

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No.	: W167R-D050
AGR No.	: A166A-080
Applicant	: BLUEBIRD INC.
Address	: (Dogok-dong, SEI Tower13,14)39, Eonjuro30-gil, Gangnam-gu, Seoul, South Korea
Manufacturer	: BLUEBIRD INC.
Address	: (Dogok-dong, SEI Tower13,14)39, Eonjuro30-gil, Gangnam-gu, Seoul, South Korea
Type of Equipment	: Handheld Mobile Computer
FCC ID.	: SS4RFR900
Model Name	: RFR900
Serial number	: N/A
Total page of Report	: 46 pages (including this page)
Date of Incoming	: June 02, 2016
Date of issue	: July 12, 2016

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Reviewed by:

Jae-Ho, Lee / Chief Engineer ONETECH Corp.

Approved by:

Sung-ik, Han/ Managing Director ONETECH Corp.

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-002 (Rev.3)

CONTENTS

PAGE

1. VERIFICATION OF COMPLIANCE	6
2. TEST SUMMARY	7
2.1 TEST ITEMS AND RESULTS	7
2.2 Additions, deviations, exclusions from standards	7
2.3 Related Submittal(s) / Grant(s)	7
2.4 PURPOSE OF THE TEST	7
2.5 Test Methodology	7
2.6 TEST FACILITY	8
3. GENERAL INFORMATION	9
3.1 Product Description	9
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	9
4. EUT MODIFICATIONS	
5. SYSTEM TEST CONFIGURATION	
5.1 JUSTIFICATION	
5.2 Peripheral equipment	
5.3 MODE OF OPERATION DURING THE TEST	
5.4 Configuration of Test System	11
5.5 ANTENNA REQUIREMENT	11
6. PRELIMINARY TEST	12
6.1 AC Power line Conducted Emissions Tests	
6.2 GENERAL RADIATED EMISSIONS TESTS	
7. MINIMUM 20 DB BANDWIDTH	
7.1 OPERATING ENVIRONMENT	
7.2 TEST SET-UP	13
7.3 TEST EQUIPMENT USED	13
7.4 TEST DATA	14
8. HOPPING FREQUENCY SEPARATION	16
8.1 OPERATING ENVIRONMENT	
8.2 TEST SET-UP	
8.3 TEST EQUIPMENT USED	16
8.4 TEST DATA	17
It should not be reproduced except in full, without the written approval of ONETECH Corp.	EMC-002 (Rev.3)
ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-950	00, FAX: 82-31-799-9599)

9. NUMBER OF HOPPING CHANNELS	
9.1 OPERATING ENVIRONMENT	
9.2 TEST SET-UP	
9.3 TEST EQUIPMENT USED	
9.4 Test data	19
10. TIME OF OCCUPANCY	22
10.1 Operating environment	22
10.2 TEST SET-UP	22
10.3 TEST EQUIPMENT USED	22
10.4 Test data	23
11. MAXIMUM PEAK OUTPUT POWER	25
11.1 Operating environment	25
11.2 Test set-up	25
11.3 TEST EQUIPMENT USED	25
11.4 TEST DATA	26
12. 100 KHZ BANDWIDTH OUTSIDE THE FREQUENCY BAND	
12.1 Operating environment	
12.2 Test set-up for conducted measurement	
12.3 TEST SET-UP FOR RADIATED MEASUREMENT	
12.4 TEST EQUIPMENT USED	
12.5 TEST DATA FOR CONDUCTED EMISSION	
12.6 TEST DATA FOR RADIATED EMISSION AT TRANSMITTING MODE	35
12.6.1 Radiated Emission which fall in the Band Edge	
12.6.2 Spurious & Harmonic Radiated Emission above 1 GHz	
12.6.3 Spurious Radiated Emission	
13. RADIATED EMISSION TEST	41
13.1 Operating environment	41
13.2 TEST SET-UP	41
13.3 Measurement uncertainty	41
13.4 TEST EQUIPMENT USED	41
13.5 TEST DATA FOR CHARGING MODE	42
13.5.1 Test data for 30 MHz ~ 1 000 MHz	
13.5.2 Test data for Below 30 MHz	
13.5.3 Test data for above 1 GHz	
14. CONDUCTED EMISSION TEST	44

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-002 (Rev.3)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

14.1 OPERATING ENVIRONMENT	44
14.2 TEST SET-UP	44
14.3 TEST EQUIPMENT USED	44
14.4 Test data for Charging Mode	45

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
W167R-D050	July 12, 2016	Initial Issue	All

1. VERIFICATION OF COMPLIANCE

APPLICANT	: BLUEBIRD INC.		
ADDRESS	: (Dogok-dong, SEI Tower13,14)39, Eonjuro30-gil, Gangnam-gu, Seoul, South Korea		
CONTACT PERSON	: Jae-ho, Lee / Assistant	t Manager	
TELEPHONE NO	: +82-70-7730-8210		
FCC ID	: SS4RFR900		
MODEL NAME	: RFR900		
SERIAL NUMBER	: N/A		
DATE	: July 12, 2016		
EQUIPMENT CLAS	S	DSS – PART 15 SPREAD SPECTRUM TRANSMITTER	
KIND OF EQUIPME	ENT	Handheld Mobile Computer	
THIS REPORT CONCERNS		Original Grant	
MEASUREMENT P	ROCEDURES	ANSI C63.10: 2013	
TYPE OF EQUIPME	ENT TESTED	Pre-Production	
KIND OF EQUIPMENT AUTHORIZATION REQUESTED		Certification	
EQUIPMENT WILL BE OPERATED UNDER FCC RULES PART(S)		FCC PART 15 SUBPART C Section 15.247	
MODIFICATIONS O TO ACHIEVE COM	ON THE EQUIPMENT PLIANCE	None	
FINAL TEST WAS	CONDUCTED ON	3 m, Semi Anechoic Chamber	

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.247 (a) (1)	Carrier Frequency Separation	Met the Limit / PASS
15.247 (a) (1) (i)	Minimum Number of Hopping Channels	Met the Limit / PASS
15.247 (a) (1) (i)	Average Time of Occupancy	Met the Limit / PASS
15.247 (b) (2)	Maximum Peak Conducted Output Power	Met the Limit / PASS
15.247 (d)	100 kHz Bandwidth Outside the Frequency Band	Met the Limit / PASS
15.247 (d)	Radiated Emission which fall in the Restricted Band	Met the Limit / PASS
15.209	Radiated Emission Limits, General Requirement	Met the Limit / PASS
15.207	Conducted Limits	Met the Limit / PASS
15.203	Antenna Requirement	Met requirement / PASS

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.247

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) – Registration No. R-4112/ C-4617/ G-666/ T-1842

