TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC1905-0178

 $\mathbf{\overline{D}}$ Dt&C

2. Customer

• Name : BLUEBIRD INC.

• Address : (Dogok-dong, SEI Tower 13,14) 39, Eonjuro30-gil, Gangnam-gu, Seoul South Korea

3. Use of Report : FCC Original Grant

4. Product Name / Model Name : Handheld RFID Reader / RFR900S

FCC ID : SS4RFR900S

5. Test Method Used : ANSI C63.10-2013 Test Specification : FCC Part 15.247

6. Date of Test : 2019.03.14 ~ 2019.04.26

7. Testing Environment : See appended test report.

8. Test Result : Refer to the attached test result.

Affirmation	Tested by	Reviewed by	Dag			
Ammadon	Name : SunGeun Lee (Sl. 24-0)	Name : GeunKi Son	(Signature)			
	esults presented in this test report are limited o					
the use of	this test report is inhibited other than its purpos		ot be reproduced			
	except in full, without the written appr	oval of DT&C Co., Ltd.				
	2019.05.02	2.				
	DT&C Co., Ltd.					

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1905-0178	May. 02, 2019	Initial issue

Table of Contents

1.1 Testing Laboratory5
1.2 Details of Applicant5
1.3 Description of EUT6
1.4 Declaration by the manufacturer6
1.5 Test conditions6
1.6 Test Equipment List7
1.7 Summary of Test Results8
1.8 Conclusion of worst-case and operation mode9
2. Maximum Peak Output Power Measurement10
2.1 Test Setup10
2.2 Limit10
2.3 Test Procedure10
2.4 Test Results10
3. 20dBc BW
3.1 Test Setup13
3.2 Limit13
3.3 Test Procedure13
3.4 Test Results
4. Carrier Frequency Separation
4.1 Test Setup
4.2 Limit
4.3 Procedure16
4.4 Test Results
5. Number of Hopping Frequencies
5.1 Test Setup
5.2 Limit
5.3 Procedure
5.4 Test Results17
6 Time of Occupancy (Dwall Time)
6. Time of Occupancy (Dwell Time)
6.1 Test Setup
6.1 Test Setup
6.1 Test Setup 18 6.2 Limit 18 6.3 Test Procedure 18
6.1 Test Setup 18 6.2 Limit 18 6.3 Test Procedure 18 6.4 Test Results 18
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission19
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup19
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit19
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit197.3 Test Procedures20
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit197.3 Test Procedures207.3.1 Test Procedures for Radiated Spurious Emissions20
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit197.3 Test Procedures207.3.1 Test Procedures for Radiated Spurious Emissions207.3.2 Test Procedures for Conducted Spurious Emissions20
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit197.3 Test Procedures207.3.1 Test Procedures for Radiated Spurious Emissions207.3.2 Test Procedures for Conducted Spurious Emissions207.4 Test Results21
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit197.3 Test Procedures207.3.1 Test Procedures for Radiated Spurious Emissions207.3.2 Test Procedures for Conducted Spurious Emissions207.4 Test Results217.4.1 Radiated Emission21
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit197.3 Test Procedures207.3.1 Test Procedures for Radiated Spurious Emissions207.3.2 Test Procedures for Conducted Spurious Emissions207.4 Test Results217.4.1 Radiated Emission217.4.2 Conducted Spurious Emissions24
6.1 Test Setup186.2 Limit186.3 Test Procedure186.4 Test Results187. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission197.1 Test Setup197.2 Limit197.3 Test Procedures207.3.1 Test Procedures for Radiated Spurious Emissions207.3.2 Test Procedures for Conducted Spurious Emissions207.4 Test Results217.4.1 Radiated Emission21

8.2 Limit	
8.3 Test Procedures	30
8.4. Test Results	
9. Antenna Requirement	
9.1 Procedure	33
9.2 Conclusion	
10. Occupied Bandwidth (99 %)	
10.1 Test Setup	34
10.2 Limit	34
10.3 Test Procedure	
10.4 Test Results	
APPENDIX I	

1.General Information

1.1 Testing Laboratory

DT&C Co., Li	td.	
The 3 m test si	te and	conducted measurement facility used to collect the radiated data are located at the
42, Yurim-ro, 1	54beon	-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.
The test site co	mplies	with the requirements of § 2.948 according to ANSI C63.4-2014.
- FCC MRA	Accre	dited Test Firm No. : KR0034
www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.2 Details of Applicant

Applicant	:	BLUEBIRD INC.
Address	:	(Dogok-dong, SEI Tower 13,14) 39, Eonjuro30-gil, Gangnam-gu, Seoul South Korea
Contact person	:	Yongsik Jang

