (dBm)                    |
|                 | Lowest         | 7.67                          | 5.85 | 7.87                 | 6.12 | -1.41           | 6.46                     |
| <u>GFSK</u>     | Middle         | 8.22                          | 6.64 | 8.49                 | 7.06 | -1.41           | 7.08                     |
|                 | Highest        | 7.34                          | 5.42 | 7.64                 | 5.81 | -1.41           | 6.23                     |
|                 | Lowest         | 6.36                          | 4.33 | 8.56                 | 7.18 | -1.41           | 7.15                     |
| <u>π/4DQPSK</u> | Middle         | 6.93                          | 4.93 | 9.13                 | 8.18 | -1.41           | 7.72                     |
|                 | Highest        | 6.04                          | 4.02 | 8.32                 | 6.79 | -1.41           | 6.91                     |
|                 | Lowest         | 6.37                          | 4.34 | 8.89                 | 7.74 | -1.41           | 7.48                     |
| <u>8DPSK</u>    | Middle         | 6.92                          | 4.92 | 9.44                 | 8.79 | -1.41           | 8.03                     |
|                 | Highest        | 6.02                          | 4.00 | 8.64                 | 7.31 | -1.41           | 7.23                     |

Note 1: The average output power was tested using an average power meter for reference only.


Note 2: See next pages for actual measured spectrum plots.

Note 3: e.i.r.p =  $P_{cond} + G_{EUT}$ 


 $P_{cond}$  = measured power at feedpoint of the EUT antenna, in dBm (Peak Conducted Output Power) G<sub>EUT</sub> = gain of the EUT radiating element (antenna), in dBi





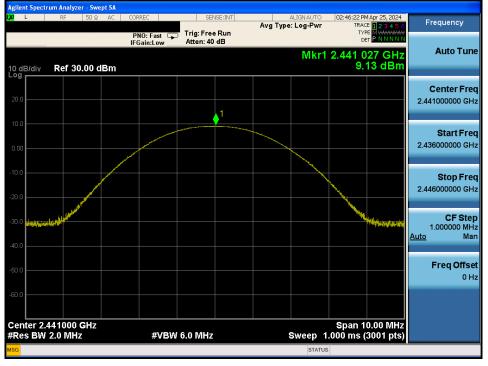



#### Peak Output Power <u>Middle Channel & Modulation : GFSK</u>






#### Highest Channel & Modulation : GFSK

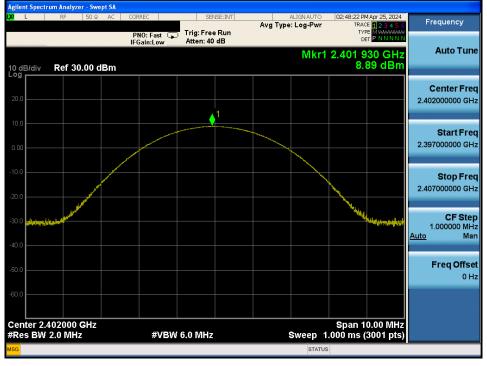



#### Peak Output Power <u>Lowest Channel & Modulation : π/4DQPSK</u>





#### Middle Channel & Modulation : π/4DQPSK




#### Peak Output Power <u>Highest Channel & Modulation : π/4DQPSK</u>





#### Lowest Channel & Modulation : 8DPSK



### Peak Output Power <u>Middle Channel & Modulation : 8DPSK</u>



#### Highest Channel & Modulation : 8DPSK



### 5. 20 dB BW & Occupied BW

#### 5.1. Test Setup

Refer to the APPENDIX I.

#### 5.2. Limit

Limit : Not Applicable

#### 5.3. Test Procedure

- 1. The 20 dB bandwidth was measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:
  - RBW = 1 % to 5 % of the 20 dB BW & Occupied BW
  - $VBW \ge 3 \times RBW$

Span = between two times and five times the 20 dB bandwidth & Occupied BW

Sweep = auto

Detector function = peak

Trace = max hold

#### 5.4. Test Results

| Modulation      | Tested Channel | 20 dB BW (MHz) | Occupied BW (MHz) |  |  |  |
|-----------------|----------------|----------------|-------------------|--|--|--|
|                 | Lowest         | 0.885          | 0.827             |  |  |  |
| <u>GFSK</u>     | Middle         | 0.882          | 0.825             |  |  |  |
|                 | Highest        | 0.884          | 0.829             |  |  |  |
|                 | Lowest         | 1.326          | 1.191             |  |  |  |
| <u>π/4DQPSK</u> | Middle         | 1.331          | 1.196             |  |  |  |
|                 | Highest        | 1.339          | 1.196             |  |  |  |
|                 | Lowest         | 1.336          | 1.204             |  |  |  |
| <u>8DPSK</u>    | Middle         | 1.329          | 1.210             |  |  |  |
|                 | Highest        | 1.325          | 1.206             |  |  |  |





#### 20 dB BW & Occupied BW









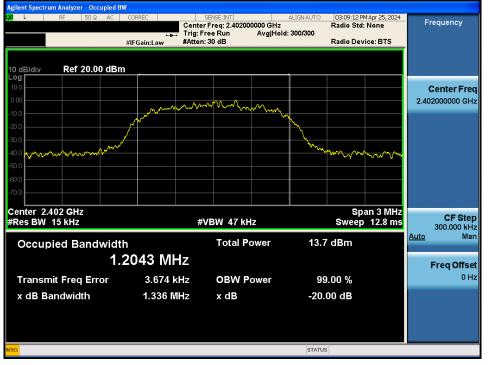


#### 20 dB BW & Occupied BW

#### Lowest Channel & Modulation : π/4DQPSK




#### Middle Channel & Modulation : π/4DQPSK




#### 20 dB BW & Occupied BW

#### Highest Channel & Modulation : π/4DQPSK



#### Lowest Channel & Modulation : 8DPSK



#### 20 dB BW & Occupied BW

#### Middle Channel & Modulation : 8DPSK



#### Highest Channel & Modulation : 8DPSK





### 6. Carrier Frequency Separation

#### 6.1. Test Setup

Refer to the APPENDIX I.

#### 6.2. Limit

Limit : ≥ 25 kHz or ≥ Two-Thirds of the 20 dB BW whichever is greater.

#### 6.3. Test Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

#### 6.4. Test Results

#### FH mode

| Hopping<br>Mode | Modulation | Peak of reference<br>channel(MHz) | Peak of adjacent<br>Channel(MHz) | Test Result<br>(MHz) |
|-----------------|------------|-----------------------------------|----------------------------------|----------------------|
|                 | GFSK       | 2 439.908                         | 2 440.912                        | 1.004                |
| Enable          | π/4DQPSK   | 2 440.000                         | 2 441.004                        | 1.004                |
|                 | 8DPSK      | 2 440.167                         | 2 441.164                        | 0.997                |

#### AFH mode

| Hopping<br>Mode | Modulation | Peak of reference<br>channel(MHz) | Peak of adjacent<br>Channel(MHz) | Test Result<br>(MHz) |
|-----------------|------------|-----------------------------------|----------------------------------|----------------------|
|                 | GFSK       | 2 439.916                         | 2 440.910                        | 0.994                |
| Enable          | π/4DQPSK   | 2 439.996                         | 2 441.003                        | 1.007                |
|                 | 8DPSK      | 2 440.162                         | 2 441.165                        | 1.003                |

Note 1 : See next pages for actual measured spectrum



#### Carrier Frequency Separation (FH) <u>Hopping mode : Enable&GFSK</u>



#### **Carrier Frequency Separation (FH)**

#### Hopping mode : Enable&π/4DQPSK





#### Carrier Frequency Separation (FH)

#### Hopping mode : Enable&8DPSK





### Carrier Frequency Separation (AFH) <u>Hopping mode : Enable&GFSK</u>

| Agilent Spectrum Analyzer - Swept SA  |                                                        |                                 |                                                              |                                      |
|---------------------------------------|--------------------------------------------------------|---------------------------------|--------------------------------------------------------------|--------------------------------------|
| <b>L</b> RF 50Ω AC                    | CORREC SENSE:INT                                       | ALIGN AUTO<br>Avg Type: Log-Pwr | 03:36:51 PM Apr 25, 2024<br>TRACE 1 2 3 4 5 6<br>TYPE MIMMAN | Frequency                            |
|                                       | PNO: Wide 🖵 Trig: Free Run<br>IFGain:Low #Atten: 30 dB |                                 | Mkr1 994 kHz                                                 | Auto Tune                            |
| 10 dB/div Ref 20.00 dBm               |                                                        |                                 | -0.08 dB                                                     |                                      |
| 10.0<br>0.00<br>-10.0                 |                                                        |                                 |                                                              | Center Freq<br>2.441000000 GHz       |
| -20.0                                 |                                                        |                                 |                                                              | <b>Start Freq</b><br>2.439500000 GHz |
| -50.0<br>-60.0<br>-70.0               |                                                        |                                 |                                                              | <b>Stop Freq</b><br>2.442500000 GHz  |
| Center 2.441000 GHz<br>#Res BW 51 kHz | #VBW 150 kHz                                           | Sweep 1.                        | Span 3.000 MHz<br>200 ms (3001 pts)                          | CF Step<br>300.000 kHz               |
| MKR MODE TRC SCL X                    | 994 kHz (Δ) −0.08 dB                                   | FUNCTION FUNCTION WIDTH         | FUNCTION VALUE                                               | <u>Auto</u> Man                      |
| 2 F 1 f 2.439<br>3 4 5                | 916 GHz 7.64 dBm                                       |                                 | =                                                            | <b>Freq Offset</b><br>0 Hz           |
| 6<br>7<br>8<br>9<br>10<br>11          |                                                        |                                 |                                                              |                                      |
|                                       |                                                        | , , ,                           | >                                                            |                                      |
| MSG                                   |                                                        | STATUS                          |                                                              |                                      |