IC (Industry Canada) - Registration No. Site# 3736A-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The BLUEBIRD INC., Model RFR900 (referred to as the EUT in this report) is a Handheld Mobile Computer. The product specification described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Handheld Mot	oile Computer		
	Bluetooth	2 402 MHz ~ 2 480 MHz		
OPERATING FREQUENCY	RFID	902.75 MHz ~ 927.25 MHz		
		1 Mbps	1.40 dBm	
	Bluetooth	2 Mbps	2.98 dBm	
RF OUTPUT POWER		3 Mbps	3.02 dBm	
	RFID	29.37 dBm (29.37 dBm (0.865 W)	
	Bluetooth	79 Channels		
NUMBER OF CHANNEL	RFID	50 Channels		
	Bluetooth	GFSK for 1 Mbps, π /4-DQPSK for 2 Mbps, 8DPSK for 3 Mbps		
MODULATION TYPE	RFID	ASK		
ANTENNA TYPE	PCB Antenna			
	Bluetooth	4.535 dBi		
ANTENNA GAIN	RFID	3.72 dBi		
LIST OF EACH OSC. OR CRYSTAL.	12 MHz			
FREQ.(FREQ.>=1 MHz)				
RATED SUPPLY VOLTAGE	DC 3.635 V			

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	N/A	N/A	
Switch Board	FPCB-RFR900-BATTERY-	N/A	
Switch Doard	REV0.2	IVA	
RFID Module	IDRO900MI	N/A	
RFID Antenna	SANGSHIN 6015_V2.0	N/A	
Connect Board	EF400	N/A	
Battery	BAT-RFR900	GSP	

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to
RFR900	BLUEBIRD INC.	Handheld Mobile Computer	Adapter
ETA-U90KWK	RF Tech (Tianjin) Electronics Co., Ltd.	Adapter	EUT
EF400	BLUEBIRD INC.	PDA	10pin connector

5.3 Mode of operation during the test

- -. EUT does not transmitting mode during charging
- -. Charge mode : The USB connector and 10pin connector on the EUT was connected to the adapter and PDA, then the EUT was operated with charging continuously during the testing.
- -. For the testing, software of PDA used to control the EUT for staying in continuous transmitting mode is programmed.
- -. For final testing, EUT was set at Low Channel (917.1 MHz), Middle Channel (921.9 MHz), and High

Channel (926.9 MHz).

5.4 Configuration of Test System

Line Conducted Test:	The EUT was tested in a charging mode and transmitting mode. The EUT was
	connected to adapter and PDA. All supporting equipments were connected to another
	LISN. Preliminary Power line Conducted Emission test was performed by using the
	procedure in ANSI C63.10: 2013 to determine the worse operating conditions
Radiated Emission Test:	Preliminary radiated emissions test were conducted using the procedure in ANSI 63.10:
	2013 to determine the worse operating conditions. Final radiated emission tests were
	conducted at 3 m semi anechoic chamber. The turntable was rotated through 360
	degrees and the EUT was tested by positioned three orthogonal planes to obtain the
	highest reading on the field strength meter. Once maximum reading was determined,
	the search antenna was raised and lowered in both vertical and horizontal polarization.

5.5 Antenna Requirement

According to the rule, FCC Part 15C Section 15.203 the transmitter antenna shall be integral with the device, or the antenna coupling be so designed that no antenna other than that furnished by the party responsible for compliance shall be used.

Antenna Construction:

The transmitter antenna of the EUT is a PCB Antenna, so no consideration of replacement by the user.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating mode was investigated

Operation Mode	The Worse operating condition (Please check one only)
Charging Mode	-
Charging Mode & Transmitting Mode	Х

6.2 General Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Charging Mode	-
Charging Mode & Transmitting Mode	Х

7. MINIMUM 20 dB BANDWIDTH

7.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	56 % R.H.

7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 10 kHz, and peak detection was used. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.

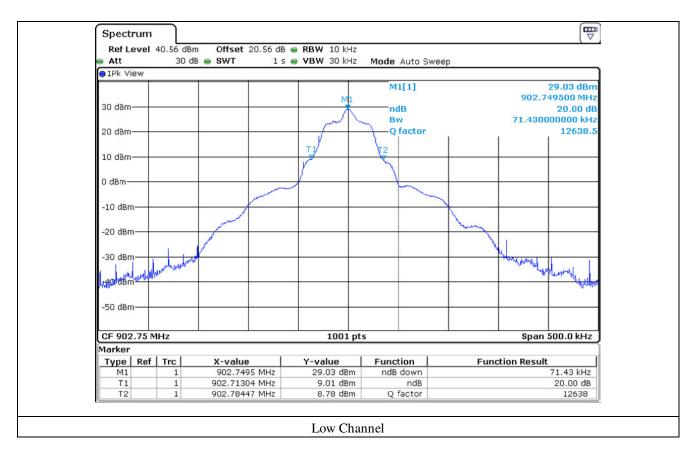
7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	May. 31, 2016 (1Y)

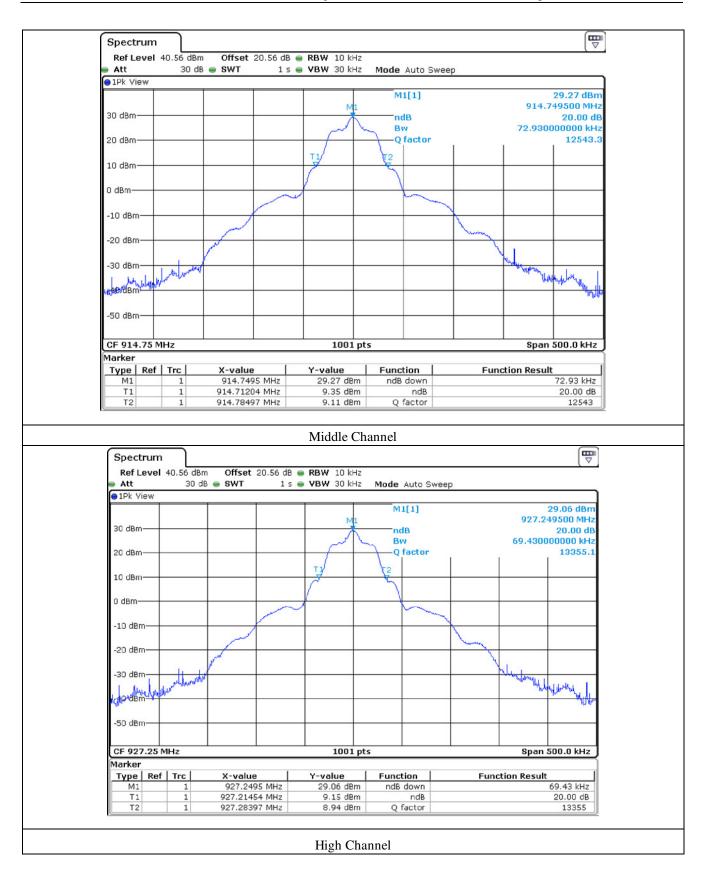
All test equipment used is calibrated on a regular basis.

Page 14 of 46

7.4 Test data


-. Test Date

: June 13, 2016


CHANNEL	NNEL FREQUENCY (MHz) 20 dB Bandwidth (kHz)		Limits(kHz)
Low	902.75	71.43	
Middle	914.75	72.93	250
High	927.25	69.43	

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

8. HOPPING FREQUENCY SEPARATION

8.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	56 % R.H.

8.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The frequency span is set to 10 MHz. The analyzer is set to peak hold then a pseudo-random hopping sequence of the transmitter is captured. The mark delta function was used to measure the frequency separation between two adjacent hopping channels.