1.3 Description of EUT

EUT	Handheld RFID Reader
Model Name	RFR900S
Add Model Name	NA
Serial Number	Identical prototype
Hardware version	Rev0.4
Software version	RFR900-20180829
Power Supply	DC 3.64 V
Frequency Range	902.75 ~ 927.25 MHz
Modulation Technique	ASK
Number of Channels	50(Channel Spacing: 500kHz)
Antenna Type	Internal Antenna (Max. PK -0.05 dBi)

1.4 Declaration by the manufacturer

- N/A

1.5 Test conditions

Ambient Condition		
Temperature	+22 °C ~ +25 °C	
 Relative Humidity 	30 % ~ 35 %	

1.6 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	18/07/06	19/07/06	US47360812
Spectrum Analyzer	Agilent Technologies	N9020A	18/12/19	19/12/19	MY48011700
DC Power Supply	Agilent Technologies	66332A	18/07/02	19/07/02	US37473422
Multimeter	FLUKE	17B	18/12/18	19/12/18	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	18/12/19	19/12/19	255571
Signal Generator	ANRITSU	MG3695C	18/12/10	19/12/10	173501
Thermohygrometer	BODYCOM	BJ5478	18/12/27	19/12/27	120612-1
Thermohygrometer	BODYCOM	BJ5478	18/07/09	19/07/09	N/A
HYGROMETER	TESTO	608-H1	19/01/31	20/01/31	34862883
Loop Antenna	Schwarzbeck	FMZB1513	18/01/30	20/01/30	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	18/07/13	20/07/13	3359
Horn Antenna	ETS-Lindgren	3115	19/01/11	21/01/11	9202-3820
Horn Antenna	Schwarzbeck	BBHA 9120C	17/12/04	19/12/04	9120C-561
PreAmplifier	tsj	MLA-0118-J01-45	18/12/19	19/12/19	17138
PreAmplifier	tsj	MLA-10K01-B01-27	18/10/31	19/10/31	2005354
Attenuator	Aeroflex/Weinschel	86-10-11	18/07/04	19/07/04	408
Attenuator	SMAJK	SMAJK-2-3	18/07/04	19/07/04	4
Attenuator	Aeroflex/Weinschel	56-3	18/07/02	19/07/02	Y2370
Attenuator	SRTechnology	F01-B0606-01	18/07/02	19/07/02	13092403
Attenuator	Hefei Shunze	SS5T2.92-10-40	18/07/03	19/07/03	16012202
Band Pass Filter	Wainwright Instruments	WRCT800/960.0- 2/40-8SSK	18/07/05	19/07/05	32
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	18/07/03	19/07/03	3
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	18/07/02	19/07/02	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	18/07/02	19/07/02	1
Power Meter & Wide Bandwidth Sensor	Anritsu	MA2411B MA2490A	18/12/19	19/12/19	1306053 1249303
EMI Test Receiver	Rohde Schwarz	ESW44	18/08/06	20/08/06	101645
EMI Test Receiver	Rohde Schwarz	ESCI7	19/01/30	20/01/30	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	18/09/27	19/09/27	101333
LISN	SCHWARZBECK	NNLK 8121	18/03/20 19/03/19	19/03/20 20/03/19	06183
Cable	HUBER+SUHNER	SUCOFLEX 106	18/06/25	19/06/25	G-01
Cable	HUBER+SUHNER	SUCOFLEX 104	18/06/25	19/06/25	G-02
Cable	HUBER+SUHNER	SUCOFLEX 104	18/06/25	19/06/25	G-03
Cable	Junkosha	MWX241	18/06/25	19/06/25	G-04
Cable	Junkosha	MWX241	18/06/25	19/06/25	G-07
Cable	DT&C	Cable	18/07/06	19/07/06	G-13
Cable	DT&C	Cable	18/07/06	19/07/06	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	18/07/06	19/07/06	G-15
Cable	DT&C	Cable	18/07/06	19/07/06	RF-55

Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017 Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

1.7 Summary of Test Results

FCC Part RSS Std.	Parameter	Limit (Using in 902-928 MHz)	Test Condition	Status Note 1
	Carrier Frequency Separation	>= 25 kHz or >= 20 dB BW, whichever is greater.		С
15.247(a) RSS-247(5.1)	Number of Hopping Frequencies	>= 50 hops, if 20 dB BW < 250kHz >= 25 hops, if 20 dB BW >= 250kHz		с
	20 dB Bandwidth	< 500 kHz		С
	Dwell Time	=< 0.4 seconds		С
15.247(b) RSS-247(5.4)	Transmitter Output Power	For FCC =< 1 Watt , if CHs >= 50 =< 0.25 W, if CHs >= 25, < 50 For IC if CHs >= 50 =< 1 Watt For Conducted Power =< 4 Watt For e.i.r.p, if CHs >= 25, < 50 =< 0.25 W For Conducted Power. =< 1 Watt For e.i.r.p	Conducted	С
15.247(d) RSS-247(5.5)	Conducted Spurious Emissions	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		С
RSS Gen(6.6)	Occupied Bandwidth (99 %)	N/A		NA
15.247(d) 15.205 & 209 RSS-247(5.5) RSS-Gen (8.9 & 8.10)	Radiated Spurious Emissions	FCC 15.209 Limits	Radiated	C ^{Note3}
15.207 RSS-Gen(8.8)	AC Conducted Emissions	FCC 15.207 Limits	AC Line Conducted	С
15.203 RSS-Gen(8.3)	Antenna Requirements	FCC 15.203	-	С

Note 3: This test item was performed in each axis and the worst case data was reported.