#### Carrier Frequency Separation (AFH) <u>Hopping mode : Enable&π/4DQPSK</u>



#### Carrier Frequency Separation (AFH) <u>Hopping mode : Enable&8DPSK</u>

| Image: Solution of the second seco | Agilent Spectrum Analyzer - Swept SA                                                                                                                                                                                                                               |                                         |          |    |                    |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|----|--------------------|-----------------|
| Log         ΔMkr1 1.003 MHz<br>-0.05 dB         Auto Tune           100 dB/div         Ref 20.00 dBm         -0.05 dB         Center Freq<br>2.44100000 GHz           100<br>-00         100         100         100         Start Freq<br>2.44100000 GHz           200         100         100         100         100         100         100           200         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L RF 50Ω AC                                                                                                                                                                                                                                                        | CORREC                                  |          |    | TRACE 1 2 3 4 5 6  |                 |
| Log         Δ2         Δ3         Δ2         Δ3         Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                    | PNO: Wide 😱<br>IFGain:Low               |          | ΔΝ | 1kr1 1.003 MHz     |                 |
| 30.0       40.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0       50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0<br>0.00                                                                                                                                                                                                                                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 14       | 2  |                    |                 |
| 600         Stop Freq           700         Span 3.000 MHz           Center 2.441000 GHz         #VBW 150 kHz           #Res BW 51 kHz         #VBW 150 kHz           Sweep 1.200 ms (3001 pts)           1         A2           2         F           1         f           2         F           1         A2           6         641 dBm           7         641 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -30.0                                                                                                                                                                                                                                                              |                                         |          |    |                    |                 |
| #Res BW 51 kHz         #VBW 150 kHz         Sweep 1.200 ms (3001 pts)         300.000 kHz           MKR MODE TRC SCL         ×         Y         FUNCTION         FUNCTION VALUE         Man           1         Δ2         1         f         (Δ)         1.003 MHz         (Δ)         -0.05 dB         Function         Function Value         Man           3         -         -         -         -         -         -         -         Man           4         -         -         -         -         -         -         -         -         -         -         Man           3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -60.0                                                                                                                                                                                                                                                              |                                         |          |    |                    | 2.442500000 GHz |
| 1       Δ2       1       f       (Δ)       1.003 MHz       (Δ)       -0.05 dB         2       F       1       f       2.440 162 GHz       6.41 dBm       -       -       -       Freq Offset       0 Hz         3       -       -       -       -       -       -       0 Hz       0 Hz         6       -       -       -       -       -       -       0 Hz       0 Hz         7       -       -       -       -       -       -       -       0 Hz         9       -       -       -       -       -       -       -       0 Hz         10       -       -       -       -       -       -       -       -       0 Hz         11       -       -       -       -       -       -       -       -       0 Hz       -       0 Hz       0 Hz       0 Hz       0 Hz       -       0 Hz       -       0 Hz       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #Res BW 51 kHz                                                                                                                                                                                                                                                     | #VBW <sup>/</sup>                       |          | -  | .200 ms (3001 pts) | 300.000 kHz     |
| MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δ2         1         f         (Δ)           2         F         1         f         2.44           3         4         4         4         4           5         6         6         6         7           8         9         9         10         11         11 | 1.003 MHz (Δ)<br>0 162 GHz              | -0.05 dB |    | ×                  |                 |

### 7. Number of Hopping Channels

#### 7.1. Test Setup

Refer to the APPENDIX I.

#### 7.2. Limit

Limit : >= 15 hops

#### 7.3. Test Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2 400 MHz ~ 2 483.5 MHz were examined.

The spectrum analyzer is set to :

| Cross for Ellimodo - E0 Mile       |                                     | Stop Fraguenov - 0.444 5 Mile       |  |  |  |  |  |  |
|------------------------------------|-------------------------------------|-------------------------------------|--|--|--|--|--|--|
| Span for FH mode = 50 MHz          | Start Frequency = 2 391.5 MHz,      | Stop Frequency = 2 441.5 MHZ        |  |  |  |  |  |  |
|                                    | Start Frequency = 2 441.5 MHz,      | Stop Frequency = 2 491.5 MHz        |  |  |  |  |  |  |
| Span for AFH mode = 30 MHz         | Start Frequency = 2 426.0 MHz,      | Stop Frequency = 2 456.0 MHz        |  |  |  |  |  |  |
| RBW = To identify clearly the indi | vidual channels, set the RBW to lea | ss than 30 % of the channel spacing |  |  |  |  |  |  |
| or the 20 dB bandwidth, w          | vhichever is smaller.               |                                     |  |  |  |  |  |  |
| VBW ≥ RBW                          | Sweep = auto                        | Sweep = auto                        |  |  |  |  |  |  |
| Detector function = peak           | Trace = max hold                    | Trace = max hold                    |  |  |  |  |  |  |

#### 7.4. Test Results

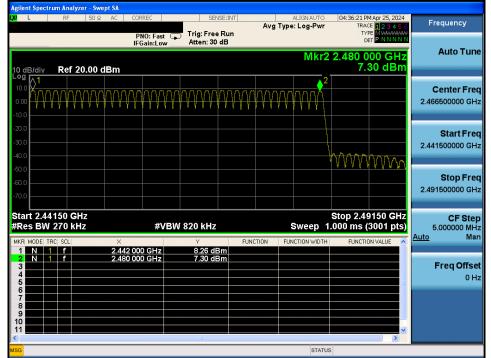
#### FH mode

| Hopping mode | Modulation | Test Result (Total Hops) |  |  |  |  |  |  |
|--------------|------------|--------------------------|--|--|--|--|--|--|
|              | GFSK       | 79                       |  |  |  |  |  |  |
| Enable       | π/4DQPSK   | 79                       |  |  |  |  |  |  |
|              | 8DPSK      | 79                       |  |  |  |  |  |  |

#### AFH mode

| Hopping mode | Modulation | Test Result (Total Hops) |  |  |  |  |  |
|--------------|------------|--------------------------|--|--|--|--|--|
|              | GFSK       | 20                       |  |  |  |  |  |
| Enable       | π/4DQPSK   | 20                       |  |  |  |  |  |
|              | 8DPSK      | 20                       |  |  |  |  |  |

Note 1 : See next pages for actual measured spectrum plots.




#### Number of Hopping Channels 1(FH)

Hopping mode : Enable & GFSK

| LXI L                     | RF         | SO Ω AC  | CORREC                   |            | CEL                | VSE:INT |         | ALIGN AUTO | 04/22/00 0   | M Apr 25, 2024                    |                                                   |
|---------------------------|------------|----------|--------------------------|------------|--------------------|---------|---------|------------|--------------|-----------------------------------|---------------------------------------------------|
|                           | N          | JU M AC  |                          |            | Trig: Free         |         | Avg Typ | e: Log-Pwr | TRA          | CE 1 2 3 4 5 6<br>PE MWWWWWW      | Frequency                                         |
| 10 dB/div                 | Ref 20     | ).00 dBm | PNO: Fas<br>IFGain:Lo    | st 😱<br>iw | Atten: 30          |         |         | Mkr2       | □<br>2.441 0 | et P NNNNN<br>100 GHz<br>26 dBm   | Auto Tune                                         |
| 10.0                      |            |          | WW                       | W          | WW                 | WW      | WW      |            |              | AMA                               | Center Freq<br>2.416500000 GHz                    |
| -20.0                     |            |          |                          |            |                    |         |         |            |              |                                   | <b>Start Freq</b><br>2.391500000 GHz              |
| -50.0 <b>y v</b><br>-60.0 |            |          |                          |            |                    |         |         |            |              |                                   | <b>Stop Freq</b><br>2.441500000 GHz               |
| #Res BV                   | TRC SCL    | z<br>×   |                          |            | 320 kHz            | FUN     |         | Sweep 1    | .000 ms (    | 4150 GHz<br>3001 pts)<br>IN VALUE | <b>CF Step</b><br>5.000000 MHz<br><u>Auto</u> Man |
| 2 N<br>3 4<br>5 6<br>7 8  | 1 f<br>1 f |          | 02 000 GHz<br>11 000 GHz |            | 7.76 dl<br>8.26 dl |         |         |            |              |                                   | Freq Offset<br>0 Hz                               |
| 9<br>10<br>11<br><        |            |          |                          |            | Ш                  |         |         | STATU      | s            | ×                                 |                                                   |

#### Number of Hopping Channels 2(FH) <u>Hopping mode : Enable & GFSK</u>





#### Number of Hopping Channels 1(FH)

#### Hopping mode : Enable&π/4DQPSK

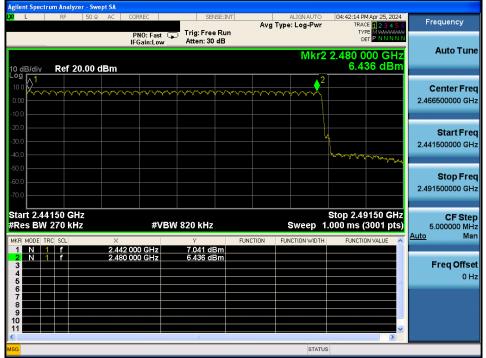
| Agnent Spectr           | RF             |                         |               | RREC                   | 071                  | VSE:INT |                                        | ALIGN A   |        | 00:00:00 4   | M Apr 26, 202                                                       | 4        |                                           |
|-------------------------|----------------|-------------------------|---------------|------------------------|----------------------|---------|----------------------------------------|-----------|--------|--------------|---------------------------------------------------------------------|----------|-------------------------------------------|
|                         | KF             | 1 20 2                  |               |                        |                      |         | Avg                                    | Type: Log |        | TRA          | M Apr 26, 202<br>CE <mark>1 2 3 4 5</mark><br>PE M <del>M M M</del> | 6        | Frequency                                 |
| 10 dB/div               | Ref            | 20.00 c                 | IFO           | NO: Fast G<br>Gain:Low | Atten: 30            |         |                                        | N         | lkr2   | □<br>2.441 0 | 000 GH                                                              | 2        | Auto Tune                                 |
| Log<br>10.0<br>0.00     |                |                         |               |                        | ~~~~~                | •~~~~~  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~      | ~~~~   | ᠬ᠋ᡎ᠆ᡎ        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                              |          | <b>Center Freq</b><br>2.416500000 GHz     |
| -20.0<br>-30.0<br>-40.0 | Jacob Concerne | , and the second second |               |                        |                      |         |                                        |           |        |              |                                                                     |          | <b>Start Freq</b><br>2.391500000 GHz      |
| -50.0<br>-60.0<br>-70.0 |                |                         |               |                        |                      |         |                                        |           |        |              |                                                                     |          | <b>Stop Freq</b><br>2.441500000 GHz       |
| Start 2.39<br>#Res BW   | 270 k          |                         | ×<br>2.402 00 |                        | V 820 kHz<br>6.804 d | FU      | NCTION                                 | Swee      | ep 1.  | 000 ms (     | 4150 GH<br>3001 pts                                                 | <b>)</b> | CF Step<br>5.000000 MHz<br><u>uto</u> Man |
| 2 N 1<br>3 4<br>5 6     | f              |                         | 2.441 00      |                        | 6.741 d              |         |                                        |           |        |              |                                                                     |          | <b>Freq Offset</b><br>0 Hz                |
| 7 8<br>9 9<br>10 11     |                |                         |               |                        |                      |         |                                        |           |        |              |                                                                     | ×        |                                           |
| MSG                     |                |                         |               |                        |                      |         |                                        |           | STATUS |              |                                                                     |          |                                           |