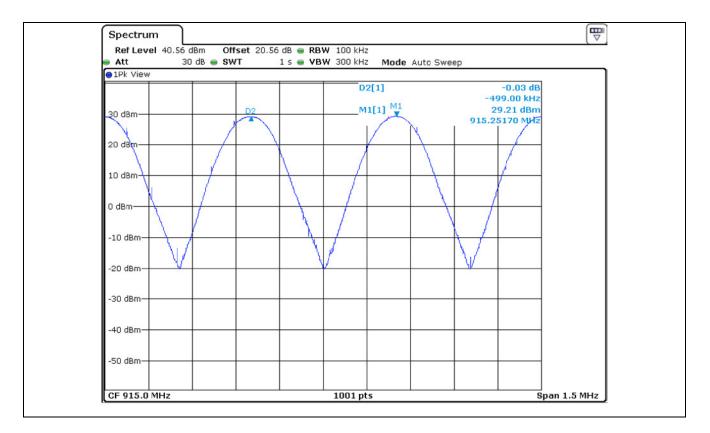
8.3 Test equipment used

Model	Number Manufact	urer Description	n Serial N	Number Last Cal.
■ - FSV40	Rohde & S	chwarz Signal Ana	lyzer 101009	May. 31, 2016 (1Y)

All test equipment used is calibrated on a regular basis.

Page 17 of 46

8.4 Test data


-. Test Date : June 13, 2016

Test Result	: Pass

Frequency (MHz)	Measured Value (kHz)	LIMIT
915.25	499.00	Minimum of 25 kHz or the 20 dB Bandwidth

Tested by: Jun-Hui, Lee / Senior Engineer

9. NUMBER OF HOPPING CHANNELS

9.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	56 % R.H.

9.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The analyzer is set to peak hold and then complete pseudo-random hopping sequence of the transmitter is captured.

9.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	May. 31, 2016 (1Y)

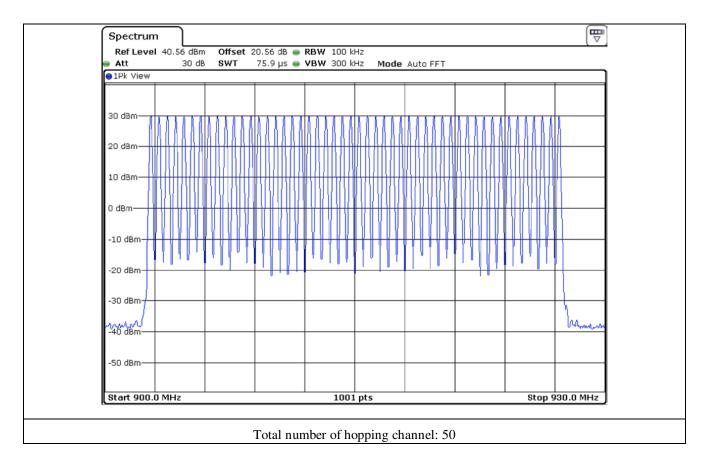
All test equipment used is calibrated on a regular basis.

Page 19 of 46

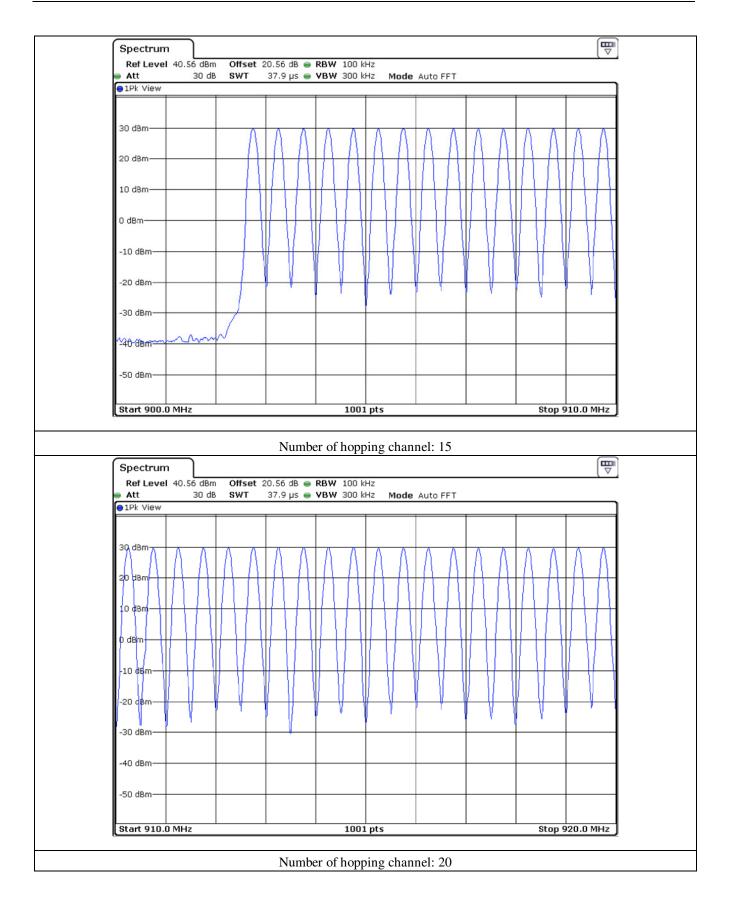
9.4 Test data

-. Test Date : June 13, 2016

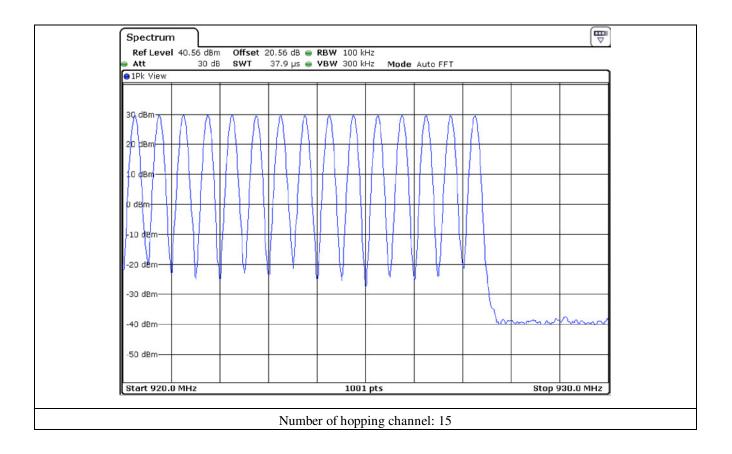
: Pass


-. Test Result

 Frequency Range (MHz)
 Measured value (Number)
 20 dB Bandwidth (kHz)
 Limit


 902.75 ~ 927.25
 50
 < 250</td>
 ≥ 50

Tested by: Jun-Hui, Lee / Senior Engineer



It should not be reproduced except in full, without the written approval of ONETECH Corp.

10. TIME OF OCCUPANCY

10.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	56 % R.H.

10.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The transmitter is set to operate in its normal frequency hopping mode. The center frequency of the spectrum analyzer is set to one of hopping channels near the center of the operating band and span is set to zero Hz. The sweep time is set to display one complete pulse. The mark delta function is used to measure the duration of the pulses.