1.8 Conclusion of worst-case and operation mode

The field strength of spurious emission was measured in three orthogonal EUT positions(X-axis, Y-axis and Z-axis).

Tested frequency information,

- Hopping Function: Enable

	TX Frequency (MHz)	RX Frequency (MHz)	
Hopping Band	902.75 ~ 927.25 MHz	902.75 ~ 927.25 MHz	

- Hopping Function: Disable

Channel	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	902.75	902.75
Middle Channel	914.75	914.75
Highest Channel	927.25	927.25

2. Maximum Peak Output Power Measurement

2.1 Test Setup

Refer to the APPENDIX I.

2.2 Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

 §15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

IC Requirements

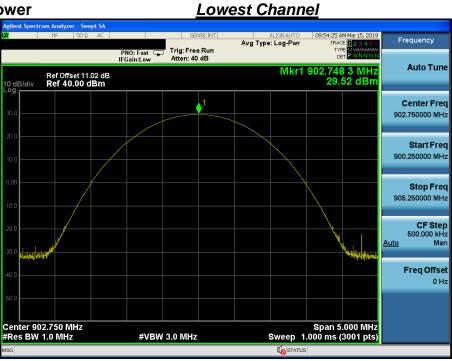
1. RSS-247(5.4)(a), For FHSS operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using;

Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge 20 \text{ dB BW}$ $VBW \ge RBW$ Sweep = autoDetector function = peak Trace = max hold


2.4 Test Results

Tested Channel	Peak Output Power			
	dBm	mW		
Lowest	29.520	895.365		
Middle	29.450	881.049		
Highest	29.220	835.603		

Note 1: See next pages for actual measured spectrum plots.

Dt&C

Peak Output Power


Peak Output Power

Middle Channel

Peak Output Power

Highest Channel

3. 20dBc BW

3.1 Test Setup

Refer to the APPENDIX I.

3.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

3.3 Test Procedure

- 1. The 20 dB bandwidth were measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting: RBW shall be in the range of 1% to 5% of the 20 dB bandwidth and VBW ≥ 3 x RBW, Span = between two times and five times the 20 dB bandwidth.

3.4 Test Results

Frequency (MHz)	Tested Channel	20dBc BW (kHz)		
902.75	Lowest	45.21		
914.75	Middle	44.79		
927.25	Highest	45.34		

Note 1: See next pages for actual measured spectrum plots.

20dBc Bandwidth

Lowest Channel

20dBc Bandwidth

Middle Channel

20dBc Bandwidth

Highest Channel

4. Carrier Frequency Separation

4.1 Test Setup

Refer to the APPENDIX I.

4.2 Limit

Limit : \geq 25 kHz or \geq 20 dB BW whichever is greater.

4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to

best identify the cente	r of each individual channel.
VBW ≥ RBW	Sweep = auto

	•
Detector function = peak	Trace = max hold

4.4 Test Results

Hopping	Peak of center channel	Peak of adjacent Channel	Test Result	
Mode	(MHz)	(MHz)	(kHz)	
Enable	914.749	915.249		

Carrier Frequency Separation

Hopping mode : Enable

5. Number of Hopping Frequencies

5.1 Test Setup

Refer to the APPENDIX I.

5.2 Limit

Limit: >= 50 hops

5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while

EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 902 ~ 928 MHz were examined.

The spectrum analyzer is set to :

Span = 30 MHz Start Frequency = 899.75 MHz, Stop Frequency = 929.75 MHz RBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Detector function = peak

Sweep = auto Trace = max hold

5.4 Test Results

Hopping mode	Test Result (Total Hops)
Enable	50

Hopping mode : Enable

Carrier Frequency Separation

Frequency Avg Type: Log-Pwr PNO: Fast Trig: Free Run IFGain:Low Atten: 40 dB TYP Auto Tune Ref Offset 11.02 dB Ref 40.00 dBm 29.86 dBr **Center Freq** 914.750000 MHz Start Freq 899.750000 MHz ╶╏┊┇┇┇┇┇┊┊┇╪ 111 Stop Freq 929.750000 MHz Center 914.75 MHz #Res BW 62 kHz Span 30.00 MHz CF Step 3.000000 MHz #VBW 180 kHz Sweep 7.600 ms (3001 pts) Auto Mar 902.75 MHz 927.25 MHz 30.09 dBr 29.86 dBr **Freq Offset** 0 Hz