#### Number of Hopping Channels 2(FH)

#### Hopping mode : Enable &π/4DQPSK






#### Number of Hopping Channels 1(FH)

#### Hopping mode : Enable&8DPSK

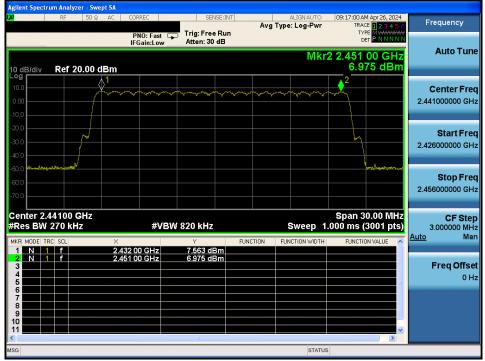
| Image: Nikr2 2.441 000 GHz         Center           10 dB/div         Ref 20.00 dBm         7.328 dBm           0.00         1         Center           10.00         1         Center           2.41650000         2.41650000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tune<br>Freq |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| PN0: Fast         Trig: Free Run         Mkr2 2.441 000 GHz         Auto           10 dB/div         Ref 20.00 dBm         7.328 dBm         Center           100         1         2.41650000         Center           100         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tune<br>Freq |
| Inc. rad         Atten: 30 dB         Det PANNNN           10 dB/div         Ref 20.00 dBm         7.328 dBm         Auto           100         1         Center         2.41650000           100         1         Center         2.41650000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Freq         |
| In Gaint ow         Auto           10 dB/div         Ref 20.00 dBm         7.328 dBm           100         1         1         1           100         1         1         1         1           100         1         1         1         1         1           100         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>Freq</td></t<>                        | Freq         |
| In dB/div         Ref 20.00 dBm         T.328 dBm           100         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>Freq</td></t<> | Freq         |
| 10 dB/div Ref 20.00 dBm 7.328 dBm<br>10 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 10 0 Cente<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| 0.00 2.41650000<br>-100 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 GHz        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| -200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Freq         |
| -30.0 2.39150000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 GHz        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _            |
| -60.0 Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Freq         |
| 2,44150000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 GHz        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| Start 2.39150 GHz Stop 2.44150 GHz CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Step         |
| #Res BW 270 kHz #VBW 820 kHz Sweep 1.000 ms (3001 pts) 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
| Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Man          |
| MKH MUDE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 🛆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
| 1 N 1 f 2.402 000 GHz 6.642 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| 2 N 1 f 2.441 000 GHz 7.328 dBm Freq 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ffeat        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 Hz         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |

#### Number of Hopping Channels 2(FH)

#### Hopping mode : Enable & 8DPSK






#### Number of Hopping Channels 1(AFH)

#### Hopping mode : Enable & GFSK

| LXI   | r Spectru | RF    | 50      | Q         | AC        | COR       | REC              |                |              | SEM            | √SE:IN         | Т      |        |              | ALIG  | GN AU | TO          | 09:            | 16:01 A      | M Apr 26, 2024            | ŧ | _               |
|-------|-----------|-------|---------|-----------|-----------|-----------|------------------|----------------|--------------|----------------|----------------|--------|--------|--------------|-------|-------|-------------|----------------|--------------|---------------------------|---|-----------------|
|       |           |       |         |           |           |           |                  |                |              | -              | -              |        | A١     | g Typ        | e: L  | og-P  | wr          |                | TRA          | CE 1 2 3 4 5<br>PE M WWWW | 6 | Frequency       |
|       |           |       |         |           |           | PI<br>IEC | 10: Fa<br>Gain:L | stĢ            |              | :Free<br>en:30 |                |        |        |              |       |       |             |                | D            |                           | N |                 |
|       |           |       |         |           |           |           | Janne            | 5M             |              |                |                |        |        |              |       | M     | lke         | 2.2            | 451          | 00 GH:                    |   | Auto Tune       |
| 10 dE | 7/46.2    | Dot   | f 20.00 | ) de      | 200       |           |                  |                |              |                |                |        |        |              |       | IV    | INI.        | ~ ~.           |              | 87 dBn                    |   |                 |
| Log   | 5/017     | Rei   | 20.00   | - ui      | 9111<br>1 |           |                  |                |              |                |                |        |        |              |       |       |             |                | 2            |                           |   |                 |
| 10.0  |           |       |         |           |           | $\neg r$  |                  | $\overline{n}$ |              | m              | <del>م</del> ۲ | $\sim$ | h      |              |       |       | $\neg \tau$ | <del>- X</del> | _            |                           |   | Center Freq     |
| 0.00  |           |       |         | +         | VV        | ¥         | V                | V V            | $\mathbb{N}$ | $\square$      | ¥              | ΥV     | !₩     | $\mathbb{V}$ | Hł    | LŲ    | ¥           | V              | {            |                           |   | 2.441000000 GHz |
| -10.0 |           |       |         | $\square$ |           |           | r                | ĩ ĩ            | r T          |                | 7              |        | ¥      | * 1          | · •   |       |             | r              | <u>\</u>     |                           |   |                 |
| -20.0 |           |       | (       | $\square$ |           |           |                  |                |              |                |                |        |        |              |       |       |             |                | $\downarrow$ |                           |   |                 |
| -30.0 |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   | Start Freq      |
| -40.0 |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                | 1            |                           |   | 2.426000000 GHz |
| -50.0 |           |       | . Jul   |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                | Ľ            |                           |   |                 |
|       |           |       | -419-17 |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              | A Maria minara sa an      |   | Stop Freq       |
| -60.0 |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   | 2.456000000 GHz |
| -70.0 |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   |                 |
| Cen   | ter 2.4   | 410   | 0 GHz   |           |           |           |                  |                |              |                |                |        |        |              |       |       |             | Sp             | an 3         | 0.00 MH                   | , | CF Step         |
|       | s BW 2    |       |         |           |           |           | #                | VBW            | / 820        | kНz            |                |        |        |              | Sw    | /eep  | <b>)</b> 1  | .000           | ms (         | 3001 pts                  | 5 | 3.000000 MHz    |
| MKB 1 | MODE TRI  | d sol | 1       |           | X         |           |                  | 1              | Y            |                |                | ELIN   | ICTION | E            | INCTI | ON W  | IDTH        |                | ELINCTI      | ON VALUE                  |   | <u>Auto</u> Man |
| 1     | N 1       | f     |         |           | 2.4       | 32 00     | ) GH             | z              | 8.4          | 61 dI          |                |        |        |              |       |       |             |                |              |                           |   |                 |
| 2     | N 1       | f     |         |           | 2.4       | 51 0(     | ) GH             | z              | 7.9          | 87 dI          | 3m             |        |        |              |       |       |             |                |              |                           |   | Freq Offset     |
| 4     |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   | 0 Hz            |
| 5     |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   |                 |
| 7     |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   |                 |
| 8     |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   |                 |
| 10    |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       |       |             |                |              |                           |   |                 |
| 11    |           |       |         |           |           |           |                  |                |              | 11             |                |        |        |              |       |       |             |                |              | >                         |   |                 |
| MSG   |           |       |         |           |           |           |                  |                |              |                |                |        |        |              |       | ST    | TATUS       | 6              |              |                           |   |                 |
|       |           | _     |         | _         |           | _         | _                |                |              | _              | _              | _      | _      | _            | _     | _     | _           | _              |              |                           | - |                 |