10.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	May. 31, 2016 (1Y)

All test equipment used is calibrated on a regular basis.

10.4 Test data

Test Date	: June 13, 2016				
Frequency	20 dB Bandwidth	Pulse Time	Number of Transmission	Dwell Time	Limit
Range (MHz)	(kHz)	(ms)	(20 s period)	(ms)	(ms)
902.75 ~ 927.25	< 250	398.00	1.0	398.00	< 400

Note: Dwell Time (s) = Pulse Time * Number of Transmissions during a 20 second period.

١

Tested by: Jun-Hui, Lee / Senior Engineer

Spectrun									
Ref Leve Att			20.56 dB 👄 500 ms 👄						
TRG: VID									
TEK TION					M	1[1]			29.17 dBm
30.d8m							M	j 3	98.000 ms
30 GBm									
20 dBm	ļ			ļ	-				
10 dBm									
0 dBm									
0 ubm									
-10 dBm	TRG -9.440	dBm							
-20 dBm									
-30 dBm									
								111	
-40 dBm								wy ale tweet	WHO WHO IN THE
								28 m.	
-50 dBm									
CF 902.75	MH7			1001	nts				50.0 ms/
					P15				00.0
				Pulse	Time				
Spectrun	,)			Pulse	Time				Ē
Ref Leve	40.56 dBm		20.56 dB 🖷	RBW 100	kHz				
Ref Leve Att	40.56 dBm		20.56 dB 🖷 20 s 🖷	RBW 100	kHz				
Ref Leve	40.56 dBm			RBW 100	kHz				
Ref Leve Att TRG: VID	40.56 dBm			RBW 100	kHz				
Ref Leve Att TRG: VID	40.56 dBm			RBW 100	kHz				♥
Ref Leve Att TRG: VID 1Pk View 30 dBm	40.56 dBm			RBW 100	kHz				♥
Ref Leve Att TRG:VID 1Pk View	40.56 dBm			RBW 100	kHz				
Ref Leve Att TRG:VID 1Pk View 30 dBm 20 dBm	40.56 dBm			RBW 100	kHz				
Ref Leve Att TRG: VID 1Pk View 30 dBm	40.56 dBm			RBW 100	kHz				
Ref Leve Att TRG:VID 1Pk View 30 dBm 20 dBm	40.56 dBm			RBW 100	kHz				
Ref Leve Att TRG:VID 1Pk View 3D dBm 2D dBm 10 dBm 0 dBm	1 40.56 dBm 30 dB	3 • SWT		RBW 100	kHz				
Ref Leve Att TRG:VID 1Pk View 30 dBm 20 dBm 10 dBm 0 dBm	40.56 dBm	3 • SWT		RBW 100	kHz				
Ref Leve Att TRG: VID 1Pk View 3D dBm 2D dBm 10 dBm 0 dBm	1 40.56 dBm 30 dB	3 • SWT		RBW 100	kHz				
Ref Leve Att TRG:VID 1Pk View 3D dBm 2D dBm 10 dBm 0 dBm	1 40.56 dBm 30 dB	3 • SWT		RBW 100	kHz				
Ref Leve Att TRG: VID 1Pk View 3D dBm 2D dBm 10 dBm 0 dBm	1 40.56 dBm 30 dB	3 • SWT	20 s 🖷	RBW 100 0	KHZ KHZ				
Ref Leve Att TRG: VID 1Pk View 20 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	+TRG -9.440	dBm	20 s 🖷	RBW 100 0	KHZ KHZ				
Ref Leve Att TRG: VID 1Pk View 3D dBm 2D dBm 1D dBm 0 dBm -10 dBm -20 dBm	1 40.56 dBm 30 dB	dBm	20 s 🖷	RBW 100	KHZ KHZ	hit we had been and		Minut Agenda	
Ref Leve Att TRG: VID 1Pk View 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -30 dBm	+TRG -9.440	dBm	20 s 🖷	RBW 100 0	KHZ KHZ	hellweekt (herebrace			
Ref Leve Att TRG: VID 1Pk View 20 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	+TRG -9.440	dBm	20 s 🖷	RBW 100 0	KHZ KHZ	hithuthit/tash-ao	(Crindly Caucity)		
Ref Leve Att TRG: VID 1Pk View 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -30 dBm	1 40.56 dBm 30 dB	dBm	20 s 🖷	RBW 100 0	KHZ KHZ	hit we had y legely the			

It should not be reproduced except in full, without the written approval of ONETECH Corp.

11. MAXIMUM PEAK OUTPUT POWER

11.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	56 % R.H

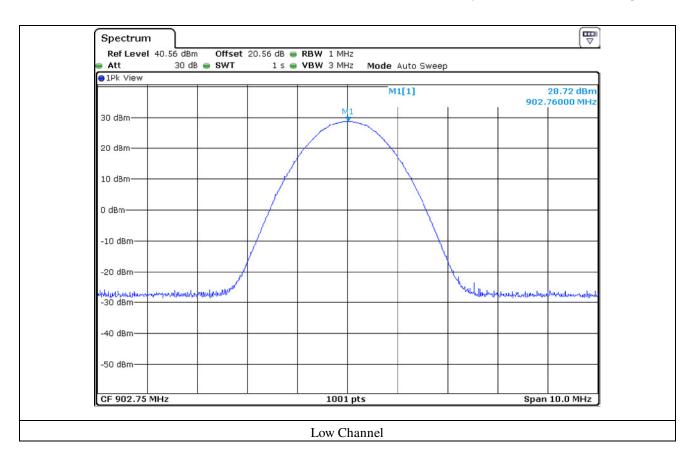
11.2 Test set-up

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The EUT was operating in transmit mode at the appropriate center frequency.

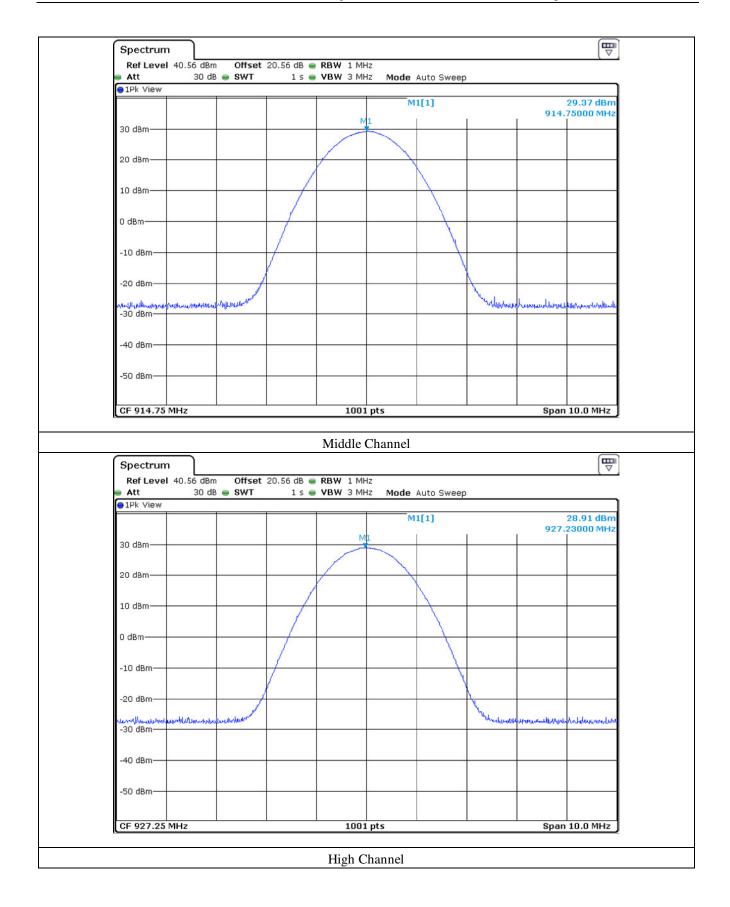
11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	May. 31, 2016 (1Y)

All test equipment used is calibrated on a regular basis.