TRF-RF-225(03)161101

6. Time of Occupancy (Dwell Time)

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

6.3 Test Procedure

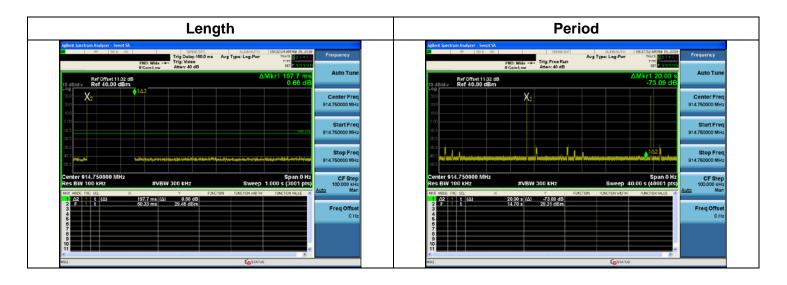
The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency = 914.75 MHz

```
Span = zero
```

RBW = 100 kHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)


VBW ≥ RBW

Detector function = peak

Trace = max hold

6.4 Test Results

Channel Frequency	Length	Number	Dwell Time	
(MHz)	(ms)		(ms)	
914.75	197.7	1	197.7	

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)		
0.009 ~ 0.490	2400/F (kHz)	300		
0.490 ~ 1705	24000/F (kHz)	30		
1705 ~ 30.0	30	30		
30 ~ 88	100 **	3		
88 ~ 216	150 **	3		
216 ~ 960	200 **	3		
Above 960	500	3		

* Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		
			3600 ~ 4400		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

7.3 Test Procedures

7.3.1 Test Procedures for Radiated Spurious Emissions

- The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- NOTE 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- NOTE 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
- NOTE 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz for Average detection (AV) at frequency above 1 GHz.

7.3.2 Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range : 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

Frequency range : 30 MHz ~ 10 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

7.4 Test Results

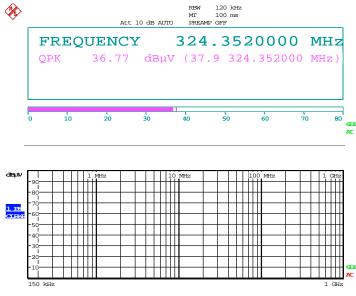
7.4.1 Radiated Emission

9kHz ~ 1GHz Data

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
55.22	V	Y	PK	33.90	-7.60	N/A	26.30	40.00	13.70
312.27	Н	Y	PK	36.00	-6.90	N/A	29.10	46.00	16.90
323.91	Н	Y	PK	46.90	-6.80	N/A	40.10	46.00	5.90
324.35	Н	Y	QP	37.90	-6.80	N/A	31.10	46.00	14.90
336.52	Н	Y	PK	38.20	-6.50	N/A	31.70	46.00	14.30
348.16	Н	Y	PK	37.10	-6.30	N/A	30.80	46.00	15.20
635.28	V	Y	PK	35.40	-0.80	N/A	34.60	46.00	11.40
840.91	Н	Y	PK	32.60	2.50	N/A	35.10	46.00	10.90
-	-	-	-	-	-	-	-	-	-

Note.


1. Exploratory testing has been performed to determine the emissions characteristic of EUT.

- And low channel was selected for final testing and reported.
- 2. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 3. Above listed point data is the worst case data.

4. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor

Lowest & X axis & Hor Detector Mode : QP

Date: 19.MAR.2019 15:35:50

1 ~ 10GHz Data

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1805.561	V	Y	PK	55.50	-0.69	N/A	54.81	74.00	19.19
1805.506	V	Y	AV	48.56	-0.69	N/A	47.87	54.00	6.13
2708.66	V	Y	PK	52.59	4.14	N/A	56.73	74.00	17.27
2708.064	V	Y	AV	41.55	4.14	N/A	45.69	54.00	8.31
3611.015	V	Х	PK	55.29	-1.60	N/A	53.69	74.00	20.31
3610.912	V	Х	AV	49.26	-1.60	N/A	47.66	54.00	6.34
4513.59	V	Y	PK	53.85	0.36	N/A	54.21	74.00	19.79
4513.801	V	Y	AV	47.94	0.36	N/A	48.30	54.00	5.70
5416.542	V	Y	PK	49.34	3.93	N/A	53.27	74.00	20.73
5416.417	V	Y	AV	39.33	3.93	N/A	43.26	54.00	10.74
6319.65	V	Y	PK	48.66	4.90	N/A	53.56	74.00	20.44
6319.526	V	Y	AV	37.55	4.90	N/A	42.45	54.00	11.55