#### Number of Hopping Channels 1(AFH)

#### Hopping mode : Enable &π/4DQPSK





### Number of Hopping Channels 1(AFH) Hopping mode : Enable & 8DPSK

| Agilent           | i Speci | trum |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
|-------------------|---------|------|---------|-----|------|--------|--------|---------|--------|----------------------------------------|--------|------|--------------|-----------------------------------------|----------|----------------------------------------|----------------------------------------|--------|----------------|----------|-------------|------------|-----|
| L <mark>XI</mark> |         |      | RF      |     | 50 Ω | AC     | COF    | REC     |        | -                                      | ENSE:  | NT   |              |                                         | ALIGN A  |                                        | 09:18                                  |        | 4 Apr 26, 20   |          | -           | requency   |     |
|                   |         |      |         |     |      |        |        |         |        | <b>T</b>                               |        |      | Avg          | Туре                                    | e: Log-l | Pwr                                    |                                        |        | E 1234         |          |             | requeries  |     |
|                   |         |      |         |     |      |        | P      | NO: Fas | a 🖵    | Trig: Fr                               |        | n    |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
|                   |         | _    |         |     |      |        | IFU    | Gain:Lo | w      | Auen.                                  | 30 a 🗆 |      |              |                                         |          |                                        |                                        |        |                |          |             | Auto Tu    | Ino |
|                   |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         | n n      | vikr:                                  | 2 2.4                                  | 51     | 00 GF          | z        |             | Autoru     | me  |
| 10 dE             | 2/div   |      | Dof     | 20  | 00.4 | dBm    |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        | 6.6    | 17 dB          | m        |             |            |     |
| Log               | 57019   |      |         | 20. | 00   |        |        |         |        |                                        |        |      |              |                                         |          |                                        | 2                                      |        |                |          |             |            |     |
| 10.0              |         |      |         |     |      | ℚ'     |        |         |        |                                        |        |      |              |                                         |          |                                        | <b></b>                                |        |                |          |             | Center Fi  | roa |
|                   |         |      |         |     | 1    | $\sim$ | $\sim$ | - m     | $\sim$ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\sim$ | ~~~~ | and a second | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | - v      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |        |                |          |             |            |     |
| 0.00              |         |      |         |     | 1    |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          | 2.4         | 1000000    | Hz  |
| -10.0             |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
| -20.0             |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
|                   |         |      |         | ~   | 7    |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        | 1.     |                |          |             | Start Fr   | req |
| -30.0             |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        | ~ }    |                |          | 2.4         | 26000000 0 | Hz  |
| -40.0             |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
|                   |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
| -50.0             | 1.1.1   | -    | -4110-5 |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        | an besterditer | S, et la |             | Oton F.    |     |
| -60.0             |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             | Stop Fr    |     |
| -70.0             |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          | 2.4         | 56000000 0 | Ήz  |
| -70.0             |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
| 0.000             |         |      | 4.04    |     | 1    |        |        |         |        |                                        |        |      |              |                                         |          |                                        | 0                                      |        | 0.00 84        |          |             |            |     |
| Cent              |         |      |         |     | 12   |        |        |         |        | 000 1-11                               | _      |      |              |                                         |          |                                        | sp                                     | an J   | 0.00 MI        | 14       |             | CF St      |     |
| #Res              | SBW     | V Z  | γŲ.     | KHZ |      |        |        | Ŧ       | VBW    | 820 kH                                 | Z      |      |              |                                         | swee     | р 1.                                   | .0001                                  | ms (   | 3001 pt        |          |             | 3.000000 N |     |
| MKR N             | IODE -  | TRC  | SCL     |     |      | ×      |        |         |        | Y                                      |        | FUN  | CTION        | FUN                                     | ICTION V | VIDTH                                  | FI                                     | UNCTIC | IN VALUE       | ~        | <u>Auto</u> | N          | Man |
| 1                 | N       | 1    | f       |     |      | 2      | 432 0  | 0 GHz   |        | 7.701                                  | dBm    |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
|                   | N       | 1    | f       |     |      | 2      | 451 0  | 0 GHz   |        | 6.617                                  | dBm    |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
| 3                 |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             | Freq Off   | set |
| 4                 |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                | _        |             | 0          | Hz  |
| 6                 |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                | =        | _           |            |     |
| 7                 |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
| 8                 |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
| 9                 |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                |          |             |            |     |
| 10                |         |      |         |     |      |        |        |         |        |                                        |        |      |              |                                         |          |                                        |                                        |        |                | ~        |             |            |     |
| <                 |         |      |         |     |      |        |        |         | -      |                                        |        |      |              |                                         |          |                                        |                                        |        | >              |          |             |            |     |
| MSG               |         | -    | -       | _   | _    | _      |        | _       |        |                                        |        |      | _            | _                                       | -        | TATUO                                  |                                        | _      |                | ,        |             |            | _   |
| MSG               |         |      |         | _   |      |        | _      | _       |        |                                        |        |      |              | _                                       | 5        | STATUS                                 |                                        | _      |                |          |             |            |     |

### 8. Time of Occupancy

#### 8.1. Test Setup

Refer to the APPENDIX I.

#### 8.2. Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

#### 8.3. Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency = 2 441 MHz

Span = zero

RBW = 1 MHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

VBW ≥ RBW

Detector function = peak

Trace = max hold

#### 8.4. Test Results

#### FH mode

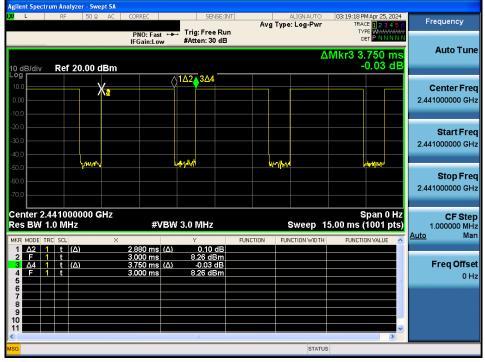
| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time<br>(ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|--------------------------|----------------|----------------------|
|                 | DH 5           | 79                            | 2.880                    | 3.750          | 0.307                |
| Enable          | 2 DH 5         | 79                            | 2.880                    | 3.750          | 0.307                |
|                 | 3 DH 5         | 79                            | 2.880                    | 3.750          | 0.307                |

AFH mode

| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time<br>(ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|--------------------------|----------------|----------------------|
|                 | DH 5           | 20                            | 2.880                    | 3.750          | 0.154                |
| Enable          | 2 DH 5         | 20                            | 2.880                    | 3.750          | 0.154                |
|                 | 3 DH 5         | 20                            | 2.880                    | 3.750          | 0.154                |

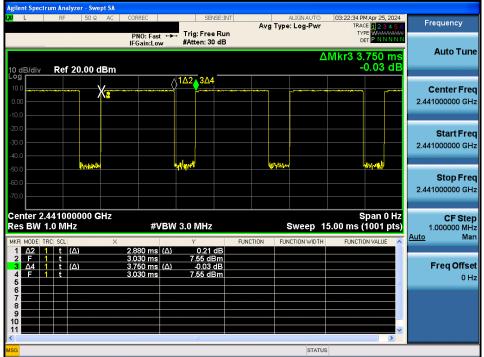
Note 1 : Dwell Time = 0.4 × Hopping channel × Burst ON time ×

((Hopping rate ÷ Time slots) ÷ Hopping channel)


- Time slots for DH5 = 6 slots (TX = 5 slots / RX = 1 slot)
- Hopping Rate = 1 600 for FH mode & 800 for AFH mode

Note 2 : See next pages for actual measured spectrum plots.




<u>Hopping mode : Enable&DH5</u>

#### Time of Occupancy (FH)



#### Time of Occupancy (FH)

#### Hopping mode : Enable&2-DH5

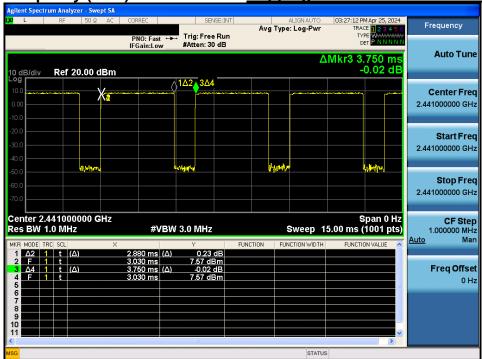




Time of Occupancy (FH)

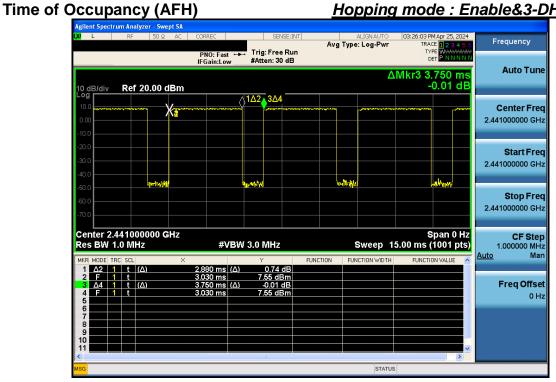
## Hopping mode : Enable&3-DH5

#### ent Spectrum Analyzer Swept SA :27 PM Apr 26, 2024 01:35Frequency Avg Type: Log-Pwr TRACE 123 TYPE WANN DET PNN Trig: Free Run Atten: 30 dB PNO: Fast +++ IFGain:Low Auto Tune ∆Mkr3 3.750 ms -0.05 dB Ref 20.00 dBm 10 dB/div Log **r** <u>∆1∆2</u>3∆4 **Center Freq** Xa 2.441000000 GHz Start Freq 2.441000000 GHz di. 1. ht Stop Freq 2.441000000 GHz Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 15.00 ms (1001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz Auto FUNCTIO 0.91 dB 7.39 dBm -0.05 dB 7.39 dBm s (A) 3.000 ms 3.750 ms (Δ) 3.000 ms Freq Offset 4567 0 Hz 10 11 STATUS




Time of Occupancy (AFH)

## Hopping mode : Enable&DH5


#### nt Spectrum Analyzer Swent SA :49 PM Apr 25, 2024 Frequency Avg Type: Log-Pwr TYPE WWW DET P N N Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Auto Tune ΔMkr3 3.750 ms 0.02 dB Ref 20.00 dBm 10 dB/div -og **r** <u>∆1∆2</u>3∆4 **Center Freq** Xz 2.441000000 GHz Start Freq 2.441000000 GHz de ha Stop Freq 2.441000000 GHz Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 15.00 ms (1001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz Auto 0.16 dB 8.19 dBm 0.02 dB 8.19 dBm Δ2 1 t (Δ) $(\Delta)$ 2.970 ms 3.750 ms (∆) 2.970 ms Freq Offset 456 0 Hz 10 11 STATUS

# Time of Occupancy (AFH) <u>Hopping mode : Enable&2-DH5</u>





## Hopping mode : Enable&3-DH5





# 9. Unwanted Emissions

## 9.1. Test Setup

Refer to the APPENDIX I.