Page 26 of 46

11.4 Test data


-. Test Date : June 13, 2016

Test Result	: Pass				
CHANNEL	FREQUENCY (MHz)	MEASURED VLAUE (dBm)	MEASURED VLAUE (W)	LIMITS (dBm)	LIMITS (W)
Low	902.75	28.72	0.745	30.00	1.0
Middle	914.75	29.37	0.865	30.00	1.0
High	927.25	28.91	0.778	30.00	1.0

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

12. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND

12.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	56 % R.H

12.2 Test set-up for conducted measurement

The antenna output of the EUT was connected to the spectrum analyzer. The resolution and video bandwidth is set to 100 kHz, and peak detection was used.

12.3 Test set-up for radiated measurement

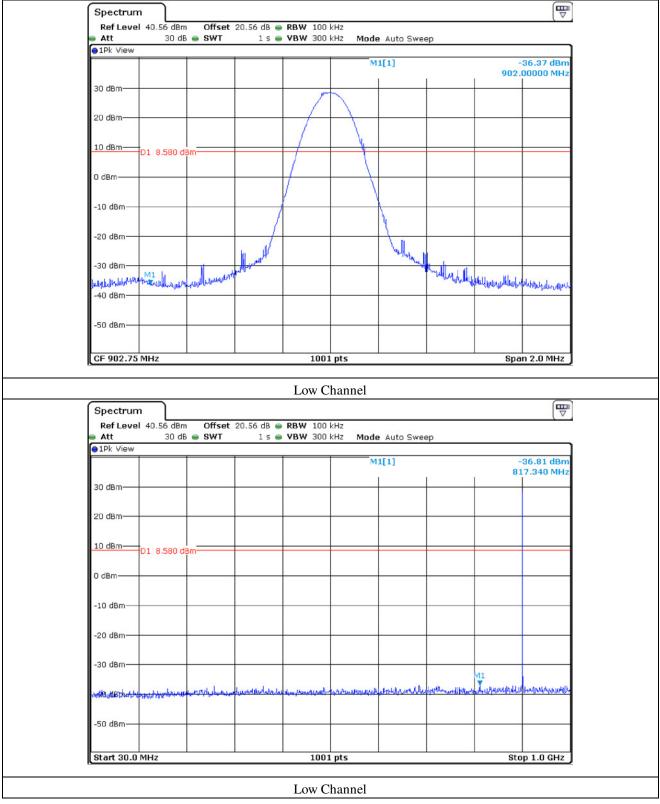
The radiated emissions measurements were performed on the 3 m semi anechoic chamber.3 m, The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane.

The frequency spectrum from 30 MHz to 10 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 ms in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

12.4 Test equipment used

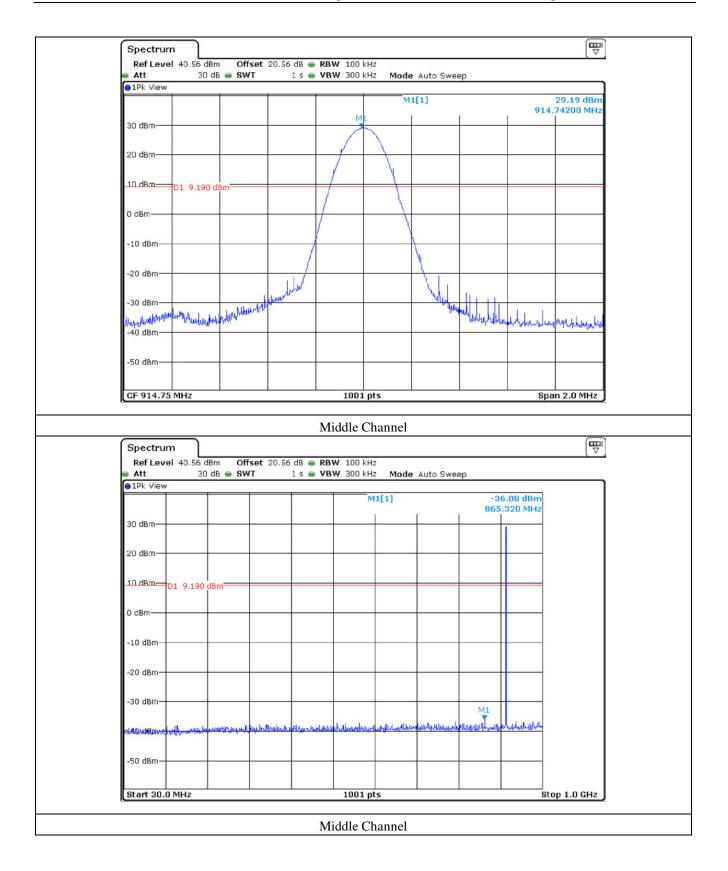
	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□ -	ESCI	Rohde & Schwarz	EMI Test Receiver	101012	Nov. 02, 2015 (1Y)
-	ESU	Rohde & Schwarz	EMI Test Receiver	100261	Apr. 06, 2016 (1Y)
□ -	8564E	HP	Spectrum Analyzer	3650A00756	Apr. 11, 2016 (1Y)
□ -	FSP	Rohde & Schwarz	Spectrum Analyzer	100017	Oct. 07, 2015 (1Y)
-	310N	Sonoma Instrument	AMPLIFIER	312544	Apr. 05, 2016 (1Y)
-	FSV30	Rohde & Schwarz	Signal Analyzer	101372	Jun. 15, 2016 (1Y)
-	SCU-18	Rohde & Schwarz	PRE-AMPLIFIER	102209	May. 31, 2016 (1Y)
■ -	MA240	HD GmbH	Antenna Master	N/A	N/A
■ -	HD100	HD GmbH	Position Controller	N/A	N/A
-	DS420S	HD GmbH	Turn Table	N/A	N/A
■ -	HFH2-Z2	Rohde & Schwarz	Loop Antenna	879 285/26	Dec. 09, 2014 (2Y)
-	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-255	May. 20, 2016 (2Y)
-	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
-	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Aug. 31, 2015 (2Y)
-	83051A	Agilent	Microwave System Preamplifer	3950M00201	Apr. 15, 2016 (1Y)

All test equipment used is calibrated on a regular basis.