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1829.290	V	Y	PK	55.03	-0.25	N/A	54.78	74.00	19.22
1829.420	V	Y	AV	46.04	-0.25	N/A	45.79	54.00	8.21
2744.504	V	Y	PK	53.04	4.20	N/A	57.24	74.00	16.76
2744.301	V	Y	AV	43.61	4.20	N/A	47.81	54.00	6.19
3659.165	V	Х	PK	53.04	-1.35	N/A	51.69	74.00	22.31
3659.055	V	Х	AV	46.19	-1.35	N/A	44.84	54.00	9.16
4573.704	V	Y	PK	53.87	0.54	N/A	54.41	74.00	19.59
4573.844	V	Y	AV	49.51	0.54	N/A	50.05	54.00	3.95
5487.983	V	Y	PK	50.05	3.97	N/A	54.02	74.00	19.98
5488.595	V	Y	AV	40.79	3.97	N/A	44.76	54.00	9.24
6403.599	V	Y	PK	49.98	4.96	N/A	54.94	74.00	19.06
6403.236	V	Y	AV	40.65	4.96	N/A	45.61	54.00	8.39

Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions above table.

2. Above listed point data is the worst case data.

3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor

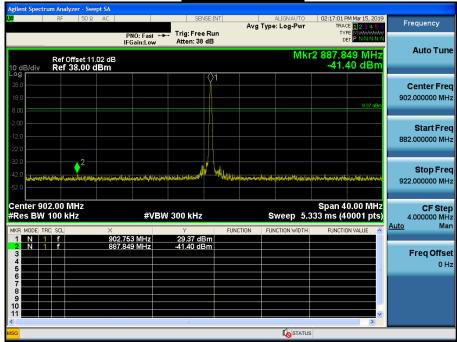
Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1854.352	V	Y	PK	54.56	0.19	N/A	54.75	74.00	19.25
1854.573	V	Y	AV	46.51	0.19	N/A	46.70	54.00	7.30
2781.495	V	Y	PK	53.30	4.09	N/A	57.39	74.00	16.61
2781.638	V	Y	AV	46.37	4.09	N/A	50.46	54.00	3.54
3708.872	V	Х	PK	52.96	-0.90	N/A	52.06	74.00	21.94
3709.081	V	Х	AV	44.05	-0.90	N/A	43.15	54.00	10.85
4636.404	V	Y	PK	53.82	0.80	N/A	54.62	74.00	19.38
4636.258	V	Y	AV	47.64	0.80	N/A	48.44	54.00	5.56
5563.910	V	Y	PK	49.72	3.72	N/A	53.44	74.00	20.56
5563.469	V	Y	AV	41.12	3.72	N/A	44.84	54.00	9.16
6490.876	V	Y	PK	48.85	5.08	N/A	53.93	74.00	20.07
6490.828	V	Y	AV	38.98	5.08	N/A	44.06	54.00	9.94

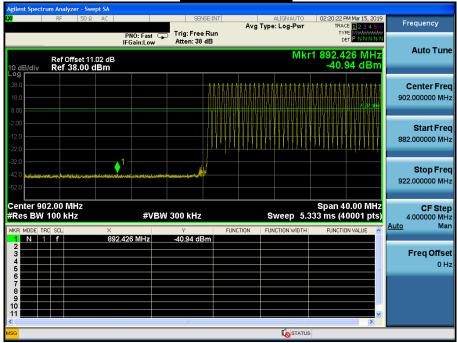
Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions above table.

2. Above listed point data is the worst case data.


3. Sample Calculation.

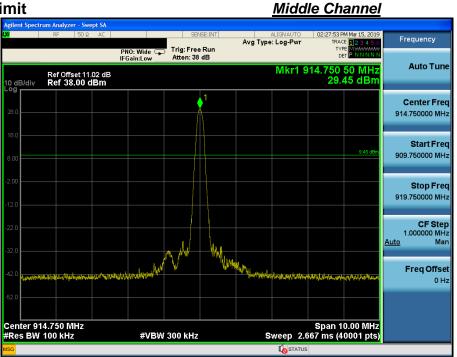
Margin = Limit – Result / Result = Reading + T.F + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor Lowest Channel