## 9.2. Limit

Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10] In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### - Part 15.209 & RSS-Gen[8.9]: General requirement IC Limit (µA/m) Measurement Distance (m) Frequency (MHz) FCC Limit (uV/m) 2 400 / F (kHz) 0.009 - 0.4906.37/F (F in kHz) 300 0.490 - 1.70524 000 / F (kHz) 63.7/F (F in kHz) 30 1.705 - 30.0 30 0.08 30

| Frequency (MHz) | FCC Limit (uV/m) | IC Limit (uV/m) | Measurement Distance (m) |
|-----------------|------------------|-----------------|--------------------------|
| 30 ~ 88         | 100 **           | 100             | 3                        |
| 88 ~ 216        | 150 **           | 150             | 3                        |
| 216 ~ 960       | 200 **           | 200             | 3                        |
| Above 960       | 500              | 500             | 3                        |

# \*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §15.231 and 15.241.



#### - Part 15.205(a): Restricted band of operation

| MHz                 | MHz                   | MHz                     | MHz               | GHz          | GHz           |
|---------------------|-----------------------|-------------------------|-------------------|--------------|---------------|
| 0.009 ~ 0.110       | 8.414 25 ~ 8.414 75   | 108 ~ 121.94            | 1 300 ~ 1 427     | 4.5 ~ 5.15   | 14.47 ~ 14.5  |
| 0.495 ~ 0.505       | 12.29 ~ 12.293        | 123 ~ 138               | 1 435 ~ 1 626.5   | 5.35 ~ 5.46  | 15.35 ~ 16.2  |
| 2.173 5 ~ 2.190 5   | 12.519 75 ~ 12.520 25 | 149.9 ~ 150.05          | 1 645.5 ~ 1 646.5 | 7.25 ~ 7.75  | 17.7 ~ 21.4   |
| 4.125 ~ 4.128       | 12.576 75 ~ 12.577 25 | 156.524 75 ~ 156.525 25 | 1 660 ~ 1 710     | 8.025 ~ 8.5  | 22.01 ~ 23.12 |
| 4.177 25 ~ 4.177 75 | 13.36 ~ 13.41         | 156.7 ~ 156.9           | 1 718.8 ~ 1 722.2 | 9.0 ~ 9.2    | 23.6 ~ 24.0   |
| 4.207 25 ~ 4.207 75 | 16.42 ~ 16.423        | 162.012 5 ~ 167.17      | 2 200 ~ 2 300     | 9.3 ~ 9.5    | 31.2 ~ 31.8   |
| 6.215 ~ 6.218       | 16.694 75 ~ 16.695 25 | 167.72 ~ 173.2          | 2 310 ~ 2 390     | 10.6 ~ 12.7  | 36.43 ~ 36.5  |
| 6.267 75 ~ 6.268 25 | 16.804 25 ~ 16.804 75 | 240 ~ 285               | 2 483.5 ~ 2 500   | 13.25 ~ 13.4 | Above 38.6    |
| 6.311 75 ~ 6.312 25 | 25.5 ~ 25.67          | 322 ~ 335.4             | 2 655 ~ 2 900     |              |               |
| 8.291 ~ 8.294       | 37.5 ~ 38.25          | 399.90 ~ 410            | 3 260 ~ 3 267     |              |               |
| 8.362 ~ 8.366       | 73 ~ 74.6             | 608 ~ 614               | 3 332 ~ 3 339     |              |               |
| 8.376 25 ~ 8.386 75 | 74.8 ~ 75.2           | 960 ~ 1 240             | 3 345.8 ~ 3 358   |              |               |
|                     |                       |                         | 3 600 ~ 4 400     |              |               |

#### - RSS-Gen[8.10]: Restricted frequency bands

| MHz                 | MHz                   | MHz                | MHz               | MHz             | GHz           |
|---------------------|-----------------------|--------------------|-------------------|-----------------|---------------|
| 0.090 ~ 0.110       | 8.362 ~ 8.366         | 73 ~ 74.6          | 608 ~ 614         | 3 345.8 ~ 3 358 | 9.0 ~ 9.2     |
| 0.495 ~ 0.505       | 8.376 25 ~ 8.386 75   | 74.8 ~ 75.2        | 960 ~ 1 427       | 3 500 ~ 4 400   | 9.3 ~ 9.5     |
| 2.173 5 ~ 2.190 5   | 8.414 25 ~ 8.414 75   | 108 ~ 138          | 1 435 ~ 1 626.5   | 4 500 ~ 5 150   | 10.6 ~ 12.7   |
| 3.020 ~ 3.026       | 12.29 ~ 12.293        | 149.9 ~ 150.05     | 1 645.5 ~ 1 646.5 | 5 350 ~ 5 460   | 13.25 ~ 13.4  |
| 4.125 ~ 4.128       | 12.519 75 ~ 12.520 25 | 156.524 75 ~       | 1 660 ~ 1 710     | 7 250 ~ 7 750   | 14.47 ~ 14.5  |
| 4.177 25 ~ 4.177 75 | 12.576 75 ~ 12.577 25 | 156.525 25         | 1 718.8 ~ 1 722.2 | 8 025 ~ 8 500   | 15.35 ~ 16.2  |
| 4.207 25 ~ 4.207 75 | 13.36 ~ 13.41         | 156.7 ~ 156.9      | 2 200 ~ 2 300     |                 | 17.7 ~ 21.4   |
| 5.677 ~ 5.683       | 16.42 ~ 16.423        | 162.01 25 ~ 167.17 | 2 310 ~ 2 390     |                 | 22.01 ~ 23.12 |
| 6.215 ~ 6.218       | 16.694 75 ~ 16.695 25 | 167.72 ~ 173.2     | 2 483.5 ~ 2 500   |                 | 23.6 ~ 24.0   |
| 6.267 75 ~ 6.268 25 | 16.804 25 ~ 16.804 75 | 240 ~ 285          | 2 655 ~ 2 900     |                 | 31.2 ~ 31.8   |
| 6.311 75 ~ 6.312 25 | 25.5 ~ 25.67          | 322 ~ 335.4        | 3 260 ~ 3 267     |                 | 36.43 ~ 36.5  |
| 8.291 ~ 8.294       | 37.5 ~ 38.25          | 399.90 ~ 410       | 3 332 ~ 3 339     |                 | Above 38.6    |



## 9.3. Test Procedures

## 9.3.1. Test Procedures for Unwanted Emissions(Radiated)

- The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### **Measurement Instrument Setting**

- Frequencies less than or equal to 1 000 MHz The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasipeak detection (QP) at frequency below 1 GHz.
- Frequencies above 1 000 MHz
   The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
   The result of Average measurement is calculated using PK result and duty correction factor.



## 9.3.2. Test Procedures for Unwanted Emissions(Conducted)

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range : 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

Frequency range : 30 MHz ~ 10 GHz, 10 GHz ~ 25 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

## 9.4. Test Results

## 9.4.1. Unwanted Emissions(Radiated)

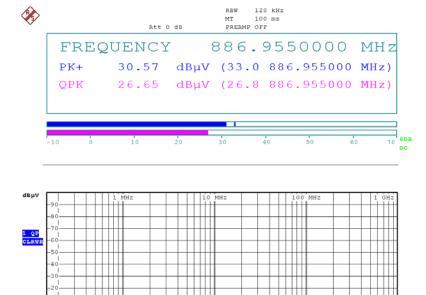
#### Test Notes.

- 1. The radiated emissions below 1 GHz were investigated from 9 kHz and the worst case data was reported.
- 2. Information of Distance Correction Factor
  - For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.
  - In this case, the distance correction factor is applied to the result.
  - Calculation of distance factor
  - At frequencies below 30 MHz =  $40 \log(\text{tested distance / specified distance})$
  - At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)
  - When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.
- 3. Sample Calculation.
  - Margin = Limit Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss,

AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

#### 9 kHz ~ 1 GHz Data (Modulation : GFSK)


#### Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 798.50             | Н          | Z                         | QP               | 27.30             | 5.39         | N/A          | N/A         | 32.69              | 46.02             | 13.33          |
| 886.96             | Н          | Z                         | QP               | 26.80             | 6.95         | N/A          | N/A         | 33.75              | 46.02             | 12.27          |
|                    |            |                           |                  |                   |              |              |             |                    |                   |                |
| -                  | -          | -                         | -                | -                 | -            | -            | -           | -                  | -                 | -              |

#### TM1 & Lowest & Z & Hor

#### **Detector Mode : QP**

GH:







#### Test Notes.

1. The radiated emissions above 1 GHz were investigated up to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance correction factor is applied to the result.

- Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied. 3. DCCF Calculation. (DCCF = Duty Cycle Correction Factor)

- Time to cycle through all channels =  $\Delta t$  = T [ms] X 20 minimum hopping channels, where T = pulse width = 2.88 ms

- 100 ms /  $\Delta t$  [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2
- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms
- DCCF = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log( 5.76 / 100 ) = -24.79 dB

4. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

#### 1 GHz ~ 25 GHz Data (Modulation : GFSK)

#### Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 2 386.58           | Н          | Х                         | PK               | 51.75             | 4.46         | N/A          | N/A         | 56.21              | 74.00             | 17.79          |
| 2 386.58           | Н          | Х                         | AV               | 51.75             | 4.46         | -24.79       | N/A         | 31.42              | 54.00             | 22.58          |
| 4 803.80           | Н          | Х                         | PK               | 50.38             | 1.64         | N/A          | N/A         | 52.02              | 74.00             | 21.98          |
| 4 803.80           | Н          | Х                         | AV               | 50.38             | 1.64         | -24.79       | N/A         | 27.23              | 54.00             | 26.77          |

#### Middle Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 4 881.62           | Н          | Х                         | PK               | 49.79             | 1.88         | N/A          | N/A         | 51.67              | 74.00             | 22.33          |
| 4 881.62           | Н          | Х                         | AV               | 49.79             | 1.88         | -24.79       | N/A         | 26.88              | 54.00             | 27.12          |

#### Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 2 489.37           | Н          | Х                         | PK               | 53.22             | 5.10         | N/A          | N/A         | 58.32              | 74.00             | 15.68          |
| 2 489.37           | Н          | Х                         | AV               | 53.22             | 5.10         | -24.79       | N/A         | 33.53              | 54.00             | 20.47          |
| 4 960.44           | Н          | Х                         | PK               | 49.12             | 2.52         | N/A          | N/A         | 51.64              | 74.00             | 22.36          |
| 4 960.44           | Н          | Х                         | AV               | 49.12             | 2.52         | -24.79       | N/A         | 26.85              | 54.00             | 27.15          |

#### 1 GHz ~ 25 GHz Data (Modulation : $\pi$ /4DQPSK)

Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 2 385.96           | Н          | Х                         | PK               | 51.63             | 4.46         | N/A          | N/A         | 56.09              | 74.00             | 17.91          |
| 2 385.96           | Н          | Х                         | AV               | 51.63             | 4.46         | -24.79       | N/A         | 31.30              | 54.00             | 22.70          |
| 4 805.06           | Н          | Х                         | PK               | 49.72             | 1.64         | N/A          | N/A         | 51.36              | 74.00             | 22.64          |
| 4 805.06           | Н          | Х                         | AV               | 49.72             | 1.64         | -24.79       | N/A         | 26.57              | 54.00             | 27.43          |

#### Middle Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 4 882.10           | Н          | Х                         | PK               | 49.24             | 1.89         | N/A          | N/A         | 51.13              | 74.00             | 22.87          |
| 4 882.10           | Н          | Х                         | AV               | 49.24             | 1.89         | -24.79       | N/A         | 26.34              | 54.00             | 27.66          |

#### Highest Channel

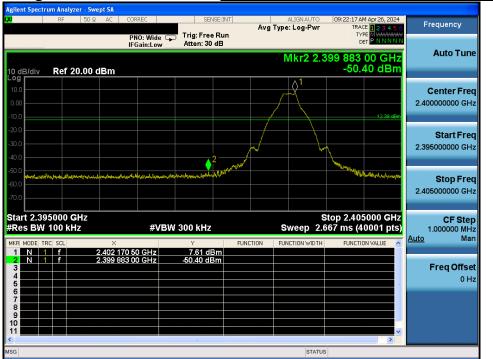
| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 2 487.52           | Н          | Х                         | PK               | 52.68             | 5.06         | N/A          | N/A         | 57.74              | 74.00             | 16.26          |
| 2 487.52           | Н          | Х                         | AV               | 52.68             | 5.06         | -24.79       | N/A         | 32.95              | 54.00             | 21.05          |
| 4 959.80           | Н          | Х                         | PK               | 48.75             | 2.52         | N/A          | N/A         | 51.27              | 74.00             | 22.73          |
| 4 959.80           | Н          | Х                         | AV               | 48.75             | 2.52         | -24.79       | N/A         | 26.48              | 54.00             | 27.52          |

## 1 GHz ~ 25 GHz Data (Modulation : <u>8DPSK</u>)

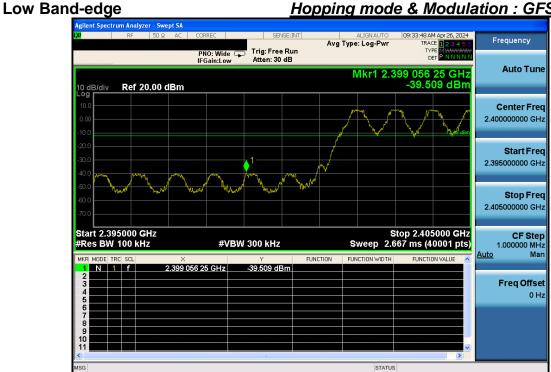
#### Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 2 382.93           | Н          | Х                         | PK               | 51.67             | 4.44         | N/A          | N/A         | 56.11              | 74.00             | 17.89          |
| 2 382.93           | Н          | Х                         | AV               | 51.67             | 4.44         | -24.79       | N/A         | 31.32              | 54.00             | 22.68          |
| 4 804.02           | Н          | Х                         | PK               | 49.30             | 1.64         | N/A          | N/A         | 50.94              | 74.00             | 23.06          |
| 4 804.02           | Н          | Х                         | AV               | 49.30             | 1.64         | -24.79       | N/A         | 26.15              | 54.00             | 27.85          |

#### Middle Channel


| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 4 882.87           | Н          | Х                         | PK               | 49.65             | 1.90         | N/A          | N/A         | 51.55              | 74.00             | 22.45          |
| 4 882.87           | Н          | Х                         | AV               | 49.65             | 1.90         | -24.79       | N/A         | 26.76              | 54.00             | 27.24          |

#### Highest Channel


| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|----------------|
| 2 491.77           | Н          | Х                         | PK               | 52.02             | 5.15         | N/A          | N/A         | 57.17              | 74.00             | 16.83          |
| 2 491.77           | Н          | Х                         | AV               | 52.02             | 5.15         | -24.79       | N/A         | 32.38              | 54.00             | 21.62          |
| 4 959.07           | Н          | Х                         | PK               | 48.97             | 2.52         | N/A          | N/A         | 51.49              | 74.00             | 22.51          |
| 4 959.07           | Н          | Х                         | AV               | 48.97             | 2.52         | -24.79       | N/A         | 26.70              | 54.00             | 27.30          |

## 9.4.2. Unwanted Emissions(Conducted)

## Low Band-edge



#### Lowest Channel & Modulation : GFSK



## Hopping mode & Modulation : GFSK



## ns Lowest Channel & Modulation : GFSK

## Conducted Spurious Emissions

| Agilent Spectr   |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         |                 |
|------------------|----------------|------------------------------------------------------------------------------------------------------------------|-----------|---------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|---------|------------------------|----------------|-----------------------------------------|-----------------|
| L)U              | RF             | 50 Ω 🧥 DC 🛛                                                                                                      | CORREC    |                     | SENSE               | INT                                                                                                             | Ava Tva | ALIGNAUTO              | TRA            | M Apr 26, 2024<br>CE <b>1 2 3 4 5 6</b> | Frequency       |
|                  |                |                                                                                                                  | PNO: Fas  |                     | ig: Free F          |                                                                                                                 |         |                        | TY             | PE MWWWWWW<br>ET P N N N N N            |                 |
|                  |                |                                                                                                                  | IFGain:Lo | w At                | tten: 30 d          | 8                                                                                                               |         |                        |                |                                         | Auto Tune       |
|                  |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                | 5.4 kHz                                 | Auto Tulk       |
| 10 dB/div<br>Log | Ref 2          | 0.00 dBm                                                                                                         |           |                     |                     |                                                                                                                 |         |                        | -03.           | 87 dBm                                  |                 |
| 10.0             |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         | Center Fred     |
| 0.00             |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         | 15.004500 MHz   |
| -10.0            |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                | 12.39 dBm                               |                 |
| -20.0            |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                | 12.00 0.01                              |                 |
| -30.0            |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         | Start Fred      |
|                  |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         | 9.000 kHz       |
| -40.0            |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         |                 |
| -50.0            |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         | Stop Fred       |
|                  | and the second | we have been a second |           | فيلديا فبرد المجاري | معلي الموهد فالدروس | and the second secon |         | al gardletter, and the | and the second | en angles (natility and an              | 30.000000 MHz   |
| -70.0            |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         |                 |
| Start 9 k⊦       | 7              |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        | Ston 3         | 0.00 MHz                                | CF Step         |
| #Res BW          |                | z                                                                                                                | #\        | /BW 30              | 0 kHz               |                                                                                                                 | :       | Sweep 5.3              | 333 ms (4      | 0001 pts)                               | 2.999100 MHz    |
| MKR MODE TR      | aci sci i      | ×                                                                                                                |           | 1                   | Y                   | FLIN                                                                                                            |         | JNCTION WIDTH          |                | ON VALUE                                | <u>Auto</u> Mar |
| 1 N 1            |                |                                                                                                                  | 295.4 kHz | -5                  | 3.87 dBn            | 1                                                                                                               |         |                        |                |                                         |                 |
| 2                |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         | Freq Offset     |
| 4 5              |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         | 0 Hz            |
| 6                |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                | =                                       |                 |
| 7                |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         |                 |
| 9                |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         |                 |
| 10               |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                | ~                                       |                 |
| <                |                |                                                                                                                  |           |                     | ш                   |                                                                                                                 |         |                        |                | >                                       |                 |
| MSG              |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         | STATUS                 | DC Co          | upled                                   |                 |
|                  |                |                                                                                                                  |           |                     |                     |                                                                                                                 |         |                        |                |                                         |                 |

| Agilent Spectrum Analyzer - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iwept SA                     |                          |          |                                    |                               |                  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|----------|------------------------------------|-------------------------------|------------------|--|--|--|--|--|
| LXI RF 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ω AC CORREC                  | SENSE:IN                 |          | ALIGN AUTO                         | 09:38:53 AM Apr 26, 202       |                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNO: Fast                    | Trig: Free Run           | AVg I    | ype: Log-Pwr                       | TRACE 1 2 3 4 5<br>TYPE MWWWW | A                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IFGain:Low                   |                          |          |                                    | DET PNNN                      |                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                          |          | Mkr                                | 5 7.566 32 GH                 | Auto Tune        |  |  |  |  |  |
| 10 dB/div Ref 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) dBm                        |                          |          |                                    | -40.14 dBn                    |                  |  |  |  |  |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                          |          |                                    |                               | Conton From      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĭ                            |                          |          |                                    |                               | Center Fred      |  |  |  |  |  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                          |          |                                    |                               | 5.015000000 GHz  |  |  |  |  |  |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |          |                                    | 12.39 dB                      | n.               |  |  |  |  |  |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |          |                                    |                               | Start Fred       |  |  |  |  |  |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |          | 5                                  |                               |                  |  |  |  |  |  |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          | ĭ        | _   _ ♦ ~ _                        |                               | 30.000000 MHz    |  |  |  |  |  |
| and the state of t |                              |                          |          | Special distriction of Discontings |                               |                  |  |  |  |  |  |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |          |                                    |                               | Stop Freq        |  |  |  |  |  |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |          |                                    |                               | 10.000000000 GHz |  |  |  |  |  |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |          |                                    |                               | 10.00000000 GHZ  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                          |          |                                    |                               |                  |  |  |  |  |  |
| Start 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                          |          |                                    | Stop 10.000 GH                | CF Step          |  |  |  |  |  |
| #Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #V                           | BW 3.0 MHz               |          | Sweep 18                           | .67 ms (40001 pts             |                  |  |  |  |  |  |
| MKR MODE TRC SCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X                            | Y                        | FUNCTION | FUNCTION WIDTH                     | FUNCTION VALUE                | Auto Man         |  |  |  |  |  |
| 1 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.402 11 GHz                 | 7.69 dBm                 |          |                                    |                               |                  |  |  |  |  |  |
| 3 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.479 13 GHz<br>3.302 15 GHz | -35.71 dBm<br>-39.54 dBm |          |                                    |                               | Freq Offset      |  |  |  |  |  |
| 4 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.866 69 GHz                 | -39.55 dBm               |          |                                    |                               | 0 Hz             |  |  |  |  |  |
| 5 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.566 32 GHz                 | -40.14 dBm               |          |                                    |                               |                  |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                          |          |                                    |                               |                  |  |  |  |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                          |          |                                    |                               |                  |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                          |          |                                    |                               |                  |  |  |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                          |          |                                    |                               | 2                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                          |          |                                    | >                             |                  |  |  |  |  |  |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STATUS                       |                          |          |                                    |                               |                  |  |  |  |  |  |