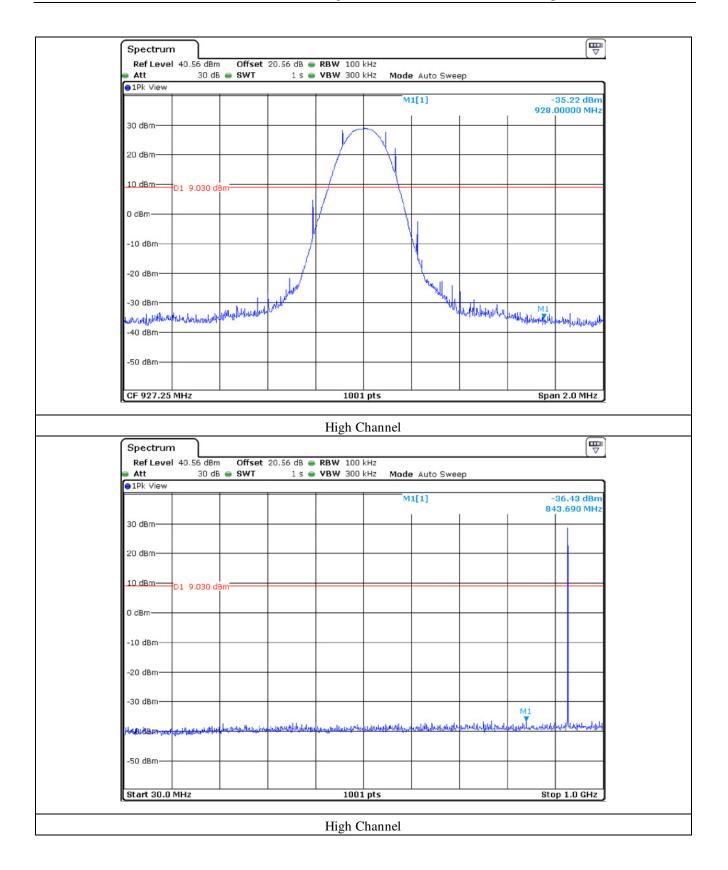

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-002 (Rev.3)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)


12.5 Test data for conducted emission

Spectrum		
	: 20.56 dB 👄 RBW 100 kHz	
Att 30 dB SWT	1 s 👄 VBW 300 kHz 🛛 Mode Auto S	Sweep
	M1[1]	-31.49 dBm 6.97450 GHz
30 dBm		
20 dBm		
10 dBm-D1 8.580 dBm-		
0 dBm		
-10 dBm		
-20 dBm		
-30 dBm	M 2016.65.95.0.1	
with Qued Bon & southy provide the way to get the open of the southy the sout	uportion down presented to provide a star of the adjust	water where you we wanted at the server
-50 dBm		
Start 1.0 GHz	1001 pts	Stop 10.0 GHz
	Low Channel	



It should not be reproduced except in full, without the written approval of ONETECH Corp.

Spectrum			
	20.56 dB RBW 100 kHz		
Att 30 dB SWT	1 s 👄 VBW 300 kHz M	ode Auto Sweep	
		M1[1]	-32.35 dBm 6.98350 GHz
30 dBm			
20 dBm			
10 dBmD1 9.190 dBm			
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm		M1	
-30 all	and a state of the second second second second second	needen and the state of the sta	all of Walnut de receive de la destruction de
-50 dBm			
Start 1.0 GHz	1001 pts		Stop 10.0 GHz
	Middle Chann	el	

It should not be reproduced except in full, without the written approval of ONETECH Corp.

	fset 20.56 dB 🖷 RBW 100			
Att 30 dB St	WT 1 s 👄 VBW 300	kHz Mode Auto Swe	ер	
		M1[1]		-32.31 dBm .83970 GHz
30 dBm				
20 dBm				
10 dBm D1 9.030 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm	here address address and a data	with and eremanded with	- John good all all and all an	pollationship
und Quel Brand and and a start and and and a start and and and a start and and a start and	WTO T V TO NOT COMPANY OF COM			
-50 dBm				
Start 1.0 GHz	100	1 pts	Stop	0 10.0 GHz
	High (Channel		

12.6 Test data for radiated emission at Transmitting Mode

12.6.1 Radiated Emission which fall in the Band Edge

- -. Test Date : July 10, 2016
- -. Resolution bandwidth : 100 kHz
- -. Video bandwidth : 300 kHz
- -. Measurement distance : 3 m
- -. Operating Condition : Highest Output Power Transmitting Mode
- -. Result
- : PASSED

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)		
Test Data for Low Channel											
928.05	41.27	Peak	Н		12.30 32.30		43.17	53.98	-10.81		
928.05	40.13	Peak	V	21.90		32.30	42.03	53.98	-11.95		
			Test I	Data for H	igh Chanı	nel					
901.97	42.02	Peak	Н	21 00	10.00	22.20	43.92	53.98	-10.06		
901.95	42.34	Peak	V	21.90	12.30	32.30	44.24	53.98	-9.74		

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Tested by: Jun-Hui, Lee / Senior Engineer

12.6.2 Spurious & Harmonic Radiated Emission above 1 GHz

- -. Test Date : July 10, 2016
- -. Resolution bandwidth 21 MHz for Peak and Average Mode
- -. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode
- -. Frequency range : 1 GHz ~ 10 GHz
- -. Measurement distance : 3 m
- -. Operating Condition : Highest Output Power Transmitting Mode

: PASSED

-. Result

Frequency (GHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)	
Test Data for Low Channel										
	60.18	Peak	Н				54.08	74.00	-19.92	
	45.11	Average	Н				39.01	54.00	-14.99	
1 805.50	59.75	Peak	V	25.30	11.10	42.50	53.65	74.00	-20.35	
	44.70	Average	V				38.60	54.00	-15.40	
			Test I	Data for M	iddle Cha	nnel				
	61.03	Peak	Н				55.03	74.00	-18.97	
	45.87	Average	Н				39.87	54.00	-14.13	
1 829.50	59.96	Peak	V	25.30	11.20	42.50	53.96	74.00	-20.04	
	44.82	Average	V				38.82	54.00	-15.18	
		·	Test	Data for H	ligh Chan	nel		·		
	60.21	Peak	Н				54.31	74.00	-19.69	
	45.06	Average	Н				39.16	54.00	-14.84	
1 854.50	59.89	Peak	V	25.30	11.30	42.50	53.99	74.00	-20.01	
	44.74	Average	V				38.84	54.00	-15.16	

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical, "*" Frequency fall in restricted band

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-002 (Rev.3)