7.4.2 Conducted Spurious Emissions

Low Band-edge

Low Band-edge

Hopping mode


Conducted Spurious Emissions

Lowest Channel

gnene spece	rum Analy RF	zer - Swept SA 50 Ω 🚹 DC		CENIS	E:INT		ALIGNAUTO	02/22/02 0	M Mar 15, 2019	
	N.F	JU 32 11 DC				Avg Type		TRAC	E 1 2 3 4 5 6	Frequency
			PNO: Fast IFGain:Low	Trig: Free Atten: 40				TYF De		
0 dB/div		fset 9.87 dB 8.00 dBm						Mkr1 28 -36.1	1.9 kHz 32 dBm	Auto Tur
28.0										Center Fre
18.0 3.00 									9.37 dBm	15.004500 MI
										Start Fre
22.0										9.000 kł
12.0										Stop Fro
2.0	dales estando	ed life data ser blik instandjober	hadroni kopi teleden dişki asri	antoni ProManana Amadria of	haan da diggan da aarada	Aleiterikeri	alahiya daamada di Afrikan	arenda reservancea	undarisadoftentidof	30.000000 M
tart 9 kH Res BW		iz	#VE	3W 300 kHz		Si	weep 5.	Stop 3 333 ms (4		CF St 2.999100 M
KR MODE TI		×	281.9 kHz	, -36.82 dB	FUNCTI	ION FUN	ICTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> M
2										Freq Offs
4 5 6									=	01
7 2 2										
9										
				III						
G								DC Cou	and and	

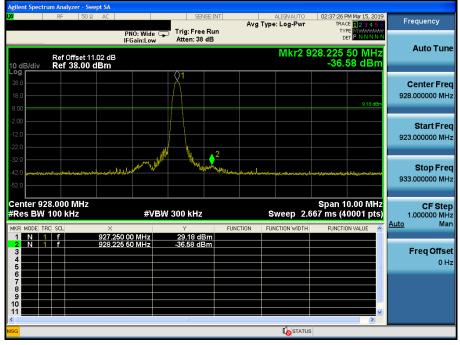
Agilent Spectr	um Analyze RE	<mark>r - Swept SA</mark> 50 Ω AC		CEF	ISE:INT		ALIGN AUTO	02/25/06/0	M Mar 15, 2019	
	N	30 % AC	PNO: Fast	Trig: Free	Run	Avg Ty	pe: Log-Pwr	TRAG		Frequency
10 dB/div	Ref Offs Ref 38	et 14.61 d .00 dBm	IFGain:Low	Atten: 34	dB		Mkr	3 5.729	35 GHz 53 dBm	Auto Tune
28.0 18.0 8.00	X1								9.37 dBm	Center Fre 5.015000000 GH
2.00 12.0 22.0					¢ ³					Start Fre 30.000000 MH
-32.0										Stop Fre 10.000000000 GH
Start 30 N Res BW		2	#VE	BW 3.0 MHz			Sweep 18		.000 GHz 0001 pts)	CF Ste 997.000000 MH
MKR MODE TF 1 N 1 2 N 1 3 N 1 4 5	f f	2	902.87 MHz 696 48 GHz 729 35 GHz	33.06 dl -26.51 dl -27.53 dl	3m 3m	CTION F	UNCTION WIDTH	FUNCTIO	DN VALUE	Auto Ma Freq Offse 0 H
6 7 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10										
sg <mark>.</mark>								5		

Reference for limit

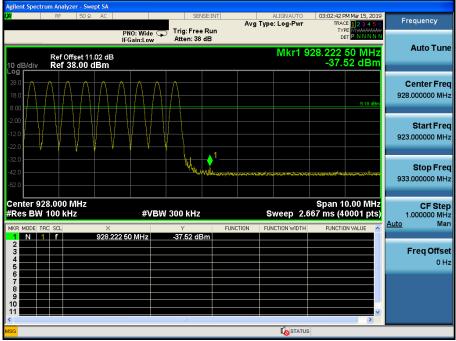
Dt&C

Conducted Spurious Emissions

Agilent Spectrum Analyzer - Swept SA					
📈 RF 50 Ω <u>Λ</u> DC		SENSE:INT	ALIGNAUTO	02:28:47 PM Mar 15, 2019 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 9.87 dB 10 dB/div Ref 38.00 dBm		Frig: Free Run Atten: 40 dB		DET P NNNNN DET P NNNNN Mkr1 281.9 kHz -35.56 dBm	Auto Tune
28.0 18.0 8.00				9.45 dBm	Center Freq 15.004500 MHz
-2.00					Start Freq 9.000 kHz
-32.0 -42.0 -52.0	etalista izatan antinezati da satin izatini izatini izat	452 - 524 - 527 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529 - 529	aller affabring the of same for station		Stop Freq 30.000000 MHz
Start 9 kHz #Res BW 100 kHz MKR MODE TRC SCL ×	#VBW 3	Y FUNCTION		Stop 30.00 MHz 333 ms (40001 pts) FUNCTION VALUE	CF Step 2.999100 MHz <u>Auto</u> Man
1 N 1 f 2 3 4 4 5 6	281.9 kHz -	35.56 dBm			Freq Offset 0 Hz
7 8 9 10 11					
<		m	1	DC Coupled	