0 Hz

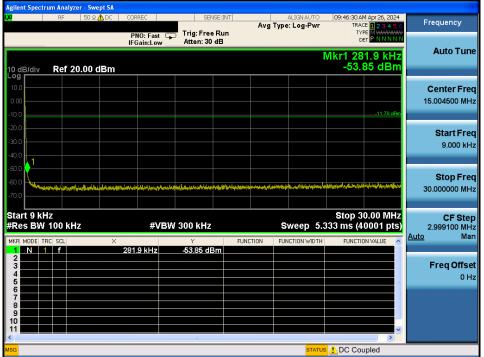


10 11

## Conducted Spurious Emissions <u>Lowest Channel & Modulation : GFSK</u>



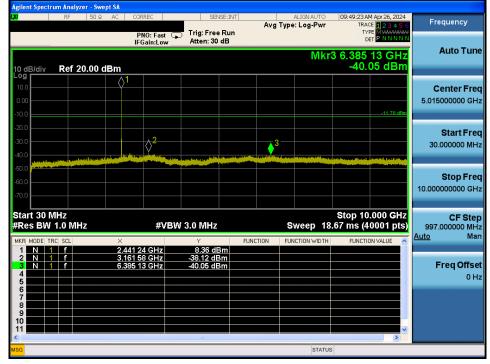
STATUS




## Reference for limit

## Middle Channel & Modulation : GFSK



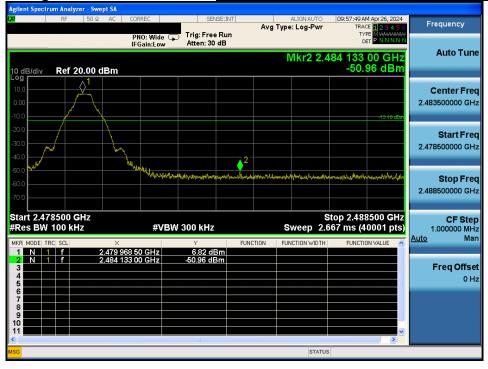

## Conducted Spurious Emissions <u>Middle Channel & Modulation : GFSK</u>



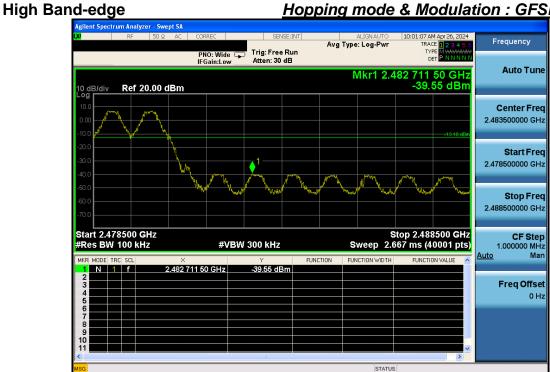


## Conducted Spurious Emissions

## Middle Channel & Modulation : GFSK




| Agilent Spo       | ectrur |     | lyzer - S                 | wept S      | 54                 |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  |    |                           |
|-------------------|--------|-----|---------------------------|-------------|--------------------|--------|--------|------------------|---------|--------------------|------------------|----------|-------------------------|--------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|----|---------------------------|
| L <b>X</b> I      |        | RF  | 50                        | ΩA          | .c c               | ORREC  |        |                  | SENSE:] | NT                 | Ave              |          | ALIGN AUTO<br>: Log-Pwr |        | 53 AM Apr 26<br>TRACE <mark>1 2</mark> |                                                                                                                  |    | Frequency                 |
|                   |        |     |                           |             |                    | PNO:   | Fast C | Trig: F          |         | n                  |                  | , i î pe | . Logi wi               |        |                                        | MARARA                                                                                                           |    |                           |
|                   |        |     |                           |             |                    | IFGain | :Low   | Atten            | 30 dB   |                    |                  |          |                         |        |                                        |                                                                                                                  |    | Auto Tune                 |
|                   |        |     |                           |             |                    |        |        |                  |         |                    |                  |          | Mkr5 1                  |        |                                        |                                                                                                                  |    | Autorune                  |
| 10 dB/di<br>Log r | V      | Ref | 20.00                     | ) dBi       | m                  |        |        |                  |         |                    |                  |          |                         | -3     | 5.02 d                                 | вm                                                                                                               |    |                           |
| 10.0              |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  |    | Center Freq               |
| 0.00              |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  | 1  | 7.500000000 GHz           |
| -10.0             |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        | 78 dBm                                                                                                           |    |                           |
| -20.0             |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        | _                                      | 4                                                                                                                |    |                           |
|                   |        |     |                           |             |                    |        |        | A.5              | ;       |                    | ۸ <mark>4</mark> |          | <u>۸</u>                | 3      | $\Diamond^2$                           | _ \(                                                                                                             |    | Start Freq                |
| -30.0             |        |     |                           |             |                    |        |        |                  |         | , diattina li na i | L.               |          | Non-second second       |        |                                        | and the second | 10 | 0.000000000 GHz           |
| -40.0             |        |     | and a state of the second | angen kanad |                    |        |        |                  |         |                    | <b>Benthy</b>    |          |                         |        |                                        |                                                                                                                  |    |                           |
| -50.0             |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        | _                                                                                                                |    | Stop Freq                 |
| -60.0             |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  | 2  | 5.000000000 GHz           |
| -70.0             |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        | _                                                                                                                |    |                           |
| Start 1           | 0 00   | 0.0 | U-7                       |             |                    |        |        |                  |         |                    |                  |          |                         | Ston   | 25.000                                 | CH2                                                                                                              |    |                           |
| #Res B            |        |     |                           |             |                    |        | #VB    | N 3.0 M          | IZ      |                    |                  | S        | weep 40                 | .00 ms | (40001                                 | pts)                                                                                                             |    | CF Step<br>1.50000000 GHz |
| MKR MODE          |        |     |                           |             | х                  |        |        | Y                |         | ELIN               | CTION            |          | CTION WIDTH             |        | ICTION VALU                            |                                                                                                                  | Au |                           |
|                   | 1      | f   |                           | 24          | .962 1             | 25 G   | Hz     | -29.24           | dBm     | FUN                | CHON             | FUN      | CTION WIDTH             | FUN    | ICTION VALU                            |                                                                                                                  |    |                           |
| 2 N               | 1      | f   |                           |             | 3.716 7<br>1.774 6 |        |        | -29.36<br>-32.66 |         |                    |                  |          |                         |        |                                        |                                                                                                                  |    | Freq Offset               |
| 4 N               | 1      | f   |                           | 18          | 8.957 6            | 525 G  | Hz     | -34.81           | dBm     |                    |                  |          |                         |        |                                        |                                                                                                                  |    | 0 Hz                      |
| 5 N               | 1      | f   |                           | 16          | 5.834 7            | 750 G  | Hz     | -35.02           | dBm     |                    |                  |          |                         |        |                                        | =                                                                                                                |    | 0112                      |
| 7                 |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  |    |                           |
| 8                 |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  |    |                           |
| 10                |        |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  |    |                           |
| 11                |        |     |                           |             |                    |        |        | ш                |         |                    |                  |          |                         |        |                                        | >                                                                                                                |    |                           |
| MSG               |        |     |                           |             |                    |        |        |                  |         |                    |                  |          | STATUS                  | 6      |                                        |                                                                                                                  |    |                           |
|                   | 516100 |     |                           |             |                    |        |        |                  |         |                    |                  |          |                         |        |                                        |                                                                                                                  |    |                           |