Page 37 of 46

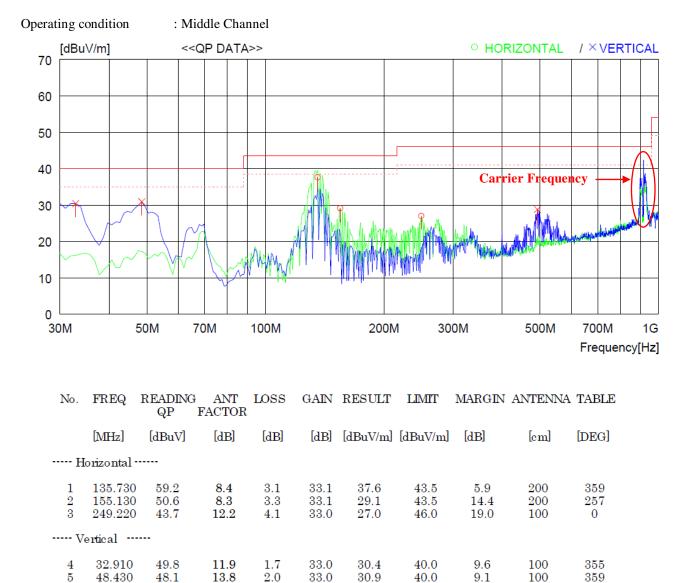
12.6.3 Spurious Radiated Emission

12.6.3.1 Test Data for 30	MHz ~ 1 000 MHz							
Humidity Level	50 % R.H. Temperature: 22 °C							
Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION 15.247							
Result	: <u>PASSED</u>							
EUT	: Handheld Mobile Computer	Date: July 10, 2016						
Detector	: CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)							
Operating condition	: Low Channel							
[dBuV/m]	< <qp data="">> • HORIZONTAL</qp>	/ ×VERTICAL						
70								
60								
50								
40	Carrier Freque							
30								
20								
10								
0 30M 50M	70M 100M 200M 300M 500M	700M 1G						
		Frequency[Hz]						
№. FREQ REAI QI		TABLE						
[MHz] [dBu	uV] [dB] [dB] [dB] [dBuV/m] [dBuV/m] [dB] [cm]	[DEG]						
Horizontal								
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.1 8.3 3.3 33.1 27.6 43.5 15.9 200	0 77 359						
5 251.100 45	.1 12.2 1.1 55.5 25.7 10.0 15.5 100	565						

V	ertical								
5	32.910 48.430	48.1	13.8	2.0	33.0	30.9	40.0	9.9 9.1	100 100
6	496.571	38.1	17.1	6.8	33.2	28.8	46.0	17.2	100

It should not be reproduced except in full, without the written approval of ONETECH Corp.

 $355 \\ 146 \\ 141$



6

491.721

38.5

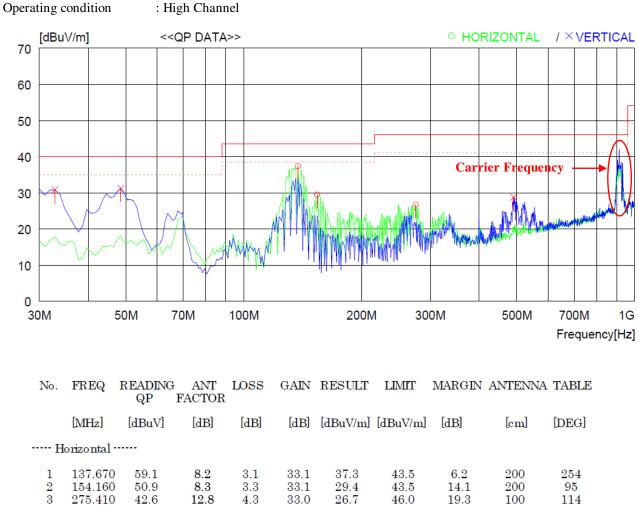
17.0

6.5

33.2

28.8

46.0


17.2

100

126

Page 39 of 46

0	275.410	42.0	12.0	4.0	55.0	20.7	40.0	19.5	100	114
V	ertical									
4	32.910	50.2	11.9	1.7	33.0	30.8	40.0	9.2	100	150
5	48.430	48.4	13.8	2.0	33.0	31.2	40.0	8.8	100	0
6	489.781	38.6	17.0	6.4	33.2	28.8	46.0	17.2	100	134

١

Tested by: Jun-Hui, Lee / Senior Engineer

Page 40 of 46

12.6.3.2 Test Data for Below 30 MHz

- -. Test Date : July 10, 2016
- -. Resolution bandwidth 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)
- -. Frequency range : 9 kHz ~ 30 MHz
- -. Measurement distance : 3 m
- -. Operating Condition : Highest Output Power Transmitting Mode
- -. Result

: PASSED

Frequency	Reading	Ant. Pol.	Ant. Factor	Cable	Amp	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	(dB/m)	Loss	Gain	Level(dBµV/m)	(dBµV/m)	(dB)
		Any	emissions we	ere not observe	ed from the	EUT.		

Tested by: Jun-Hui, Lee / Senior Engineer

13. RADIATED EMISSION TEST

13.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	56 % R.H

13.2 Test set-up

The radiated emissions measurements were on the 3 m, semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to 1 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

13.3 Measurement uncertainty

Radiated emission electric field intensity, 0.15 MHz ~ 30 MHz	: ± 2.61 dB
Radiated emission electric field intensity, 30 MHz ~ 300 MHz	: ± 4.43 dB

Radiated emission electric field intensity, 300 MHz ~ 1 000 MHz ± 3.80 dB

Radiated emission electric field intensity, 1 000 MHz ~ 3 000 MHz: \pm 4.40 dB

Measurement uncertainty is calculated in accordance with CISPR 16-4-2. The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

13.4 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
-	FSV40	Rohde & Schwarz	Signal Analyzer	101009	May. 31, 2016 (1Y)
-	ESU	Rohde & Schwarz	EMI Test Receiver	100261	Apr. 06, 2016 (1Y)
-	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 05, 2016 (1Y)
■ -	SCU-18	Rohde & Schwarz	PRE-AMPLIFIER	102209	May. 31, 2016 (1Y)
■ -	DT3000	Innco System	Turn Table	930611	N/A
-	MA4000-EP	Innco System	Antenna Master	3320611	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Apr. 15, 2016 (2Y)
■ -	HFH2-Z2	Rohde & Schwarz	Loop Antenna	879 285/26	Dec. 09, 2014(2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Aug. 31, 2015 (2Y)

All test equipment used is calibrated on a regular basis.

13.5 Test data for Charging Mode

midity Lev	rel	:	<u>56 % R.H.</u>							Temper	ature: 2
imits apply t	to	: <u>-</u>	FCC CFR	47, PAR	<u>T 15, SU</u>	JBPART (C, SECTIO	<u>N 15.247</u>			
Result		:	PASSED								
EUT		:	Handheld	Mobile C	Compute	r				Date: Ju	une 24, 2
Detector		:	CISPR Qu	asi-Peak	(6 dB B	andwidth:	120 kHz)				
100 [dBuV/r	m]	<	<qp dat<="" td=""><td>\>></td><td></td><td></td><td></td><td>○ HO</td><td>RIZONTAL</td><td>/×VER</td><td>TICAL</td></qp>	\ >>				○ HO	RIZONTAL	/×VER	TICAL
90											
80											
70											
60											
50											
40											
30		×	γ A	AMANI		Maria	MAN M	A. LINK A.	и . <u>М</u>		
20	-		NAV -	" WWW	ЩМ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	White Man	MARINE	al with the	and an international sectors	Maria IP
10		$\overline{\nabla}$					· •				
0 30M		50M	70M	100M		200	M 20	00M	500M	700M	1G
00101	``	50101	70101	100101		2001	W 30		000101	Frequer	
No. F	REQ	READIN QP	G ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE	
[r	MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m	dBuV/m]	[dB]	[cm]	[DEG]	
Hori	zontal -										
$ 1 8 \\ 2 1 $	36.260 23.120	$56.4 \\ 57.9$	9.1 9.8	$2.5 \\ 3.4$	$33.1 \\ 33.1$	$34.9 \\ 38.0$	$40.0 \\ 43.5$	$5.1 \\ 5.5$	200 200	${}^{66}_{0}$	
3 1	61.920 69.590	54.6	8.5 12.6	3.4 4.3	33.0 33.0	33.5 33.5	$43.5 \\ 46.0$	$10.0 \\ 12.5$	200 100	262 359	
Vert	ical										
	52.010	49.2	12.6	2.2	33.0	31.0	40.0	9.0	100	8	
69	17.538	42.2	22.0	8.5	32.5	40.2	46.0	5.8	100	8	