02:31:15 PM Mar 15, 20 TRACE 12345 Frequency Avg Type: Log-Pwr PNO: Fast Trig: Free Run IFGain:Low Atten: 34 dB TYPE MWWW DET P N N N Auto Tune Ref Offset 14.61 dB Ref 38.00 dBm **Center Freq** 5.015000000 GHz Start Freq 30.000000 MHz {}³ Stop Freq 10.00000000 GHz Stop 10.000 GHz Sweep 18.67 ms (40001 pts) Start 30 MHz #Res BW 1.0 MHz **CF Step** 997.000000 MHz <u>uto</u> Man #VBW 3.0 MHz Auto 33.03 dBm -26.20 dBm -27.47 dBm 1 f 1 f 1 f 914.84 MHz 2.682 02 GHz 5.755 77 GHz N N Freq Offset 0 Hz

Middle Channel


High Band-edge

Highest Channel

High Band-edge

Hopping mode

🛈 Dt&C

Conducted Spurious Emissions

	nt Sp	ectrur	n Ana	lyzer - S												
L <mark>XI</mark>			RF	50	Ω 🧘 DC 🛛			SEN	ISE:INT	Ava		LIGNAUTO		0 PM Mar 13, 2019 RACE <mark>1 2 3 4 5 6</mark>		Frequency
						PNO: Fast IFGain:Lov		Trig: Free Atten: 40		Avy	Type	. Log-Fwi				
<u>10 (</u>	dB/di			Offset 9 38.00									Mkr1 2 -37	81.9 kHz .00 dBm		Auto Tune
Log 28. 18. 8.0														9.18 dBm		Center Freq 15.004500 MHz
-2.0 -12.1 -22.1																Start Freq 9.000 kHz
-32. -42. -52.	- V	-Jacob		<i>او هرو وایانه بسد</i> د	yhaa dayamaa	eyan ayaa ayaa ahaa ahaa ah	1994 yr 1994 yr	Antine sector and an	<i>ىرىنىدىلەرلىلاردالىرىلىرا</i>	dagas) Medicin	is and	ngensentei behygesteks	tun ati katikati	สส์สรีสราช	3	Stop Freq 30.000000 MHz
#R	es B	kHz W 1	00	۲		#V	'BW :	300 kHz				-	333 ms	30.00 MHz (40001 pts)	Auto	CF Step 500.000 kHz Man
MKF		TRC	SCL		Х	281.9 kHz		Y -37.00 dE		NCTION	FUN	CTION WIDTH	FUNC	TION VALUE	Auto	Man
2345						201.3 KH2		<u>-57.00 dE</u>								Freq Offset 0 Hz
6 7 8 9 10																
11								ш						×		
MSG		_	_										DC C	oupled		
_											_					

Agilent Spectrum Analyzer - Sv									
κ π. κ.	2 AC			E:INT		ALIGNAUTO E: Log-Pwr	TRAC	M Mar 13, 2019	Frequency
		IO: Fast 😱 iain:Low	Trig: Free I Atten: 34 d				TYI DI		
	4.04 15								Auto Tune
Ref Offset 1 10 dB/div Ref 38.00									
Log 1 28.0									Center Free
18.0									5.015000000 GH
8.00								9.18 dBm	0.0100000000011
-2.00									
-12.0									Start Free 30.000000 MH;
-22.0	<mark>2</mark>			(\begin{bmatrix} 3 & & & & & & & & & & & & & & & & & &					30.000000 MH:
-32.0			والأراقين والمعادي	A states where				Allowing and the second second	
-42.0									Stop Free
-52.0									10.00000000 GH:
Start 30 MHz							0 1	000 011-	
#Res BW 1.0 MHz		#VBW	3.0 MHz		s	weep 18	.67 ms (4	.000 GHz 0001 pts)	CF Ster 500.000 kH
MKR MODE TRC SCL	×		Y	FUNC		NCTION WIDTH	· ·	IN VALUE	Auto <u>Mar</u>
1 N 1 f	927.30		32.768 dB	m					
2 N 1 f 3 N 1 f	2.686 51 5.704 67	7 GHZ	-26.70 dBr -27.76 dBr	m m					Freq Offse
4 5									0 H:
6									
8									
9									
11								~	
MSG							6		

Highest Channel

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

See test photo graphs for the actual connections between EUT and support equipment.