#### **High Band-edge**

## Highest Channel & Modulation : GFSK



## Hopping mode & Modulation : GFSK





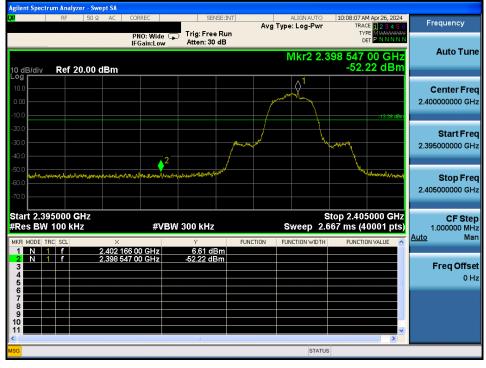
# Conducted Spurious Emissions <u>Highest Channel & Modulation : GFSK</u>

| <mark>u</mark> i                   | RF             | 50 Ω <u>Λ</u> DC      | CORREC                                   | St                         | ENSE:INT                    | Aug Tree            | ALIGNAUTO<br>e: Log-Pwr    |                         | M Apr 26, 2024<br>CE <mark>1 2 3 4 5 6</mark> | Frequency                                      |
|------------------------------------|----------------|-----------------------|------------------------------------------|----------------------------|-----------------------------|---------------------|----------------------------|-------------------------|-----------------------------------------------|------------------------------------------------|
|                                    |                |                       | PNO: Fast                                | Trig: Fre                  |                             | Avg Typ             | e. Log-Pwr                 | TY                      |                                               |                                                |
| 10 dB/div                          | Ref 2          | 0.00 dBm              | IFGain:Low                               | Atten: 3                   |                             |                     |                            | Vikr1 29                | 9.9 kHz<br>90 dBm                             | Auto Tun                                       |
| - <b>og</b><br>10.00<br>0.00       |                |                       |                                          |                            |                             |                     |                            |                         | -13:10 dBm                                    | Center Fre<br>15.004500 M⊦                     |
| -20.0<br>-30.0<br>-40.0            |                |                       |                                          |                            |                             |                     |                            |                         |                                               | <b>Start Fre</b><br>9.000 k⊦                   |
| -50.0                              | historia anali | daylaftappilisteraliy | dytinikanal <b>a</b> n Juni (Shirnang Al | understandensetzentigendes | i Angelia i si pana materia | ulliydrafdraeftydda | de l'esqui tri contecentes | (rejekasi) siralkali (r | protection of the transmission                | Stop Fre<br>30.000000 M⊦                       |
| Start 9 kH<br>#Res BW              | 100 kH         | z                     | #VI                                      | 3W 300 kH                  |                             |                     | weep 5.3                   | 333 ms (4               |                                               | <b>CF Ste</b><br>2.999100 MH<br><u>Auto</u> Ma |
| MKR MODE TF<br>1 N 1<br>2 3<br>4 5 |                | X                     | 299.9 kHz                                | ч<br>-53.90 с              |                             | NCTION FU           | NCTION WIDTH               | FUNCTIO                 |                                               | Freq Offse                                     |
| 6 7 7 8 9 9 9 9 10 11 1            |                |                       |                                          |                            |                             |                     |                            |                         |                                               |                                                |
| <                                  |                |                       |                                          | ш                          |                             |                     |                            | DC Cou                  |                                               |                                                |

| Agilent Spectrur         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 |                             |
|--------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|------------|---------|-----------------------------------|-----------------|---------------------------------|-----------------------------|
| L <mark>XI</mark>        | RF 50 Ω     | AC COR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REC        | SENSI                       | EINT       | Ava Tvp | ALIGNAUTO<br>e: Log-Pwr           |                 | 1 Apr 26, 2024<br>E 1 2 3 4 5 6 | Frequency                   |
|                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IO: Fast 🔾 | Trig: Free F<br>Atten: 30 d |            |         | <b>3</b>                          | TYF             | E MWWWWW<br>T P N N N N N       |                             |
|                          |             | IFG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iain:Low _ | Atten: 30 a                 | 0          |         | ML                                | 5 7 000         |                                 | Auto Tune                   |
| 10 dB/div                | Ref 20.00 ( | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                             |            |         | IVIKI                             | 5 7.202<br>-40. | 56 dBm                          |                             |
| Log<br>10.0              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 | Center Freq                 |
| 0.00                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 | 5.015000000 GHz             |
| -10.0                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 | -13.10 dBm                      |                             |
| -20.0                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 |                             |
| -30.0                    |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .3         |                             |            |         | 5                                 |                 |                                 | Start Freq<br>30.000000 MHz |
| -40.0                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             | $\Diamond$ |         | ut And December 2 hours have been |                 |                                 | 30.000000 WH2               |
| -50.0                    |             | Construction of the local division of the lo |            |                             |            |         |                                   |                 |                                 |                             |
| -60.0                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 | Stop Freq                   |
| -70.0                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 | 10.00000000 GHz             |
|                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 |                             |
| Start 30 MI<br>#Res BW 1 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBV       | / 3.0 MHz                   |            | s       | weep 18                           | .67 ms (4       | .000 GHz<br>0001 pts)           | CF Step<br>997.000000 MHz   |
| MKR MODE TRC             | SCL         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Y                           | FUNC       | TION FU | NCTION WIDTH                      | FUNCTIO         | N VALUE                         | <u>Auto</u> Man             |
| 1 N 1<br>2 N 1           | f<br>f      | 2.480 13<br>2.403 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 GHz      | 7.53 dBr<br>-36.85 dBr      | n          |         |                                   |                 |                                 |                             |
| 3 N 1<br>4 N 1           | f<br>f      | 3.150 1 <sup>4</sup><br>5.864 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -39.26 dBr<br>-39.72 dBr    | n<br>n     |         |                                   |                 |                                 | Freq Offset                 |
| 5 N 1                    | f           | 7.202 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | -40.56 dBr                  |            |         |                                   |                 | =                               | 0 Hz                        |
| 7                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 |                             |
| 9                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 |                             |
| 10                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 |                                 |                             |
| <                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         |                                   |                 | >                               |                             |
| MSG                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |            |         | STATUS                            | ;<br>           |                                 |                             |



## Conducted Spurious Emissions High


## Highest Channel & Modulation : GFSK





## Low Band-edge

## Lowest Channel & Modulation : π/4DQPSK



## Low Band-edge

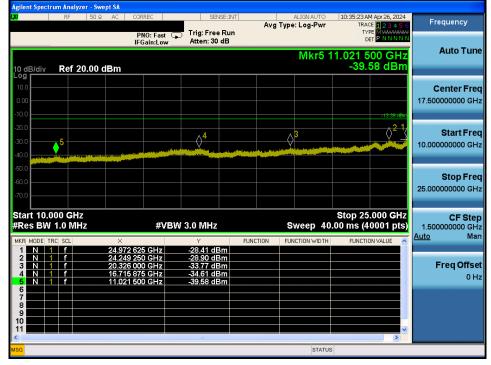
## Hopping mode & Modulation : π/4DQPSK





## sions <u>Lowest Channel & Modulation : π/4DQPSK</u>

Conducted Spurious Emissions


Frequency TRACE 123 TYPE MINA DET PNN Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB PNO: Fast 🖵 IFGain:Low Auto Tune Mkr1 281.9 kHz -54.07 dBm Ref 20.00 dBm 10 dB/div Log **Center Freq** 15.004500 MHz Start Freq 9.000 kHz Stop Freq 30.000000 MHz Start 9 kHz #Res BW 100 kHz Stop 30.00 MHz Sweep 5.333 ms (40001 pts) CF Step 2.999100 MHz Man #VBW 300 kHz Auto FUNCTION FUNCTION WIDTH FUNCTION VALU -54.07 dBm N 1 f 281.9 kHz **Freq Offset** 0 Hz 10 11 STATUS 1 DC Coupled

| Agilent Spectrum Analyze |                             |                  |                            |                |                             |                            |                                  |                            |
|--------------------------|-----------------------------|------------------|----------------------------|----------------|-----------------------------|----------------------------|----------------------------------|----------------------------|
| XI RF                    | 50Ω AC CORR                 |                  | SENSE:INT                  | Avg            | ALIGN AUTO<br>Type: Log-Pwr | 10:34:15 AM<br>TRACE       | Apr 26, 2024<br>1 2 3 4 5 6<br>M | Frequency                  |
|                          | PN<br>IFG                   |                  | ig: Free Run<br>ten: 30 dB |                |                             | DE"                        | PNNNNN                           | Auto Tum                   |
| 10 dB/div Ref 20         | .00 dBm                     |                  |                            |                | Mkr                         | 40.6 <sup>2</sup><br>40.6- | 40 GHz<br>57 dBm                 | Auto Tune                  |
| 10.0                     | <b>≬</b> 1                  |                  |                            |                |                             |                            |                                  | Center Free                |
| 0.00                     |                             |                  |                            |                |                             |                            |                                  | 5.015000000 GH             |
| -10.0                    |                             |                  |                            |                |                             |                            | -13.39 dBm                       |                            |
| -30.0                    | () <sup>2</sup>             | 3                |                            | <mark>4</mark> |                             | 5                          |                                  | Start Fre<br>30.000000 MH  |
| -40.0                    |                             |                  |                            | Y              | The second second second    |                            | States of the Street             |                            |
| -50.0                    |                             |                  |                            |                |                             |                            |                                  | Stop Fre                   |
| -70.0                    |                             |                  |                            |                |                             |                            |                                  | 10.00000000 GH             |
| Start 30 MHz             |                             |                  |                            |                |                             | Stop 10.                   |                                  | CF Ste                     |
| #Res BW 1.0 MHz          |                             | #VBW 3.0         |                            |                | Sweep 18                    |                            |                                  | 997.000000 MHz<br>Auto Man |
| MKR MODE TRC SCL         | ×<br>2.402 11               |                  | Ƴ<br>7.85 dBm              | FUNCTION       | FUNCTION WIDTH              | FUNCTION                   | N VALUE                          |                            |
| 2 N 1 f<br>3 N 1 f       | 2.479 13<br>3.323 84        | GHz -3           | 5.25 dBm<br>3.62 dBm       |                |                             |                            |                                  | Freq Offse                 |
| 4 N 1 f<br>5 N 1 f       | <u>5.620 93</u><br>7.956 40 | GHz -3<br>GHz -4 | 9.35 dBm<br>0.67 dBm       |                |                             |                            | =                                | 0 H                        |
| 6                        |                             |                  |                            |                |                             |                            |                                  |                            |
| 8                        |                             |                  |                            |                |                             |                            |                                  |                            |
| 10                       |                             |                  |                            |                |                             |                            |                                  |                            |
|                          |                             |                  | ш                          |                |                             |                            |                                  |                            |
| <mark>SG</mark>          |                             |                  |                            |                | STATUS                      | 5                          |                                  |                            |



## Conducted Spurious Emissions <u>L</u>

## Lowest Channel & Modulation : π/4DQPSK