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 43 of 46

13.5.2 Test data for Below 30 MHz

- -. Test Date : June 24, 2016
- -. Resolution bandwidth 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)
- -. Frequency range : 9 kHz ~ 30 MHz
- -. Measurement distance : 3 m
- -. Operating Condition : Charging Mode
- -. Result

Frequency	Reading	Ant. Pol.	Ant. Factor	Cable	Amp	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	(dB/m)	Loss	Gain	Level(dBµV/m)	(dBµV/m)	(dB)
		Any	emissions we	ere not observe	ed from the	EUT.		

13.5.3 Test data for above 1 GHz

- . Test Date : June 24, 2016. Resolution bandwidth : 1 MHz for Peak and Average Mode
- -. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode
- -. Frequency range : 1 GHz ~ 26.5 GHz
- -. Measurement distance : 3 m
- -. Operating Condition : Charging Mode
- -. Result : PASSED

Frequency	Reading	Ant. Pol.	Ant.	0	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)		(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
			Any emiss	ions were	not observed t	from the l	EUT.		

Tested by: Jun-Hui, Lee / Senior Engineer

14. CONDUCTED EMISSION TEST

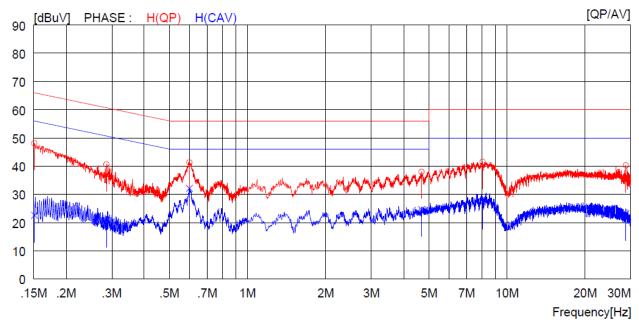
14.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	53 % R.H

14.2 Test set-up

The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

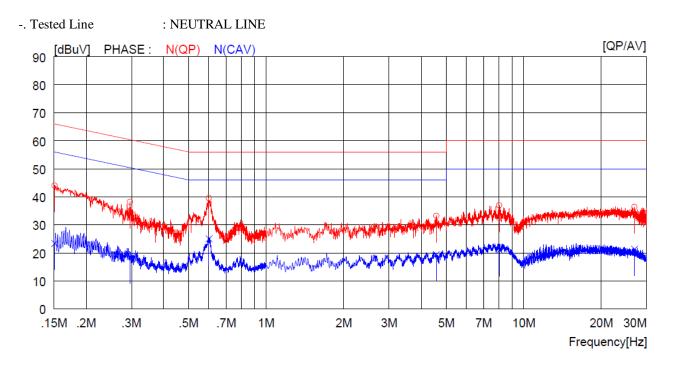
14.3 Test equipment used


	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)	
■ -	ESPI	Rohde & Schwarz	EMI Test Receiver	101278	Nov. 02, 2015 (1Y)	
□ -	ESHS10	Rohde & Schwarz	EMI Test Receiver	834467/007	Apr. 05, 2016 (1Y)	
	NSLK8128	Schwarzbeck	AMN	8128-216	Apr. 06, 2016 (1Y)	
∎ -	NSLK8126	Schwarzbeck	AMN	8126-404	Apr. 05, 2016 (1Y)	
□-	3825/2	EMCO	AMN	9109-1869	Apr. 06, 2016 (1Y)	
■	3825/2	EMCO	AMN	9109-1867	Apr. 06, 2016 (1Y)	

All test equipment used is calibrated on a regular basis.

14.4 Test data for Charging Mode

- -. Test Date : July 09, 2016
- -. Resolution bandwidth : 9 kHz
- -. Frequency range : 0.15 MHz ~ 30 MHz
- -. Tested Line : HOT LINE


NO FREQ READING C.FACTOR RESULT LIMIT MARGIN PHASE QP AV QP AV QP AV QP AV [MHz] [dBuV][dBuV] [dBuV][dBuV] [dBuV][dBuV]

1	0.15100	38.0		10.1	48.1		65.9		17.8		H(QP)
2	0.28600	30.5		10.1	40.6		60.6		20.0		HÌQP)
3	0.59700	31.2		10.1	41.3		56.0		14.7		H(QP)
4	4.69200	27.8		10.2	38.0		56.0		18.0		H(QP)
5	8.05500	31.3		10.2	41.5		60.0		18.5		H(QP)
6	28.71000	29.5		10.7	40.2		60.0		19.8		H(QP)
7	0.15100		12.5	10.1		22.6		55.9		33.3	H(CAV)
8	0.28600		10.7	10.1		20.8		50.6		29.8	H(CAV)
9	0.59700		22.0	10.1		32.1		46.0		13.9	H(CAV)
10	4.69200		14.4	10.2		24.6		46.0		21.4	H(CAV)
11	8.05500		17.1	10.2		27.3		50.0		22.7	H(CAV)
12	28.71000		12.4	10.7		23.1		50.0		26.9	H(CAV)

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 46 of 46

NO FREQ READING C.FACTOR RESULT LIMIT MARGIN PHASE QP AV QP AV QP AV QP AV [MHz] [dBuV][dBuV] [dB] [dBuV][dBuV] [dBuV][dBuV][dBuV]

1	0.15100	33.9		10.1	44.0		65.9		21.9		N(QP)
2	0.29600	28.1		10.1	38.2		60.4		22.2		N(QP)
3	0.60000	29.4		10.1	39.5		56.0		16.5		N(QP)
4	4.57600	23.0		10.2	33.2		56.0		22.8		N(QP)
5	8.05000	26.8		10.2	37.0		60.0		23.0		N(QP)
6	26.92000	25.8		10.6	36.4		60.0		23.6		N(QP)
7	0.15100		13.3	10.1		23.4		55.9		32.5	N(CAV)
8	0.29600		8.6	10.1		18.7		50.4		31.7	N(CAV)
9	0.60000		15.0	10.1		25.1		46.0		20.9	N(CAV)
10	4.57600		9.2	10.2		19.4		46.0		26.6	N(CAV)
11	8.05000		10.8	10.2		21.0		50.0		29.0	N(CAV)
12	26.92000		10.7	10.6		21.3		50.0		28.7	N(CAV)

Remark: Margin (dB) = Limit – Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-002 (Rev.3)