8.2 Limit

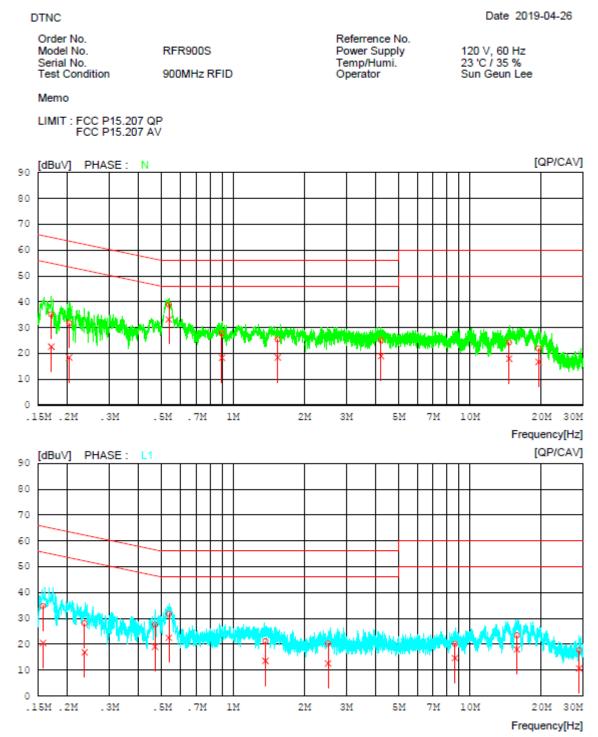
According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Eroquopov Pongo (MHz)	Conducted	Limit (dBuV)
Frequency Range (MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

* Decreases with the logarithm of the frequency

8.3 Test Procedures


Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4. Test Results

AC Line Conducted Emissions (Graph)

Results of Conducted Emission

DTNC

AC Line Conducted Emissions (List)

Results of Conducted Emission

Date 2019-04-26

Order No. Model No. Serial No. Test Condition	RFR900S 900MHz RFID	Referrence No. Power Supply Temp/Humi. Operator	120 V, 60 Hz 23 'C / 35 % Sun Geun Lee
Memo			
LIMIT : FCC P15.207 FCC P15.207			
QI	CADING C.FACTOR REST P CAV QP aV][dBuV] [dB] [dBuV]	CAV QP CAV	MARGIN PHASE QP CAV BuV][dBuV]
1 0.17064 25. 2 0.20353 21. 3 0.53590 28. 4 0.89802 17. 5 1.54380 15. 6 4.21540 14. 7 14.64580 13. 8 19.51040 11. 9 0.15750 24. 10 0.23613 18. 11 0.46783 17. 12 0.53585 21. 13 1.37040 11. 14 2.51880 10. 15 8.65600 9. 16 15.80300 12. 17 28.94460 6.	79 8.53 9.94 31.731 37 23.23 9.95 38.823 76 8.36 9.97 27.731 46 8.43 10.01 25.471 97 8.92 10.12 25.091 74 7.54 10.48 24.221 42 6.20 10.55 21.971 78 10.52 9.94 34.722 04 6.86 9.94 27.981 53 8.99 9.95 27.481 72 12.50 9.95 31.672 07 3.54 9.99 21.061 18 2.46 10.04 20.221 74 4.32 10.29 20.031	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76 32.25 N 74 35.00 N 18 12.82 N 27 27.67 N 53 27.56 N 91 26.96 N 78 31.98 N 03 33.25 N 87 35.13 L1 25 35.43 L1 07 27.61 L1 33 23.55 L1 94 32.47 L1 78 33.50 L1 97 35.39 L1 59 32.02 L1 45 39.45 L1

9. Antenna Requirement

9.1 Procedure

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

9.2 Conclusion

: Comply

The antenna employs a unique antenna connector. (Refer to Internal Photo file.) Therefore this EUT complies with the requirement of §15.203.

Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

10. Occupied Bandwidth (99 %)

10.1 Test Setup

Refer to the APPENDIX I.

10.2 Limit

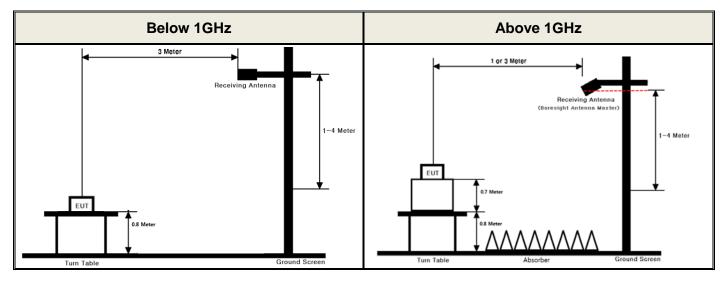
Limit : Not Applicable

10.3 Test Procedure

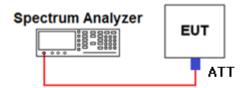
The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 × RBW.

Spectrum analyzer plots are included on the following pages.


10.4 Test Results

Not Applicable


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (MHz)	Path Loss (dB)	Frequency (MHz)	Path Loss (dB)
30	9.87	1000	11.04
500	10.56	5000	13.53
902.75 & 914.75 & 927.25	11.02	10000	14.61
-	-	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Attenuator

APPENDIX II

Unwanted Emissions (Radiated) Test Plot

Highest & X & Ver

Detector Mode : AV

